
OSPREY 3.0: Open-Source Protein Redesign for You, with Powerful
New Features

Mark A. Hallen‡,1,3, Jeffrey W. Martin‡,1, Adegoke Ojewole†,4, Jonathan D. Jou†,1, Anna U.
Lowegard†,4, Marcel S. Frenkel5, Pablo Gainza1, Hunter M. Nisonoff1, Aditya Mukund1, Siyu
Wang4, Graham T. Holt4, David Zhou1, Elizabeth Dowd1, and Bruce R. Donald*,1,2,5

1Department of Computer Science, Duke University, Durham, NC 27708

2Department of Chemistry, Duke University, Durham, NC 27708

3Toyota Technological Institute at Chicago, Chicago, IL 60637

4Program in Computational Biology and Bioinformatics, Duke University Medical Center, Durham,
NC 27710

5Department of Biochemistry, Duke University Medical Center, Durham, NC 27710

Abstract

We present osprey 3.0, a new and greatly improved release of the osprey protein design software.

osprey 3.0 features a convenient new Python interface, which greatly improves its ease of use. It is

over two orders of magnitude faster than previous versions of osprey when running the same

algorithms on the same hardware. Moreover, osprey 3.0 includes several new algorithms, which

introduce substantial speedups as well as improved biophysical modeling. It also includes GPU

support, which provides an additional speedup of over an order of magnitude. Like previous

versions of OSPREY, OSPREY 3.0 offers a unique package of advantages over other design software,

including provable design algorithms that account for continuous flexibility during design and

model conformational entropy. Finally, we show here empirically that OSPREY 3.0 accurately

predicts the effect of mutations on protein-protein binding. OSPREY 3.0 is available at http://

www.cs.duke.edu/donaldlab/osprey.php as free and open-source software.

Graphical Abstract

We present the third major release of the OSPREY protein design software, along with

comparisons to experimental data that confirm its ability to optimize protein mutants for desired

functions. OSPREY 3.0 has significant effciency, ease-of-use, and algorithmic improvements over

previous versions, including GPU acceleration and a new Python interface.

*Corresponding author, brd+jcc18@cs.duke.edu.
‡,†These authors contributed equally

HHS Public Access
Author manuscript
J Comput Chem. Author manuscript; available in PMC 2019 February 26.

Published in final edited form as:
J Comput Chem. 2018 November 15; 39(30): 2494–2507. doi:10.1002/jcc.25522.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.cs.duke.edu/donaldlab/osprey.php
http://www.cs.duke.edu/donaldlab/osprey.php

Keywords

Protein design; drug design; GPU; structural biology; Python

INTRODUCTION

For over a decade, the OSPREY software package1,1–3 has offered the protein design

community a unique combination of continuous flexibility modeling, ensemble modeling,

and algorithms with provable guarantees4,5. Having begun as a software release for the K*

algorithm 2,6, which approximates binding constants using ensemble modeling, it now

boasts a wide array of algorithms found in no other software. OSPREY has been used in many

designs that were empirically successful—in vitro6–12 and in vivo7–10 as well as in non-

human primates 7. OSPREY’s predictions have been validated by a wide range of experimental

methods, including binding assays, enzyme kinetics and activity assays, in cell assays

(MICs, fitness) and viral neutralization, in vivo studies, and crystal7,13 and NMR9 structures.

However, as OSPREY grew to include more algorithms and features (Fig. 1), the code became

increasingly complicated and difficult to maintain. The growing complexity of the software

also hindered its ease-of-use. OSPREY 3.0 represents a complete refactoring of the code, and

presents a simpler and more intuitive interface that makes protein redesign much easier than

before. The new, developer-friendly code organization also facilitates adding new features to

the free and open-source OSPREY project, both by ourselves and by other contributors. We

have introduced a convenient Python scripting interface and added support for GPU

acceleration of the bulk of the computation, allowing designs to be completed much more

quickly and easily than in previous versions of OSPREY. We believe OSPREY 3.0 will be a very

useful tool for both developers and users of provably accurate protein design algorithms.

Past successes of OSPREY

OSPREY has been used for an impressive number of empirically successful designs, ranging

from enzyme design to antibody design to prediction of antibiotic resistance mutations.

Notably, OSPREY has been successful in many prospective experimental studies, i.e., studies

Hallen et al. Page 2

J Comput Chem. Author manuscript; available in PMC 2019 February 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

in which our designed sequences are tested experimentally, thus validating OSPREY through

use in practice rather than simply through a retrospective comparison of OSPREY calculations

to previous experimental results. OSPREY is most applicable to problems that can be posed in

terms of biophysical state transitions like binding, allowing the K* algorithm and its variants

to predict the optimal sequences based on an estimate of binding free energy computed using

Boltzmann-weighted conformational ensembles. Moreover, most protein design problems

can be posed in this way, sometimes in terms of binding to more than one ligand. OSPREY is

capable of both positive design, in which binding of a designed protein to a target is

increased, and negative design, in which binding to a target is decreased, as well as more

complicated design objectives where specific binding to one target and not to another is

required.

For example, we have successfully predicted novel resistance mutations to new inhibitors in

MRSA (methicillin-resistant Staphylococcus aureus) using multistate design (combining

negative and positive design). OSPREY does this by searching for sequences that have

impaired drug binding compared to wild-type DHFR, but still form the enzyme-substrate

complex as usual, allowing catalysis to proceed10,13. Our predictions were validated not only

biochemically and structurally, but also at an organismal level 13,25,26. Similarly, we have

successfully changed the preferred substrate of an enzyme—the phenylalanine adenylation

domain of gramicidin S synthetase—from phenylalanine to leucine by modeling the two

enzyme-substrate complexes, and searching for sequences with improved binding to leucine

and reduced binding to phenylalanine6. The resulting designer enzymes exhibited improved

catalysis, and designs changing the specificity from phenlyalanine to several charged amino

acids were successful as well6. The combination of positive and negative design in OSPREY

has also successfully designed mutants of the gp120 surface protein of HIV that bind

specifically to particular classes of antibodies, enabling their use as probes for detecting and

isolating those antibodies from human sera12.

These multistate design capabilities, long a mainstay of OSPREY, are accelerated by the

modules BBK* (described below) and COMETS (described in Ref. 21). COMETS provably

returns the sequence that minimizes any desired linear combination of the energies of

multiple protein states, subject to constraints on other linear combinations. Thus, COMETS

can target nearly any combination of affinity (to one or multiple ligands), specificity, and

stability (for multiple states if needed). COMETS and BBK* have been integrated into

OSPREY 3.0 and accelerated, and they are currently the only provable multi-state design

algorithms that run in time sublinear in the size M of the sequence space. This can be

important, since M is exponential in the number of simultaneously mutable residue

positions.

Further successes of OSPREY have involved improving positive design, e.g., the interaction of

the anti-HIV antibody VRC07 with its antigen, gp120. Using this approach, we collaborated

with the NIH Vaccine Research Center to design a broadly neutralizing antibody

(VRC07-523LS) against HIV with unprecedented breadth and potency that is now in clinical

trials (Clinical Trial Identifier: NCT030151817,27). We also have designed allosteric

inhibitors of the leukemia-associated protein-protein interaction between Runx1 and

CBF,β9. Similarly, we have used OSPREY to develop peptide inhibitors of CAL, a protein

Hallen et al. Page 3

J Comput Chem. Author manuscript; available in PMC 2019 February 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

involved in cystic fibrosis8. The CBFβ and CAL inhibitors were successful in vitro and in
vivo8,9.

In addition, a number of other research groups have successfully used the OSPREY algorithms

and software (by themselves) to perform biomedically important protein designs, e.g., to

design anti-HIV antibodies that are easier to induce28; to design a soluble prefusion closed

HIV-1-Env trimer with reduced CD4 affinity and improved immunogenicity29; to design a

transmembrane Zn2+-transporting four-helix bundle30; to optimize stability and

immunogenicity of therapeutic proteins31–33; and to design sequence diversity in a virus

panel and predict the epitope specificities of antibody responses to HIV-1 infection34.

