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Abstract

Pressure-induced insulator-to-metal transition has been studied in the van der
Waals compound iron thiophosphate (FePS3) using first-principles calculations within
the periodic linear combination of atomic orbitals (LCAO) method with hybrid Hartree-
Fock-DFT B3LYP functional. Our calculations reproduce correctly the insulator-to-
metal transition (IMT) at ∼15 GPa, which is accompanied by a reduction of the unit
cell volume and of the vdW gap. We found from the detailed analysis of the projected
density of states that the 3p states of phosphorus atoms contribute significantly at the
bottom of the conduction band. As a result, the collapse of the band gap occurs due
to changes in the electronic structure of FePS3 induced by relative displacements of
phosphorus or sulfur atoms along the c-axis direction under pressure.
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Pressure-induced phase transitions in iron thiophosphate (FePS3) at ∼4 GPa and ∼15 GPa
were studied using first-principles calculations. The calculations reproduce the insulator-to-
metal transition (IMT) at ∼15 GPa, accompanied by a reduction of the unit cell volume
and of the van der Waals gap. The origin of the IMT is attributed to the pressure-induced
changes in the FePS3 electronic structure caused by the relative displacement of phosphorus
or sulfur atoms along the c-axis direction.
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INTRODUCTION

Iron thiophosphate (FePS3) belongs to a family of van der Waals (vdW) layered materials

and attracted recently much attention due to its remarkable physicochemical and magnetic

properties1–5. FePS3 is a magnetic semiconductor with the band gap of 0.5-1.6 eV6–8 and

intrinsic antiferromagnetism below the Néel temperature of about 120 K9–12. Besides, it can

be exfoliated into single and few-layer sheets having enhanced catalytic activity13,14.

At low (ambient) pressure , the crystallographic structure of FePS3 (Fig. 1) is composed

of 2D layers extended parallel to the ab-plane and separated by the vdW gaps along the

c-axis8,12,15. Each layer contains Fe atoms octahedrally coordinated by six S atoms and

P atoms tetrahedrally coordinated by three S atoms and one P atom, forming a [P2S6]
4−

unit8,12,15. The vdW gap (defined as the shortest distance between the adjacent S layers) is

about 2.8 Å.

In low-pressure (LP) phase8, FePS3 has monoclinic lattice with space group C2/m (No.

12) and two FePS3 formula units in the primitive unit cell, but four formula units in the

crystallographic unit cell. The atoms occupy the following Wyckoff positions: Fe 4g(0,y,0),

P 4i(x,0,z), S1 4i(x,0,z), S2 8j(x,y,z). The antiferromagnetic ordering in FePS3 is controlled

by in-plane interactions between the high-spin (S = 2) Fe2+ ions arranged on a honeycomb

lattice9,11. They are coupled ferromagnetically to the two nearest Fe2+ neighbours and

antiferromagnetically to the third one. As a result, iron moments form in the ab-planes

ferromagnetic chains coupled antiferromagnetically to each other10,11,16. The weak vdW

interaction between layers results in an Ising-type antiferromagnetic ordering which remains

preserved down to the monolayer limit17.

According to recent pressure-dependent X-ray diffraction experiments8,18, FePS3 ex-

hibits two phase transitions upon increasing pressure. At about 4 GPa, it transforms to

intermediate-pressure phase (HP-I) with monoclinic (C2/m (No. 12)) symmetry. The prin-

cipal difference between LP and HP-I phases is a displacement of the unit cell along the

a-axis in the latter, so that iron ions in the adjacent layers become located on top of each

other along the c-axis, and the β angle between the a and c axes reduces from 107.34◦ to

89.33◦ (Fig. 1 and Table 1). The antiferromagnetic ordering survives in the HP-I phase18.
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In the high-pressure (HP-II) phase above ∼14 GPa, FePS3 crystal belongs to the space

group P 3̄1m (No. 162) with the hexagonal lattice and two formula units in the primitive

unit cell. The atoms occupy the following Wyckoff positions: Fe 2c(1/3,2/3,0), P 2e(0,0,z),

S 6k(x,0,z). The transition to the HP-II phase is accompanied by 10.6% volume collapse

(due to a significant reduction of the b and c lattice parameters), abrupt spin-crossover

transition from magnetic high-spin (S = 2) to non-magnetic low-spin (S = 0) state, and

insulator-to-metal transition (IMT)8,18. It was also found that the in-plane metallization

makes most contribution to the IMT phenomenon18. Note also that the resistivity of FePS3

shows stronger dependence on pressure than on temperature8,18.

