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Abstract

We present a new assessment of the Fermi-Löwdin Orbital Self-Interaction Correc-
tion (FLO-SIC) approach with an emphasis on its performance for predicting energies
as a function of fractional occupation numbers (FONs) for various multi-electron sys-
tems. Our approach in implemented in the massively-parallelized NWChem quantum
chemistry software package and has been benchmarked on the prediction of total ener-
gies, atomization energies, and ionization potentials of small molecules and relatively
large aromatic systems. Within our study, we also derive an alternate expression for
the FLO-SIC energy gradient expressed in terms of gradients of the Fermi-orbital eigen-
values and revisit how the FLO-SIC methodology can be seen as a constrained unitary
transformation of the canonical Kohn-Sham orbitals. Finally, we conclude with cal-
culations of energies as a function of FONs using various SIC-scaling methods to test
the limits of the FLO-SIC formalism on a variety of multi-electron systems. We find
that these relatively simple scaling methods improve the prediction of total energies of
atomic systems as well as enhance the accuracy of energies as a function of FONs for
other multi-electron chemical species.
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INTRODUCTION

The prediction of molecular properties using density functional theory (DFT)1–3 contin-

ues to garner significant interest for studying large chemical/material systems (i.e., up to

hundreds of atoms) due to its reasonable balance between computational efficiency and ac-

curacy. DFT, in principle, is an exact theory for obtaining the ground state energy of

a chemical/material system in terms of functionals of the electron density in an auxiliary

system of non-interacting electrons (as opposed to other more computationally-expensive ap-

proaches that directly solve for the many-body wavefunction). However, the main practical

limitation of DFT is its reliance on approximate exchange-correlation functionals that inher-

ently introduce unphysical self-interactions between electrons (a notorious example of this

is the dissociation of a H+
2 molecule, where many common exchange-correlation functionals

give unphysical results). These errors inherently arise from an incomplete cancellation of

electronic interactions between the Coulomb and exchange-correlation term in approximate

functionals. More concretely, for the case of one-electron densities, ρ(1), the expression for

the energy, Exc, of the exact (yet still unknown) exchange-correlation (xc) functional is given

by

Eexact
xc [ρ(1)] + J [ρ(1)] = 0. (1)

In other words, the self-Hartree repulsion energy exactly cancels out the self-exchange energy

in an exact xc functional. However, for approximate xc functionals, this cancellation is not

perfect,4–6 and the error due to this spurious non-cancellation of energies is known as the

self-interaction error (SIE):

Eapprox
xc [ρ(1)] + J [ρ(1)] = ESIE[ρ(1)], (2)

where ESIE[ρ(1)] is the one-electron SIE. While Eq. 2 was written in terms of one-electron

densities, SIE is present (and actually more deleterious) in many-electron systems and needs

to be formally removed from all approximate exchange-correlation functionals. However, it

is not straightforward to rectify these errors analytically for a given xc functional, and SIE

corrections to the total energy must be carried out numerically in a systematic way. To

further assess the effects of SIE in many-electron systems, an in-depth study of energies as a
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function of fractional occupation numbers (and its deviation from linearity) can also provide

additional insight into SIE, which is one of the primary thrusts of this current work.

In 1981, Perdew and Zunger proposed an orbital-dependent numerical scheme for the

explicit orbital-by-orbital removal of SIE from the total energy.4 Within this procedure,

spatially-localized orbitals7,8 are constructed for the minimization of the PZ self-interaction

correction (SIC) to the total energy. In the present study, we compute the orbitals using

the concept of the Fermi hole9 to build spatially localized Fermi orbitals in one step. These

orbitals are characterized by Fermi-orbital descriptors10 (FODs) that can be interpreted

as quasi-classical positions of electrons. These localized orbitals are then symmetrically

orthonormalized using a Löwdin orthogonalization approach. A numerical optimization pro-

cedure (e.g., conjugate gradient,11 pre-conditioned conjugate gradient,12–14 or BFGS15–18) is

then used to minimize the PZ-SIC energy as a function of Fermi-Löwdin orbital densities after

an SCF DFT energy is obtained. Throughout the optimization process, the Fermi-orbital de-

scriptors are updated, which redefines the Fermi-Löwdin orbitals associated to each electron

in the system. Originally proposed by Pederson and co-workers,10,19,20 the main advantage

of this Fermi-Löwdin Orbital Self-Interaction Correction (FLO-SIC) approach is its use of a

constrained unitary invariant transformation that also maintains size-extensivity.20,21