We believe OSPREY 3.0 will enable an even greater range of successful designs.

PERFORMANCE ENHANCEMENTS IN OSPREY 3.0

Engineering improvements yield large single-threaded speedups

OSPREY 3.0’s code has been heavily optimized to improve single-threaded performance

relative to the previous version, OSPREY 2.221. Two main areas have received the most

attention and the most improvement in performance so far: A* search speed, and

conformation minimization speed.

OSPREY uses the A* search algorithm15 to perform its combinatorial search over sequence

and conformational space2,16,19. The performance of A* search in OSPREY depends mostly on

the size of the conformation space of the design: the time required for search scales strongly

with the number of mutable and flexible residues. Search time is also dependent on the

speed at which we can evaluate the energy scoring functions on A* nodes. Optimizations in

OSPREY 3.0 have dramatically increased the A* node scoring speed, mainly by caching the

results of expensive computations and reusing them at different nodes. Many intermediate

values used by the A* scoring functions need only be computed once per design. This

reduces the cost of node scoring by roughly an order of magnitude. We can also score child

nodes differentially against their parent nodes to speed up node scoring. Caching

intermediate values during the parent node scoring and using them to simplify child node

scoring yields roughly another order of magnitude speedup in A* node scoring.

OSPREY 3.0 also includes optimizations to improve the performance of forcefield evaluation

and conformation minimization. Conformation minimization is typically the bottleneck in

OSPREY calculations with continuous flexibility2,16,19,20. The code in OSPREY 3.0 that

evaluates forcefield energies for a protein conformation has been heavily optimized,

although speed gains here over OSPREY 2 are modest (roughly two-fold), since the original

code was already well-optimized in this area. Much larger performance increases were

gained by caching forcefield parameters and lists of atom pairs between different

conformations to be minimized, which yielded roughly a 10-fold increase in speed. OSPREY

3.0 also increases performance by only evaluating forcefield terms involving mutable and/or

flexible residues in a design, since interaction energies between other residues will be

identical across all sequences and conformations. Since most designs only model a minority

of the residues in a protein as flexible, this can be a substantial improvement.

Hallen et al. Page 4

J Comput Chem. Author manuscript; available in PMC 2019 February 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Performance comparisons are shown for 45 protein design test cases in Fig. 2 and Table 1.

All these test cases model continuous protein flexibility2,16,17, and 18 of them involve

provably accurate partition function calculations (see Table 1 and Ref. 17 for details). To

summarize, the optimizations to single-threaded performance described above made OSPREY

3.0 on average 461-fold faster than OSPREY 2.2 across 29 protein design test cases, and

allowed OSPREY 3.0 to finish the remaining 16 test cases, which OSPREY 2.2 could not finish

within a 17-day time limit. For example, OSPREY 2.2 on a Intel Xeon E5-2640 v4 CPU took

49.5 minutes to run a small (6 continuously flexible residues) benchmark sidechain packing

problem involving a 114-residue fragment of PDZ3 domain of PSD-95 protein complexed

with a 6-residue peptide ligand (PDB ID: 1TP5). But OSPREY 3.0 finished the same design in

7.0 seconds on the same hardware, which is a 424-fold speedup.

GPU acceleration reduces design runtimes

One of the key challenges in protein design is modeling and searching the many continuous

conformational degrees of freedom inherent in proteins and other molecules. The sidechain

conformations of each amino-acid type are generally found in clusters, known as rotamers35,

so it is common practice to approximate protein conformational space as discrete by forcing

each residue to be in the modal conformation of one of these clusters 14,15. However, design

accuracy is increased significantly when continuous flexibility is taken into account, by

allowing the continuous degrees of freedom to move within finite bounds around these

modal values 1,16,19,36. Moreover, this increase in accuracy depends on considering

continuous flexibility during the conformational search process, rather than simply

performing minimization post hoc on the top-scoring sequences and conformations output

by a discrete search algorithm. Although such a post hoc minimization approach would

obtain more energetically favorable models of the top sequences, it would still produce the

same top sequences as a purely discrete design would, which have been shown to not be

truly the top sequences, even if a much finer discrete rotamer subsampling is allowed1,16.

For example, clashing discrete rotamers can often be converted to favorable conformations

by relatively small adjustments in the sidechain conformations2,16,19,20. As a result, designs

performed with continuous flexibility taken into account throughout the search yield

significantly different, and more biologically accurate, sequences than the same designs

performed using discrete search1,16,19.

To address this problem, OSPREY includes several algorithms to design proteins while taking

continuous flexibility into account throughout the process of sequence and conformational

search2,16–20. These algorithms predict optimal protein sequences with provable guarantees

of accuracy given a biophysical model that includes continuous flexibility.

This minimization-aware design approach requires energy minimization to be performed for

a large number of conformations (within the bounds on the continuous degree of freedom

that define each conformation). This minimization is a relatively expensive operation, so the

bulk of a design’s runtime can be spent on energy minimization of conformations.

Therefore, improvements to the speed of energy minimization can have a dramatic impact on

OSPREY runtimes.

Hallen et al. Page 5

J Comput Chem. Author manuscript; available in PMC 2019 February 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Much work has been done to optimize OSPREY for execution on CPUs, particularly highly

multi-core CPUs and even networked clusters of CPU-powered servers37,38. However,

modern GPU hardware enables high-performance computation for some specific tasks at a

fraction of the cost of large CPU clusters, mainly due to the huge video game industry,

which propels innovation in hardware design and drives down costs. The widespread

adoption of fast and highly programmable GPUs in the past decade has transformed many

areas of computational science, including quantum chemistry39, computer vision40, and

cryptography41. In particular, GPUs have been found to produce speedups of approximately

an order of magnitude in molecular dynamics simulations42–44, which, like OSPREY, must

sum huge numbers of forcefield energy terms and can use the GPU to parallelize this

computation. GPUs have also been used to accelerate the A* search step of protein design45,

albeit without addressing the continuous minimization bottleneck.

Thus, in order to bring the benefit of GPUs to continuously flexible protein design

calculations, OSPREY 3.0 includes GPU programs (called kernels) built using the CUDA

framework 46 that implement the forcefield calculations and local minimization algorithms

used in protein redesign.

We present performance results of these GPU kernels on various hardware platforms in

Figure 3. A GPU server housing 4 Nvidia Tesla P100 cards can finish minimizations with

about 300,000 atom pairs roughly 110-fold faster than a single thread running on an Intel

Xeon E5-2640 v4 CPU. With two Intel Xeon E5-2640 v4 CPUs running at full capacity with

multiple threads, the four Nvidia Tesla P100 GPUs finish the same minimizations roughly 8-

fold faster. The speedups of GPUs over CPUs scale with the number of atom pairs in the

minimization. For minimizations with fewer (about 30,000) atom pairs, even four Nvidia

Tesla P100 GPUs cannot outperform two Intel Xeon E5-2640 v4 CPUs. There is significant

overhead to transfer each minimization problem from the CPU to the GPU during designs.

Even though GPUs can evaluate the minimizations much faster than CPUs, when there are

few atom pairs, this transfer overhead dominates the computation time and causes GPUs to

perform merely similarly to CPUs, rather than significantly faster. Nevertheless, the

bottleneck in protein design is minimizations with many atom pairs, and for these

minimizations OSPREY’s speedups on GPUs are on par with the state of the art for GPU

speedups of molecular dynamics simulations.

The performance of desktop hardware appears similar to server hardware, except on a

smaller scale. A single Nvidia GTX 1070 GPU performs minimizations at roughly half the

speed of an Nvidia Tesla P100 GPU. Two Nvidia GTX 1080 GPUs perform similarly to the

Nvidia Tesla P100 GPU on the large conformation benchmark (Fig. 3, bottom), but actually

perform worse than a single Nvidia GTX 1070 for the small conformation benchmark (Fig.