To understand the mechanism of the pressure-driven IMT transition in FePS3, first-

principles calculations based on the plane-wave density functional theory (DFT) were re-

cently performed in the range from 0 to 35 GPa in Ref.19. The two structural phase tran-

sitions were correctly reproduced to occur at about 5 and 17 GPa. The calculations also

showed that the LP and HP-I phases posses antiferromagnetic ordering in agreement with

the experiment. The band gap of about 1.31 eV was found in the LP phase. It decreases to

1.00 eV at 10 GPa in the HP-I phase, and, finally, down to zero in the metallic HP-II phase.

The analysis of the orbital projected density of states allowed the authors to determine the

origin of the electronic states above and below the Fermi level. It was concluded that in both

LP and HP-I phases, the bottom of the conduction band is formed mainly by the 3d(Fe)

and 3p(S) states, whereas the valence band originates mainly from the 3d(Fe) states19. In

the HP-II phase, the states near the Fermi level are mainly of the 3d(Fe) origin19.

In the present study, we concentrate on the detailed understanding of the origin of

pressure-induced IMT in FePS3. We demonstrate that opposite to previous work19, the

IMT is determined by the significant contribution of 3p(P) states into conduction band bot-

tom, which can be tuned by the relative displacement of phosphorus or sulfur atoms along

the c-axis. We show that metallic conductivity could occur in any of LP, HP-I, and HP-II

phases when P and S atoms are located within one plane upon displacement.
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METHODOLOGY

Pressure-dependent properties of FePS3 have been studied using the first-principle linear

combination of atomic orbitals (LCAO) calculations as implemented in the CRYSTAL17

code20. All-electron triple-zeta valence (TZV) basis sets augmented by one set of polarization

functions (pob-TZVP)21 have been employed for Fe, P, and S atoms.

The accuracy in evaluating the Coulomb series and the exchange series was controlled by

a set of tolerances, which were taken to be (10−8, 10−8, 10−8, 10−8, 10−16). The Monkhorst-

Pack scheme22 for an 8×8×8 k-point mesh in the Brillouin zone was applied. The SCF

calculations were performed for several hybrid DFT-HF functionals with a 10−10 tolerance

on change in the total energy. The best agreement with the experimental structural data8

and the band gap value6,7 for the low-pressure (P=0 GPa) phase was obtained for Becke’s

3-parameter functional (B3LYP-13%)23, which was used in all reported simulations. The

percentage (13%) defines the Hartree-Fock admixture in the exchange part of DFT func-

tional. All calculations were performed using a restricted closed-shell hamiltonian, i.e. for

non-magnetic structures. We believe that such approximation is consistent with the exper-

imental temperature dependence of the electrical resistance (see Figs. 4 and 5 in Ref.8 and

Fig. 3 in Ref.18), which demonstrates the IMT in FePS3 in a wide range of temperatures up

to 300 K, i.e. far above its Néel temperature of TN = 120 K9–12.

The lattice parameters and atomic fractional coordinates were optimized for each selected

pressure in the range of 0–30 GPa for three phases (Figs. 2 and 3): low-pressure (LP)

monoclinic (space group C2/m) phase, high-pressure (HP-I) monoclinic (space group C2/m)

phase, and high-pressure (HP-II) trigonal (space group P 3̄1m) phase. The starting structural

parameters were taken from the experimental data8. The structure optimization at required

pressure was performed using the approach developed in Ref.24.

The phonon frequencies were computed at the center of the Brillouin zone (the Γ-point)

within the harmonic approximation using the direct (frozen-phonon) method20,25 for each

FePS3 phase. The primitive cell of FePS3 in all phases includes 10 atoms (2 Fe, 2 P, and

6 S), so that 30 phonon modes are expected and are classified as the Raman-active (R),

infrared-active (IR), and silent (S) modes.
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According to group theoretical analysis for space group C2/m in LP and HP-I phases,

there are the 7Bg and 8Ag Raman-active even modes, whereas the 9Bu and 6Au odd modes

are infrared-active (three of them (2Bu and 1Au) are acoustic modes with zero frequency at

the Γ-point).

