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Abstract

An iterative Monte Carlo inversion method for the calculation of particle pair poten-
tials from given particle pair correlations is proposed in this paper. The new method,
which is best referred to as Iterative Ornstein-Zernike Inversion, represents a general-
ization and an improvement of the established Iterative Boltzmann Inversion technique
[Reith, Pütz & Müller-Plathe, J. Comput. Chem. 24, 1624 (2003)]. Our modification
of Iterative Boltzmann Inversion consists of replacing the potential of mean force as
an approximant for the pair potential with another, generally more accurate approxi-
mant that is based on a trial bridge function in the Ornstein-Zernike integral equation
formalism. As an input, the new method requires the particle pair correlations both
in real space and in the Fourier conjugate wavenumber space. An accelerated iteration
method is included in the discussion, by which the required number of iterations can be
greatly reduced below that of the simple Picard iteration that underlies most common
implementations of Iterative Boltzmann Inversion. Comprehensive tests with various
pair potentials show that the new method generally surpasses the Iterative Boltzmann
Inversion method in terms of reliability of the numerical solution for the particle pair
potential.
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INTRODUCTION

Henderson’s theorem1 states that ’the pair potential [v(r)] which gives rise to a given radial
distribution function g(r) is unique up to a constant’ for equilibrium fluids in which the total
potential energy is the sum of the interaction energies in all pairs of particles. It is therefore
possible in principle to determine the particle pair potential, denoted u(r) in the present
paper, if only the function g(r) is known. Nonetheless, great problems are encountered in the
practical application of algorithms that aim to deduce u(r) from a given target function gT (r)
that exhibits statistical or systematic uncertainty2: The functional mapping u(r) → g(r) is
highly nonlinear, causing a propagation and amplification of small errors in gT (r) into large
errors of u(r) if an inverse mapping gT (r) → u(r) is attempted. The resulting potential
u(r) may reproduce the input function gT (r) perfectly within its uncertainty level, but this
does not imply that u(r) is close to the true particle pair potential in the system from which
gT (r) was originally obtained. The core problem is that very different pair potentials u(r) can
result in very similar functions g(r), all of which agree well with gT (r). In some applications,
such as coarse graining of a multicomponent simulation, it may be acceptable to obtain just
one of the different potentials that reproduce the pair correlations of one of the species.
In other situations, such as the analysis of experimentally recorded pair correlations, one is
often interested in the precise form of the true interaction potential of the observed particles.
In such cases, a reliable method is required that is capable of picking the true potential from
a family of structure-reproducing candidates u(r). This picking of the optimal candidate
is a non-trivial task that requires careful algorithm design and optimal use of the available
information.

One prominent algorithm for the calculation of u(r) from a given gT (r) is Iterative Boltz-
mann Inversion (IBI)3, a flowchart representation of which is provided in fig. 1. The working
principle of IBI is an initial approximation of the true particle pair potential u(r) by the
potential of mean force (PMF) w(r) = −kBT ln[gT (r)], followed by an iterative improvement
of u(r). Here, kB is the Boltzmann constant and T denotes the absolute temperature. Using
the symbol β = 1/(kBT ) for the inverse thermal energy, the IBI algorithm commences with
the calculation of the iteration seed βu1(r) = βw(r) for a given function g(r) = gT (r), as
represented by the second box from the top in fig. 1. Note that we use the symbols x = rn1/3

and y = qn−1/3 for the reduced, dimensionless particle center-to-center distance x and its
Fourier conjugate variable, the reduced dimensionless wavenumber y in the rest of this paper.
These dimensionless variables result from using the mean geometric particle distance n−1/3

as a unit of length, where n = N/V is the number density of N particles in a 3-dimensional
system of volume V .

The iteration seed βu1(x) is used in a Monte Carlo (MC) simulation from which a radial
distribution function g1(x) is extracted. Using i = 1, 2, 3, . . . as an iteration index and
approximating βui+1(x) ≈ − ln[gT (x)] and βui(x) ≈ − ln[gi(x)] results in the IBI update
rule

βui+1(x) = βui(x) + ln

[

gi(x)

gT (x)

]

, (1)

as contained in the lowermost box in fig. 1. Running a new MC simulation in every iteration,
the reduced, dimensionless potential βui(x) is iterated until convergence, at which point it
represents the output function of the IBI algorithm. For the reasons mentioned above, IBI
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Figure 1: Flowchart representation of Iterative Boltzmann Inversion (IBI)3 in the most sim-
ple and common form of a Picard iteration. The method uses a radial distribution function
gT (x = rn1/3) as input for iterating an approximation βui(x) of the reduced, dimensionless
particle pair potential. Both the iteration seed βu1(x) and the iteration update rule (in
the lowermost box) represent O(n) approximations by neglecting the difference between the
potential of mean force (PMF) −kBT ln[gT (x)] and the true pair potential u(x). The com-
plementary information contained in the static structure factors ST (y = q/n1/3) and Si(y)
is not used in the iteration.
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is prone to result in a potential that is distinctly different from the true potential u(x) in
the system from which gT (x) has been obtained. Moreover, it has been shown4 that IBI
is a creeping process which can take hundreds of iterations before a converged solution is
obtained. With every iteration involving a separate MC simulation, this slow convergence
of IBI can give rise to unacceptably long algorithm runtimes. This weakness of IBI, demon-
strated in the present paper by our results for various test potentials, calls for a modification
of the iteration procedure that improves its speed and its reliability to converge close to the
true pair potential.

One useful improvement of standard IBI is the Multistate IBI method5 which uses a set
of more than one function gT (x) as its input, each of which has been obtained at a different
thermodynamic state point of the fluid. Multistate IBI determines a potential that repro-
duces all of the input functions gT (x) at their respective state points and thereby greatly
reduces the likelihood for misrepresentation of the true potential. By construction, Multi-
state IBI assumes that the true pair potential u(x) does not depend on the thermodynamic
state of the fluid. This assumption is practically perfectly valid for a large class of molec-
ular fluids, but it can be violated in general. In particular, the effective pair potential of
mesoscopic, Brownian particulates in coarse-grained descriptions typically does depend on
the thermodynamic state of the solvent6–10, rendering Multistate IBI generally inapplicable
for such systems. The remaining need for improvement of IBI in cases where the potential
is state-dependent is addressed in the present work.