3, middle) – despite having well over twice the hardware of the single Nvidia GTX 1070

GPU. This anomalous performance suggests the kernel OSPREY 3.0 uses for minimizations is

not yet well-optimized for the Nvidia GTX 1080 GPU, and that future engineering efforts

could offer significant performance increases for Nvidia GTX 1080 GPUs. The Nvidia GTX

1050, a laptop GPU, does not appear to be powerful enough to offer any advantages over

traditional CPU computing in OSPREY 3.0 (Fig. 3, light blue columns).

Hallen et al. Page 6

J Comput Chem. Author manuscript; available in PMC 2019 February 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Modern GPU architectures offer thousands of parallel hardware units for calculations,

compared to the tens of parallel hardware units in modern CPU architectures. The

performance results of the current generation of OSPREY’s GPU kernels indicate that

minimization speeds on GPUs have only begun to scratch the surface of what is possible,

particularly for minimizations with few atom pairs. Future versions of these GPU kernels

will likely offer significantly higher performance on the same hardware – perhaps allowing

minimization speeds many times faster than today’s GPU kernels. This in turn will make it

even more efficient to perform minimization-aware protein design, and allow minimization-

aware designs with even more mutable and flexible residues and with more mutation options

per residue.

PYTHON SCRIPTING IMPROVES EASE-OF-USE

One of the most visible additions to OSPREY 3.0 is the Python application programming

interface (API), which allows fine-grained control over design parameters in a streamlined

and easy-to-use experience. OSPREY 3.0 still supports a command-line interface with

configuration files for backwards compatibility, but new development will be focused mostly

on the new Python interface.

The OSPREY 3.0 distribution contains a Python module which is installed using the popular

package manager PIP. Once installed, using OSPREY 3.0 is as easy as writing a Python script.

High-performance computations are still performed in the Java virtual machine to give the

fastest runtimes, so Java is still required to run OSPREY 3.0, but communication between the

Python environment and the Java environment is handled behind-the-scenes, and OSPREY 3.0

still looks and feels like a regular Python application.

See Figure 4 for a complete example of a Python script that performs a very simple design

using OSPREY 3.0, and Figure 5 for a slightly more involved design using BBK*36 (a new

algorithm in OSPREY 3.0, described in its own section below). Figure 6 graphically displays

the design setup for the BBK* design.

NEW PROTEIN DESIGN ALGORITHMS IN OSPREY 3.0

LUTE: Putting advanced modeling into a form suitable for efficient, discrete design
calculations

OSPREY 3.0 comes with LUTE18, a new algorithm that addresses two issues with previous

versions of OSPREY.

First, previous versions modeled continuous flexibility by enumerating conformations in

order of a lower bound on minimized conformational energy2,16. This lower bound can be

relative loose, especially for larger systems, and thus a large number of suboptimal

conformations—often exponentially many with respect to the size of the system—must be

scored by continuous minimization merely because they have favorable lower bounds on

their energy. LUTE addresses this problem by enumerating conformations in order of their

actual minimized conformational energies instead of simply in order of a lower bound.

These energies are estimated using an expansion in low-order tuples of residue

Hallen et al. Page 7

J Comput Chem. Author manuscript; available in PMC 2019 February 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

conformations. Thus, the burden of modeling continuous flexibility is shifted from the

combinatorial optimization (A*) step, which has unfavorable asymptotic complexity, to a

precomputation step (the “LUTE matrix precomputation” 18) that only scales quadratically

with the number of residues. This dramatically reduces the computation time for large

designs with continuous flexibility, and has doubled the number of residues that can be

treated simultaneously with continuous flexibility18.

Second, all previous combinatorial protein design algorithms have relied on an explicit

decomposition of the energy as a sum of local (e.g., pairwise) terms. This made design with

energy functions that do not have this form difficult. LUTE can straightforwardly support

general energy functions, and, as shown in Ref. 18, it can obtain good fits at least in the case

of Poisson-Boltzmann energies. Moreover, once the LUTE matrix precomputation is

completed, the time cost of finding the optimal sequence and conformation does not depend

on the energy function used. This is an enormous advantage for more expensive and accurate

energy functions like Poisson-Boltzmann, which otherwise would be far too expensive for

all but the smallest designs.

OSPREY users can now turn on LUTE for continuously flexible calculations simply by setting

a boolean flag (in the DEEGMECF inder Python constructor). OSPREY 3.0 also supports

design with Poisson-Boltzmann solvation energy calculations, which call the DelPhi51,52

software for the single-point Poisson-Boltzmann calculations (we ask the user to download

DelPhi separately for licensing reasons). Such improved modeling is essential to increasing

the reliability of and range of feasible uses for computational protein design.

CATS: Local backbone flexibility in all biophysically feasible dimensions

OSPREY pioneered protein design calculations that model local continuous flexibility of

sidechains in the vicinity of rotamers in all biophysically feasible dimensions (i.e., the

sidechain dihedrals). This continuous flexibility was often critical in correctly predicting

energetically favorable sequences1,16, especially when those sequences falsely appeared to

be sterically clashing when modeled using only rigid rotameric conformations taken from a

rotamer library (see section on GPU acceleration above for more details). In OSPREY 3.0, we

now extend this ability to the backbone: allowing local continuous backbone flexibility in

the vicinity of the native backbone with respect to all biophysically feasible degrees of

freedom.

This flexibility is enabled by the CATS algorithm20 (Fig. 7). CATS uses a new

parameterization of backbone conformational space, along with the voxel framework that

OSPREY has always included. It is equivalent to searching over all changes in backbone

dihedrals (ϕ and ψ) subject to keeping the protein conformation constant outside of a

specified flexible region. CATS includes an efficient Taylor series-based algorithm for

computing atomic coordinates from its new degrees of freedom, enabling efficient energy

minimization. Unlike previous protein design algorithms with backbone flexibility, CATS

routinely finds backbone motions on the order of an angstrom (in RMSD with respect to the

wildtype backbone) while still performing a comprehensive search of its backbone

conformation space. In Ref. 20, we have shown that backbone flexibility as modeled by

CATS is sometimes critical for avoiding nonphysical steric clashes (Fig. 7B,C) and often

Hallen et al. Page 8

J Comput Chem. Author manuscript; available in PMC 2019 February 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

affects energetics significantly. For example, mutating residue 54 of the antibody VRC07 to

tryptophan improves its binding to its antigen (HIV surface protein gp120)7, but a design to

recapitulate this mutation found it to be blocked by a steric clash unless CATS was used to

find a backbone motion that escapes the clash20. In this design, CATS significantly

outperformed a provable search over backrub53 motions, which are also available in

OSPREY19,54.

CATS is intended to be run as part of the flexibility model for OSPREY’s other algorithms,

yielding efficient calculations with continuous flexibility in both the sidechains and the

backbone. OSPREY’s convenient interface allows a user to add CATS flexibility to a design

merely by specifying the start and end points of the backbone segment to be made flexible.

BBK*: Efficiently computing the tightest binding sequences from a combinatorially large
number of binding partners

In previous versions of OSPREY, the K* algorithm24 modeled an ensemble of Boltzmann-

weighted conformations to approximate the thermodynamic partition function. It combined

minimized dead-end elimination pruning14 with A*14,55 gap-free conformation enumeration

to compute provable ε-approximations to the partition functions for the protein and ligand

states of interest. K* combined these partition function scores to approximate the association

constant, Ka, as the ratio of ε-approximate partition functions between the bound and

unbound states of a protein-ligand complex. Notably, each partition function ratio, called a

K* score, is provably accurate with respect to the biophysical input model2,16,24.

Although K* efficiently and provably approximated Ka for a given sequence, it had to

compute a K* score for each sequence of interest. All provable ensemble-based algorithms

prior to BBK*, as well as many heuristic algorithms that optimize binding affinity, are

single-sequence algorithms which must compute the binding affinity for each possible

sequence. The number of sequences, of course, is exponential in the number of

simultaneously mutable residue positions. Therefore, designs with many mutable residues

rapidly became intractable. OSPREY 3.0 provides a new algorithm, BBK*, which overcomes

this challenge. BBK*36 builds on K*, and is the first provable, ensemble-based protein

design algorithm to run in time sublinear in the number of sequences. The key innovation in

BBK* that enables this improvement is the multi-sequence (MS) bound. Rather than

compute binding affinity separately for each possible sequence, as single-sequence methods

do, BBK* efficiently computes a single provable K* score upper bound for a combinatorial

number of sequences. BBK* uses MS bounds to prune a combinatorial number of sequences

during the search, entirely avoiding single-sequence computation for all pruned sequences.

