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Abstract

We present osprey 3.0, a new and greatly improved release of the osprey protein design software. 

osprey 3.0 features a convenient new Python interface, which greatly improves its ease of use. It is 

over two orders of magnitude faster than previous versions of osprey when running the same 

algorithms on the same hardware. Moreover, osprey 3.0 includes several new algorithms, which 

introduce substantial speedups as well as improved biophysical modeling. It also includes GPU 

support, which provides an additional speedup of over an order of magnitude. Like previous 

versions of OSPREY, OSPREY 3.0 offers a unique package of advantages over other design software, 

including provable design algorithms that account for continuous flexibility during design and 

model conformational entropy. Finally, we show here empirically that OSPREY 3.0 accurately 

predicts the effect of mutations on protein-protein binding. OSPREY 3.0 is available at http://

www.cs.duke.edu/donaldlab/osprey.php as free and open-source software.

Graphical Abstract

We present the third major release of the OSPREY protein design software, along with 

comparisons to experimental data that confirm its ability to optimize protein mutants for desired 

functions. OSPREY 3.0 has significant effciency, ease-of-use, and algorithmic improvements over 

previous versions, including GPU acceleration and a new Python interface.
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INTRODUCTION

For over a decade, the OSPREY software package1,1–3 has offered the protein design 

community a unique combination of continuous flexibility modeling, ensemble modeling, 

and algorithms with provable guarantees4,5. Having begun as a software release for the K* 

algorithm 2,6, which approximates binding constants using ensemble modeling, it now 

boasts a wide array of algorithms found in no other software. OSPREY has been used in many 

designs that were empirically successful—in vitro6–12 and in vivo7–10 as well as in non-

human primates 7. OSPREY’s predictions have been validated by a wide range of experimental 

methods, including binding assays, enzyme kinetics and activity assays, in cell assays 

(MICs, fitness) and viral neutralization, in vivo studies, and crystal7,13 and NMR9 structures.

However, as OSPREY grew to include more algorithms and features (Fig. 1), the code became 

increasingly complicated and difficult to maintain. The growing complexity of the software 

also hindered its ease-of-use. OSPREY 3.0 represents a complete refactoring of the code, and 

presents a simpler and more intuitive interface that makes protein redesign much easier than 

before. The new, developer-friendly code organization also facilitates adding new features to 

the free and open-source OSPREY project, both by ourselves and by other contributors. We 

have introduced a convenient Python scripting interface and added support for GPU 

acceleration of the bulk of the computation, allowing designs to be completed much more 

quickly and easily than in previous versions of OSPREY. We believe OSPREY 3.0 will be a very 

useful tool for both developers and users of provably accurate protein design algorithms.

Past successes of OSPREY

OSPREY has been used for an impressive number of empirically successful designs, ranging 

from enzyme design to antibody design to prediction of antibiotic resistance mutations. 

Notably, OSPREY has been successful in many prospective experimental studies, i.e., studies 
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in which our designed sequences are tested experimentally, thus validating OSPREY through 

use in practice rather than simply through a retrospective comparison of OSPREY calculations 

to previous experimental results. OSPREY is most applicable to problems that can be posed in 

terms of biophysical state transitions like binding, allowing the K* algorithm and its variants 

to predict the optimal sequences based on an estimate of binding free energy computed using 

Boltzmann-weighted conformational ensembles. Moreover, most protein design problems 

can be posed in this way, sometimes in terms of binding to more than one ligand. OSPREY is 

capable of both positive design, in which binding of a designed protein to a target is 

increased, and negative design, in which binding to a target is decreased, as well as more 

complicated design objectives where specific binding to one target and not to another is 

required.

For example, we have successfully predicted novel resistance mutations to new inhibitors in 

MRSA (methicillin-resistant Staphylococcus aureus) using multistate design (combining 

negative and positive design). OSPREY does this by searching for sequences that have 

impaired drug binding compared to wild-type DHFR, but still form the enzyme-substrate 

complex as usual, allowing catalysis to proceed10,13. Our predictions were validated not only 

biochemically and structurally, but also at an organismal level 13,25,26. Similarly, we have 

successfully changed the preferred substrate of an enzyme—the phenylalanine adenylation 

domain of gramicidin S synthetase—from phenylalanine to leucine by modeling the two 

enzyme-substrate complexes, and searching for sequences with improved binding to leucine 

and reduced binding to phenylalanine6. The resulting designer enzymes exhibited improved 

catalysis, and designs changing the specificity from phenlyalanine to several charged amino 

acids were successful as well6. The combination of positive and negative design in OSPREY 

has also successfully designed mutants of the gp120 surface protein of HIV that bind 

specifically to particular classes of antibodies, enabling their use as probes for detecting and 

isolating those antibodies from human sera12.

These multistate design capabilities, long a mainstay of OSPREY, are accelerated by the 

modules BBK* (described below) and COMETS (described in Ref. 21). COMETS provably 

returns the sequence that minimizes any desired linear combination of the energies of 

multiple protein states, subject to constraints on other linear combinations. Thus, COMETS 

can target nearly any combination of affinity (to one or multiple ligands), specificity, and 

stability (for multiple states if needed). COMETS and BBK* have been integrated into 

OSPREY 3.0 and accelerated, and they are currently the only provable multi-state design 

algorithms that run in time sublinear in the size M of the sequence space. This can be 

important, since M is exponential in the number of simultaneously mutable residue 

positions.

Further successes of OSPREY have involved improving positive design, e.g., the interaction of 

the anti-HIV antibody VRC07 with its antigen, gp120. Using this approach, we collaborated 

with the NIH Vaccine Research Center to design a broadly neutralizing antibody 

(VRC07-523LS) against HIV with unprecedented breadth and potency that is now in clinical 

trials (Clinical Trial Identifier: NCT030151817,27). We also have designed allosteric 

inhibitors of the leukemia-associated protein-protein interaction between Runx1 and 

CBF,β9. Similarly, we have used OSPREY to develop peptide inhibitors of CAL, a protein 
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involved in cystic fibrosis8. The CBFβ and CAL inhibitors were successful in vitro and in 
vivo8,9.

In addition, a number of other research groups have successfully used the OSPREY algorithms 

and software (by themselves) to perform biomedically important protein designs, e.g., to 

design anti-HIV antibodies that are easier to induce28; to design a soluble prefusion closed 

HIV-1-Env trimer with reduced CD4 affinity and improved immunogenicity29; to design a 

transmembrane Zn2+-transporting four-helix bundle30; to optimize stability and 

immunogenicity of therapeutic proteins31–33; and to design sequence diversity in a virus 

panel and predict the epitope specificities of antibody responses to HIV-1 infection34.

We believe OSPREY 3.0 will enable an even greater range of successful designs.

PERFORMANCE ENHANCEMENTS IN OSPREY 3.0

Engineering improvements yield large single-threaded speedups

OSPREY 3.0’s code has been heavily optimized to improve single-threaded performance 

relative to the previous version, OSPREY 2.221. Two main areas have received the most 

attention and the most improvement in performance so far: A* search speed, and 

conformation minimization speed.

OSPREY uses the A* search algorithm15 to perform its combinatorial search over sequence 

and conformational space2,16,19. The performance of A* search in OSPREY depends mostly on 

the size of the conformation space of the design: the time required for search scales strongly 

with the number of mutable and flexible residues. Search time is also dependent on the 

speed at which we can evaluate the energy scoring functions on A* nodes. Optimizations in 

OSPREY 3.0 have dramatically increased the A* node scoring speed, mainly by caching the 

results of expensive computations and reusing them at different nodes. Many intermediate 

values used by the A* scoring functions need only be computed once per design. This 

reduces the cost of node scoring by roughly an order of magnitude. We can also score child 

nodes differentially against their parent nodes to speed up node scoring. Caching 

intermediate values during the parent node scoring and using them to simplify child node 

scoring yields roughly another order of magnitude speedup in A* node scoring.

OSPREY 3.0 also includes optimizations to improve the performance of forcefield evaluation 

and conformation minimization. Conformation minimization is typically the bottleneck in 

OSPREY calculations with continuous flexibility2,16,19,20. The code in OSPREY 3.0 that 

evaluates forcefield energies for a protein conformation has been heavily optimized, 

although speed gains here over OSPREY 2 are modest (roughly two-fold), since the original 

code was already well-optimized in this area. Much larger performance increases were 

gained by caching forcefield parameters and lists of atom pairs between different 

conformations to be minimized, which yielded roughly a 10-fold increase in speed. OSPREY 

3.0 also increases performance by only evaluating forcefield terms involving mutable and/or 

flexible residues in a design, since interaction energies between other residues will be 

identical across all sequences and conformations. Since most designs only model a minority 

of the residues in a protein as flexible, this can be a substantial improvement.
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Performance comparisons are shown for 45 protein design test cases in Fig. 2 and Table 1. 

All these test cases model continuous protein flexibility2,16,17, and 18 of them involve 

provably accurate partition function calculations (see Table 1 and Ref. 17 for details). To 

summarize, the optimizations to single-threaded performance described above made OSPREY 

3.0 on average 461-fold faster than OSPREY 2.2 across 29 protein design test cases, and 

allowed OSPREY 3.0 to finish the remaining 16 test cases, which OSPREY 2.2 could not finish 

within a 17-day time limit. For example, OSPREY 2.2 on a Intel Xeon E5-2640 v4 CPU took 

49.5 minutes to run a small (6 continuously flexible residues) benchmark sidechain packing 

problem involving a 114-residue fragment of PDZ3 domain of PSD-95 protein complexed 

with a 6-residue peptide ligand (PDB ID: 1TP5). But OSPREY 3.0 finished the same design in 

7.0 seconds on the same hardware, which is a 424-fold speedup.

GPU acceleration reduces design runtimes

One of the key challenges in protein design is modeling and searching the many continuous 

conformational degrees of freedom inherent in proteins and other molecules. The sidechain 

conformations of each amino-acid type are generally found in clusters, known as rotamers35, 

so it is common practice to approximate protein conformational space as discrete by forcing 

each residue to be in the modal conformation of one of these clusters 14,15. However, design 

accuracy is increased significantly when continuous flexibility is taken into account, by 

allowing the continuous degrees of freedom to move within finite bounds around these 

modal values 1,16,19,36. Moreover, this increase in accuracy depends on considering 

continuous flexibility during the conformational search process, rather than simply 

performing minimization post hoc on the top-scoring sequences and conformations output 

by a discrete search algorithm. Although such a post hoc minimization approach would 

obtain more energetically favorable models of the top sequences, it would still produce the 

same top sequences as a purely discrete design would, which have been shown to not be 

truly the top sequences, even if a much finer discrete rotamer subsampling is allowed1,16. 

For example, clashing discrete rotamers can often be converted to favorable conformations 

by relatively small adjustments in the sidechain conformations2,16,19,20. As a result, designs 

performed with continuous flexibility taken into account throughout the search yield 

significantly different, and more biologically accurate, sequences than the same designs 

performed using discrete search1,16,19.

To address this problem, OSPREY includes several algorithms to design proteins while taking 

continuous flexibility into account throughout the process of sequence and conformational 

search2,16–20. These algorithms predict optimal protein sequences with provable guarantees 

of accuracy given a biophysical model that includes continuous flexibility.

This minimization-aware design approach requires energy minimization to be performed for 

a large number of conformations (within the bounds on the continuous degree of freedom 

that define each conformation). This minimization is a relatively expensive operation, so the 

bulk of a design’s runtime can be spent on energy minimization of conformations. 

Therefore, improvements to the speed of energy minimization can have a dramatic impact on 

OSPREY runtimes.
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Much work has been done to optimize OSPREY for execution on CPUs, particularly highly 

multi-core CPUs and even networked clusters of CPU-powered servers37,38. However, 

modern GPU hardware enables high-performance computation for some specific tasks at a 

fraction of the cost of large CPU clusters, mainly due to the huge video game industry, 

which propels innovation in hardware design and drives down costs. The widespread 

adoption of fast and highly programmable GPUs in the past decade has transformed many 

areas of computational science, including quantum chemistry39, computer vision40, and 

cryptography41. In particular, GPUs have been found to produce speedups of approximately 

an order of magnitude in molecular dynamics simulations42–44, which, like OSPREY, must 

sum huge numbers of forcefield energy terms and can use the GPU to parallelize this 

computation. GPUs have also been used to accelerate the A* search step of protein design45, 

albeit without addressing the continuous minimization bottleneck.

Thus, in order to bring the benefit of GPUs to continuously flexible protein design 

calculations, OSPREY 3.0 includes GPU programs (called kernels) built using the CUDA 

framework 46 that implement the forcefield calculations and local minimization algorithms 

used in protein redesign.

We present performance results of these GPU kernels on various hardware platforms in 

Figure 3. A GPU server housing 4 Nvidia Tesla P100 cards can finish minimizations with 

about 300,000 atom pairs roughly 110-fold faster than a single thread running on an Intel 

Xeon E5-2640 v4 CPU. With two Intel Xeon E5-2640 v4 CPUs running at full capacity with 

multiple threads, the four Nvidia Tesla P100 GPUs finish the same minimizations roughly 8-

fold faster. The speedups of GPUs over CPUs scale with the number of atom pairs in the 

minimization. For minimizations with fewer (about 30,000) atom pairs, even four Nvidia 

Tesla P100 GPUs cannot outperform two Intel Xeon E5-2640 v4 CPUs. There is significant 

overhead to transfer each minimization problem from the CPU to the GPU during designs. 

Even though GPUs can evaluate the minimizations much faster than CPUs, when there are 

few atom pairs, this transfer overhead dominates the computation time and causes GPUs to 

perform merely similarly to CPUs, rather than significantly faster. Nevertheless, the 

bottleneck in protein design is minimizations with many atom pairs, and for these 

minimizations OSPREY’s speedups on GPUs are on par with the state of the art for GPU 

speedups of molecular dynamics simulations.

The performance of desktop hardware appears similar to server hardware, except on a 

smaller scale. A single Nvidia GTX 1070 GPU performs minimizations at roughly half the 

speed of an Nvidia Tesla P100 GPU. Two Nvidia GTX 1080 GPUs perform similarly to the 

Nvidia Tesla P100 GPU on the large conformation benchmark (Fig. 3, bottom), but actually 

perform worse than a single Nvidia GTX 1070 for the small conformation benchmark (Fig. 

3, middle) – despite having well over twice the hardware of the single Nvidia GTX 1070 

GPU. This anomalous performance suggests the kernel OSPREY 3.0 uses for minimizations is 

not yet well-optimized for the Nvidia GTX 1080 GPU, and that future engineering efforts 

could offer significant performance increases for Nvidia GTX 1080 GPUs. The Nvidia GTX 

1050, a laptop GPU, does not appear to be powerful enough to offer any advantages over 

traditional CPU computing in OSPREY 3.0 (Fig. 3, light blue columns).
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Modern GPU architectures offer thousands of parallel hardware units for calculations, 

compared to the tens of parallel hardware units in modern CPU architectures. The 

performance results of the current generation of OSPREY’s GPU kernels indicate that 

minimization speeds on GPUs have only begun to scratch the surface of what is possible, 

particularly for minimizations with few atom pairs. Future versions of these GPU kernels 

will likely offer significantly higher performance on the same hardware – perhaps allowing 

minimization speeds many times faster than today’s GPU kernels. This in turn will make it 

even more efficient to perform minimization-aware protein design, and allow minimization-

aware designs with even more mutable and flexible residues and with more mutation options 

per residue.

PYTHON SCRIPTING IMPROVES EASE-OF-USE

One of the most visible additions to OSPREY 3.0 is the Python application programming 

interface (API), which allows fine-grained control over design parameters in a streamlined 

and easy-to-use experience. OSPREY 3.0 still supports a command-line interface with 

configuration files for backwards compatibility, but new development will be focused mostly 

on the new Python interface.

The OSPREY 3.0 distribution contains a Python module which is installed using the popular 

package manager PIP. Once installed, using OSPREY 3.0 is as easy as writing a Python script. 

High-performance computations are still performed in the Java virtual machine to give the 

fastest runtimes, so Java is still required to run OSPREY 3.0, but communication between the 

Python environment and the Java environment is handled behind-the-scenes, and OSPREY 3.0 

still looks and feels like a regular Python application.

See Figure 4 for a complete example of a Python script that performs a very simple design 

using OSPREY 3.0, and Figure 5 for a slightly more involved design using BBK*36 (a new 

algorithm in OSPREY 3.0, described in its own section below). Figure 6 graphically displays 

the design setup for the BBK* design.

NEW PROTEIN DESIGN ALGORITHMS IN OSPREY 3.0

LUTE: Putting advanced modeling into a form suitable for efficient, discrete design 
calculations

OSPREY 3.0 comes with LUTE18, a new algorithm that addresses two issues with previous 

versions of OSPREY.

First, previous versions modeled continuous flexibility by enumerating conformations in 

order of a lower bound on minimized conformational energy2,16. This lower bound can be 

relative loose, especially for larger systems, and thus a large number of suboptimal 

conformations—often exponentially many with respect to the size of the system—must be 

scored by continuous minimization merely because they have favorable lower bounds on 

their energy. LUTE addresses this problem by enumerating conformations in order of their 

actual minimized conformational energies instead of simply in order of a lower bound. 

These energies are estimated using an expansion in low-order tuples of residue 
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conformations. Thus, the burden of modeling continuous flexibility is shifted from the 

combinatorial optimization (A*) step, which has unfavorable asymptotic complexity, to a 

precomputation step (the “LUTE matrix precomputation” 18) that only scales quadratically 

with the number of residues. This dramatically reduces the computation time for large 

designs with continuous flexibility, and has doubled the number of residues that can be 

treated simultaneously with continuous flexibility18.

Second, all previous combinatorial protein design algorithms have relied on an explicit 

decomposition of the energy as a sum of local (e.g., pairwise) terms. This made design with 

energy functions that do not have this form difficult. LUTE can straightforwardly support 

general energy functions, and, as shown in Ref. 18, it can obtain good fits at least in the case 

of Poisson-Boltzmann energies. Moreover, once the LUTE matrix precomputation is 

completed, the time cost of finding the optimal sequence and conformation does not depend 

on the energy function used. This is an enormous advantage for more expensive and accurate 

energy functions like Poisson-Boltzmann, which otherwise would be far too expensive for 

all but the smallest designs.

OSPREY users can now turn on LUTE for continuously flexible calculations simply by setting 

a boolean flag (in the DEEGMECF inder Python constructor). OSPREY 3.0 also supports 

design with Poisson-Boltzmann solvation energy calculations, which call the DelPhi51,52 

software for the single-point Poisson-Boltzmann calculations (we ask the user to download 

DelPhi separately for licensing reasons). Such improved modeling is essential to increasing 

the reliability of and range of feasible uses for computational protein design.

CATS: Local backbone flexibility in all biophysically feasible dimensions

OSPREY pioneered protein design calculations that model local continuous flexibility of 

sidechains in the vicinity of rotamers in all biophysically feasible dimensions (i.e., the 

sidechain dihedrals). This continuous flexibility was often critical in correctly predicting 

energetically favorable sequences1,16, especially when those sequences falsely appeared to 

be sterically clashing when modeled using only rigid rotameric conformations taken from a 

rotamer library (see section on GPU acceleration above for more details). In OSPREY 3.0, we 

now extend this ability to the backbone: allowing local continuous backbone flexibility in 

the vicinity of the native backbone with respect to all biophysically feasible degrees of 

freedom.

This flexibility is enabled by the CATS algorithm20 (Fig. 7). CATS uses a new 

parameterization of backbone conformational space, along with the voxel framework that 

OSPREY has always included. It is equivalent to searching over all changes in backbone 

dihedrals (ϕ and ψ) subject to keeping the protein conformation constant outside of a 

specified flexible region. CATS includes an efficient Taylor series-based algorithm for 

computing atomic coordinates from its new degrees of freedom, enabling efficient energy 

minimization. Unlike previous protein design algorithms with backbone flexibility, CATS 

routinely finds backbone motions on the order of an angstrom (in RMSD with respect to the 

wildtype backbone) while still performing a comprehensive search of its backbone 

conformation space. In Ref. 20, we have shown that backbone flexibility as modeled by 

CATS is sometimes critical for avoiding nonphysical steric clashes (Fig. 7B,C) and often 
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affects energetics significantly. For example, mutating residue 54 of the antibody VRC07 to 

tryptophan improves its binding to its antigen (HIV surface protein gp120)7, but a design to 

recapitulate this mutation found it to be blocked by a steric clash unless CATS was used to 

find a backbone motion that escapes the clash20. In this design, CATS significantly 

outperformed a provable search over backrub53 motions, which are also available in 

OSPREY19,54.

CATS is intended to be run as part of the flexibility model for OSPREY’s other algorithms, 

yielding efficient calculations with continuous flexibility in both the sidechains and the 

backbone. OSPREY’s convenient interface allows a user to add CATS flexibility to a design 

merely by specifying the start and end points of the backbone segment to be made flexible.

BBK*: Efficiently computing the tightest binding sequences from a combinatorially large 
number of binding partners

In previous versions of OSPREY, the K* algorithm24 modeled an ensemble of Boltzmann-

weighted conformations to approximate the thermodynamic partition function. It combined 

minimized dead-end elimination pruning14 with A*14,55 gap-free conformation enumeration 

to compute provable ε-approximations to the partition functions for the protein and ligand 

states of interest. K* combined these partition function scores to approximate the association 

constant, Ka, as the ratio of ε-approximate partition functions between the bound and 

unbound states of a protein-ligand complex. Notably, each partition function ratio, called a 

K* score, is provably accurate with respect to the biophysical input model2,16,24.

Although K* efficiently and provably approximated Ka for a given sequence, it had to 

compute a K* score for each sequence of interest. All provable ensemble-based algorithms 

prior to BBK*, as well as many heuristic algorithms that optimize binding affinity, are 

single-sequence algorithms which must compute the binding affinity for each possible 

sequence. The number of sequences, of course, is exponential in the number of 

simultaneously mutable residue positions. Therefore, designs with many mutable residues 

rapidly became intractable. OSPREY 3.0 provides a new algorithm, BBK*, which overcomes 

this challenge. BBK*36 builds on K*, and is the first provable, ensemble-based protein 

design algorithm to run in time sublinear in the number of sequences. The key innovation in 

BBK* that enables this improvement is the multi-sequence (MS) bound. Rather than 

compute binding affinity separately for each possible sequence, as single-sequence methods 

do, BBK* efficiently computes a single provable K* score upper bound for a combinatorial 

number of sequences. BBK* uses MS bounds to prune a combinatorial number of sequences 

during the search, entirely avoiding single-sequence computation for all pruned sequences.

Importantly, BBK* also contains many other powerful algorithmic improvements and 

implementation optimizations: the parallel architecture of BBK*, which enables concurrent 

energy minimization, and a novel two-pass partition function bound, which minimizes far 

fewer conformations while still computing a provable ε-approximation to the partition 

function. Combined with the combinatorial pruning power of the MS bound, BBK* is able 

to search over much larger sequence spaces than previously possible with single-sequence 

K* (Fig. 8). In computational experiments on 204 protein design problems, BBK* 

accurately predicted the tightest-binding sequences while only computing K* scores for as 
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few as one in 105 of the sequences in the search space36. Moreover, in computational 

experiments on 51 protein-ligand design problems, BBK* was up to 1982-fold faster than 

single-sequence K*, despite provably producing the same results 36.

These improvements show that BBK* not only accelerates protein designs that were 

possible with previous provable algorithms, it also efficiently performs designs that are too 

large for previous methods.

BWM*: Exploiting locality of protein energetics to efficiently compute the GMEC

OSPREY 3.0 comes with BWM*23, a new algorithm that exploits sparse energy functions to 

provably compute the GMEC in time exponential in merely the branch-width w of a protein 

design problem’s sparse residue interaction graph.

Because energy decreases as a function of distance, many protein design algorithms model 

protein energetics with energy functions which omit pairwise interactions between 

sufficiently distant residues. These sparse energy functions not only provide a simpler, more 

efficiently computed model of energy, but also induce optimal substructure to the problem: 

because not all residues interact, the optimal conformation for a given residue can be 

independent of the conformations at other residues. BWM* exploits this optimal 

substructure by 1) representing the sparse interactions with a sparse residue interaction 

graph, and 2) computing a branch-decomposition for use in dynamic programming.

BWM*, unlike treewidth-based methods that also exploit the sparsity of pairwise residue 

interactions to efficiently compute the GMEC 56, enumerates a gap-free list of 

conformations in order of increasing sparse energy. Because this list is gap-free, BWM* not 

only computes the GMEC of the sparse energy function, but also recovers the GMEC of the 

full energy function, as shown in Ref. 23. By enumerating all conformations within the 

provable sparse energy bound between the sparse and full GMEC, BWM* computes a list of 

conformations that is guaranteed to contain the full GMEC, as well as the sparse GMEC57. 

Moreover, because BWM* can enumerate conformations in gap-free order up to any energy 

threshold specified by the user, it can be used to accurately compute partition functions, and 

thus binding free energies that account correctly for entropy, using the K* algorithm2,24.

Thus, in practice, BWM* circumvents the worst-case complexity of traditional methods 

such as A* for designs with sparse energy functions, computing the sparse GMEC of an n-

residue design with at most q rotamers per residue in 𝒪(nw2q
3
2w

) time, and also enumerates 

each additional conformation in merely 𝒪 n log q  time, which is up to three orders of 

magnitude faster than traditional A* in practice23.

ACCURACY BENCHMARKS

We first tested the accuracy of OSPREY 3.0 for the subset of algorithms also available in 

OSPREY 2.2β, by running both versions of OSPREY on the same test cases and checking that the 

results matched. Since the accuracy of OSPREY 2.2β using these algorithms has been 
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experimentally confirmed (see Introduction), by transitivity, our tests confirmed OSPREY 3.0’s 

accuracy. In addition, we performed new, retrospective tests, described below.

To evaluate the accuracy of the implementation of the newest optimizations in OSPREY 3.0, 

we performed a series of designs for a variety of protein-protein interfaces (PPIs) as 

retrospective validation. We used K*24 to computationally predict experimentally measured 

changes in binding for each PPI. Each protein structure is listed by name and PDB ID in 

Table 258–61. These systems include barnase with its peptide inhibitor barstar62,63, the 

cytochrome c:cytochrome c peroxidase complex64, interferon α-2 (IFNα2) in complex with 

interferon α/β receptor 2 (IFNAR2)65, and the interleukin 2 (IL-2):IL-2 receptor α (IL-2Rα) 

complex 66.

Our retrospective validation experiments focused on mutations at residues in or proximal to 

the protein-protein interface that were not limited to alanine scanning. Including some of 

these tested and reported mutations62–66, for each structure we tested anywhere from 5 to 19 

designs. In total, we tested 58 mutations using default, out-of-the-box OSPREY 3.0 settings 

and parameters. Each design included one or two mutable residues along with a set of 

surrounding flexible residues (See Table 2). Flexible residues were chosen by selecting all 

residues within 4 Å of the mutable residues and removing those that only have backbone 

interactions. Two example designs are shown in Figure 9, where OSPREY 3.0 and K* 

accurately predict the effect of two point mutations in the interface of the IFNα2:IFNAR2 

complex (highlighted in blue in Table 2).

For each system, the K* scores were ranked in increasing order of reported experimental 

binding. Spearman’s ρ values were subsequently calculated for each system by calculating 

the statistical dependence between the K* score rankings and the experimentally measured 

rankings (See Table 2 and Figure 10). This is a sound measure because generally the output 

of a design calculation that is used to decide which mutants to make experimentally is 

simply the intra-system ranks of the mutants. Looking at the values in Table 2, we see a high 

correlation in the rankings between experimentally measured binding and binding predicted 

by OSPREY 3.0 and K* for each system with values ranging from 0.500 to 0.795. We found 

that, across the tested systems, the Spearman’s ρ value is 0.762. This value is the Pearson 

correlation of the intra-system ranks of all the mutants. Overall, these correlations are very 

good for design for affinity in computational protein design.

DISCUSSION

OSPREY has demonstrated its accuracy and utility in practice through many prospective 

designs that have performed well experimentally6–12. OSPREY 3.0 is at least as accurate as the 

versions of OSPREY used to perform these designs, because it uses the same biophysical 

model used in those studies, with provable guarantees of accuracy given the biophysical 

model. We have compared design results using OSPREY 2.2 and OSPREY 3.0 to confirm 

agreement. However, OSPREY 3.0 performs such designs much more efficiently, due to the 

engineering improvements described here. Moreover, in this paper we have performed 

additional comparisons to experimental data to confirm the accuracy of OSPREY 3.0. OSPREY 
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3.0 also includes methods to improve the biophysical model and thus improve accuracy still 

further (should the user choose to select OSPREY’s newer models).

As our benchmark results here show, we have made substantial progress toward correctly 

predicting the effect of mutations on protein activity. The high accuracy comes from 

OSPREY’s accurate biophysical model, which accounts for both continuous protein flexibility 

and conformational entropy, together with algorithms that provably return optimal sequences 

given that model. In fact, no other software can provide a provable guarantee of accuracy 

given a model that accounts for continuous flexibility and conformational entropy. 

Moreover, OSPREY’s combinatorial algorithms4,5 compute optimal sequences efficiently even 

when searching over a large sequence space.

The large speedups in OSPREY 3.0, together with the easy-to-use Python interface, thus make 

it much more tractable to perform protein design with such biophysically realistic modeling 

and with guaranteed accuracy given the model. In particular, OSPREY 3.0 benefits from many 

sources of speedups that can be used together. Speedups from OSPREY 3.0’s optimization of 

the conformational minimization, forcefield evaluation, and A* routines can exceed two 

orders of magnitude even compared to OSPREY 2.221 running on the same CPU hardware. 

Together with an additional speedup of over an order of magnitude from GPU’s, a design 

that would take months using OSPREY 2.2 could easily take only a few hours using OSPREY 3.0. 

Many designs could see even greater speedups, because in addition to these engineering 

improvements, some of the algorithmic improvements in OSPREY 3.0 provide a dramatic 

increase in computational efficiency.

The improvements in modeling facilitated by OSPREY 3.0’s new algorithms also make protein 

design with OSPREY more realistic. However, there is still much room for improvement in the 

biophysical model used by OSPREY, and indeed by all currently available protein design 

software. Modeling of larger backbone motions, more realistic interactions with water, and 

electronic polarization, among other phenomena, are all likely to yield substantial 

improvements in accuracy. The refactored architecture of OSPREY 3.0 will make it easier to 

experiment with algorithms that facilitate these modeling improvements, and to implement 

these algorithms within OSPREY’s current code base. Moreover, we have released OSPREY 3.0 

as open source, to aid the community both in the development and the application of 

improved models and algorithms for computational protein design.

CONCLUSIONS

OSPREY has long offered unique capabilities to protein designers. In particular, it has always 

offered a unique combination of provably accurate conformational search, continuous 

flexibility, efficient search over large sequence spaces, and free energy calculations based on 

Boltzmann-weighted thermodynamic conformational ensembles. In OSPREY 3.0 we 

introduced software improvements that will make these algorithms much more practical for 

the wider design community: performance that is orders of magnitude faster, and a Python 

interface that makes OSPREY much easier to use. In addition, we expanded the range of 

biophysical modeling assumptions that OSPREY can accommodate, both in terms of molecular 

flexibility and energy functions. As with previous versions, we are releasing OSPREY 3.0 as 
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free and open-source software to maximize its benefit to the community. We hope this new 

version will be of significant utility to designers, whether they have used OSPREY before or 

are trying it for the first time.
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Figure 1: The OSPREY protein redesign suite.
(A) The input model includes a 3D structure of the protein to be redesigned, a definition of 

the sequence space, the allowed protein flexibility (including the rotamer library), and a 

pairwise energy function. (B) Rigid DEE 14,15, iMinDEE16, EPIC17, LUTE18, DEEPer19, 

and CATS20 model different types of protein flexibility. Flexibility ranges in complexity 

from discrete, rigid rotamers to continuous side chain flexibility to complete flexibility 

including continuous backbone flexibility. (C) The EPIC 17 and LUTE18 algorithms also 

expand energy function capability by allowing for non-pairwise, basic quantum chemistry 

and Poisson-Boltzmann solvation. (D) COMETS21 allows for multi-state design by 

optimizing sequences and conformations for user-specified bound and unbound states. This 

is accomplished using multiple input structures. (E) These algorithms are implemented in 

OSPREY and improved through the use of GPU acceleration. According to the allowed 

flexibility, OSPREY runs a specific pruning algorithm followed by a highly optimized 

descendant of the A* search algorithm22. The A* output generates a ranking based on either 

the lowest-energy structure of each sequence, or an ensemble of structures computed by the 

K* algorithm. (F) The BWM*23 algorithm exploits sparse residue interaction graphs and 

branch decomposition to outperform traditional A*. (G) The K*2,24 algorithm calculates a 

K* score (an approximation of the binding constant, Ka) by provably estimating the partition 

function for the protein, the ligand, and the protein-ligand complex. The K* algorithm 

exploits a thermodynamic ensemble of structures as opposed to a single structure, as 

illustrated in the panel (PDB ID: 3FQC). K* can also be used to find sequences that have a 

high affinity for one ligand (positive design) while having a low affinity for another 

(negative design) by taking a ratio of K* scores10,13.
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Figure 2: Runtimes of OSPREY 2.2 vs. OSPREY 3.0 for 45 protein design test cases (details shown in 
Table 1), shown on a log scale.
Designs that only finished with OSPREY 3.0 (given a 17-day time limit) are shown on the right 

in red. All test cases involve continuous flexibility2,16 and minimization-aware DEE16,17; 18 

involve provably accurate partition function calculations (see Table 1 and Ref. 17 for 

details).
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Figure 3: Benchmarks for protein conformation minimization in OSPREY 3.0 for various 
hardware platforms and for conformations of varying size.
From smallest to largest: (top) a single residue pair is the smallest multi-body minimization 

possible, (middle) a full protein conformation with a single flexible residue represents a 

small design, (bottom) a full protein conformation with 20 flexible residues represents a 

large design. For CPU hardware, concurrent minimizations correspond to CPU threads. For 

GPU hardware, concurrent minimizations correspond to streams defined by the CUDA 

framework. Faster minimization speeds correspond with faster OSPREY runtimes. All 

minimizations were performed on the Atx1 metallochaperone protein (PDB ID: 1CC8)47. 

Flexible residues were modeled with continuous sidechain flexibility, and all other residues 

remained completely fixed.
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Figure 4: A Python script that performs a very simple design in OSPREY 3.0.
The design searches over sequences in which residues A2 and/or A3 of the Atx1 

metallochaperone protein (PDB ID: 1CC8)47 are mutated; residues A2-A4 (i.e., residue 2-4 

of chain A) are all modeled with sidechain flexibility, consisting of a discrete search over the 

Penultimate rotamer library48’s rotamers for the specified amino acid types. The mutability, 

flexibility, and starting crystal structure are all specified in the “define a strand” section of 

the code. Advanced users can also modify the other sections to specify changes from the 

default search algorithms, energy function, and other modeling assumptions. This script uses 

the Max Product Linear Programming (MPLP) algorithm49 to reduce the size of the A* 
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search tree15 employed for sequence and conformational search without compromising 

accuracy; see Ref.22 for details.
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Figure 5: A Python script that performs a simple BBK* design in OSPREY 3.0.
This design produces a peptide to bind human fibronectin (the “ligand strand,” i.e. chain A) 

by optimizing a fragment of the protein FnBPA from Staphylococcus aureus (the “protein 

strand,” chain G), which has been crystallized in complex with fibronectin domains (PDB 

ID: 2RL050). As in Fig. 4, the script defines the starting crystal structure, mutable residues, 

and level of mutability and flexibility (here including continuous flexibility) in the form of 

Python strand objects. Fig. 6 represents this design graphically. This design is accelerated by 

parallelism, running on 4 CPU cores. This example thus shows it is easy to invoke and use 

parallelism within the OSPREY 3.0 software.
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Figure 6: Setup for the Python-scripted BBK*36 design described in Fig. 5.
This design starts with the crystal structure (PDB ID: 2RL050) of a complex between 

fragments of the protein FnBPA from Staphylococcus aureus (blue ribbons) and human 

fibronectin (green ribbons), and optimizes binding with respect to the amino acid type of 

FnBPA residue 649 (magenta), while modeling continuous flexibility in several surrounding 

sidechains (orange). The full complex is shown on the left, while the region surrounding the 

mutation is shown in detail on the right. See Ref. 36 for background on the 

FnBPA:fibronectin system.
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Figure 7: 
Left: CATS allows systematic search over a voxel of backbone conformations in the vicinity 

of the wild-type backbone conformation (black). The voxel is specified as box constraints on 

a novel set of backbone coordinates; conformations with one such coordinate moved to the 

edge of the voxel are shown in red and green, and a conformation with all such coordinates 

moved to the edge of the voxel is shown in purple. See Fig. 1 of Ref. 20 for more details. 

Middle: Rigid-backbone structural modeling of an experimentally effective mutant of anti-

HIV gp120 antibody VRC07 showed unavoidable steric clashes between Trp 54 of VRC07 

and Trp 427 and Gly 473 of gp120 (purple). Right: CATS explained the experimentally 

observed activity by finding a new backbone conformation that resolved these clashes 

(green; overlaid with clashing rigid-body backbone (purple) and backbone conformation 

computed with the older DEEPer algorithm (blue)). DEEPer reduced the clashes somewhat 

using backrub motions53, but they were still significant even after the backrubs. See Fig. 3 of 

Ref. 20 for more details. Portions of this figure were reprinted with permission from Ref. 20.
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Figure 8: Measuring the contributions of the BBK*36 algorithmic improvements to the 
empirically observed running times of OSPREY.
BBK* calculations were run to predict either the single top sequence or to enumerate the top 

5, and were compared to exhaustive computation of K* scores for each sequence (i.e., 

iMinDEE/A*/K*2,16 or single-sequence K*), which was the prior state of the art for 

Boltzmann-weighted ensemble-based binding affinity computation before BBK*. (A) 

Running times for BBK* and single-sequence K* vs. the number of sequences in the search 

space for 204 protein design test cases, a benchmark set described in Ref. 36. Single-

sequence K* completed only 107 of the test cases within a 30-day time limit (left of the 

vertical line), and took up to 800 times longer than BBK* to do so, while BBK* completed 

all the designs within the time limit. (B) The number N of sequences whose energies must 

be examined or bounded by iMinDEE/A*/K* (green line; exponential in the number of 

mutable residue positions) and by BBK* (dots). For each data point representing a BBK* 

test case, the vertical gap between that data point and the green line (gap on the y axis) 

represents the number of sequences that are pruned without ever having to be examined. 

Figure adapted with permission from Ref. 36.
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Figure 9: 
(A) The structure of the IFNα2:IFNAR2 complex (PDB ID: 3S9D60) with separate chains 

shown in cyan and magenta and with two example interface design regions shown in boxes. 

Each box contains a mutable residue shown as sticks and its surrounding flexible residues 

shown as lines. (B) and (F) zoom in on each design. (B-E) Design at position R33 for a 

mutation that OSPREY correctly predicts as decreasing binding: R33Q. (B) The wildtype 

sequence with probe dots67,68 displaying favorable interactions with surrounding flexible 

residues (shown as lines). (D) The mutant sequence (33Q) with probe dots displaying some 

favorable as well as unfavorable interactions. Comparing (B) and (D), it is clear there is a 

loss in favorable interactions and a gain in unfavorable interactions upon mutation from R to 

Q, resulting in an experimentally observed decrease in binding that the K* algorithm 

captures accurately (See Table 2). (C) and (E) show the top 10 conformations in the 

conformational ensemble used in the K* calculation for each sequence. (F-I) Design at 

position N156 for a mutation that OSPREY correctly predicts as increasing binding: N156A. 

(F) The wildtype sequence with probe dots 67,68 displaying some favorable interactions with 

surrounding flexible residues (shown as lines). (H) The mutant sequence (156A) with probe 

dots displaying some favorable interactions with surrounding flexible residues (shown as 

lines). There are some gained interactions (shown by an increase in the number of favorable 

probe dots) in (H) compared to (F), but these are not visually obvious, thus emphasizing the 

importance of K*, which successfully picks up these nuanced changes and correctly predicts 

improved binding (See Table 2). (G) and (I) show the top 10 conformations in the 

conformational ensemble used in the K* calculation for each sequence. Not shown are the 

ensembles for the unbound states that are also used to calculate the K* scores.
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Figure 10: 
Testing the accuracy of the K* algorithm in OSPREY 3.0 by comparing K* rankings to 

experimentally reported rankings (See Table 2). Each system is represented by its 

corresponding PDB ID and a linear trendline is shown for each in its corresponding color 

according to the legend.
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Table 1:

Details of 45 protein design test cases with continuous flexibility run on both OSPREY 2.2 and OSPREY 3.0. Test 

cases primarily adapted from Ref. 17. a Y indicates a partition function calculation (a subroutine of the K* 

algorithm2,24), which analyzes a thermodynamic ensemble of conformations; N indicates calculation of the 

single global minimum-energy conformation (GMEC). DNF: Did not finish.

Protein name PDB
code

PF?a Mutable
residue
count

OSPREY
3.0 time
(min)

OSPREY
2.2 time
(min)

Speedup

Scorpion toxin 1AHO N 7 0.37 2.75 7.38

Scorpion toxin 1AHO N 9 0.64 6.60 10.35

Scorpion toxin 1AHO N 12 194.71 1608.16 8.26

Scorpion toxin 1AHO N 14 287.87 2075.04 7.21

Cytochrome c553 1C75 N 6 0.28 4.30 15.19

Atx1 metallochaperone 1CC8 N 7 2.56 85.41 33.41

Atx1 metallochaperone 1CC8 Y 7 67.12 DNF
>364.72

†

Bucandin 1F94 N 7 0.40 4.82 12.07

Nonspecific lipid-transfer protein 1FK5 N 6 0.03 0.78 27.34

Transcription factor IIF 1I27 N 7 1.58 385.56 244.4

Ferredoxin 1IQZ N 9 0.16 2.45 14.92

Trp repressor 1JHG N 7 2.88 22.50 7.8

Fructose-6-phosphate aldolase 1L6W N 6 0.23 75.97 336.22

Cephalosporin C deacetylase 1L7A N 8 4.09 928.27 226.93

PA-I lectin 1L7L N 6 0.12 6.26 52.85

Phosphoserine phosphatase 1L7M N 7 1.13 249.33 220.11

alpha-D-glucuronidase 1L8N N 5 0.13 480.13 3701.36

Dachshund 1L8R N 8 0.19 1.41 7.62

Granulysin 1L9L N 7 0.06 1.24 20.8

gamma-glutamyl hydrolase 1L9X N 5 0.03 92.13 3507.46

Ferritin 1LB3 N 5 0.42 23.42 55.2

Cytochrome c 1M1Q N 8 1.68 357.59 213.09

Hypothetical protein YciI 1MWQ N 8 0.13 3.69 28.13

ygfY 1X6I Y 14 604.71 DNF
>40.48

†

ADAR1 ZB domain 1XMK Y 15 2172.23 DNF
>11.27

†

Histidine triad protein 2CS7 Y 14 2816.56 DNF
>8.69

†

Transcriptional regulator
AhrC

2P5K Y 11 1.18 DNF
>20811.61

†

Scytovirin 2QSK N 10 10.47 164.49 15.71

Scytovirin 2QSK Y 10 2.54 9267.19 3651.9

Hemolysin 2R2Z Y 12 42.02 DNF
>582.58

†

Putative monooxygenase 2RIL N 8 18.16 15.89 0.87
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Protein name PDB
code

PF?a Mutable
residue
count

OSPREY
3.0 time
(min)

OSPREY
2.2 time
(min)

Speedup

Putative monooxygenase 2RIL Y 8 0.23 104.77 463.18

alpha-crystallin 2WJ5 Y 15 226.32 DNF
>108.17

†

Cytochrome c555 2ZXY Y 14 381.39 DNF
>64.19

†

High-potential iron-sulfur
protein

3A38 Y 13 65.15 DNF
>375.72

†

ClpS protease adaptor 3DNJ Y 12 65.04 DNF
>376.4

†

Putative monooxygenase 3FGV Y 10 1.94 DNF
>12591.94

†

Protein G 3FIL Y 14 303.81 DNF
>80.58

†

Viral capsid 3G21 Y 15 188.53 DNF
>129.85

†

dpy-30-like protein 3G36 N 4 1.55 9.97 6.43

dpy-30-like protein 3G36 Y 4 0.05 2.44 47.07

Hfq protein 3HFO Y 10 6.81 DNF
>3594.09

†

Cold shock protein 3I2Z Y 14 20.84 DNF
>1174.8

†

HPI integrase 3JTZ Y 14 859.69 DNF
>28.48

†

PSD-95 PDZ3 domain 1TP5 N 6 0.12 49.50 424.29

†
OSPREY 2.2 did not finish within the time limit, so we report a lower bound on the speedup: the ratio of the time limit (17 days) to the OSPREY 

3.0 runtime.
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Table 2:
Comparison of OSPREY predictions to experimental results for mutations in four protein 
systems.

Allowed mutations for each system are listed along with their corresponding rankings from experimental 

measurements62–66 vs. computational predictions by K* from OSPREY 3.0. The mutations highlighted in blue 

are shown in detail in Figure 9. A Spearman’s ρ value is calculated for each system and shown here. The 

“Across All” value is calculated by ranking each system individually and then calculating the Spearman’s ρ 
across all of the designs.

Mutation(s) Experimental
Ranking

Computational
Ranking

Barnase:Barstar, PDB ID: 1X1U

D39A 1 1

H102A 2 3

R87A 3 5

K27A 4 8

R59A 5 2

D35A 6 4

Y29A 7 7

E73A 8 12

E76A 9 6

W35F 10 11

E60A 11 10

Y29F 12 9

ρ = 0.755

IL-2:IL-2Rα, PDB ID: 2B5I

K38E, S39D 1.5 1

R35T, R36S 1.5 2

R35K, R36K 3 4

E1K, D4K 4 7

E29R 5 5

L2A 6 16

D4K 7.5 9

S39A, S41A 7.5 12

E1K 9 11

H120A 10 10

E29A 11 6

L42S, Y43L 12 3

E1Q 13 14

N27A 14 15

K38T 15 8

D4N 16 13

ρ = 0.554

Cytc:Cytc
peroxidase,PDB

ID: 2PCB

E290N 1 2

D34N 2 4

A193F 3 1
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Mutation(s) Experimental
Ranking

Computational
Ranking

E35Q 4 3

E32Q 5 5

ρ = 0.500

IFNα2:ifnar2, PDB ID: 3S9D

R33Q 1 1

R33A 2 2

R33K 3 5

L30A 4 6

R149A 5 4

L30V 6 9

A148A 7 10

A145G 8 14

A145M 9 3

L15A 10 13

L153A 11 12

L26A 12 7

S152A 13 16

F27A 14 8

S25A 15 18

D35A 16 17

R22A 17 11

M16A 18 15

N156A 19 19

ρ = 0.795

Across All ρ = 0.762
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