Another way to improve the precision of IBI consists in a ’pressure correction’, which
has also been referred to as ’ramp correction’3,4,11. In pressure-corrected IBI, the iterated
potential is modified by addition of a linear ramp function that depends on a single scalar
parameter (the slope of the ramp). This parameter is adjusted numerically until the (virial)
pressure of the fluid with the iterated potential matches that of the target fluid. As a re-
sult, the converged iterated potential tends to be in better general agreement with the true
potential of the target fluid than the converged potential from non-pressure-corrected IBI.
The pressure correction can be generalized by adding in place of a linear ramp a higher
order polynomial to the potential, and fixing each of the polynomial coefficients by match-
ing a separate thermodynamic observable such as the pressure, the internal energy, several
Kirkwood-Buff integrals et cetera 4,11. While the pressure correction is a powerful tool for
the improvement of IBI, it is not without problems: First, it requires information on ther-
modynamic properties of the target fluid as an input, in addition to the function gT (x).
Such thermodynamic information may not be available in all cases. Second, the ramp (or
polynomial) correction represents a rather ad-hoc modification of the iterated potential that
lacks a fundamental physical motivation.

We present here a modification of IBI that uses pair-correlation function input for a
single thermodynamic state point only, based on the key idea of exploiting a target static
structure factor ST (y)

12 as a complementary, Fourier-space source of information together
with the real space information from gT (x). The necessary link between the Fourier and real
space functions is provided by the Ornstein–Zernike (O–Z) equation in conjunction with a
closure relation for the generally unknown bridge function. The new algorithm is therefore
must accurately described as Iterative Ornstein–Zernike Inversion (IO–ZI) or as Iterative
Hypernetted Chain Inversion (IHNCI), in the special case in which the Hypernetted Chain13

(HNC) closure relation is used. Making an approximation of O(n2) at the level of the bridge

4



function, the IO–ZI method is generally surpassing the IBI method in terms of precision, since
the central approximation u(r) ≈ w(r) in IBI causes a larger error ofO(n)12. Without under-
taking the pertinent effort here, we note that IO–ZI could be straightforwardly generalized
to include the concepts of Multistate inversion5 or pressure correction3,4,11, thereby further
enhancing the reliability of the method in cases where the potential is state-independent or
where thermodynamic information of the target fluid is available.

In the work presented here, IBI and IO–ZI have been implemented both in their simplest
Picard iteration form and in form of a faster convergent fixed-point iteration scheme which
constitutes a generalization of a method that has been introduced by Ng14 (see also15–17).
The resulting ’Ng-accelerated’ versions of IBI and IO–ZI are converging to particle pair
potentials which are close, but not identical to the fixed point solutions of the corresponding
Picard iterations.

This paper is organized as follows: In the methodology section we present the IO–ZI
algorithm, focusing on the IHNCI special case. Both the simple Picard iteration version and
the Ng-accelerated version of the algorithm are discussed. The results section features our
comprehensive test cases in which the performance of IHNCI is compared to that of IBI.
The paper concludes with a discussion of the principal advantages and disadvantages of both
IBI and IHNCI, including a recommendation on which method should be used under given
circumstances.

METHODOLOGY

Let r = |r| denote the norm of the vector r that connects two particle center points in
3-dimensional space. Then, the wavenumber q = |q| is the conjugate variable to r in the
Fourier transform pair

f̃(q) = F [f(r)](q) =
4π

q

∞
∫

0

dr r f(r) sin(qr), (2)

f(r) = F−1[f̃(q)](r) =
1

2π2r

∞
∫

0

dq q f̃(q) sin(qr), (3)

for an isotropic function f(r) = f(r), f̃(q) = f̃(q). For simplicity we assume isotropy in all
functions, restricting thereby the applicability of the presented methods to systems in which
both the particle pair potential u(r) and the particle pair correlation functions g(r), S(q)
are isotropic. Yet, this isotropy assumption is merely a technical simplification that could
be lifted in future generalizations of the present work by the use of technically more involved
anisotropic Ornstein-Zernike formalisms18–24. These more advanced numerical techniques are
expected to extend the applicability range of the present method to systems with anisotropic
particle pair interactions18 as well as systems with anisotropic particle correlations resulting
from external fields or confinement18–23 and crystalline systems24. Using the O–Z formalism
implies that the presented method is strictly applicable only to systems in thermodynamic
equilibrium25. Nevertheless, we note that O–Z equation solutions for isotropic undercooled
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liquids are routinely and successfully used as input for theories of slow dynamics and vit-
rification such as mode-coupling theory26 and self-consistent generalized Langevin equation
theory25. This indicates that the procedure presented here might also be of use in certain
out-of-equilibrium cases such as undercooled liquids, gels or glasses.

The O–Z equation in its common form12,27

g(x)− 1 = c(x) +

∫

d3x′ c(x′) [g(|x− x′|)− 1] (4)

relates the direct correlation function c(x) to the radial distribution function g(x). The latter
can be defined as

g(x) =
1

N

〈

N
∑

i,j=1
i 6=j

δ(x− xi + xj)

〉

(5)

in terms of the dimensionless particle center coordinates xi = rin
1/3, the Dirac delta function

δ, and the equilibrium ensemble average 〈. . .〉. It is useful for our purposes to re-write the
O–Z equation in the form28,29

c(x) = g(x)− 1−F−1

{

[S(y)− 1]2

S(y)

}

(x) (6)

which is equivalent to eq. (4) and in which S(y) = 1 +F [g(x)− 1](y) is the static structure
factor. Note that the Fourier integrand [S(y)− 1]2/S(y) in eq. (6) is a quickly decaying
function of y, which is beneficial in all practical applications in which S(y) is typically only
known for a restricted range of y values.