Importantly, BBK* also contains many other powerful algorithmic improvements and

implementation optimizations: the parallel architecture of BBK*, which enables concurrent

energy minimization, and a novel two-pass partition function bound, which minimizes far

fewer conformations while still computing a provable ε-approximation to the partition

function. Combined with the combinatorial pruning power of the MS bound, BBK* is able

to search over much larger sequence spaces than previously possible with single-sequence

K* (Fig. 8). In computational experiments on 204 protein design problems, BBK*

accurately predicted the tightest-binding sequences while only computing K* scores for as

Hallen et al. Page 9

J Comput Chem. Author manuscript; available in PMC 2019 February 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

few as one in 105 of the sequences in the search space36. Moreover, in computational

experiments on 51 protein-ligand design problems, BBK* was up to 1982-fold faster than

single-sequence K*, despite provably producing the same results 36.

These improvements show that BBK* not only accelerates protein designs that were

possible with previous provable algorithms, it also efficiently performs designs that are too

large for previous methods.

BWM*: Exploiting locality of protein energetics to efficiently compute the GMEC

OSPREY 3.0 comes with BWM*23, a new algorithm that exploits sparse energy functions to

provably compute the GMEC in time exponential in merely the branch-width w of a protein

design problem’s sparse residue interaction graph.

Because energy decreases as a function of distance, many protein design algorithms model

protein energetics with energy functions which omit pairwise interactions between

sufficiently distant residues. These sparse energy functions not only provide a simpler, more

efficiently computed model of energy, but also induce optimal substructure to the problem:

because not all residues interact, the optimal conformation for a given residue can be

independent of the conformations at other residues. BWM* exploits this optimal

substructure by 1) representing the sparse interactions with a sparse residue interaction

graph, and 2) computing a branch-decomposition for use in dynamic programming.

BWM*, unlike treewidth-based methods that also exploit the sparsity of pairwise residue

interactions to efficiently compute the GMEC 56, enumerates a gap-free list of

conformations in order of increasing sparse energy. Because this list is gap-free, BWM* not

only computes the GMEC of the sparse energy function, but also recovers the GMEC of the

full energy function, as shown in Ref. 23. By enumerating all conformations within the

provable sparse energy bound between the sparse and full GMEC, BWM* computes a list of

conformations that is guaranteed to contain the full GMEC, as well as the sparse GMEC57.

Moreover, because BWM* can enumerate conformations in gap-free order up to any energy

threshold specified by the user, it can be used to accurately compute partition functions, and

thus binding free energies that account correctly for entropy, using the K* algorithm2,24.

Thus, in practice, BWM* circumvents the worst-case complexity of traditional methods

such as A* for designs with sparse energy functions, computing the sparse GMEC of an n-

residue design with at most q rotamers per residue in 𝒪(nw2q
3
2w

) time, and also enumerates

each additional conformation in merely 𝒪 n log q time, which is up to three orders of

magnitude faster than traditional A* in practice23.

ACCURACY BENCHMARKS

We first tested the accuracy of OSPREY 3.0 for the subset of algorithms also available in

OSPREY 2.2β, by running both versions of OSPREY on the same test cases and checking that the

results matched. Since the accuracy of OSPREY 2.2β using these algorithms has been

Hallen et al. Page 10

J Comput Chem. Author manuscript; available in PMC 2019 February 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

experimentally confirmed (see Introduction), by transitivity, our tests confirmed OSPREY 3.0’s

accuracy. In addition, we performed new, retrospective tests, described below.

To evaluate the accuracy of the implementation of the newest optimizations in OSPREY 3.0,

we performed a series of designs for a variety of protein-protein interfaces (PPIs) as

retrospective validation. We used K*24 to computationally predict experimentally measured

changes in binding for each PPI. Each protein structure is listed by name and PDB ID in

Table 258–61. These systems include barnase with its peptide inhibitor barstar62,63, the

cytochrome c:cytochrome c peroxidase complex64, interferon α-2 (IFNα2) in complex with

interferon α/β receptor 2 (IFNAR2)65, and the interleukin 2 (IL-2):IL-2 receptor α (IL-2Rα)

complex 66.

Our retrospective validation experiments focused on mutations at residues in or proximal to

the protein-protein interface that were not limited to alanine scanning. Including some of

these tested and reported mutations62–66, for each structure we tested anywhere from 5 to 19

designs. In total, we tested 58 mutations using default, out-of-the-box OSPREY 3.0 settings

and parameters. Each design included one or two mutable residues along with a set of

surrounding flexible residues (See Table 2). Flexible residues were chosen by selecting all

residues within 4 Å of the mutable residues and removing those that only have backbone

interactions. Two example designs are shown in Figure 9, where OSPREY 3.0 and K*

accurately predict the effect of two point mutations in the interface of the IFNα2:IFNAR2

complex (highlighted in blue in Table 2).

For each system, the K* scores were ranked in increasing order of reported experimental

binding. Spearman’s ρ values were subsequently calculated for each system by calculating

the statistical dependence between the K* score rankings and the experimentally measured

rankings (See Table 2 and Figure 10). This is a sound measure because generally the output

of a design calculation that is used to decide which mutants to make experimentally is

simply the intra-system ranks of the mutants. Looking at the values in Table 2, we see a high

correlation in the rankings between experimentally measured binding and binding predicted

by OSPREY 3.0 and K* for each system with values ranging from 0.500 to 0.795. We found

that, across the tested systems, the Spearman’s ρ value is 0.762. This value is the Pearson

correlation of the intra-system ranks of all the mutants. Overall, these correlations are very

good for design for affinity in computational protein design.

DISCUSSION

OSPREY has demonstrated its accuracy and utility in practice through many prospective

designs that have performed well experimentally6–12. OSPREY 3.0 is at least as accurate as the

versions of OSPREY used to perform these designs, because it uses the same biophysical

model used in those studies, with provable guarantees of accuracy given the biophysical

model. We have compared design results using OSPREY 2.2 and OSPREY 3.0 to confirm

agreement. However, OSPREY 3.0 performs such designs much more efficiently, due to the

engineering improvements described here. Moreover, in this paper we have performed

additional comparisons to experimental data to confirm the accuracy of OSPREY 3.0. OSPREY

Hallen et al. Page 11

J Comput Chem. Author manuscript; available in PMC 2019 February 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

3.0 also includes methods to improve the biophysical model and thus improve accuracy still

further (should the user choose to select OSPREY’s newer models).

As our benchmark results here show, we have made substantial progress toward correctly

predicting the effect of mutations on protein activity. The high accuracy comes from

OSPREY’s accurate biophysical model, which accounts for both continuous protein flexibility

and conformational entropy, together with algorithms that provably return optimal sequences

given that model. In fact, no other software can provide a provable guarantee of accuracy

given a model that accounts for continuous flexibility and conformational entropy.

Moreover, OSPREY’s combinatorial algorithms4,5 compute optimal sequences efficiently even

when searching over a large sequence space.

The large speedups in OSPREY 3.0, together with the easy-to-use Python interface, thus make

it much more tractable to perform protein design with such biophysically realistic modeling

and with guaranteed accuracy given the model. In particular, OSPREY 3.0 benefits from many

sources of speedups that can be used together. Speedups from OSPREY 3.0’s optimization of

the conformational minimization, forcefield evaluation, and A* routines can exceed two

orders of magnitude even compared to OSPREY 2.221 running on the same CPU hardware.

Together with an additional speedup of over an order of magnitude from GPU’s, a design

that would take months using OSPREY 2.2 could easily take only a few hours using OSPREY 3.0.

Many designs could see even greater speedups, because in addition to these engineering

improvements, some of the algorithmic improvements in OSPREY 3.0 provide a dramatic

increase in computational efficiency.