In HP-II phase with space group P 3̄1m, the 5Eg and 3A1g even modes are Raman-active,

whereas the 5Eu and 4A2u odd modes are infrared-active (two of them (1Eu and 1A2u) are

acoustic modes with zero frequency at the Γ-point). There are also three silent modes (1A1u

and 2A2g) in HP-II phase.

The obtained structural parameters such as lattice parameters (a, b, c, β) and atomic

fractional coordinates (x, y, z) as well as the values of the band gap Eg are reported in Table

1. The phonon frequencies calculated at P=0, 10, and 18 GPa are given in Table 2. The

pressure dependence of the van der Waals (vdW) gap defined as the distance between two

planes containing lowest and highest sulfur atoms in the two neighbouring layers (Fig. 1) is

reported in Fig. 3. Calculated band structures and total/projected density of states for the

LP, HP-I, and HP-II FePS3 phases are shown in Figs. 4, 5 and 6.

Finally, we have performed the calculations of the electronic structure of FePS3 for artifi-

cial situations with P atoms displaced along the c-axis. The crystal structures were fixed at

the ones optimized for LP (0 GPa), HP-I (10 GPa), and HP-II (18 GPa) phases, while the

displacement of P atoms ∆z was varying between −0.1 Å and 0.5 Å. The obtained variations

of the band gap Eg are shown in Fig. 7.

RESULTS AND DISCUSSION

The structural properties of FePS3 from our LCAO calculations, which correspond to the

lowest temperature limit (T=0 K), agree with the experimental findings from Ref.8 (Table 1).

The comparison for the phonon frequencies is possible only for the LP phase, for which the

experimental infrared and Raman spectra measured at room temperature are available26,27.

The calculated values of phonon modes at the Γ-point (Table 2) are in qualitative agreement

with the experimental data, however the low-frequency modes are slightly overestimated.

Our calculations reproduce correctly the transition to metallic state at ∼15 GPa (Fig. 3),
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which is accompanied by a reduction of the unit cell volume by ∼7% (Fig. 2) and of the

vdW gap by ∼13% (Fig. 3).

Pressure dependence of the band gap Eg in LP, HP-I, and HP-II phases was evaluated

from the band structure calculations performed for optimized crystal lattice geometry (lattice

parameters and atomic fractional coordinates) and is reported in Fig. 3. The results suggest

that low-pressure monoclinic C2/m lattice is very stable against the compression, showing

no transition to metallic state up to 30 GPa. The monoclinic C2/m lattice of the HP-I

phase is more pliable, however the collapse of the band gap was only observed for pressures

starting from 30 GPa and above. Much softer behaviour was found for trigonal P 3̄1m lattice,

in which the band gap drops from ∼1.5 eV to zero in the pressure range from 0 to 15 GPa.

To understand the origin of the transition to metallic state, detailed analysis of the

electronic band structure of FePS3 was performed (Fig. 4). The calculated band gap for the

FePS3 LP phase at P=0 GPa is 1.84 eV, i.e. the material is an insulator. Upon increasing

pressure to 3 GPa, the band gap reduces monotonically to 1.75 eV. The transition to the

HP-I phase occurs at ∼4 GPa and leads to the abrupt change of the band gap down to 1.50

eV. The monotonic decrease of the band gap continues in the HP-I phase, finally achieving

the value of 1.12 eV at 13 GPa. Note that the band gap is indirect in both LP and HP-I

phases. Further increase of pressure leads to a collapse of the band gap and a transition to

the metallic HP-II phase.

Our results suggest that the top of the valence bands in the LP and HP-I phases is

mainly composed of the 3d(Fe) and 3p(S) states (Figs. 5 and 6), whereas the bottom of the

conduction bands originates mainly from 3dxz,yz,xy(Fe), 3pz(P) and 3px(S) states. Note that

in the recent work19 not enough attention has been paid to the contribution of the 3p(P)

states to the conduction band.

A pressure-dependent variation of the calculated electronic structure of FePS3 is due to

several effects that complicate its analysis. These include the reduction of the vdW gap, a

compression of the 2D layers in the ab-plane and changes in atomic fractional coordinates.

To simplify the task, we considered three artificial models based on the optimized crystal-

lographic structures for the LP (0 GPa), HP-I (10 GPa), and HP-II (18 GPa) phases. In

these models, the position of P atoms was varying along the c-axis direction relative to the
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optimized one (Figs. 7 and 8). We found that the displacement of P atoms in the direction

of the plane formed by sulfur atoms in the LP and HP-I phases (Fig. 1) leads to a decrease

of the band gap up to the transition to the metallic state.

In the HP-II phase at 18 GPa, P atoms have 3-fold triangular coordination by sulfur

atoms, thus they are already located within the S atom plane (Fig. 1). Therefore, the

displacement of P atoms along the c-axis direction moves them away from the plane formed

by sulfur atoms that results in the opposite effect (Fig. 7), i.e. opening of the band gap when

the displacement is large enough (∆z(P)>0.1 Å).

Thus, hybridization of the 3d(Fe), 3p(P), and 3p(S) states around the Fermi level plays

an important role in the electronic structure of FePS3. Under increasing pressure, the relative

displacement of the P atoms leads to the broadening of both valence and conduction bands

that results in the band gap collapse, i.e. insulator-to-metal transition. The control over the

relative displacements of P atoms can be used to tune the transition.

CONCLUSIONS

First-principles LCAO calculations using hybrid DFT-HF B3LYP functional have been per-

formed to understand the insulator-to-metal transition in FePS3. The calculated insulator-

to-metal transition occurs at ∼15 GPa and is accompanied by the unit cell volume and van

der Waals gap reduction and the space group change from monoclinic C2/m to trigonal

P 3̄1m. The obtained results are in agreement with the available experimental data8 and

recent calculations19.

The origin of the insulator-to-metal transition is attributed by us to the pressure-induced

broadening of valence and conduction bands in the FePS3 electronic structure caused by

the relative displacement of phosphorus or sulfur atoms along the c-axis direction. This

displacement leads to the P and S atoms arrangement within one plane. Our calculations

show (Fig. 7) that even in the absence of the vdW gap and lattice parameter reduction due to

compression, a sufficiently large displacement of P atoms could lead to metallic conductivity

in both LH and HP-I phases, whereas could produce opposite effect, i.e. opening of the band

gap, in the HP-II phase. Such behaviour is explained by the significant contribution of the

8



3p(P) states in the conduction band bottom (Figs. 5 and 7).
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16. D. Lançon, H. C. Walker, E. Ressouche, B. Ouladdiaf, K. C. Rule, G. J. McIntyre, T. J.

Hicks, H. M. Rønnow, and A. R. Wildes, Phys. Rev. B 94, 214407 (2016).

17. J.-U. Lee, S. Lee, J. H. Ryoo, S. Kang, T. Y. Kim, P. Kim, C.-H. Park, J.-G. Park, and

H. Cheong, Nano Lett. 16, 7433 (2016).

18. Y. Wang, J. Ying, Z. Zhou, J. Sun, T. Wen, Y. Zhou, N. Li, Q. Zhang, F. Han, Y. Xiao,

et al., Nature Commun. 9, 1914 (2018).

19. Y. Zheng, X.-x. Jiang, X.-x. Xue, J. Dai, and Y. Feng, Phys. Rev. B 100, 174102 (2019).

20. R. Dovesi, A. Erba, R. Orlando, C. M. Zicovich-Wilson, B. Civalleri, L. Maschio,

M. Rrat, S. Casassa, J. Baima, S. Salustro, et al., WIREs Comput. Mol. Sci. 8, e1360

(2018).

21. M. F. Peintinger, D. V. Oliveira, and T. Bredow, J. Comput. Chem. 34, 451 (2013).

22. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

23. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

24. A. J. Jackson, J. M. Skelton, C. H. Hendon, K. T. Butler, and A. Walsh, J. Chem. Phys.

143, 184101 (2015).

25. F. Pascale, C. M. Zicovich-Wilson, F. López Gejo, B. Civalleri, R. Orlando, and
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Figure 1: Crystallographic structure of FePS3 in the low-pressure (P=0 & 30 GPa) mono-

clinic (space group C2/m) phase, intermediate pressure (P=10 & 30 GPa) monoclinic (space

group C2/m) phase and high-pressure (P=18 & 30 GPa) trigonal (space group P 3̄1m)

phase. The van der Waals (vdW) gaps are indicated. The illustrations were created using

the VESTA software28.

Figure 2: Pressure dependence of the calculated lattice parameters and primitive cell volume

in FePS3.

Figure 3: Pressure dependence of the calculated band gap Eg and the van der Waals (vdW)

gap in FePS3.

Figure 4: Band structure diagram for the LP, HP-I, and HP-II FePS3 phases. The energy

zero is set at the top of the valence band (Fermi energy position).

Figure 5: Total and projected density of states (DOS) for the LP, HP-I, and HP-II FePS3

phases. The energy zero is set at the top of the valence band (Fermi energy position).

Figure 6: Total and projected onto the set of atomic orbitals density of states (DOS) for the

LP, HP-I, and HP-II FePS3 phases. The energy zero is set at the top of the valence band

(Fermi energy position).

Figure 7: Dependence of the band gap Eg in LP, HP-I, and HP-II FePS3 phases on the

displacement of phosphorus atoms ∆z(P) along the c-axis.

Figure 8: Total and projected density of states (DOS) for the LP (C2/m) FePS3 phase as a

function of phosphorus atoms displacement ∆z(P) along the c-axis. The energy zero is set

at the top of the valence band (Fermi energy position).
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Table 1: Crystallographic parameters and band gap values for FePS3 at 0, 10, and 18 GPa.

Experimental data are taken from Refs.6–8.

Space group C2/m (12) Space group C2/m (12) Space group P 3̄1m (162)

LP (P=0 GPa) HP-I (P=10 GPa) HP-II (P=18 GPa)

Experiment8 LCAO Experiment8 LCAO Experiment8 LCAO

a (Å) 5.9428 5.816 5.7620 5.666 5.699 5.791

b (Å) 10.299 10.047 9.988 9.813

c (Å) 6.7160 6.600 5.803 5.652 4.818 4.786

β (◦) 107.34 108.05 89.33 90.01

y(Fe) 0.3320 0.3332 0.3225 0.3333

x(P) 0.0860 0.0619 0.0 0.0

z(P) 0.1670 0.1716 0.184 0.1868 -0.206 -0.2603

x(S1) 0.7600 0.7251 0.638 0.6375 0.3241 0.3686

z(S1) 0.2860 0.2332 0.259 0.2529 -0.195 -0.2632

x(S2) 0.2690 0.2610 0.127 0.1813

y(S2) 0.1745 0.1797 0.1624 0.1813

z(S2) 0.2470 0.2308 0.299 0.2529

Eg (eV) 1.56 1.8 1.3 0 0

1.67

0.4528
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Table 2: Calculated phonon frequencies (in cm−1) at the Γ-point for FePS3 at P=0, 10, and

18 GPa. Raman active (R), infrared active (IR), and silent (S) modes are indicated. The

acoustic modes with zero frequency are not given. The experimental infrared and Raman

frequencies (exp.) measured at room temperature26,27 are also reported for comparison.

Space group C2/m (12) Space group C2/m (12) Space group P 3̄1m (162)

LP (P=0 GPa) HP-I (P=10 GPa) HP-II (P=18 GPa)

Mode Frequency Frequency (exp.) Activity Mode Frequency Activity Mode Frequency Activity

Bg 151 101 R Bg 133 R A2u 168 IR

Bu 174 151 IR Bu 160 IR A2g 217 S

Ag 185 R Ag 204 R Eg 259 R

Bg 185 R Bg 204 R

Bu 207 IR Au 233 IR Eu 266 IR

Au 215 IR Bu 233 IR

Bg 239 153 R Bg 241 R Eg 276 R

Ag 240 R Ag 241 R

Bu 241 185 IR Bu 267 IR Eu 301 IR

Bu 242 IR Au 267 IR

Au 245 IR Bu 278 IR A2u 334 IR

Ag 267 220 R Ag 312 R A1g 334 R

Au 270 IR Ag 312 R Eg 352 R

Bg 272 R Bg 313 R

Ag 276 244 R Au 313 IR Eg 380 R

Bg 281 277 R Bg 323 R A2u 380 IR

Bg 314 R Ag 344 R

Ag 315 R Bg 344 R A1g 381 R

Au 318 258 IR Au 360 IR A1u 386 S

Bu 321 295 IR Bu 360 IR A2g 397 S

Ag 363 378 R Ag 398 R Eu 401 IR

Bu 413 445 IR Bu 432 IR

Ag 506 R Bg 539 R A1g 416 R

Bg 508 R Ag 539 R Eg 486 R

Bu 526 IR Au 565 IR

Au 530 578 IR Bu 565 IR Eu 532 IR

Ag 574 573 R Ag 613 R
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