Equation (6) is exact, at the cost of involving the generally unknown function c(x).
Function c(x) can be decomposed as the sum12

c(x) = −βu(x) + g(x)− 1− ln [g(x)] + b(x) (7)

in which b(x) is the bridge function. In default of an exact, closed form expression for b(x),
the bridge function is commonly approximated by a closure relation27. The most typically
used O–Z closures are semi-empirical approximations of b(x), often times based on an Ansatz
that is exact in certain limiting or special cases such as low density, high temperature or
one-dimensional systems. Relying on the approximate validity of a closure relation, eqs. (4),
(7) can be solved numerically17 with βu(x) as input, resulting in approximate solutions for
g(x) and S(y). This approach, in which βu(x) is considered as a known input, constitutes
the standard forward direction of solving the O–Z equation.

In the present work, we employ the O–Z equation in the opposite backward direction by
treating g(x) = gT (x) and S(y) = ST (y) as an input and solving eqs. (6), (7) for βu(x),
under the assumption that b(x) is well approximated by a certain closure relation. In a
practical application, the target correlation functions gT (x) and ST (y) can be measured in
an experiment, such as confocal microscopy of a colloidal suspension30, or they can refer to
the correlations among one species of particles in a computer simulation of a multicompo-
nent system6. In both cases, inverting the O–Z equation with a closure relation results in
an approximation βu(x) for the effective (or coarse grained) particle pair potential, which
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quantifies the dimensionless interaction energy for two particles of the same species, after
the degrees of freedom of all other particle species have been integrated out.

Throughout this work, we use the simple hypernetted chain13 (HNC) closure relation
b(x) ≡ 0. We have tested alternative closure relations (including the Percus-Yevick31 and
Kinoshita32 closures) without observing a systematic advantage over HNC for any of them,
and refrain from a presentation of the pertinent results for the sake of brevity. With b(x) =
O(n2), the HNC closure represents a second-order approximation in the density12 that should
be expected to exceed the precision of the O(n) approximation g(x) ≈ exp {−βu(x)} which
is the foundation of the IBI method.

Iterative HNC Inversion

Figure 2 features a flowchart of the Iterative Ornstein-Zernike Inversion (IO–ZI) algorithm,
using the HNC closure as the central approximation. This special case of IO–ZI is most
precisely described as Iterative HNC Inversion (IHNCI), and proceeds as follows: A target
radial distribution function gT (x) and a target static structure factor ST (y) of a homogeneous
and isotropic equilibrium fluid system are required as the only inputs. From gT (x) and ST (y),
the target direct correlation function cT (x) is calculated via solution of the O–Z eq. (6), by
means of numerical inverse Fourier transformation.

Numerical inverse Fourier transform

Using Hamilton’s fast and precise FFTLog algorithm33,34, based on the original work of Tal-
man35, for the inverse numerical Fourier transform on logarithmically spaced grids in x- and
y-space has the advantage that IO–ZI can be easily modified for its application to systems
in arbitrary spatial dimensions17,36, including non-integer fractal dimensions37. In all cases
presented here, we have chosen grids with 8192 points in the intervals 10−6 ≤ x ≤ 106 and
4.99× 10−6 . y . 4.99× 106. Since the functions gT (x) and ST (y) are usually not given on
logarithmic grids, they are interpolated onto the grids by weighted linear least squares regres-
sion of second degree polynomials. The data point weights are sliding Gaussian functions,
centered at the respective grid point to which the input function is being interpolated. After
empirical optimization, Gaussian functions in the dimensionless distance (x) and wavenum-
ber (y) spaces have been chosen with full widths at half maximum ∆x = 0.017 and ∆y = 1.25.
This procedure results in interpolated functions gT (x) and ST (y) that are sufficiently smooth
to avoid spurious artifacts in numerical Fourier transformation, yet sufficiently accurate in
their representation of all relevant input function features, since the interpolation is not
’leveling out’ the function features by an overly aggressive data smoothing. Nonetheless,
the interpolation procedure is prone to an unphysical smoothing of discontinuities in gT (x)
which occur in case of discontinuous potentials u(x). We therefore restrict our attention in
the present work to particles with continuous potentials and continuous correlation functions.
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Figure 2: Flowchart representation of the Iterative Ornstein-Zernike Inversion method, which
is displayed here in its Iterative Hypernetted Chain Inversion (IHNCI) form. The method
uses a radial distribution function gT (x = rn1/3) and a static structure factor ST (y = q/n1/3)
as input for iterating an approximation βui(x) of the reduced, dimensionless particle pair
potential. Both the iteration seed βu1(x) and the iteration update rule (in the box labeled
’IHNCI’) are based on the O(n2) Hypernetted Chain approximation which neglects a non-
zero bridge function.
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Iteration procedure

After cT (x) has been determined, the IHNCI algorithm continues with the calculation of the
iteration seed

βu1(x) = gT (x)− 1− cT (x)− ln [gT (x)] (8)

(third box from the top in fig. 2), which represents nothing else than the HNC closure. An
iteration with loop counter i = 1, 2, 3, . . . is then started, in which the reduced pair potential
βui(x) is the input for a new (N,V,T) Metropolis MC simulation of a single species fluid in
every round. From each MC simulation, the pair correlation functions gi(x) and Si(y) are
extracted, which are then used to calculate ci(x) via the O–Z eq. (6) and inverse numerical
Fourier transformation, as described above for cT (x).

An IHNCI output potential µi(x) is calculated according to

βµi(x) = βui(x) + gT (x)− gi(x)− cT (x) + ci(x) + ln

[

gi(x)

gT (x)

]

(9)

and, if the simple Picard iteration type of the algorithm is chosen, the updated potential is
calculated as ui+1(x) = µi(x).