The improvements in modeling facilitated by OSPREY 3.0’s new algorithms also make protein

design with OSPREY more realistic. However, there is still much room for improvement in the

biophysical model used by OSPREY, and indeed by all currently available protein design

software. Modeling of larger backbone motions, more realistic interactions with water, and

electronic polarization, among other phenomena, are all likely to yield substantial

improvements in accuracy. The refactored architecture of OSPREY 3.0 will make it easier to

experiment with algorithms that facilitate these modeling improvements, and to implement

these algorithms within OSPREY’s current code base. Moreover, we have released OSPREY 3.0

as open source, to aid the community both in the development and the application of

improved models and algorithms for computational protein design.

CONCLUSIONS

OSPREY has long offered unique capabilities to protein designers. In particular, it has always

offered a unique combination of provably accurate conformational search, continuous

flexibility, efficient search over large sequence spaces, and free energy calculations based on

Boltzmann-weighted thermodynamic conformational ensembles. In OSPREY 3.0 we

introduced software improvements that will make these algorithms much more practical for

the wider design community: performance that is orders of magnitude faster, and a Python

interface that makes OSPREY much easier to use. In addition, we expanded the range of

biophysical modeling assumptions that OSPREY can accommodate, both in terms of molecular

flexibility and energy functions. As with previous versions, we are releasing OSPREY 3.0 as

Hallen et al. Page 12

J Comput Chem. Author manuscript; available in PMC 2019 February 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

free and open-source software to maximize its benefit to the community. We hope this new

version will be of significant utility to designers, whether they have used OSPREY before or

are trying it for the first time.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Alvin Lebeck for helpful discussions on GPUs, Drs. Kyle Roberts and Swati
Jain for helpful discussions on protein design, and the NIH (grants R01 GM-78031 and R01 GM-118543 to
B.R.D.), NSF (Graduate Research Fellowship to A.O.), PhRMA Foundation (Informatics Predoctoral Fellowships
to A.U.L. and M.A.H.), and Liebmann Foundation (fellowship to M.A.H.) for funding.

References

1. Gainza P, Roberts KE, Georgiev I, Lilien RH, Keedy DA, Chen C-Y, Reza F, Anderson AC,
Richardson DC, Richardson JS, et al., Methods in Enzymology 523, 87 (2013). [PubMed:
23422427]

2. Georgiev I, Lilien RH, and Donald BR, Journal of Computational Chemistry 29, 1527 (2008).
[PubMed: 18293294]

3. Georgiev I, Roberts KE, Gainza P, Hallen MA, and Donald BR, OSPREY(Open Source Protein
Redesign for You) user manual, Available online: www.cs.duke.edu/donaldlab/software.php.
Updated, 2015. 94 pages. (2009).

4. Donald BR, Algorithms in Structural Molecular Biology (MIT Press, Cambridge, MA, 2011).

5. Gainza P, Nisonoff HM, and Donald BR, Current Opinion in Structural Biology 39, 16 (2016).
[PubMed: 27086078]

6. Chen C-Y, Georgiev I, Anderson AC, and Donald BR, Proceedings of the National Academy of
Sciences of the USA 106, 3764 (2009). [PubMed: 19228942]

7. Rudicell RS, Kwon YD, Ko S-Y, Pegu A, Louder MK, Georgiev IS, Wu X, Zhu J, Boyington JC,
Chen X, et al., Journal of Virology 88, 12669 (2014). [PubMed: 25142607]

8. Roberts KE, Cushing PR, Boisguerin P, Madden DR, and Donald BR, PLoS Computational Biology
8, e1002477 (2012). [PubMed: 22532795]

9. Gorczynski MJ, Grembecka J, Zhou Y, Kong Y, Roudaia L, Douvas MG, Newman M, Bielnicka I,
Baber G, Corpora T, et al., Chemistry and Biology 14, 1186 (2007). [PubMed: 17961830]

10. Frey KM, Georgiev I, Donald BR, and Anderson AC, Proceedings of the National Academy of
Sciences of the USA 107, 13707 (2010). [PubMed: 20643959]

11. Stevens BW, Lilien RH, Georgiev I, Donald BR, and Anderson AC, Biochemistry 45, 15495
(2006). [PubMed: 17176071]

12. Georgiev I, Acharya P, Schmidt S, Li Y, Wycuff D, Ofek G, Doria-Rose N, Luongo T, Yang Y,
Zhou T, et al., Retrovirology 9, P50 (2012).

13. Reeve SM, Gainza P, Frey KM, Georgiev I, Donald BR, and Anderson AC, Proceedings of the
National Academy of Sciences of the USA 112, 749 (2015). [PubMed: 25552560]

14. Desmet J, de Maeyer M, Hazes B, and Lasters I, Nature 356, 539 (1992). [PubMed: 21488406]

15. Leach AR and Lemon AP, Proteins: Structure, Function, and Bioinformatics 33, 227 (1998).

16. Gainza P, Roberts K, and Donald BR, PLoS Computational Biology 8, e1002335 (2012). [PubMed:
22279426]

17. Hallen MA, Gainza P, and Donald BR, Journal of Chemical Theory and Computation 11, 2292
(2015). [PubMed: 26089744]

18. Hallen MA, Jou JD, and Donald BR, in International Conference on Research in Computational
Molecular Biology (Springer, 2016), pp. 122–136.

19. Hallen MA, Keedy DA, and Donald BR, Proteins: Structure, Function and Bioinformatics 81, 18
(2013).

20. Hallen MA and Donald BR, Bioinformatics 33, i5 (2017). [PubMed: 28882005]

21. Hallen MA and Donald BR, Journal of Computational Biology 23, 311 (2016). [PubMed:
26761641]

Hallen et al. Page 13

J Comput Chem. Author manuscript; available in PMC 2019 February 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

22. Roberts KE, Gainza P, Hallen MA, and Donald BR, Proteins: Structure, Function, and
Bioinformatics 83, 1859 (2015).

23. Jou JD, Jain S, Georgiev I, and Donald BR, Journal of Computational Biology 23, 413 (2016).
[PubMed: 26744898]

24. Lilien RH, Stevens BW, Anderson AC, and Donald BR, Journal of Computational Biology 12, 740
(2005). [PubMed: 16108714]

25. Ojewole A, Lowegard A, Gainza P, Reeve SM, Georgiev I, Anderson AC, and Donald BR, in
Computational Protein Design (Humana Press, New York, 2017), vol. 1529 of Methods in
Molecular Biology, in press.

26. Reeve SM, Scocchera EW, Narendran G, Keshipeddy S, Krucinska J, Hajian B, Ferreira J, Nailor
M, Aeschlimann J, Wright DL, et al., Cell Chemical Biology 23, 1458 (2016). [PubMed:
27939900]

27. VRC 605:A Phase 1 Dose-Escalation Study of the Safety and Pharmacokinetics of a Human
Monoclonal Antibody, VRC07-523LS, Administered Intravenously or Subcutaneously to Healthy
Adults. ClinicalTrials.gov Identifier: NCT03015181. NIAID And National Institutes of Health
Clinical Center. 1 (2017). https://clinicaltrials.gov/ct2/show/NCT03015181.

28. Georgiev IS, Rudicell RS, Saunders KO, Shi W, Kirys T, McKee K, O’Dell S, Chuang G-Y, Yang
Z-Y, Ofek G, et al., The Journal of Immunology 192, 1100 (2014), ISSN 0022-1767, 1550-6606,
URL http://www.jimmunol.org/content/192/3/1100. [PubMed: 24391217]

29. Chuang GY, Geng H, Pancera M, Xu K, Cheng C, Acharya P, Chambers M, Druz A, Tsybovsky Y,
Wanninger TG, et al., J. Virol 91 (2017).