In the present paper we provide an analysis of our FLO-SIC implementation with the

following new features and additions: (1) we re-visit the FLO-SIC methodology in the context

of a constrained unitary transformation and present an alternate expression for the FLO-

SIC energy gradient expressed in terms of gradients of the Fermi-orbital eigenvalues, (2) we

examine the performance of our FLO-SIC methodology for the calculations of energies as a

function of fractional occupation numbers (FONs) on representative chemical systems such

as H2, the carbon atom, and the diamine molecular cation, and (3) we test the accuracy

of our FLO-SIC methodology in conjunction with various SIC-scaling methods. The latter

two features are the most important results of our work since numerical tests of energies

as a function of FONs (and their deviation from linearity) provides a stringent assessment

of SIE, which has not previously been extensively studied with the FLO-SIC approach in

many-electron systems. Finally, all of our FLO-SIC implementations are incorporated in the

open-source, massively-parallelized NWChem quantum chemistry software package,22 which
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will be publicly available in the next release update.

THEORETICAL METHODS

Before proceeding to our detailed comparison of SIC approaches, we give a brief overview of

the FLO-SIC formalism. Figure (1) depicts a simplified algorithmic flowchart of our FLO-

SIC methodology implemented in the NWChem software package. The entire numerical

approach consists of the following steps:

1

KS MOs

Fermi orbital descriptors

Fermi Orbitals (non-orth.)

Löwdin Orbitals (orth.)

Compute
and Minimize SIC Energy

Figure 1: Algorithmic flowchart for the Fermi-Löwdin Orbital SIC (FLO-SIC) methodology

implemented in the NWChem software package.

• Step 1: A converged set of Kohn-Sham molecular orbitals (KS MOs), {ψασ;α =

1, 2, · · · , Nσ}, are used as inputs, where Nσ is the number of electrons for each polar-
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ization, σ.

• Step 2: Next, we determine a set of initial Fermi orbital descriptors (FODs), {a1σ, a2σ, · · · , aNσσ},

using a Foster-Boys23 localization algorithm. Note: the Foster-Boys localization is only

performed at the first iteration to generate an initial guess, and subsequent iterations

are carried out with a numerical optimization algorithm.

• Step 3: A single-step localization of orbitals is achieved by constructing Fermi orbitals,

{F1σ, F2σ, · · · , FNσσ}, which are parametrized by FODs.

• Step 4: We construct localized orthonormal Löwdin orbitals, {φ1σ, φ2σ, · · · , φNσσ},

using the Löwdin symmetric orthogonalization method.24

• Step 5: The PZ-SIC energy, EPZ-SIC
σ [{ρkσ}], and the corresponding gradient of the PZ-

SIC energy, ∇amσE
PZ-SIC
σ [{ρkσ}], are computed using orbital densities, ρkσ = φ∗kσφkσ,

which depend on the previously computed Löwdin orbitals, φkσ.

• Step 6: A PZ-SIC energy minimization is carried out for each polarization using the

L-BFGS-b25–28 algorithm. Steps 2, 3, 4, and 5 are repeated to achieve convergence of

the PZ-SIC energy subject to a pre-defined convergence threshold.

In the following subsections, we provide a brief derivation of the quantities required in the

FLO-SIC approach.

Constructing Fermi-Löwdin Orbitals

As mentioned in the previous section, the Fermi orbitals, Fiσ, are constructed from a given

set of Kohn-Sham orbitals, {ψασ;α = 1, 2, · · · , Nσ}, and FODs, {aiσ; i = 1, 2, · · · , Nσ}.

Mathematically, the Fermi orbital, Fiσ, can be written as

Fiσ(r; aiσ) =
ρσ(aiσ, r)√
ρσ(aiσ)

=

∑Nσ
α=1 nασψ

∗
ασ(aiσ)ψασ(r)√
ρσ(aiσ)

=
∑
α

F σ
iαψα(r), (3)
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where the Fermi orbital coefficient, F σ
iα, and the gradient of the Fermi orbital coefficient,

∇aiσF
σ
iα, are given by

F σ
iα =

nασψ
∗
ασ(aiσ)

ρσ(aiσ)1/2
, (4)

∇aiσF
σ
iα = F σ

iα

[
∇aiσψ

∗
ασ(aiσ)

ψ∗ασ(aiσ)
− ∇aiσρσ(aiσ)

2ρσ(aiσ)

]
. (5)

Eq. 3 is an extension of a formal definition given by Pederson et al.10,19 to account for

fractional occupation numbers, nασ, which are used in our study of many-electron molecular

systems.