In place of Picard iteration one may alternatively choose the Ng-accelerated iteration
type, where the input potential ui+1(x) for a new turn is calculated as the weighted sum

βui+1(x) =

i−1
∑

l=1

α
(i)
l βµi−l(x) +

[

1−

i−1
∑

l=1

α
(i)
l

]

βµi(x) (10)

of all previous IHNCI outputs. In eq. (10), the scalar mixing coefficients α
(i)
l are the entries of

the (i−1)–component vector α(i) = (α
(i)
1 , α

(i)
2 , . . . α

(i)
i−1) that solves the linear set of equations

M (i) · α(i) = δ(i) (11)

with the symmetric square coefficient matrix M (i) whose elements are the scalar products

M
(i)
xy =

(

d
(i)
x , d

(i)
y

)

. Likewise, the right hand side vector δ(i) of the equation system (11)

consists of the elements δ
(i)
x =

(

di, d
(i)
x

)

. We are using the definitions

(f, g) =

xmax
∫

xmin

dx f(x)g(x), (12)

di(x) = βµi(x)− βui(x) (13)

and
d
(i)
l (x) = di(x)− di−l(x) (14)

for the scalar product of two real-valued functions f(x) and g(x) and for the difference

functions di(x) and d
(i)
l (x). A vanishing function di(x) ≡ 0 (within machine precision) would

signal perfect convergence of the iteration, as observed in Ng-accelerated numerical solutions
of the O–Z equation in the forward direction17. For Ng-accelerated IHNCI, one observes a
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rapid decay of di(x) to small values at early stages of the iteration, but the function di(x)
never vanishes perfectly, due to the statistical uncertainties in gi(x) and Si(y) that are being
propagated to βµi(x).

The integral boundaries xmin and xmax in eq. (12) should be chosen such that most
characteristic features of the particle pair potential are included in the integration range, but
xmin should not be chosen too small: The value of xmin should be large enough to exclude
the region where βui(x) ≫ 1 from the integration range, because otherwise all the calculated
inner products will attain large values, rendering the iteration scheme rather insensitive to
the small values of di(x) and d

(i)
l (x) at larger values of x. In all Ng-accelerated calculations

that are presented here, we have chosen xmin = 1, and xmax was selected as the upper end of
the interval on which βui was sampled (typically, xmax ≈ 3).

Note that the initial (i = 1) step of the Ng iteration scheme is identical to a Picard
iteration step, and that Ng-acceleration can be applied to IBI as well IHNCI. The Ng-
accelerated IBI algorithm is identical to the one described above, if only eq. (9) is replaced
by the equation βµi(x) = βui(x)+ln [gi(x)/gT (x)]. Deriving eqs. (9)–(14) is a straightforward
task if Ng’s original instructions14 for the special case i = 3 are generalized to arbitrary values
of the iteration index i (see also ref.17).

Iteration may be stopped when (di(x), di(x)) is no longer significantly reducing as a
function of i, but merely fluctuating around a stationary mean. In the test cases that we
have studied, convergence to this quasi-steady-state occurs around i = 10 for both the Ng–
accelerated IBI and IHNCI. Picard–IHNCI converges typically faster than Picard–IBI, which
may take hundreds of iterations until convergence is achieved4.

Monte Carlo simulation

Every one of the (N,V,T) Metropolis MC simulations in the IHNCI algorithm uses a cubic
simulation box of volume V = L3 with periodic boundary conditions in all three Cartesian
directions and proceeds as follows: In a first step, a dense disordered packing of monodis-
perse hard spheres is generated with the event-driven Lubachevsky-Stillinger inflation algo-
rithm38,39, running on a central processing unit (CPU). The hard sphere packing fraction
at which inflation is stopped is an adjustable parameter of the IHNCI method. It should
be chosen close to, or slightly higher than an estimated effective packing fraction of the
particles that are being simulated. After the initial inflation, the N -particle system is copied
M−1 times, resulting in an ensemble of M systems. The following, statistically independent
MC simulations of M systems are carried out on a graphics processing unit (GPU) on M
cores. In an equilibration phase, the particle interaction is first changed from the hard sphere
no-overlap condition to the reduced potential βui(x). During equilibration, the maximum
particle displacement is then dynamically adjusted until either ∼ 50% of all the (single par-
ticle, local) MC moves are accepted, or (in case of low-density systems) until the maximal
random displacement has reached the value L/2. Equilibration is stopped after every particle
has been moved 100 times on average. This simple ad-hoc criterion for the duration of the
equilibration phase is justified in the cases reported here, by the observed excellent agree-
ment of the converged functions gi(x) and Si(y) with the input functions gT (x) and ST (y)
(see fig. 4 for a representative example). Equilibration is followed by a MC production run,
during which ensemble ergodicity is assumed and the correlation functions gi(x) and Si(y)
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for each ensemble member are recorded on the GPU as averages over many particle config-
urations. At the end of the production run, the correlation functions are ensemble-averaged
on a CPU.

Correlation function extraction

Extraction of gi(x) in the MC simulation is based on the straightforward eq. (5) and requires
no further comment. Extraction of Si(y), on the other hand, requires special care: Since the
function Si(y) is used in the IHNCI algorithm as a source of information complementary to
gi(x), it is not permissible to compute Si(y) via Fourier transformation of gi(x). Instead,
the structure factor must be computed directly from the particle coordinates, using the
expression

S(y) =
1

N

〈[

N
∑

j=1

cos(q · rj)

]2

+

[

N
∑

j=1

sin(q · rj)

]2〉

(15)

or an equivalent expression that refers directly to the particle coordinates rj . In eq. (15)
the brackets 〈. . .〉 indicate both an ergodic ensemble average, as in eq. (5), and a binned
average over discrete wave vectors q = (2π/L) [nxêx + nyêy + nzêz] that satisfy y −∆y/2 <
|q|n−1/3 ≤ y + ∆y/2 and that are commensurate with the periodic simulation box. Here,
∆y is a wavenumber bin width, nx, ny and nz are positive integers, and êx, êy and êz are
the Cartesian unit vectors. Direct extraction of Si(y) via eq. (15) is equivalent to Fourier
transformation of gi(y) − 1 only in the thermodynamic limit V,N → ∞, carried out at
constant n.