30. Joh NH, Wang T, Bhate MP, Acharya R, Wu Y, Grabe M, Hong M, Grigoryan G, and DeGrado
WF, Science 346, 1520 (2014). [PubMed: 25525248]

31. Parker AS, Choi Y, Griswold KE, and Bailey-Kellogg C, J Comput Biol 20, 152 (2013). [PubMed:
23384000]

32. Salvat RS, Choi Y, Bishop A, Bailey-Kellogg C, and Griswold KE, Biotechnol Bioeng (2015).

33. Zhao H, Verma D, Li W, Choi Y, Ndong C, Fiering SN, Bailey-Kellogg C, and Griswold KE,
Chem Biol 22, 629 (2015). [PubMed: 26000749]

34. Doria-Rose NA, Altae-Tran HR, Roark RS, Schmidt SD, Sutton MS, Louder MK, Chuang GY,
Bailer RT, Cortez V, Kong R, et al., PLoS Pathog. 13, e1006148 (2017). [PubMed: 28052137]

35. Janin J, Wodak S, Levitt M, and Maigret B, Journal of Molecular Biology 125, 357 (1978).
[PubMed: 731698]

36. Ojewole AA, Jou JD, Fowler VG, and Donald BR, Journal of Computational Biology (2018), Epub
ahead of print.

37. Georgiev I, Lilien RH, and Donald BR, Bioinformatics 22, e174 (2006). [PubMed: 16873469]

38. Pan Y, Dong Y, Zhou J, Hallen M, Donald BR, Zeng J, and Xu W, Journal of Computational
Biology 23, 737 (2016). [PubMed: 27154509]

39. Walker RC and Goetz AW, Electronic Structure Calculations on Graphics Processing Units: From
Quantum Chemistry to Condensed Matter Physics (John Wiley & Sons, 2016).

40. He K, Zhang X, Ren S, and Sun J, in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (2016), pp. 770–778.

41. Szerwinski R and Güneysu T, in International Workshop on Cryptographic Hardware and
Embedded Systems (Springer, 2008), pp.* 79–99.

42. Glaser J, Nguyen TD, Anderson JA, Lui P, Spiga F, Millan JA, Morse DC, and Glotzer SC,
Computer Physics Communications 192, 97 (2015).

43. Salomon-Ferrer R, Götz AW, Poole D, Le Grand S, and Walker RC, Journal of Chemical Theory
and Computation 9, 3878 (2013). [PubMed: 26592383]

44. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, and Lindahl E, SoftwareX 1, 19
(2015).

45. Zhou Y, Xu W, Donald BR, and Zeng J, Bioinformatics 30, i255 (2014). [PubMed: 24931991]

46. Nvidia C, Programming guide (2010).

47. Rosenzweig AC, Huffman DL, Hou MY, Wernimont AK, Pufahl RA, and O’Halloran TV,
Structure 7, 605 (1999). [PubMed: 10404590]

Hallen et al. Page 14

J Comput Chem. Author manuscript; available in PMC 2019 February 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://ClinicalTrials.gov
https://clinicaltrials.gov/ct2/show/NCT03015181
http://www.jimmunol.org/content/192/3/1100

48. Lovell SC, Word MJ, Richardson JS, and Richardson DC, Proteins: Structure, Function, and
Genetics 40, 389 (2000).

49. Globerson A and Jaakkola TS, in Advances in neural information processing systems (2008), pp.
553–560.

50. Bingham RJ, Rudiño-Piñera E, Meenan NA, Schwarz-Linek U, Turkenburg JP, Höök M, Garman
EF, and Potts JR, Proceedings of the National Academy of Sciences 105, 12254 (2008).

51. Nicholls A and Honig B, Journal of Computational Chemistry 12, 435 (1991).

52. Rochia W, Sridharan S, Nicholls A, Alexov E, Chiabrera A, and Honig B, Journal of
Computational Chemistry 23, 128 (2002). [PubMed: 11913378]

53. Davis IW, Arendall WB, Richardson DC, and Richardson JS, Structure 14, 265 (2006). [PubMed:
16472746]

54. Georgiev I, Keedy D, Richardson JS, Richardson DC, and Donald BR, Bioinformatics 24, i196
(2008). [PubMed: 18586714]

55. Hart PE, Nilsson NJ, and Raphael B, IEEE Transactions on Systems Science and Cybernetics 4,
100 (1968).

56. Xu J and Berger B, Journal of the ACM 53, 533 (2006).

57. Jain S, Jou JD, Georgiev IS, and Donald BR, PLoS Computational Biology 13, e1005346 (2017).
[PubMed: 28358804]

58. Ikura T, Urakubo Y, and Ito N, Chemical Physics 307, 111 (2004).

59. Pelletier H and Kraut J, Science 258, 1748 (1992). [PubMed: 1334573]

60. Thomas C, Moraga I, Levin D, Krutzik PO, Podoplelova Y, Trejo A, Lee C, Yarden G, Vleck SE,
Glenn JS, et al., Cell 146, 621 (2011). [PubMed: 21854986]

61. Wang X, Rickert M, and Garcia KC, Science 310, 1159 (2005). [PubMed: 16293754]

62. Schreiber G and Fersht AR, Biochemistry 32, 5145 (1993). [PubMed: 8494892]

63. Frisch C, Schreiber G, Johnson CM, and Fersht AR, Journal of Molecular Biology 267, 696
(1997). [PubMed: 9126847]

64. Erman JE, Kresheck GC, Vitello LB, and Miller MA, Biochemistry 36, 4054 (1997). [PubMed:
9092837]

65. Piehler J, Roisman LC, and Schreiber G, Journal of Biological Chemistry 275, 40425 (2000).
[PubMed: 10984492]

66. Robb RJ, Rusk CM, and Neeper MP, Proceedings of the National Academy of Sciences 85, 5654
(1988).

67. Word JM, Lovell SC, LaBean TH, Taylor HC, Zalis ME, Presley BK, Richardson JS, and
Richardson DC, Journal of Molecular Biology 285, 1711 (1999). [PubMed: 9917407]

68. Roberts KE and Donald BR, Protein interaction viewer (2014), URL http://www.cs.duke.edu/
donaldlab/software/proteinInteractionViewer/.

Hallen et al. Page 15

J Comput Chem. Author manuscript; available in PMC 2019 February 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.cs.duke.edu/donaldlab/software/proteinInteractionViewer/
http://www.cs.duke.edu/donaldlab/software/proteinInteractionViewer/

Figure 1: The OSPREY protein redesign suite.
(A) The input model includes a 3D structure of the protein to be redesigned, a definition of

the sequence space, the allowed protein flexibility (including the rotamer library), and a

pairwise energy function. (B) Rigid DEE 14,15, iMinDEE16, EPIC17, LUTE18, DEEPer19,

and CATS20 model different types of protein flexibility. Flexibility ranges in complexity

from discrete, rigid rotamers to continuous side chain flexibility to complete flexibility

including continuous backbone flexibility. (C) The EPIC 17 and LUTE18 algorithms also

expand energy function capability by allowing for non-pairwise, basic quantum chemistry

and Poisson-Boltzmann solvation. (D) COMETS21 allows for multi-state design by

optimizing sequences and conformations for user-specified bound and unbound states. This

is accomplished using multiple input structures. (E) These algorithms are implemented in

OSPREY and improved through the use of GPU acceleration. According to the allowed

flexibility, OSPREY runs a specific pruning algorithm followed by a highly optimized

descendant of the A* search algorithm22. The A* output generates a ranking based on either

the lowest-energy structure of each sequence, or an ensemble of structures computed by the

K* algorithm. (F) The BWM*23 algorithm exploits sparse residue interaction graphs and

branch decomposition to outperform traditional A*. (G) The K*2,24 algorithm calculates a

K* score (an approximation of the binding constant, Ka) by provably estimating the partition

function for the protein, the ligand, and the protein-ligand complex. The K* algorithm

exploits a thermodynamic ensemble of structures as opposed to a single structure, as

illustrated in the panel (PDB ID: 3FQC). K* can also be used to find sequences that have a

high affinity for one ligand (positive design) while having a low affinity for another

(negative design) by taking a ratio of K* scores10,13.