Assuming that the Kohn-Sham MOs, ψασ, are orthonormal, the Fermi orbital overlap,

Sσij, and gradient of the Fermi orbital overlap, ∇ajσS
σ
ij, are given by

Sσij = 〈Fiσ |Fjσ〉 =
∑
α

F σ∗
αi F

σ
jα (6)

∇ajσS
σ
ij =

〈
Fiσ
∣∣∇ajσFjσ

〉
=
∑
α

F σ∗
αi ∇ajσF

σ
jα. (7)

Upon diagonalization of the Fermi orbital overlap matrix, we obtain the eigenvalues Qσ
α and

the corresponding eigenvectors T σαj: ∑
j

SσijT
σ
αj = Qσ

αT
σ
αi. (8)

Using Eq. 8 and the intermediate Löwdin orbitals, |T σα 〉,

|T σα 〉 =
∑
j

T σαj
∣∣F σ

j

〉
, (9)

the Löwdin orbitals (LOs) are constructed from a Löwdin symmetric orthonormalization,29

which gives10,19

|φkσ〉 =
∑
n

φσkn |F σ
n 〉 ,where φσkn =

∑
α

T σαkT
σ
αn√

Qσ
α

. (10)

Perdew-Zunger self-interaction correction, EPZ-SIC

For a given exchange-correlation functional, the PZ-SIC expression for the energy is given

by

EPZ-SIC
σ = −

∑
k

{
Eapprox
xc [ρkσ, 0] +

1

2

∫ ∫
drdr′

ρkσ(r)ρkσ(r′)

|r− r′|

}
, (11)
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where Eapprox
xc [ρkσ, 0] is the energy obtained from an LDA or GGA xc functional, and the

orbital densities, ρkσ, are given by

ρkσ(r) = φ∗kσ(r)φkσ(r). (12)

It is worth mentioning that since the FLO-SIC methodology uses a (constrained) unitary-

invariant transformation of the Kohn-Sham MOs, the following expression holds:

ρσ(r) =
∑
k

φ∗kσ(r)φkσ(r) =
∑
k

ψ∗kσ(r)ψkσ(r), (13)

where ψkσ(r) denotes a canonical Kohn-Sham MO, and φkσ(r) denotes a localized Löwdin

MO. Most importantly, the expression in Eq. 13 implies that the ground state energy,

including any other quantity dependent on the electron density, ρσ(r), will be invariant

under unitary transformations.

Gradient of EPZ-SIC
σ

We present a new analytical expression for the FLO-SIC energy gradient expressed entirely

in terms of gradients of the Fermi-orbital eigenvalues. In 2015, Pederson and co-workers

presented expressions for the gradient of EPZ-SIC
σ with respect to the FODs:

∇amσE
PZ-SIC
σ =

Nσ∑
k=1

Nσ∑
l=1,(l 6=k)

λkσkl (~∆1σ
lk,m + ~∆3σ

lk,m), (14)

where ~∆1σ
lk,m and ~∆3σ

lk,m are vector quantities defined as

~∆1σ
lk,m =

∑
αβn

(
∇amσS

σ
nm

)
T σαmT

σ
βn

T σαkT
σ
βl − T σαlT σβk√
Qσ
αQ

σ
β

, (15)

~∆3σ
lk,m = −1

2

∑
αβn

∇amσS
σ
nm(T σβnT

σ
αm + T σβmT

σ
αn)(T σαkT

σ
βl − T σαlT σβk)

√
Qσ
β −

√
Qσ
α√

Qσ
αQ

σ
β(
√
Qσ
α +

√
Qσ
β)
.(16)

We have derived a new expression for Eq. 14 that involves gradients of Fermi orbital

eigenvalues, summarized in Eqs. 17 - 22 below:

∇amσE
PZ-SIC
σ =

∑
k>l

(λkσkl − λlσlk)(~∆1σ
lk,m + ~∆3σ

lk,m), (17)
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with ~∆1σ
lk,m, ~∆3σ

lk,m, and λkσlk given by

~∆1σ
lk,m =

1

2
φσkm

∑
β

∇amσQ
σ
β√

Qσ
β

T σβl
T σβm
− 1

2
φσlm

∑
β

∇amσQ
σ
β√

Qσ
β

T σβk
T σβm

(18)

~∆3σ
lk,m = −

∑
β>α

(T σαkT
σ
βl − T σαlT σβk)

√
Qσ
β −

√
Qσ
α√

Qσ
αQ

σ
β(
√
Qσ
α +

√
Qσ
β)

[
T σαm
∇amσQ

σ
β

2T σβm
+ T σβm

∇amσQ
σ
α

2T σαm

]
,(19)

λkσlk =
〈
φlσ
∣∣V SIC

kσ

∣∣φkσ〉 , (20)

where φσkm was previously defined in Eq. 10, and the SIC potential, V SIC
kσ , is given by

V SIC
kσ =

δEPZ-SIC

δρkσ
= −δE

approx
xc [ρkσ, 0]

δρkσ
−
∫
dr
ρkσ(r′)

|r− r′|
, (21)

and ∇amσQ
σ
α is

∇amσQ
σ
α = 2T σαm

∑
j

(
∇amσS

σ
jm

)
T σαj. (22)

The most salient feature of this mathematical formulation is that EPZ-SIC
σ in Eq. 17 can be ex-

pressed in terms of gradients of Fermi orbital eigenvalues, ∇amσQ
σ
α. In other words, one can,

in principle, minimize the PZ-SIC energy via a minimization of the set of all Fermi orbital

eigenvalues30 {Qσ
α;α = 1, 2, · · · , Nσ}. This result is particularly interesting since the gradi-

ents of the Fermi-orbital eigenvalues do not depend on the computationally-expensive eval-

uation of two-electron integrals and, therefore, could possibly be used to accelerate further

FLO-SIC calculations (which we save for future work). Nevertheless, it is worth mentioning

that while this approach avoids the computation of two-electron integrals, the minimiza-

tion of the set of all Fermi orbital eigenvalues is a multi-objective optimization problem31–33

(compared to the original single-objective optimization problem of Eq. 17), which can pose

additional numerical challenges.

Previous studies have used a variety of approaches for minimizing the SIC energy, which

include gradients of the SIC energy with respect to (1) elements of a unitary transforma-

tion,6,34 (2) Kohn-Sham orbital coefficients,35 and (3) Fermi-orbital descriptor positions.19

It is worth mentioning that the number of minimization parameters (N2) in the first two

approaches is greater than the number of parameters (3N) used in the FLO-SIC energy min-

imization, making them more computationally expensive. The connection between FLO-SIC

and the other approaches is not trivial to establish. For a constrained unitary transformation
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defined as UσCσ = (LσFσ)Cσ, where Lσ and Fσ are the Löwdin and Fermi orbital coefficient

matrices, Eq. 17 can be written as follows:

∂EPZ-SIC
σ

∂akσ
=

∑
ij

∂EPZ-SIC
σ

∂uσij

∂uσij
∂akσ

= 0, (23)

with
∂uσij
∂akσ

given by

∂uσij
∂akσ

=
∑
n

∂φσin
∂akσ

F σ
nj + φσik

∂F σ
kj

∂akσ
, (24)

Eq. 23 shows the relationship between the FLO-SIC energy gradients, ∂EPZ-SIC
σ

∂akσ
, and the SIC

energy gradient, which is dependent on the N2 elments of the unitary transformation matrix.

from previous studies. A particular solution of Eq. 23 is

∂EPZ-SIC
σ [uσij({ak})]

∂uσij
= 0, (25)

which results in N2 nonlinear equations for 3N unknowns, {ak}. Nevertheless, Eq. 23 is a

nonlinear system of 3N equations for 3N unknowns that may be satisfied by more than one

single configuration of FODs, {ak}. In other words, this implies that several configurations of

FODs, {ak}, can give the same SIC energy, which we and others have also found in previous

work.36

Scaling factors for EPZ-SIC
σ

Following Vydrov and co-workers,35,37 we also tested the usage of scaling factors to remedy

over-corrections introduced by the PZ-SIC energy expression for many-electron systems:

EPZ-SIC
σ = −

∑
i

Xk
iσ

{
Eapprox
xc [ρiσ, 0] +

1

2

∫ ∫
drdr′

ρiσ(r)ρiσ(r′)

|r− r′|

}
. (26)

The scaling factor, Xk
iσ, must equal unity for one-electron systems or satisfy 0 ≤ Xk

iσ ≤ 1 for

the multi-electron case. In this work, we tested two scaling factors, denoted by Xk and Xm

that satisfy these criteria. The Xk scaling method uses an Xk
iσ with the following form

Xk
iσ =

1

niσ

∫ (
τWσ
τσ

)k
ρiσ(r)dr, (27)
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where τσ is the non-interacting kinetic energy density with polarization σ:

τσ(r) =
1

2

∑
i

niσ|∇φiσ(r)|2, (28)

and τWσ is the von Weizsäcker kinetic energy density for polarization σ:

τWσ (r) =
|∇ρσ(r)|2

8ρσ(r)
, (29)

where niσ is the occupation number and k is a non-negative real number.

The Xm scaling method utilizes a Xm
iσ of the form

Xm
iσ =

1

niσ

∫ (
ρiσ
ρσ

)m
ρiσdr, (30)

where m is a non-negative real number. Since the Xk method requires gradients of the

charge densities, it is more computationally expensive than the Xm scaling method. It

should be noted that most xc functionals do not need corrections in the uniform density

limit; furthermore, the Xk scaling method vanishes for uniform densities, whereas the Xm

scaling method is not guaranteed to vanish, making the former method more convenient. In

this work, we test the performance of these scaling factors in the computation of relative

energies of atoms ranging from He to Ar, as well as for energies as a function of FONs for

the carbon atom and the diamine cation molecule, which was recently examined by us as a

prototypical chemical system to test density functional methods.38

RESULTS AND DISCUSSION

To validate our custom implementation of FLO-SIC in the open-source, massively-parallelized

NWChem software package, we first carried out a series of benchmark calculations on total

energies, atomization energies, and ionization potentials of several small molecules. These

calculations were compared against a different implementation of FLO-SIC in the literature,

and both approaches were found to be in excellent agreement with each other. A detailed

description of these calculations and benchmarks is given in the Supporting Information.

In the following subsections, we discuss the accuracy of the various SIC-scaling methods

for the He – Ar atomic systems, which are compared against other benchmark calculations.39
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We conclude our discussion with an analysis of fractional occupation numbers for many-

electron systems such as H2, the carbon atom, and the transition-state geometry of the

diamine molecular cation to assess the performance of the FLO-SIC formalism in conjunction

with the various scaling methods.

SIC Energies for Atomic Systems

In this section, we present total energies for atomic systems from Helium to Argon using the

Perdew-Burke-Ernzerhof (PBE) xc functional40,41 and various SIC corrections to this GGA

reference state. Figure (2) plots the relative energy per electron, (E−Eref)/Z, where E is the

total energy obtained with various methods (such as PBE, PBE/SCF-SIC, or PBE/FLO-

SIC), Eref are reference energies from highly-accurate benchmark values,42,43 and Z is the

atomic number. The fully self-consistent PBE/SCF-SIC calculations were computed with the

ERKALE6 software package, and the PBE and PBE/FLO-SIC energies were obtained from

our own NWChem implementations and modifications. As an extra check on our results,

we have verified that our NWChem-computed PBE energies coincide with the PBE energies

obtained from the ERKALE software package. Although our FLO-SIC implementation was

only carried out in a post-SCF mode, Figure 2 demonstrates that the FLO-SIC scheme still

gives accurate results compared to the more computationally-expensive, self-consistent PZ-

SIC approach. Since PBE/FLO-SIC progressively gets worse at predicting accurate total

energies as Z increases, we tested the performance of various SIC-energy scaling factors (i.e.,

setting k = 1/2, 1, and 3 within the Xk scaling method) to understand their performance

on softening these overcorrections. Interestingly, we find that the scaling factor has a more

significant effect on systems with atomic numbers larger than 5, with the best overall results

obtained with k = 3. Additional validation tests of this approach and corresponding plots

with the Xm scaling method for m = 1/2, 1, and 3 are given in the Supporting Information.
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Figure 2: Relative total energies per electron for atomic systems ranging from He (Z = 2)

to Ar (Z = 18) obtained with PBE, PBE/SCF-SIC, and various Xk-scaled energies for

FLO-SIC. The aug-cc-pVTZ basis set was used in all of the calculations.

Energy vs. FONs for H2, the carbon atom, and the diamine cation

One rigorous diagnostic to assess self-interaction errors (SIE) in an exchange-correlation

functional is to check the energy linearity theorem for fractional occupations:44–46

E[N + δN ] = (E[N + 1]− E[N ])(δN − 1) + E[N + 1], (31)

which shows that the total energy is linear as a function of the fractional occupations δN .

In the interval [N,N + 1] the slope ∂E/∂n is the negative of the electron affinity, −EA,

which is the difference between the energy of an anion and a neutral system, EN+1 − EN .

Poorly behaved functionals such as LDA are “concave up” in the E vs. N plot, whereas

the Hartree-Fock approach shows a “concave down” behavior. In contrast, range-separated

functionals47–52 show a straight line behavior,47 which nearly satisfies Eq. 31 with a slope
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that approximates the electron affinity. For our study on FONs, we also confirmed that the

total number of electrons (including fractional numbers) were conserved during the FLO-SIC

numerical procedure. Specifically, the total number of electrons is given by

N =

∫
ρσ(r)dr =

∫ ∑
µν

Pµνψµ(r)ψ∗ν(r)dr, (32)

where Pµν is the density matrix and ψµ(r) and ψν(r) are Kohn-Sham orbitals. Substituting

the Fermi-Löwdin density matrix, PFL
µν =

∑
α nασ

(
CFL,σ
αµ

) (
CFL,σ
αν

)∗
where Cαν are orbital

coefficients, for Pµν in the expression above gives

N =
∑
α

nασ

∫ ∑
µν

(
CFL,σ
αµ

) (
CFL,σ
αν

)∗
ψµ(r)ψ∗ν(r)dr =

∑
α

nασ, (33)

where we have used the fact that the Fermi-Löwdin orbitals are orthogonal in the last step;

i.e., the total number of electrons, N , is the sumation of the occupation of each orbital.

Figure 3 shows our results for the relative energy of H2 as a function of the fractional

electron number (n+ δn) at various levels of theory. The benchmark reference is a straight

line obtained from the highly accurate, wavefunction-based CCSD(T)/aug-cc-pVTZ calcula-

tions. The results obtained with LC-BLYP/aug-cc-pVTZ and LDA-FLO-SIC/aug-cc-pVTZ

agree very well with the CCSD(T) results, which demonstrate an accurate removal of the

SIE; in contrast, the LDA/aug-cc-pVTZ results show the expected “concave up” behavior.

Figure 4 depicts various E vs. N curves for the carbon atom, where our benchmark reference

is the dashed black line with a slope equal to −EA= −1.26 eV obtained from experiment.53

The E vs. N curves obtained with LDA and PBE are “concave up,” and the LC-BLYP func-

tional yields a straight line with a slope slightly different from the experimental benchmark.

For comparison, we have also included E vs. N plots obtained with various SIC approaches

including LDA/FLOSIC, PBE/FLO-SIC, the fully self-consistent PBE/SCF-SIC from Vy-

drov et al.35 Among these various “uncorrected” SIC methods, we find that LDA/FLO-SIC

yields the best results, although it exhibits a curvature that is still slightly over-localized.

In the same plot, we also tested the performance of the Xk scaling method (with k = 1) for

LDA/FLO-SIC and PBE/FLO-SIC, which slightly improves the linearity and slope of their

“uncorrected” counterparts.
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line was obtained with a single-point CCSD(T) calculation at E[N ] and E[N + 1] using the

aug-cc-pVTZ basis set.
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Figure 4: Relative total energies of the carbon atom as a function of the electron number

N obtained using several functionals with the aug-cc-pVTZ basis set. For comparison, the

PBE/SCF-SIC calculation of Vydrov et al.35 is also shown. The dashed black line was

obtained using the experimental electron affinity.

To analyze the FLO-SIC scaling trends more closely, the left panel of Figure 5 depicts

deviations from linearity for PBE/FLO-SIC in conjunction with the Xk scaling method

for k =0.2, 0.5, and 1. Comparing these various curves, we observe a slight improvement

for k = 0.2. Similarly, the right panel of Figure 5 shows deviations from linearity for

LDA/FLO-SIC with the Xk scaling method for k =0.1, 0.2, 0.5, and 1, and we observe

the best results for k = 0.1. The Supporting Information contains additional E vs. N and

deviation-from-linearity plots for the Xm scaling method for LDA, LDA/FLO-SIC, PBE,

and PBE/FLO-SIC.
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Figure 5: Deviations from linearity as a function of FONs for the carbon atom using

PBE/FLO-SIC and Xk-scaled PBE/FLO-SIC (left panel) and LDA/FLO-SIC and Xk-scaled

LDA/FLO-SIC (right panel).

As a final application of our FLO-SIC approach for energies as a function of FONs, we

analyze the electronic structure of the transition state of the N,N’-dimethylpiperazine (DMP)

diamine molecular cation (DMP-TS), which was recently examined by us as a prototypical

chemical system to test density functional methods.38 Figure 6 shows E vs. N plots for

the CCSD-optimized transition-state geometry of DMP-TS for different levels of theory

with the aug-cc-pVDZ basis set. Our benchmark reference is the dashed line whose slope

is obtained from CCSD(T) energies for the anion and neutral molecule, EN+1 and EN ,

respectively. The range-separated LC-BLYP is almost indistinguishable from the reference,

whereas the PBE functional shows a slight “concave up” curve. The PBE/FLO-SIC curve

exhibits a good linearity between 63.4 and 64; however, in the interval between 63 and 63.4,

we encountered convergence problems during the SIC optimization, which may be due to an

improper choice of initial FODs obtained with our Foster-Boys localization algorithm. While

these convergence problems manifest themselves as a “bump” in the energy vs. FON curve, it

is important to note that the FLO-SIC energy gradients for those problematic points are still

extremely small. Specifically, the inset of Figure 6 depicts a plot of the FLO-SIC gradient as

a function of FONs, and all values of the gradient are extremely small and within 10−3 - 10−5.

In addition, we also examined PBE/FLO-SIC in conjunction with the Xk scaling method

(using k = 1), which shows a slight improvement over the uncorrected PBE/FLO-SIC values

(i.e., the curve within the 63.8 - 64.0 interval moves closer to the reference CCSD(T) straight
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line. Figure 7 shows the corresponding deviation-from-linearity plots for PBE, PBE/FLO-

SIC, and various Xk scaling corrections. The Supporting Information contains additional

plots for the LDA and LDA/FLO-SIC functionals.
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Figure 6: Relative energies of DMP-TS as a function of the fractional electron number

N obtained using LC-BLYP, PBE, PBE/FLO-SIC, and PBE/FLO-SIC with the Xk(k = 1)

scaling method. All functionals utilized the aug-cc-pVDZ basis set. The benchmark reference

is the black dashed line whose slope is computed using CCSD(T)/aug-cc-pVDZ calculations

for EN+1 and EN . The inset shows a logarithmic plot of the converged gradient of ESIC vs.

N .
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Figure 7: Deviations from linearity as a function of FONs for DMP-TS using PBE,

PBE/FLO-SIC, and PBE/FLO-SIC with the Xk scaling method for k =1 and 3.

CONCLUSIONS

In conclusion, we have provided a new assessment of our FLO-SIC implementation with

an emphasis on its performance for predicting energies as a function of fractional occu-

pation numbers (FONs) of various multi-electron chemical systems. Within our analysis,

we provided an alternate expression for the FLO-SIC energy gradient expressed in terms

of gradients of Fermi-orbital eigenvalues. This new expression is particularly interesting

and insightful since the gradients of the Fermi-orbital eigenvalues do not depend on the

computationally-expensive evaluation of two-electron integrals and, therefore, could possi-

bly be used to accelerate future FLO-SIC implementations. To validate our implementation,

we carried out benchmark calculations on total energies, atomization energies, and ioniza-

tion potentials for various atomic and molecular systems. Finally, we calculated energies
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as a function of FONs with various SIC-scaling methods to test the limits of the FLO-SIC

formalism on various multi-electron chemical systems, which have not been systematically

examined in previous studies. We find that these relatively simple scaling methods improve

the prediction of total energies of atomic systems as well as enhance the accuracy of energies

as a function of FONs for the carbon atom and diamine molecular cation. Finally, all of

our FLO-SIC implementations are incorporated in the open-source, massively-parallelized

NWChem quantum chemistry software package,22 which will be publicly available in the

next release update.
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