For finite simulation boxes and finite numbers of particles, the expression in eq. (15)
provides additional information that is not contained in g(x), as illustrated in fig. 3: The
symbols in the figure inset represent a function g(x) that was directly extracted for x < 3.17
from the coordinates of 256 Lennard-Jones particles in a MC simulation. Approximating
g(x) = 0 for x > 3.17 and Fourier-transforming the function g(x) − 1 results in the black
curve in the main panel of fig. 3, which is a rather poor approximation of the structure factor
that was directly calculated from the particle coordinates, especially at small values of y.
Function S(y), directly extracted from the particle coordinates via eq. (15), is represented by
the symbols in the main panel of fig. 3. Assuming an asymptotic fit extension g(x > 3.17) =
2.57× exp {−1.40x} × sin {7.23x− 12.4} (black curve in the inset of fig. 3) in the numerical
Fourier transform in place of g(x > 3.17) = 0 hardly results in any accuracy improvement,
as can be seen from the resulting red curve in the main panel of fig. 3. The additional
Fourier-space information from the directly calculated Si(y) and ST (y) is used in the IHNCI
algorithm to generate a more precise iteration seed and iteration update rule than those in
the simpler IBI method, which is entirely based on the real-space information contained in
gi(x) and gT (x). Without displaying the results here, we have tested the IHNCI algorithm
with input functions gT (x) and ST (y) where either ST (y) was calculated as a numerical
Fourier transform of gT (x) or vice versa. In either such case of improper use, IHNCI fails to
converge to a reliable approximant of the true particle pair potential.

The higher fidelity of IHNCI (as compared to IBI, and demonstrated in the results section)
comes at the price of higher computational complexity and less general applicability: As
a first disadvantage of IHNCI, the direct computation of Si(y) via eq. (15) represents the
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Figure 3: Structure factor (main panel) and radial distribution function (inset) for a Lennard-
Jones fluid. Symbols: Direct computation from particle coordinates, using eq. (5) and
eq. (15). Black and red curves in main panel: Structure factor approximations resulting
from Fourier transformation of the directly measured g(x) without and with asymptotic
fit extension, respectively. Black curve in inset: Asymptotic fit extension of g(x). The
Lennard-Jones parameters are the same as in fig. 4.

computational bottleneck of the method, making a GPU implementation (or implementation
on another massively parallel architecture) necessary to achieve acceptable runtimes of a few
hours or less. The second disadvantage of IHNCI is the requirement that the input (target)
function ST (y) must not be obtained from Fourier transformation of the input gT (x), for the
same reasons as mentioned above, in relation to eq. (15). Both functions ST (y) and gT (x)
must result from direct evaluation of expressions such as eqs. (15), (5), which require the
particle coordinates xi as inputs. The IHNCI method is therefore most applicable for coarse
graining in particle-based computer simulations, or for the analysis of experiments such as
confocal microscopy30 in which the particles can be observed directly.

RESULTS

The most solid indications for the supremacy of IHNCI over IBI are the magnitudes of the
terms which are neglected in the respective central approximations: While IHNCI makes
an approximation of O(n2) at the level of the bridge function, IBI imposes a stronger O(n)
approximation at the level of the PMF. Nonetheless, we are lacking a formal proof for a
general advantage of IHNCI over IBI, and we must therefore resort to extensive, comparative
testing of both methods in the following.

We have generated input (’benchmark’) functions gT (x), ST (y) for various test potentials
βu(x) by standard (’forward’) MC simulation. These simulations were essentially identical to
the ones that are used within our implementation of IHNCI and IBI, with only one principal
difference: Instead of equilibration by 100 moves per particle, the equilibration phase in the
benchmark-generating MC simulations was stopped only after reaching a more conservative
thermalization criterion: It was required that the mean squared displacement of particles
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be at least equal to σ2 before equilibration was assumed and a production run was started.
Here, σ is a (pseudo-)diameter of the particles, as defined separately for each test potential
in the following. The functions gT (x), ST (y) were then used as inputs for IBI and IHNCI.
Any disagreement between the test potentials βu(x) and the potentials limi→∞ βui(x) to
which IBI and IHNCI are converging quantifies an imperfection of the respective iterative
method. In all cases where the L–J or SALR potentials were used as test potentials, we have
used a cutoff radius rc = 5σ for the potential in the benchmark-generating, forward MC
simulations. For particle separations r > rc, the true potential was replaced by zero. The
L–J and SALR acronyms are defined in the following.

Test potentials

As a first benchmark test, we use the two-parametric Lennard-Jones (L–J) 6–12 potential

βu(r) = 4ǫ

[

(σ

r

)12

−
(σ

r

)6
]

, (16)

which depends on the prefactor ǫ and the soft particle diameter σ. Following the stan-
dard convention, the L–J potential can be characterized as well by a reduced, dimensionless
temperature T ∗ = 1/ǫ and a reduced, dimensionless number density ρ∗ = nσ3.

Our second test case is the six-parametric Soft Steps potential

βu(r) =
h1

exp
{( r

σ
− 1

)

/δ1

}

+ 1
+

h2

exp
{( r

σ
− (1 + w)

)

/δ2

}

+ 1
(17)

in which h1 + h2 and h2 are the heights of two rounded plateaus (’steps’), the first of which
extends from r = 0 to r ≈ σ, and the second of which extends from r ≈ σ to r ≈ σ(1+w). In
our simulations, we choose h1 ≫ 1 to prevent soft particle overlaps at r . σ. The parameters
δ1 and δ2 in eq. (17) characterize the dimensionless skin depths of the first and the second
step. We define φ = πσ3n/6 as a pseudo packing fraction of the soft particles that interact
via the potential in eq. (17).

The third test case is the four-parametric Short-range Attraction, Long-range Repulsion
(SALR) potential

βu(r) = 4ǫ

[

(σ

r

)12

−
(σ

r

)6
]

+ A
σ

r
exp

{

−
r

σξ

}

(18)

which consists of a short-ranged L–J part and a long-ranged Yukawa part. For ǫ > 0, the L–J
part exhibits short-ranged attraction as well as a strong repulsion at very short length scales
r . σ, which is not reflected in the SALR acronym. Instead, the Long-ranged Repulsion
(LR) part of SALR refers to the Yukawa part of the potential with prefactor A > 0 and
with a screening parameter ξ > 0. As for the Soft Steps potential, we define φ = πσ3n/6
as a pseudo packing fraction of the soft particles that interact via the potential in eq. (18).
Potentials of the SALR type are routinely used for modeling the interactions of proteins with
competing long-ranged electrostatic repulsion and short-ranged (van der Waals or hydration)
attraction40–42, and are therefore representing a highly relevant application example.
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A fourth test case is the three-parametric triangular potential

βu(r) =
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(19)

which is piecewise linear and continuous, consisting of a short-ranged repulsive part for r < σ
and a symmetric triangular part of height h and reduced, dimensionless width w between
r/σ = 1 and r/σ = 1 + w. In the simulations we cover both cases h > 0 and h < 0. As
before, we define φ = πσ3n/6 as a pseudo packing fraction of the soft particles that interact
via the potential in eq. (19).

Our list of test potentials concludes with the one-parametric pseudo hard sphere, shifted
Mie 49–50 potential

βu(r) =























100

3

(

50

49

)49 [
(σ

r

)50

−
(σ

r

)49
]

+
2

3
, r <

(

50

49

)

σ

0, r ≥

(

50

49

)

σ

(20)

in which the prefactor has been tuned to achieve optimal agreement with the hard sphere
equation of state43. Once again, we define φ = πσ3n/6 as a pseudo packing fraction of the
particles that interact via the potential in eq. (20).

Testing IHNCI vs. IBI: Picard iteration

Figure 4 features the results of our IBI (left column of panels) and IHNCI (right column of
panels) calculations with identical input functions gT (x) and ST (y) that correspond to the
L–J potential in eq. (16), for T ∗ = 1.5 and ρ∗ = 0.8. Both IBI and IHNCI have been used
here in their most simple Picard-iteration forms. In this first test case, the IHNCI method
is clearly surpassing the IBI method in terms of accuracy:

While the potential after 48 IBI steps (blue circles in the uppermost left column of fig. 4)
deviates clearly from the test potential (black/orange curve) by more than 0.1 kBT in an
extended range of x values, the potential after 48 IHNCI steps (blue circles in the uppermost
right column of fig. 4) is in good agreement with test potential, the principal difference being
observed between x ≈ 1.25 and x ≈ 1.75, where βu48(x) from IHNCI underestimates the
test potential by up to 0.04 kBT .
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Figure 4: Test of IBI (left column) and IHNCI (right column), both being used to compute a
reduced potential βu(x) that recreates the target pair correlation functions gT (x) and ST (y)
in the lower two rows of panels. The target correlation functions have been generated in
a preceding MC simulation with the L–J 6-12 test potential [eq. (16)] that is represented
by the black/orange curves in the top row of panels. The L–J potential was cut off at
rc = 5σ. Both IBI and IHNCI have been used in their simplest Picard-iteration forms and
have been stopped after 48 iteration steps. The IHNCI method produces a function βu48(x)
in significantly better agreement with the test potential than the IBI method. The L–J
parameters T ∗ = 1.5 and ρ∗ = 0.8 correspond to a rather dense, supercritical fluid44,45.
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Note that the iteration seeds βu1(x) (red curves in the upper row of panels of fig. 4) for
the two methods are distinctly different: In case of IBI, βu1(x) equals the reduced PMF
and deviates strongly from the target L–J potential and from the function βu48(x). In the
contrasting IHNCI case the function βu1(x), resulting from HNC inversion, is already rather
close to the (practically) converged function βu48(x) which, in turn, is close to the L–J test
potential.

In all the following test cases, we observe the same type of quality improvement in
the iteration seed when switching from IBI to IHNCI. Understanding IBI and IHNCI as
functional minimization methods, the improvement of the iteration seed in IHNCI represents
a clear advantage that should generally help to avoid convergence into local minima. The
second feature of IHNCI that helps to avoid trapping in local, non-optimal minima is the
improved iteration update rule in eq. (9), as compared to eq. (1) for IBI. In general, the
IHNCI update rule should represent a better approximation of a true functional gradient
descent that the simpler IBI update rule.

In the central and lower row of panels in fig. 4, we observe that both IBI and IHNCI are
reproducing the target functions gT (x) and ST (y) practically perfectly, within the level of
the stochastic noise floor. This is a manifestation of low practical usefulness of Henderson’s
theorem, as discussed in ref.2: In spite of Henderson’s theorem guaranteeing the unique
reversibility of the highly nonlinear functional mapping βu(x) → [g(x), S(y)] under ideal
conditions, the practical implementation of the reverse mapping [g(x), S(y)] → βu(x) is
sincerely complicated in situations where g(x), S(y) are only known within the range of
a statistical uncertainty. Many functions βu(x) are reproducing a given pair of functions
g(x), S(y), even within small noise or uncertainty levels. More than the IHNCI method,
the IBI method is prone to error by converging onto just one of the many functions βu(x)
that will reproduce the target pair correlation functions. Albeit not immune, the IHNCI
method is significantly less prone to such failure as it uses a higher quality iteration seed
and a higher quality iteration update rule. The converged potential from IHNCI is thus
more likely to be a good approximant of the true particle pair potential. For all test cases
shown in the following, we have checked that both IBI and IHNCI are practically perfectly
reproducing the input functions gT (x) and ST (y). We therefore refrain from plotting the
correlation functions in the remaining parts of this paper.

Let us now turn our attention to fig. 5, which features the potentials obtained from IBI
(pink/red) and IHNCI (blue), using three different L–J test potentials (black/orange curves)
to be reproduced. The reduced density for all test potentials in fig. 5 is ρ∗ = 0.8, and the
three different reduced temperatures T ∗ = 2.0, T ∗ = 1.5 (as in fig. 4) and T ∗ = 1.0 have been
chosen, corresponding to two supercritical fluid states and one liquid state44,45. As a result,
we observe a feature of IBI and IHNCI that appears universal among all test cases that we
have studied, including some which are not featured in this paper for the sake of brevity:
At high temperatures, both IBI and IHNCI are quite precise, although some imperfection
in the converged potentials may remain (see the lowermost group of curves and symbols in
fig. 5, for T ∗ = 2.0). When the temperature is gradually lowered, the IBI method fails first,
while the IHNCI method still retains a good precision (central group of curves and symbols
in fig. 5, for T ∗ = 1.5). Eventually, at low temperatures both IBI and IHNCI are failing to
provide a reliable approximant of the test potential (uppermost group of curves and symbols
in fig. 5, for T ∗ = 1.0).
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Figure 5: Test of IBI (pink/red) and IHNCI (blue): Three L–J test potentials (black/orange
curves) as defined in eq. (16), and with a cutoff radius of rc = 5σ, have been used in MC
simulations to compute the target correlation functions gT (x) and ST (y) which then served
as an input to the IBI and IHNCI methods, both of which were used in their simple Picard-
iteration form. The results in this figure are the reduced pair potentials βu1(x) in the first
iteration (solid blue and pink curves) and βu48(x), after 48 iterations (symbols) in both the
IBI and the IHNCI method. All cases are for a reduced density ρ∗ = 0.8. The three selected
reduced temperatures T ∗ = 2.0, 1.5 and 1.0 correspond to two supercritical fluid states and
one liquid state, respectively44,45.

A comment is in place here, regarding the thermodynamic inconsistency between the
target fluids with correlation functions gT (x) and ST (y) and the fluids after 48 IBI or IHNCI
iterations. Since a pressure (or ramp) correction3,4,11 has not been included in any of the IBI
or IHNCI runs presented in this paper, the pressures of the target fluids are not matched
in general by either of the two iterative schemes. For the systems in fig. 5, we find reduced
virial pressures of βp/n = 3.59, 3.12 and 1.81 for the reference L–J fluids at T ∗ = 2.0, 1.5 and
1.0, respectively. The corresponding reduced virial pressures from the 48th MC simulation in
the IBI algorithm are βp/n = 4.31, 4.38 and 4.37 while the respective 48th IHNCI iterations
result in βp/n = 4.90, 2.71 and 4.14. Hence, both IBI and IHNCI show a similar degree
of thermodynamic inconsistency with the target fluid, and both methods may profit from
a ramp correction. While a ramp correction could be easily included into IHNCI, we are
not discussing it here for the sake of brevity and more general applicability to such cases
where the necessary thermodynamic information of the target fluid might not be available.
Confocal microscopy of a suspension of particles is one example where such thermodynamic
information is hard to obtain within the accuracy that would be required.

We turn now to fig. 6 in which the IBI and IHNCI results for the Soft Step test potential
in eq. (17) are shown: One of the two test cases (the lower group of curves and symbols) is
for a rather dilute system at φ = 0.2, and the other case is for a more crowded system at
φ = 0.3. While the converged potentials βu48(x) from both the IBI and the IHNCI method
are in excellent agreement with the test potential in case of φ = 0.2, and the IHNCI method
remains rather precise at φ = 0.3, the IBI method fails drastically at that higher density,
converging to a potential that underestimates the test potential by more than 0.25 kBT .

A qualitatively similar failure of IBI is revealed in fig. 7, which shows the results from two
test cases with the SALR potential in eq. (18): At the lower SALR packing fraction φ = 0.2,
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Figure 9: Same as fig. 8, but for h = −0.5.

both IBI and IHNCI deliver quite accurate results, but IHNCI is already significantly more
precise than IBI even for this rather dilute system. For the more concentrated SALR system
at φ = 0.3, IHNCI remains accurate while IBI fails drastically.

The observations made so far are confirmed by six additional test cases in which the
triangular potential from eq. (19) has been used. The results for three purely repulsive
triangular potentials (with h > 0) are shown in fig. 8, while fig. 9 features the results for
three different triangular target potentials with short-ranged repulsion that is followed by
an attractive triangular well (h < 0). While both IBI and IHNCI are performing well for the
test cases at lower density, the IHNCI method proves to be superior for systems at higher
density.

Figure 10 features the results from testing the capabilities of IBI and IHNCI to converge
(close) to the pseudo hard sphere, shifted Mie 49–50 potential in eq. (20) at the three
different packing fractions φ = 0.2, 0.3 and 0.4. Once again the superiority of IHNCI over
IBI is demonstrated, in particular for the most concentrated system at φ = 0.4.

19



1 1.5 2x

0

1

2

3

4

5

βu
(x

) βu
1 

(x),   IBI

βu
48 

(x), IBI

1 1.5 2x

0

1

2

3

4

5

βu
(x

) βu
1 

(x),   IHNCI

βu
48 

(x), IHNCI

Test potentials:
Mie 49-50

φ = 0.3

φ = 0.2

φ = 0.4

Figure 10: Same as fig. 5, but for three Mie 49–50 pseudo hard sphere potentials as defined
in eq. (20). Results for three packing fractions φ = 0.2, 0.3 and 0.4 (from bottom to top) are
shown.

Testing IHNCI vs. IBI: Ng iteration

All results presented so far have been obtained with the simple Picard-iteration versions of
the IBI and IHNCI algorithms. While IHNCI has proven to be more reliable in converging
close to a known test potential, the numerical efficiency of the Picard iterations is less
than satisfying due to the slow convergence of the algorithms, requiring hours of GPU time
for a single run of 48 iterations. Replacing Picard iteration by the more sophisticated Ng-
accelerated iteration is therefore a promising approach towards the construction of algorithms
with higher practical applicability.

In fig. 11 we test the performance of Ng-accelerated IBI and IHNCI versus the Picard
iteration forms of the two algorithms. Three different test potentials (L–J 6–12, SALR and
shifted Mie 49–50) of markedly different shapes were chosen for these comparative tests.
The main result here is that both the Ng-accelerated IBI and IHNCI are converging signifi-
cantly faster than their Picard iteration counterparts. All Ng-accelerated calculations have
converged after 12 iterations or less, including cases where convergence was observed after
as little as 6 iterations. The potentials after 12 Picard iterations, which are significantly
different from βu48(x) in all covered cases, are not included in fig. 11 to avoid overcrowding
the plot.

It may be unexpected that the Ng-accelerated iterations are converging to potentials
that are slightly, but significantly different from the respective potentials obtained after 48
Picard iterations. Contrary to what one might presume, this is not because the pertinent
Picard iterations are far from convergence after 48 iterations: As we have tested, a small
disagreement between the potentials from converged Ng-accelerated iterations and Picard
iterations remains even in cases where the temperature is high enough or the density is low
enough to render the Picard iterations quickly convergent. Hence, the functional fix point
of Ng-iteration appears to be truly different from that of Picard iteration. This is consis-
tent with the picture in which the different iteration schemes represent functional gradient
descent methods with different approximations of the true (unknown) functional gradient.
Each iteration method reaches a stationary (converged, modulo fluctuations) state when
its approximation of the functional gradient vanishes. For different approximations of the
gradient, this happens at different states. For most practical purposes such as experimental
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Figure 11: Test of the Ng-accelerated and standard Picard iteration versions of both the IBI
(left column) and IHNCI (right column) method. Three different test potentials of the L–J
6–12 (top row of panels), the SALR (center row of panels) and the Mie 49–50 (lower row of
panels) type are used as test cases. In all cases, the Ng accelerated iteration has converged
after 12 iterations to a potential (blue circles) that is rather close, but not identical to the
potential which is obtained from the same seed βu1(x) (red solid curves) after 48 Picard
iterations (green triangles). The L–J parameters are T ∗ = 1.5 and ρ∗ = 0.8, while the SALR
system is for ǫ = 7, A = 75, ξ = 0.5, φ = 0.3 and the Mie 49–50 system is for φ = 0.4.
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data analysis or coarse graining in computer simulations, the potentials u12(x) from the Ng-
accelerated iterations should be as good (or bad) as the potentials that would be obtained
after many more Picard iterations.

Regarding computational complexity, let us remark that each of the IHNCI runs presented
here was carried out with ensembles of M = 256 systems, each containing N = 256 particles.
To obtain rather good statistics for Si(y), i = 1, 2, . . . 48, a total runtime of approximately
8 hours was needed on an inexpensive GPU in case of Picard iteration. The Ng-accelerated
runs for i = 1, 2, . . . 12 took around 4 hours on the same machine. A single iteration of
the Ng-accelerated runs is slower than a single Picard iteration on average, because the Ng
accelerated scheme requires calculation of gi(x) and Si(y) with equal statistical uncertainty
levels for all values of the iteration index i. The reason for this is the sensitivity of eq. (10)
to early iteration stages. Picard iteration, on the other hand, is insensitive to its early stages
when it approaches the stationary state. The early stages of Picard iteration can therefore
be carried out with less MC steps per simulation, and with a higher statistical uncertainty
in the measured functions gi(x) and Si(y) at small values of i. On a state-of-the art GPU it
should be possible to reduce the typical time for one complete Ng-accelerated IHNCI run to
1 hour or less.

CONCLUSIONS

The novel IO–ZI method for the calculation of particle pair interaction potentials from
given particle pair correlations in disordered fluid phases has been presented in this work.
Different O–Z closure relations can be employed in conjunction with IO–ZI, but we have
focused our attention here on the simplest case using the HNC closure, resulting in the
IHNCI method. The IHNCI (or, more generally, IO–ZI) method constitutes a generalization
of the established IBI method3 with generally higher precision and reliability. In addition
to the real space radial distribution function, the Fourier-space static structure factor is
required as an input for IO–ZI. This additional Fourier space information is the foundation
of the improved precision of IO–ZI (as compared to IBI). At the same time, the requirement
to work with Fourier space correlation functions restricts the applicability of IO–ZI to such
systems where the pertinent input data are available, and it increases the computational
complexity of IO–ZI significantly beyond that of IBI. The Ng iteration scheme has been
demonstrated to accelerate significantly the convergence of both IBI and IHNCI, thereby
improving the practical applicability of both algorithms. In cases where thermodynamic
observables of the target fluid are known, a ramp correction3,4,11 can easily be added to both
IBI and IHNCI, and this should generally result in an improvement of both methods.

Many of our test cases reveal a good performance of the simple IBI method. If the
fluid density is sufficiently low, or the temperature sufficiently high, IBI converges to pair
potentials that are in very good agreement with the test potentials. This is related to the
fact that the PMF w(r) reduces to the pair potential u(r) in the limit of small densities.
Nevertheless, IBI fails to converge close to the test potentials when the density is increased
or the temperature is lowered, and these failures of IBI set in significantly earlier than the
corresponding IHNCI failures among all of our test cases. As a consequence, we propose to
use IHNCI whenever the available input data allows to do so, and whenever there is a doubt
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about the accuracy of IBI.
The IHNCI code is available from the author upon request.
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It is my pleasure to thank Ramón Castañeda Priego and Marco Laurati for our many dis-
cussions related to the present work, and Raffaello Potestio for his criticism on the practical
usefulness of Henderson’s theorem, which has triggered my interest in this topic. I acknowl-
edge financial support from CONACyT (Grant No. 237425/2014).

23



References

[1] R. L. Henderson, Phys. Lett. A49, 197 (1974).

[2] R. Potestio, C. Peter, and K. Kremer, Entropy 16, 4199 (2014).
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[37] M. Heinen, S. K. Schnyder, J. F. Brady, and H. Löwen, Phys. Rev. Lett. 115, 097801
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