Hallen et al. Page 16

J Comput Chem. Author manuscript; available in PMC 2019 February 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2: Runtimes of OSPREY 2.2 vs. OSPREY 3.0 for 45 protein design test cases (details shown in
Table 1), shown on a log scale.
Designs that only finished with OSPREY 3.0 (given a 17-day time limit) are shown on the right

in red. All test cases involve continuous flexibility2,16 and minimization-aware DEE16,17; 18

involve provably accurate partition function calculations (see Table 1 and Ref. 17 for

details).

Hallen et al. Page 17

J Comput Chem. Author manuscript; available in PMC 2019 February 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3: Benchmarks for protein conformation minimization in OSPREY 3.0 for various
hardware platforms and for conformations of varying size.
From smallest to largest: (top) a single residue pair is the smallest multi-body minimization

possible, (middle) a full protein conformation with a single flexible residue represents a

small design, (bottom) a full protein conformation with 20 flexible residues represents a

large design. For CPU hardware, concurrent minimizations correspond to CPU threads. For

GPU hardware, concurrent minimizations correspond to streams defined by the CUDA

framework. Faster minimization speeds correspond with faster OSPREY runtimes. All

minimizations were performed on the Atx1 metallochaperone protein (PDB ID: 1CC8)47.

Flexible residues were modeled with continuous sidechain flexibility, and all other residues

remained completely fixed.

Hallen et al. Page 18

J Comput Chem. Author manuscript; available in PMC 2019 February 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 4: A Python script that performs a very simple design in OSPREY 3.0.
The design searches over sequences in which residues A2 and/or A3 of the Atx1

metallochaperone protein (PDB ID: 1CC8)47 are mutated; residues A2-A4 (i.e., residue 2-4

of chain A) are all modeled with sidechain flexibility, consisting of a discrete search over the

Penultimate rotamer library48’s rotamers for the specified amino acid types. The mutability,

flexibility, and starting crystal structure are all specified in the “define a strand” section of

the code. Advanced users can also modify the other sections to specify changes from the

default search algorithms, energy function, and other modeling assumptions. This script uses

the Max Product Linear Programming (MPLP) algorithm49 to reduce the size of the A*

Hallen et al. Page 19

J Comput Chem. Author manuscript; available in PMC 2019 February 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

search tree15 employed for sequence and conformational search without compromising

accuracy; see Ref.22 for details.

Hallen et al. Page 20

J Comput Chem. Author manuscript; available in PMC 2019 February 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 5: A Python script that performs a simple BBK* design in OSPREY 3.0.
This design produces a peptide to bind human fibronectin (the “ligand strand,” i.e. chain A)

by optimizing a fragment of the protein FnBPA from Staphylococcus aureus (the “protein

strand,” chain G), which has been crystallized in complex with fibronectin domains (PDB

ID: 2RL050). As in Fig. 4, the script defines the starting crystal structure, mutable residues,

and level of mutability and flexibility (here including continuous flexibility) in the form of

Python strand objects. Fig. 6 represents this design graphically. This design is accelerated by

parallelism, running on 4 CPU cores. This example thus shows it is easy to invoke and use

parallelism within the OSPREY 3.0 software.

Hallen et al. Page 21

J Comput Chem. Author manuscript; available in PMC 2019 February 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 6: Setup for the Python-scripted BBK*36 design described in Fig. 5.
This design starts with the crystal structure (PDB ID: 2RL050) of a complex between

fragments of the protein FnBPA from Staphylococcus aureus (blue ribbons) and human

fibronectin (green ribbons), and optimizes binding with respect to the amino acid type of

FnBPA residue 649 (magenta), while modeling continuous flexibility in several surrounding

sidechains (orange). The full complex is shown on the left, while the region surrounding the

mutation is shown in detail on the right. See Ref. 36 for background on the

FnBPA:fibronectin system.

Hallen et al. Page 22

J Comput Chem. Author manuscript; available in PMC 2019 February 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 7:
Left: CATS allows systematic search over a voxel of backbone conformations in the vicinity

of the wild-type backbone conformation (black). The voxel is specified as box constraints on

a novel set of backbone coordinates; conformations with one such coordinate moved to the

edge of the voxel are shown in red and green, and a conformation with all such coordinates

moved to the edge of the voxel is shown in purple. See Fig. 1 of Ref. 20 for more details.

Middle: Rigid-backbone structural modeling of an experimentally effective mutant of anti-

HIV gp120 antibody VRC07 showed unavoidable steric clashes between Trp 54 of VRC07

and Trp 427 and Gly 473 of gp120 (purple). Right: CATS explained the experimentally

observed activity by finding a new backbone conformation that resolved these clashes

(green; overlaid with clashing rigid-body backbone (purple) and backbone conformation

computed with the older DEEPer algorithm (blue)). DEEPer reduced the clashes somewhat

using backrub motions53, but they were still significant even after the backrubs. See Fig. 3 of

Ref. 20 for more details. Portions of this figure were reprinted with permission from Ref. 20.

Hallen et al. Page 23

J Comput Chem. Author manuscript; available in PMC 2019 February 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 8: Measuring the contributions of the BBK*36 algorithmic improvements to the
empirically observed running times of OSPREY.
BBK* calculations were run to predict either the single top sequence or to enumerate the top

5, and were compared to exhaustive computation of K* scores for each sequence (i.e.,

iMinDEE/A*/K*2,16 or single-sequence K*), which was the prior state of the art for

Boltzmann-weighted ensemble-based binding affinity computation before BBK*. (A)

Running times for BBK* and single-sequence K* vs. the number of sequences in the search

space for 204 protein design test cases, a benchmark set described in Ref. 36. Single-

sequence K* completed only 107 of the test cases within a 30-day time limit (left of the

vertical line), and took up to 800 times longer than BBK* to do so, while BBK* completed

all the designs within the time limit. (B) The number N of sequences whose energies must

be examined or bounded by iMinDEE/A*/K* (green line; exponential in the number of

mutable residue positions) and by BBK* (dots). For each data point representing a BBK*

test case, the vertical gap between that data point and the green line (gap on the y axis)

represents the number of sequences that are pruned without ever having to be examined.

Figure adapted with permission from Ref. 36.

Hallen et al. Page 24

J Comput Chem. Author manuscript; available in PMC 2019 February 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 9:
(A) The structure of the IFNα2:IFNAR2 complex (PDB ID: 3S9D60) with separate chains

shown in cyan and magenta and with two example interface design regions shown in boxes.

Each box contains a mutable residue shown as sticks and its surrounding flexible residues

shown as lines. (B) and (F) zoom in on each design. (B-E) Design at position R33 for a

mutation that OSPREY correctly predicts as decreasing binding: R33Q. (B) The wildtype

sequence with probe dots67,68 displaying favorable interactions with surrounding flexible

residues (shown as lines). (D) The mutant sequence (33Q) with probe dots displaying some

favorable as well as unfavorable interactions. Comparing (B) and (D), it is clear there is a

loss in favorable interactions and a gain in unfavorable interactions upon mutation from R to

Q, resulting in an experimentally observed decrease in binding that the K* algorithm

captures accurately (See Table 2). (C) and (E) show the top 10 conformations in the

conformational ensemble used in the K* calculation for each sequence. (F-I) Design at

position N156 for a mutation that OSPREY correctly predicts as increasing binding: N156A.

(F) The wildtype sequence with probe dots 67,68 displaying some favorable interactions with

surrounding flexible residues (shown as lines). (H) The mutant sequence (156A) with probe

dots displaying some favorable interactions with surrounding flexible residues (shown as

lines). There are some gained interactions (shown by an increase in the number of favorable

probe dots) in (H) compared to (F), but these are not visually obvious, thus emphasizing the

importance of K*, which successfully picks up these nuanced changes and correctly predicts

improved binding (See Table 2). (G) and (I) show the top 10 conformations in the

conformational ensemble used in the K* calculation for each sequence. Not shown are the

ensembles for the unbound states that are also used to calculate the K* scores.

Hallen et al. Page 25

J Comput Chem. Author manuscript; available in PMC 2019 February 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 10:
Testing the accuracy of the K* algorithm in OSPREY 3.0 by comparing K* rankings to

experimentally reported rankings (See Table 2). Each system is represented by its

corresponding PDB ID and a linear trendline is shown for each in its corresponding color

according to the legend.

Hallen et al. Page 26

J Comput Chem. Author manuscript; available in PMC 2019 February 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hallen et al. Page 27

Table 1:

Details of 45 protein design test cases with continuous flexibility run on both OSPREY 2.2 and OSPREY 3.0. Test

cases primarily adapted from Ref. 17. a Y indicates a partition function calculation (a subroutine of the K*

algorithm2,24), which analyzes a thermodynamic ensemble of conformations; N indicates calculation of the

single global minimum-energy conformation (GMEC). DNF: Did not finish.

Protein name PDB
code

PF?a Mutable
residue
count

OSPREY
3.0 time
(min)

OSPREY
2.2 time
(min)

Speedup

Scorpion toxin 1AHO N 7 0.37 2.75 7.38

Scorpion toxin 1AHO N 9 0.64 6.60 10.35

Scorpion toxin 1AHO N 12 194.71 1608.16 8.26

Scorpion toxin 1AHO N 14 287.87 2075.04 7.21

Cytochrome c553 1C75 N 6 0.28 4.30 15.19

Atx1 metallochaperone 1CC8 N 7 2.56 85.41 33.41

Atx1 metallochaperone 1CC8 Y 7 67.12 DNF
>364.72

†

Bucandin 1F94 N 7 0.40 4.82 12.07

Nonspecific lipid-transfer protein 1FK5 N 6 0.03 0.78 27.34

Transcription factor IIF 1I27 N 7 1.58 385.56 244.4

Ferredoxin 1IQZ N 9 0.16 2.45 14.92

Trp repressor 1JHG N 7 2.88 22.50 7.8

Fructose-6-phosphate aldolase 1L6W N 6 0.23 75.97 336.22

Cephalosporin C deacetylase 1L7A N 8 4.09 928.27 226.93

PA-I lectin 1L7L N 6 0.12 6.26 52.85

Phosphoserine phosphatase 1L7M N 7 1.13 249.33 220.11

alpha-D-glucuronidase 1L8N N 5 0.13 480.13 3701.36

Dachshund 1L8R N 8 0.19 1.41 7.62

Granulysin 1L9L N 7 0.06 1.24 20.8

gamma-glutamyl hydrolase 1L9X N 5 0.03 92.13 3507.46

Ferritin 1LB3 N 5 0.42 23.42 55.2

Cytochrome c 1M1Q N 8 1.68 357.59 213.09

Hypothetical protein YciI 1MWQ N 8 0.13 3.69 28.13

ygfY 1X6I Y 14 604.71 DNF
>40.48

†

ADAR1 ZB domain 1XMK Y 15 2172.23 DNF
>11.27

†

Histidine triad protein 2CS7 Y 14 2816.56 DNF
>8.69

†

Transcriptional regulator
AhrC

2P5K Y 11 1.18 DNF
>20811.61

†

Scytovirin 2QSK N 10 10.47 164.49 15.71

Scytovirin 2QSK Y 10 2.54 9267.19 3651.9

Hemolysin 2R2Z Y 12 42.02 DNF
>582.58

†

Putative monooxygenase 2RIL N 8 18.16 15.89 0.87

J Comput Chem. Author manuscript; available in PMC 2019 February 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hallen et al. Page 28

Protein name PDB
code

PF?a Mutable
residue
count

OSPREY
3.0 time
(min)

OSPREY
2.2 time
(min)

Speedup

Putative monooxygenase 2RIL Y 8 0.23 104.77 463.18

alpha-crystallin 2WJ5 Y 15 226.32 DNF
>108.17

†

Cytochrome c555 2ZXY Y 14 381.39 DNF
>64.19

†

High-potential iron-sulfur
protein

3A38 Y 13 65.15 DNF
>375.72

†

ClpS protease adaptor 3DNJ Y 12 65.04 DNF
>376.4

†

Putative monooxygenase 3FGV Y 10 1.94 DNF
>12591.94

†

Protein G 3FIL Y 14 303.81 DNF
>80.58

†

Viral capsid 3G21 Y 15 188.53 DNF
>129.85

†

dpy-30-like protein 3G36 N 4 1.55 9.97 6.43

dpy-30-like protein 3G36 Y 4 0.05 2.44 47.07

Hfq protein 3HFO Y 10 6.81 DNF
>3594.09

†

Cold shock protein 3I2Z Y 14 20.84 DNF
>1174.8

†

HPI integrase 3JTZ Y 14 859.69 DNF
>28.48

†

PSD-95 PDZ3 domain 1TP5 N 6 0.12 49.50 424.29

†
OSPREY 2.2 did not finish within the time limit, so we report a lower bound on the speedup: the ratio of the time limit (17 days) to the OSPREY

3.0 runtime.

J Comput Chem. Author manuscript; available in PMC 2019 February 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hallen et al. Page 29

Table 2:
Comparison of OSPREY predictions to experimental results for mutations in four protein
systems.

Allowed mutations for each system are listed along with their corresponding rankings from experimental

measurements62–66 vs. computational predictions by K* from OSPREY 3.0. The mutations highlighted in blue

are shown in detail in Figure 9. A Spearman’s ρ value is calculated for each system and shown here. The

“Across All” value is calculated by ranking each system individually and then calculating the Spearman’s ρ
across all of the designs.

Mutation(s) Experimental
Ranking

Computational
Ranking

Barnase:Barstar, PDB ID: 1X1U

D39A 1 1

H102A 2 3

R87A 3 5

K27A 4 8

R59A 5 2

D35A 6 4

Y29A 7 7

E73A 8 12

E76A 9 6

W35F 10 11

E60A 11 10

Y29F 12 9

ρ = 0.755

IL-2:IL-2Rα, PDB ID: 2B5I

K38E, S39D 1.5 1

R35T, R36S 1.5 2

R35K, R36K 3 4

E1K, D4K 4 7

E29R 5 5

L2A 6 16

D4K 7.5 9

S39A, S41A 7.5 12

E1K 9 11

H120A 10 10

E29A 11 6

L42S, Y43L 12 3

E1Q 13 14

N27A 14 15

K38T 15 8

D4N 16 13

ρ = 0.554

Cytc:Cytc
peroxidase,PDB

ID: 2PCB

E290N 1 2

D34N 2 4

A193F 3 1

J Comput Chem. Author manuscript; available in PMC 2019 February 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hallen et al. Page 30

Mutation(s) Experimental
Ranking

Computational
Ranking

E35Q 4 3

E32Q 5 5

ρ = 0.500

IFNα2:ifnar2, PDB ID: 3S9D

R33Q 1 1

R33A 2 2

R33K 3 5

L30A 4 6

R149A 5 4

L30V 6 9

A148A 7 10

A145G 8 14

A145M 9 3

L15A 10 13

L153A 11 12

L26A 12 7

S152A 13 16

F27A 14 8

S25A 15 18

D35A 16 17

R22A 17 11

M16A 18 15

N156A 19 19

ρ = 0.795

Across All ρ = 0.762

J Comput Chem. Author manuscript; available in PMC 2019 February 26.

	Abstract
	Graphical Abstract
	INTRODUCTION
	Past successes of osprey

	PERFORMANCE ENHANCEMENTS IN osprey 3.0
	Engineering improvements yield large single-threaded speedups
	GPU acceleration reduces design runtimes

	PYTHON SCRIPTING IMPROVES EASE-OF-USE
	NEW PROTEIN DESIGN ALGORITHMS IN osprey 3.0
	LUTE: Putting advanced modeling into a form suitable for efficient, discrete
design calculations
	CATS: Local backbone flexibility in all biophysically feasible
dimensions
	BBK*: Efficiently computing the tightest binding sequences from a
combinatorially large number of binding partners
	BWM*: Exploiting locality of protein energetics to efficiently compute the
GMEC

	ACCURACY BENCHMARKS
	DISCUSSION
	CONCLUSIONS
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Figure 5:
	Figure 6:
	Figure 7:
	Figure 8:
	Figure 9:
	Figure 10:
	Table 1:
	Table 2:

