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Abstract

We implement a full nonlinear optimization method to fit continuum states with complex

Gaussians. The application to a set of regular scattering Coulomb functions allows us to val-

idate the numerical feasibility, to explore the range of convergence of the approach, and to

demonstrate the relative superiority of complex over real Gaussian expansions. We then con-

sider the photoionization of atomic hydrogen, and ionization by electron impact in the first

Born approximation, for which the closed form cross sections serve as a solid benchmark.

Using the proposed complex Gaussian representation of the continuum combined with a real

Gaussian expansion for the initial bound state, all necessary matrix elements within a par-

tial wave approach become analytical. The successful numerical comparison illustrates that

the proposed all-Gaussian approach works efficiently for ionization processes of one-center

targets.
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Complex Gaussian: imaginary part

Continuum wavefunction
We propose an all-Gaussian approach for elec-

tronic scattering processes with one-center tar-

gets. Gaussian functions are used not only to de-

scribe the initial bound states, but also to repre-

sent the final continuum states involved in pro-

cesses such as photoionization or electron impact

ionization. An efficient nonlinear optimization is

performed to fit continuum wavefunctions with

complex Gaussian representations and once the

fitting is done, all integrals necessary to compute

cross-sections become analytical.
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1 Introduction

As early as 1950 Boys [1] emphasized the importance of Gaussians to simplify the calculation

of multicenter integrals arising in the study of polyatomic molecular electronic states. One key

property is the notorious Gaussian product theorem. For an overview of the use of Gaussian sets

in molecular calculations see, e.g., reference [2]. The optimal set depends very much on the studied

problem, e.g., system energy minimization, calculation of resonance states,. . . . Usually, to avoid

a full nonlinear optimization, one may consider a particular choice of exponents such as even-

tempered sets [3,4], well-tempered sets [5], random-tempered sets [6] or polynomial expansions [7]. In

the 60s many studies have been dedicated to the representation of bound states by a real Gaussian

combination [8–13]. Despite their too fast decay at large distances, Gaussians manage to rather well

reproduce molecular electronic orbitals over the physically relevant radial regions [14]. Another

drawback is their mathematical inability to reproduce the correct cusp near the origin, an issue that

is generally addressed numerically using a combination of Gaussians with large exponents [8].

While Gaussians are pretty good for reproducing low-lying bound states, representing on large

radial domains multinode states (highly excited or Rydberg states), or highly oscillating continuum

states by nodeless Gaussians is numerically very challenging. In spite of the numerous potential

applications (such as photoionization [15–18], high harmonic generation [19–21], ionization by parti-

cle impact [22]) only few exploratory studies have been made [23–26]. Kaufmann et al [23] optimized a

set of Gaussians to represent continuum functions with a reasonable accuracy up to 0.2 a.u. by the

diagonalization of the attractive Coulomb Hamiltonian represented in a finite set of Gaussian-type

functions. Nestmann and Peyerimhoff [24] proposed a least square approach to represent Bessel

functions with real Gaussians. Faure et al [25] applied the same approach to fit Bessel and Coulomb

functions. However, the fitting error for large energies (typically ≈ 3 Rydbergs) is visible to the

naked eye. Fiori and Miraglia [26] optimized Gaussians to fit distortion functions by first removing

the dominant fast oscillatory plane wave from the Coulomb function. An alternative approach to

reproduce the oscillating behavior of continuum states is to add to Gaussian sets some supplemen-

tary functions, like B-splines [15].

We believe that expansions in complex Gaussians, that it to say Gaussians with complex ex-

ponents, offer an alternative and possibly more suitable way of representing continuum states.

3



Complex Gaussians have already been proven to be successful in resonance stabilization calcula-

tions, where they arise from a complex scaling transformation [27–30]. Such functions possess an

intrinsically oscillatory behavior that may facilitate the task of representing continuum states over

larger radial domains. Previous investigation in this line, include the work of Matsuzaki et al who

used complex Slater orbitals [31] and complex Gaussians [32] in photoionization calculations. To

represent the outgoing Coulomb function with complex Gaussians, they employed Pronys method

used earlier by Huzinaga [8]. The main drawback of this method is that it cannot cover all the nec-

essary radial ranges because the radial grid must satisfy a specific square root distribution. This

is why in [32] a clear difference is visible between the exact continuum function and its complex

fitting in the range 0 < r < 5 a.u.. Matsuzaki et al also optimized complex Gaussian sets to fit

complex Slater functions [33]. The first aim of the present study is to explore further the capacity

of complex Gaussians sets to represent continuum states by proposing and implementing a full

nonlinear optimization method. In order to test its limitations and range of applicability we take,

as an illustration, a set of regular radial Coulomb functions with different energies; the same can be

done with any one-electron continuum function as, for example, a numerically generated distorted

wave. We also highlight situations where real Gaussians become insufficiently accurate, and point

out the advantage of using complex Gaussians instead.

The second purpose of this manuscript is to demonstrate the advantage of such Gaussian rep-

resentation when evaluating, for example, ionization cross sections. The key idea is to propose an

all-Gaussian approach which allows one to analytically evaluate all necessary integrals. It is very

well known that using Gaussians to represent bound states renders most of the necessary integrals

analytical, a feature that is especially important in the molecular multicenter case by applying the

Gaussian product theorem. One question naturally arises: is it possible to exploit such analytical

advantages also when continuum states are involved? If they are represented by standard real Gaus-

sians, the answer is obviously positive. What about complex Gaussians? Is the Gaussian product

theorem still applicable? It can be easily verified that when complex exponents are present, the

product of two Gaussians with different centers will lead to a Gaussian centered at some complex

position. Clearly the latter has no physical sense, but it is not a mathematical obstacle for perform-

ing multicenter integrals as shown by Kuang and Lin [34,35]. While our long-term goal is to deal

with molecular systems, as a first step we consider here the one-center, atomic, case to put our
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all-Gaussian proposal on solid grounds. To this effect we consider some one-electron matrix ele-

ments 〈ψ−
ke
(r)|Ô|φi(r)〉 corresponding to a transition from an initial state φi(r) to a continuum state

ψ−
ke
(r) with ejected electron’s momentum ke; the bound-continuum transition occurs via an ioniza-

tion process represented by some operator Ô. To envisage an all-Gaussian integration approach,

the main difficulty stands in a numerically robust representation of the continuum wavefunction

by a set of Gaussian functions, and this up to a sufficiently large radial distance. We shall show

that thereafter all integrations can be performed analytically with either real or complex sets. As

indicated above, we consider here the one-center case and take hydrogen as a benchmark since its

ionization cross sections are known exactly for the photon impact case and also, within the first

Born approximation, for the electron impact case.

In section 2 we present the algorithm that performs the fitting. The numerical method, based

on the approach of Nestmann and Peyerimhoff [24], has been improved here on several aspects, by

using a better optimization method and extending it to deal with complex Gaussians. We compare

different fitting options with real or complex Gaussians and we point out the advantage of the latter.

In section 3 we illustrate the approach in two benchmark applications, the ionization of hydrogen

by impact of either an electron or a photon. In both cases we compare the exact cross sections

with those calculated with real or complex Gaussian fits of Coulomb continuum states. A brief

conclusion is presented in section 4. Atomic units are used unless indicated otherwise.

2 Fitting with complex Gaussians

We wish to develop an efficient approach that fits complex Gaussians to represent a set of contin-

uum functions arising, for example, in ionization calculations. We start with a detailed comparison

between using real and complex Gaussians to highlight the potential benefits of the latter.

2.1 Fitting strategy

We aim to approximate a set of arbitrary functions fη(r), η = 1, . . . ,ηmax by a linear combination

of N Gaussians:

fη(r)≈ f G
η (r) =

N

∑
i=1

[ci]η exp(−αir
2). (1)
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To do so, in the case of real Gaussians, Nestmann and Peyerimhoff [24] proposed a least square

approach which consists in minimizing, on some radial grid {rκ}κ=1,...,κmax
, the function:

Ξ(α1, . . . ,αN) = ∑
η

∑κ

(
fη(rκ)− f G

η (rκ)
)2

∑κ ( fη(rκ))
2

+D(α1, . . . ,αN). (2)

The Ξ function depends on N nonlinear parameters, the exponents {αi}i=1,...,N and ηmax ×N lin-

ear parameters, the expansion coefficients {[ci]η}i=1,...,N,η=1,...,ηmax
. In [24] the standard Powell

method [36] is used to optimize the exponents, while the linear coefficients are optimized by a stan-

dard least square method. Iterations are performed to alternate those two optimizations: after each

variation of the exponents the coefficients are updated using least squares, and the process is re-

peated until convergence to a local minimum is reached. In eq. (2) a penalty function is added to

avoid the convergence of two exponents to the same value. It is defined as:

D(α1, . . . ,αN) =
N

∑
i=2

i−1

∑
j=1

exp

(
−g

∣∣∣∣
αi

α j
− α j

αi

∣∣∣∣
)

, (3)

where g is a fixed parameter (generally g ≈ rκmax
).

Here, we generalize the approach of Nestmann and Peyerimhoff [24] for complex exponents

αi = ℜ(αi)+ iℑ(αi), with ℜ(αi)> 0. The optimization function Ξ becomes:

Ξ(ℜ(α1), . . . ,ℜ(αN),ℑ(α1), . . . ,ℑ(αN)) = ∑
η

∑κ | fη(rκ)− f G
η (rκ)|2

∑κ | fη(rκ)|2
+D(ℜ(α1), . . . ,ℜ(αN)),

(4)

and now depends on 2N non-linear real parameters {ℜ(αi),ℑ(αi)}i=1,...,N so that Ξ is seen as a map

from R
2N to R. The penalty function is the same as in eq. (3), applied only to the real part of the

exponents. eq. (2) is a particular case of eq. (4) when the exponents {αi} and the coefficients {ci}
are real. In order to minimize the fitting error Ξ, we choose to optimize the exponents {αi} by using

the Bound Optimization BY Quadratic Approximation (BOBYQA) [37], still alternating with a least

square optimization of the coefficients {ci}. Both Powell and BOBYQA are gradient free methods

and attempt to find a local minimum. Since Ξ has many local minima, the aim of the numerical

optimization is to find a local minimum that gives a reasonable fitting accuracy. A critical issue in

both methods is the choice of the initial values of the exponents. For BOBYQA, in addition to this,
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we have to fix the initial (∆i) and final (∆ f ) trust region radii where Ξ is approximated to a quadratic

model. The optimization is stopped when the Euclidean dimension of the step is less or equal to

∆ f . On the other hand, the optimization with Powell is stopped when no further improvement is

obtained after varying the exponents. A supplementary condition to stop the optimization may be

the value of Ξ or the CPU time. The main difference between these two methods is that in the case

of the standard Powell algorithm, we first determine the search directions and then find the optimal

step along those directions, whereas using BOBYQA, we first set the step (by choosing the trust

region) and then the directions are found in order to improve the quadratic model or minimize the

objective function Ξ. For more details about the algorithms we refer the reader to Refs. [36] and [37].

As an illustration, we consider a set of 6 regular Coulomb functions E : {F1(r)/k1, . . . ,F6(r)/k6},

defined as [38]:

Fη(r) = Fl,kη (r) = (2kηr)l+1e
πz

2kη

∣∣∣Γ
(

l +1− iz
kη

)∣∣∣
2Γ(2l +2)

eikη r
1F1

(
l +1− iz

kη
,2l+2;−2ikη r

)
, (5)

with wavenumbers kη = 0.5+ 0.25(η − 1) a.u., and angular momentum number l = 1. 1F1 is

the Kummer confluent hypergeometric function. The real valued functions {Fη(r)} are the exact

solutions of the one particle Schrodinger equation with Coulomb potential −z/r and are strongly

oscillating for large positive energies. For charge z = 1 we have the hydrogen continuum states

while if we set z = 0 we obtain the spherical Bessel functions. The set E serves here as a test to

compare real and complex Gaussian fittings, and will be used also in the cross section calculations

of section 3.2. We apply the strategy presented above up to rκmax
= 25 a.u. with a radial step

0.025 a.u. to fit E with either N = 30 real Gaussians (30 nonlinear real parameters to reproduce

the real functions Fη(r)) or N = 30 complex Gaussians (60 nonlinear real parameters to reproduce

both the real functions Fη(r) and the imaginary part which is 0 here), and we set g = 27. The

number N is to be chosen sufficiently large as to reproduce the regular Coulomb functions in the

considered range of energy and within the fitting box B. After several convergence tests on N

by inspection of the reached Ξopt , we found that N = 25 complex Gaussians could be judged as

sufficient. In the physical application presented in section 3.2, however, integrations go up to 25

a.u. and in order to reduce cross section errors, we chose N = 30. For the sake of comparison, the

same N = 30 is taken here also for the real Gaussian representation. Should one consider higher
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energies and/or larger radial domains, a convergence study should be envisaged possibly requiring

a larger N.

It is worth emphasizing that once the optimal set of N exponents {αi} will be found, they can be

employed to represent with a reasonable accuracy any other function Fη(r) within the considered

energy range kη ∈ [0.5;1.75]. Indeed, simply performing a linear least squares method will provide

the corresponding optimal coefficients [ci]η .

2.2 Limitations of real Gaussians

In this subsection we focus on the use of real Gaussians. We first show the efficiency of the

quadratic method BOBYQA [37] and then highlight the limitations of real Gaussians in representing

continuum functions.

2.2.1 Comparison between BOBYQA and Powell

We wish all the initial exponents αi to increase slowly and consistently within an interval α1 = a

and αN = b. From our numerical experience we found that the distribution
αi+1

αi
=
(

αN

α1

) 1
N−1

leads

to satisfactory results and is obtained by picking up the initial exponents as:

ln(αi) =
1

N −1
[(N − i) ln(a)+(i−1) ln(b)] . (6)

The value of a should be chosen small enough to reach the end of the fitting box: e−ar2
max ∼ 1.

For the optimization with BOBYQA, we set a = 10−6, b = 1. Two research bounds are defined

αmin = 10−6 and αmax = 10. The initial trust region is ∆i = 0.01 and the final one is ∆ f = 10−6.

For Powell optimization there are no constraints on {αi} except being strictly positive, and slightly

different initialization parameters are selected: a= 10−4 and b= 10. The time taken to perform the

optimization of the set E with Powell is ≈ 26 times that needed with BOBYQA. The final minimum

value of the error (Ξ−D) found with Powell is 0.18×10−3 and 0.02×10−3 with BOBYQA. The

optimal sets of real exponents obtained by BOBYQA or Powell are displayed in the second and

third columns of Table 1.

From our numerical experience, BOBYQA is faster and more efficient in the present context.
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This may not be true for all optimizations but generally BOBYQA turns out to be at least as

efficient as Powell method or better especially for a large number of Gaussians.

2.2.2 Deviations at large distances

Looking at the fitted functions (not shown), both optimizations lead to a fitting quality which is

very good inside the fitting box B = [0,25]. However, the error increases very quickly for r > 25.

This is due to the fact that the price to pay for a good optimization within B is the presence of small

exponents
(
αi ∼ 10−4

)
and very large associated coefficients

(
ci ∼ 1010

)
. The presence of such

diffused Gaussians with very important amplitudes at large distance may not be a serious problem

in the calculation of matrix elements; indeed, the integration over continuum functions is usually

accompanied by a decreasing radial exponential (factor coming from the Hermitian product with

bound states) and the fitting error beyond some physical distance will not affect the numerical

calculation. This is why we choose to examine the effective functions

F
e f f

η (β ,r) = Fη(r)e
−β rr2 (7)

instead of Fη(r) itself. The exponential corresponds to a bound decreasing factor where β is a

positive number and r2 comes from the integration volume element in spherical coordinates. The

deviation at large distances between the fitting and the original function F
e f f
η is obviously very

sensitive to the value of β .

As an example, we examine in Figure 1 the fitting of F
e f f
2 (β ,r) for two cases: β = 1 and

β = 0.5, corresponding for example to the hydrogen 1s and 2s exponents, respectively. We clearly

see that these fittings will cause trouble in the case β = 0.5 since the deviation after r = 25 will

jeopardize radial integrals involving F
e f f
2 (β ,r). However when β = 1 the bound state cancels this

deviation. For higher energies (η = 3, . . . ,6) the same problem arises (not shown). The faster the

functions oscillate the more important the deviation. For η = 1, on the other hand, the decreasing

term e−β r cancels this deviation for both β = 0.5 and β = 1.
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Figure 1: Effective function F
e f f
2 (β ,r) = F2(r)e

−β rr2 (l = 1 and k2 = 0.75 a.u.) and its fitting

with real Gaussians using Powell (rG POWELL) or BOBYQA (rG BOBYQA) optimizations, for

β = 0.5 (left upper panel) and β = 1 (right upper panel). The absolute errors are plotted in the

corresponding bottom panels.

2.2.3 Using reduced bounds (RB) for the search of the exponents

We try in this section to soften the errors coming from the diffused part of the fitting. To do so

with BOBYQA, the optimization lower bound is modified to αmin = 0.01, so that αi does not fall

below 0.01. The optimal set of exponents in this reduced bound (RB) case is shown in the fourth

column of Table 1. They are overall of the same order of magnitude as those obtained without

constraint but the lower bound forbids the smallest, possibly troublesome, exponents. Figure 2

shows the resulting improvement at large distances of F
e f f
2 (RB BOBYQA) in the case β = 0.5.

While the overall fitting is better, the accuracy is slightly worse in the fitting box B because

imposing a constraint on the lower bound of αi reduces the overall flexibility. Even in this RB

approach the coefficients {ci}η remain large. For example, the second column of Table 2 shows

the magnitude of the coefficients [ci]5 for η = 5 (k5 = 1.5). All coefficients are larger than 106

and most coefficients are of order 1010 or more. When the continuum functions are substituted by

the Gaussian combinations, this ill-conditioning generates a numerical error that is related to the

limited machine precision.
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Figure 2: Upper panel: F
e f f

2 = F2(r)e
−0.5rr2 with its fitting using real Gaussians and BOBYQA

without constraint on the exponents (rG BOBYQA) or after reducing the bounds (rG BOBYQA

RB). The absolute error on the fitting is plotted in the bottom panel.
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2.3 Complex Gaussians

In section 2.2 we have shown that representing oscillating functions with real Gaussians requires

very small exponents {αi} and implies very large coefficients {ci}. This causes a large deviation

out of the fitting box that may turn out to be troublesome in a given application. A partial solution

could be to reduce the exponents bounds but the presence of very large values of {ci} does not

disappear. We will now explore the ability of complex Gaussians to soften these problems.

In order to optimize the set E of functions (5) defined in section 2.1, we pick the initial complex

exponents as: 



ln(ℜ(αi)) =
1

N −1
[(N − i) ln(a)+(i−1) ln(b)]

ℑ(αi) = 0

(8)

with a = 10−4, b = 100, and we fix the following research bounds:





10−4 ≤ ℜ(αi)≤ 1000

−0.1 ≤ ℑ(αi)≤ 0.1.

(9)

The trust regions are ∆i = 0.01 and ∆ f = 10−6.

The optimal set of complex exponents obtained for the set E are shown in the fifth column

of Table 1. We recall that the complex Gaussian expansion optimizes a set of real-valued radial

Coulomb functions. Exponents do not appear in complex conjugate pairs, thus necessarily requir-

ing complex coefficients to build up a real function. We verified that the imaginary part resulting

from the complex combinations of the optimal complex Gaussians is indeed negligible. Concern-

ing the real part, Figure 3 shows two functions of the set, F2(r) and F6(r), with their fitting and the

corresponding absolute errors, using: (i) 30 real Gaussians and BOBYQA with constraints on {αi}
(rG BOBYQA RB) or (ii) 30 complex Gaussians and BOBYQA (cG BOBYQA). It also shows

the corresponding effective functions F
e f f

η (β ,r), with no deviation due to the diffused Gaussians

outside the box B. One can clearly see that complex Gaussians reproduce the sample Coulomb

functions with a better accuracy, and this becomes particularly evident for large energy values. The

faster the functions oscillate, the more gainful complex Gaussians become. All expansion coeffi-

cients for the F
e f f
5 case, shown in the third column of Table 2, remain moderate in contrast to the

real Gaussian fitting.
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Figure 3: In panels (a) and (b) the sample Coulomb function Fη(r), with l = 1, is plotted for η = 2

and 6 respectively with the fitting by 30 real Gaussians using BOBYQA with reduced bounds

(rG BOBYQA RB) or by 30 complex Gaussians (cG BOBYQA). The associated panels show the

corresponding absolute errors within the fitting box. In the bottom panels (c) and (d) the effective

function F
e f f

η (β ,r) (see eq. (7)) with β = 0.5 are compared to their cG BOBYQA representation,

and this on a radial scale extended to 50 a.u..
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rG POWELL rG BOBYQA rG BOBYQA RB cG BOBYQA

α1 0.0000092 0.0000128 0.0122973 0.0001000 + 0.0151526 j

α2 0.0000912 0.0000244 0.0145577 0.0001418 − 0.0171753 j

α3 0.0009435 0.0005575 0.0170202 0.0013875 − 0.0021493 j

α4 0.0019943 0.0016484 0.0197536 0.0019035 + 0.0216135 j

α5 0.0027596 0.0034884 0.0228103 0.0025827 + 0.0298661 j

α6 0.0044246 0.0084723 0.0262398 0.0034908 − 0.0241050 j

α7 0.0057793 0.0111337 0.0301176 0.0046754 − 0.0338441 j

α8 0.0072420 0.0136592 0.0344988 0.0061876 + 0.0378398 j

α9 0.0089783 0.0163089 0.0394645 0.0156781 + 0.0504851 j

α10 0.0114303 0.0194778 0.0451376 0.0196315 − 0.0395359 j

α11 0.0141988 0.0226689 0.0516205 0.0246020 − 0.0352098 j

α12 0.0178271 0.0267680 0.0591117 0.0308382 − 0.0302620 j

α13 0.0221354 0.0311299 0.0677411 0.0386508 − 0.0436192 j

α14 0.0272471 0.0358749 0.0778144 0.0484105 + 0.0624525 j

α15 0.0341612 0.0412564 0.0896070 0.0618203 + 0.0513264 j

α16 0.0436030 0.0473579 0.1036178 0.0816826 − 0.0552154 j

α17 0.0622928 0.0543047 0.1205385 0.1936246 + 0.0097332 j

α18 0.1058245 0.0616580 0.1407606 0.2915597 + 0.0024838 j

α19 0.1361998 0.0696498 0.1648189 0.4971406 − 0.0113366 j

α20 0.1729779 0.0779709 0.2204008 0.8532849 + 0.0200975 j

α21 0.2157985 0.0871103 0.2668776 1.3797714 + 0.0062079 j

α22 0.2755926 0.0970341 0.3164855 2.1958583 − 0.0311758 j

α23 0.3476818 0.1087089 0.3754007 3.5672935 − 0.0087858 j

α24 0.4425831 0.1228380 0.4395371 5.7419028 + 0.0012293 j

α25 0.6059363 0.1384401 0.5106744 9.2535835 − 0.0212019 j

α26 0.7983113 0.1591001 0.5897495 14.868739 − 0.0267870 j

α27 1.3120641 0.3614618 0.6853581 23.954872 − 0.0406721 j

α28 1.6592168 0.6148974 0.7913713 38.575864 + 0.0168896 j

α29 2.0833228 1.0857781 0.9151002 62.088037 − 0.0059998 j

α30 2.6339627 1.5257161 1.0660043 99.986651 + 0.0164035 j

Table 1: Optimal exponents obtained after fitting the set E of Coulomb functions defined by

eq. (5). rG POWELL means that the standard Powell method is used with real Gaussians, rG

BOBYQA means that BOBYQA is used with real Gaussians, rG BOBYQA RB means that

BOBYQA is used with reduced bounds of real exponents, and cG BOBYQA means that BOBYQA

is used with complex Gaussians and coefficients.
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rG BOBYQA RB cG BOBYQA

c1 +0.40823965E +07 −0.0767003 + 0.0491225 j

c2 −0.55724942E +08 −0.0325026 + 0.1332674 j

c3 +0.33793994E +09 +0.0134629 − 0.0432612 j

c4 −0.11997914E +10 −0.0334812 + 0.5057190 j

c5 +0.26244301E +10 +0.8455898 + 1.1476015 j

c6 −0.28184368E +10 −1.4220978 + 0.5653343 j

c7 −0.29542662E +10 −4.6750397 + 0.8996489 j

c8 +0.20935337E +11 +3.1306684 − 2.6002539 j

c9 −0.53704332E +11 −8.6221111 − 5.9017186 j

c10 +0.95479441E +11 −12.3193333 − 198.5520668 j

c11 −0.13228302E +12 −246.957659 + 276.197615 j

c12 +0.15059598E +12 +131.906416 + 98.2360837 j

c13 −0.14425237E +12 +148.629934 − 247.936566 j

c14 +0.11764816E +12 −14.6173162 + 76.4157364 j

c15 −0.82466268E +11 +12.0853088 − 104.198984 j

c16 +0.49659844E +11 +18.8413901 + 99.0639125 j

c17 −0.25966739E +11 −17.9257132 + 1.0993553 j

c18 +0.11675152E +11 −6.9991082 + 8.5195011 j

c19 −0.38808782E +10 −1.8509498 − 6.3255867 j

c20 +0.12464857E +10 +0.9407901 + 5.5765830 j

c21 −0.12293506E +10 −1.3594724 − 5.5649285 j

c22 +0.10828614E +10 1.3522260 + 4.9085462 j

c23 −0.84955303E +09 −1.5426203 − 4.0800303 j

c24 +0.61321395E +09 +1.2864865 + 3.4277871 j

c25 −0.36730844E +09 −1.0624354 − 2.7270828 j

c26 +0.16987082E +09 +0.7979392 + 1.9979734 j

c27 −0.57559060E +08 −0.5300813 − 1.2895942 j

c28 +0.15043766E +08 +0.2829880 + 0.6875284 j

c29 −0.24101691E +07 −0.1071319 − 0.2637591 j

c30 +0.17331481E +06 +0.0207102 + 0.0528517 j

Table 2: Optimal coefficients using BOBYQA to fit F5(r) with real Gaussians and reduced bounds

(rG BOBYQA RB) and complex Gaussians (cG BOBYQA). Note that the number of digits shown

here is not sufficient to rebuild the function in the case of (rG BOBYQA RB).
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3 Illustrative applications to ionization problems

For illustration purposes, we consider hereafter a one-electron description. Computing ionization

cross sections involves the calculation of transition matrix elements Tike
= 〈ψ−

ke
(r)|Ô|φi(r)〉 where

φi(r) represents the initial (bound) wavefunction and ψ−
ke
(r) represents the final (continuum) wave-

functions of the ejected electron (with momentum ke). In order to keep the present investigation

free of extra numerical uncertainties and easily reproducible, we choose as continuum state the

analytical Coulomb function

ψ−
ke
(r) = N(a)

eiker

(2π)
3
2

1F1 (−ia,1;−i(ker+ker)) , (10)

where N(a) = e
πa
2 Γ(1+ ia) with the Sommerfeld parameter a = z/ke and z the charge seen by the

ejected electron. Ô is the transition operator that connects the initial to final states: 4π
q2 eiq·r in the

case of particle impact (q is the momentum transfer vector) and −ε̂ ·r for photoionization in length

gauge (ε̂ is the polarization vector). In what follows, we will show that if the radial parts of both

ψ−
ke

and φi are expanded in Gaussians, the calculation of the transition matrix elements becomes

analytical for both processes. As mentioned in the introduction the ultimate goal is to implement

such an all-Gaussian approach to treat scattering from polyatomic molecules. Here, in order to

illustrate the feasibility and the numerical robustness, we consider first an atomic case with an

initial wavefunction given by:

φi(r) = Rnili(r)Y
mi

li
(r̂), (11)

where ni,li,mi are the usual quantum numbers. For the numerical illustration, we shall take as

benchmark the hydrogen atom (z = 1) for which exact cross sections are available and serve as a

solid benchmark.

3.1 Hydrogen ionization by electron impact

We consider the ionization of a hydrogen atom by electron impact: e−+H→H++2e−. In the first

Born approximation the colliding electron is described by a plane wave before (momentum ki) and

after the collision (momentum ks), while the wavefunction of the ejected electron is the Coulomb
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function ψ−
ke
(r) of eq. (10). The cross section calculation involves the transition matrix element

Tike
=

4π

q2
Fike

(q), (12)

where q = ki −ks is the momentum transfer vector and

Fike
(q) = 〈ψ−

ke
|eiqr|φi〉 (13)

is the atomic form factor with φi the initial wavefunction (11).

The standard way to separate angular and radial variables is to use a partial wave expansion of

the whole continuum wavefunction (10) over the spherical harmonics Y m∗
l (r̂)Y m

l (k̂e):

ψ−
ke
(r) =

√
2

π ∑
l,m

ileiδl
Fl,ke

(r)

kr
Y m∗

l (r̂)Y m
l (k̂e), (14)

where Fl,ke
(r) is the regular radial Coulomb function (5) and δl = arg

(
Γ(l+1+ zi

ke
)
)

is the Coulomb

phase shift. Alternatively, one can extract from the wavefunction (10) the highly oscillating behav-

ior of the plane wave eiker and expand in partial waves only the distortion factor represented by the

confluent hypergeometric function. The hydrogen continuum state can then be written as

ψ−
ke
(r) =

eiker

(2π)
3
2
∑
l,m

Dl,ke
(r)Y m∗

l (r̂)Y m
l (k̂e), (15)

where the radial factors [39]

Dl,ke
(r) = 4πe

π
2ke

Γ
(

1+ i
ke

)
Γ
(

l − i
ke

)
(−i)l

Γ
(
− i

ke

)
Γ(l +1)(2l+1)!!

(ker)l
1F1

(
l− i

ke
,2l+2;−2iker

)
(16)

are complex functions. Fiori and Miraglia [26] proposed to follow this second path and found that

taking lmax = 8 provides a sufficient accuracy in the calculation of hydrogen ionization by proton

impact in a given energy range. If both Dl,ke
(r) and the radial part of φi are represented by Gaussian

combinations, then the transition matrix integral becomes analytical.

We should first shed light on the behavior of the radial Dl,ke
(r) functions which, supposedly
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without strong oscillations [26], should be easier to represent through a Gaussian set. Actually they

are smooth only for low l. Functions with large values of l manifest non negligible oscillations as

illustrated by Figure 4 which shows the behavior of D1,ke
(r) and D7,ke

(r) for ke = 1.75. While the

small l case can be easily represented with Gaussians, the oscillations of the large l case result to be

very difficult to reproduce. This l dependence is even more pronounced for larger ke values. On the

other hand, it is known that the first partial terms are generally those contributing the most to the

continuum wavefunction. Consequently, the efficiency of the Gaussian fitting approach depends on

the physical application under consideration and on the number of partial waves needed to achieve

an overall acceptable accuracy.

To compare real and complex Gaussians, we use the strategy presented in section 2.1 for 9

different sets of distortion functions, Dl : {Dl,ke1
,Dl,ke2

, . . . ,Dl,ke5
} for l = 0,1, . . . ,8. In each set

we consider 5 functions corresponding to keη = 0.25+ 0.75(η − 1). The fitting is performed up

to r = 20 and we set the parameter g = 18 in eq. (3). Concerning the fitting with real Gaus-

sians, for a given l we optimize {ℜ
(
Dl,ke1

)
,ℜ
(
Dl,ke2

)
, . . . ,ℜ

(
Dl,ke5

)
} using 20 real Gaussians

and {ℑ
(
Dl,ke1

)
,ℑ
(
Dl,ke2

)
, . . . ,ℑ

(
Dl,ke5

)
} with 20 other real Gaussians. On the other hand, in the

complex case we use 20 complex Gaussians to fit the set Dl . In order to somehow take into account

the rl behavior of Dl,ke
(r) close to r = 0, we add a rγl factor in the Gaussian expansion,

Dl,ke
(r) = rγl ∑

s

[cs]l,ke
exp
(
− [αs]l r2

)
(17)

where γ0 = 0 and γl = 1 for l > 0. We use γl = 1 instead of γl = l as a compromise that gives

the vanishing behavior close to r = 0 for l > 0 while avoiding error amplifications at large radial

distances for large values of l. Figure 5 shows the hydrogen continuum state at two energies

ke2 = 1 and ke4 = 2.5, calculated using eq. (15) up to lmax = 8, for an angle (r̂, k̂e) = 0, and with

Dl,ke
(r) represented by either real or complex Gaussians using eq. (17). The corresponding error

on the fitting is also shown. For small energies the errors corresponding to the complex fitting are

smaller. For large energies this advantage is lost since the partial waves with high order l & 3 can

not be reproduced accurately either by real or by complex Gaussians. Nevertheless the continuum

wavefunction is overall well reproduced with both options because the first few terms − which

contribute the most to ψ−
ke

− are sufficiently well fitted. In summary, with expansion (15) the
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Figure 5: Real (left panels) and imaginary (right panels) part of the hydrogen continuum states

ψ−
ke
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fitting difficulties due to oscillations are not completely removed as suggested in [26] and we should

remain aware of this weakness depending on the application. In the numerical illustration presented

hereafter, the difficulty appears only in partial wave terms that do not contribute substantially and

therefore do not affect the overall cross section calculation.

Let us now turn to the calculation of the atomic form factor (13) employing Gaussian expan-

sion (17). The bound radial function of eq. (11) is also represented with either real or complex

Gaussians:

Rnili(r) = ∑
t

bte
−βtr

2

. (18)

Using expansions (15), (17) and (18), the form factor becomes:

Fike
(q) =

1

(2π)
3
2
∑
l,m

Y m∗
l (k̂e)∑

s,t

[cs]
∗
l,ke

bt

∫
drrγl eiQre−([αs]

∗
l +βt)r2

Y
mi

li
(r̂)Y m

l (r̂), (19)

where Q = q−ke is the momentum of the hydrogen ion after the collision. To separate angular

and radial variables we use the Rayleigh expansion:

eiQr = 4π ∑
λ ,µ

iλ jλ (Qr)Y
µ∗

λ
(Q̂)Y

µ
λ
(r̂), (20)

where jλ are the spherical Bessel functions. Therefore, in eq. (19) we have an integral over 3

spherical harmonics multiplied by the following radial integral,

I rad =

∫ ∞

0
dr r2+γl e−([αs]

∗
l +βt)r2

jλ (Qr) (21)

which can be calculated analytically (eq. 6.6.31 of [40]):

I rad =

√
π

4

(
Q
2

)λ
Γ
(

λ+γl+3
2

)

Γ
(
λ + 3

2

)
(
[αs]

∗
l +βt

)− λ+γl+3

2
1F1

(
λ + γl +3

2
,λ +

3

2
;

−Q2

4
(
[αs]

∗
l +βt

)
)

. (22)

Finally the form factor (19) can be written as

Fike
(q) =

√
2li +1

32π ∑
l

√
2l +1

l+li

∑
λ=|l−li|

(
iQ
2

)λ
Γ
(

λ+γl+3
2

)

Γ
(
λ + 3

2

)
√

2λ +1S rad
l,λ S ang

l,λ , (23)
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where

S rad
l,λ = ∑

s,t

[cs]
∗
l,ke

bt

(
[αs]

∗
l +βt

)− λ+γl+3

2
1F1

(
λ + γl +3

2
,λ +

3

2
;

−Q2

4
(
[αs]

∗
l +βt

)
)

(24)

and

S ang

l,λ =


 l li λ

0 0 0




l

∑
m=−l


 l li λ

m mi −m−mi


Y m∗

l (k̂e)Y
−(m+mi)∗
λ

(Q̂) (25)

where


 j1 j2 j3

m1 m2 m3


 denote the 3 j Wigner coefficients. Assuming that the hydrogen target is

in its ground state 1s, it is possible to compare to the exact atomic factor [41]:

F1ske
(q) =

2
√

2e
π

2ke Γ
(

1− i
ke

)

π(1+Q2)2U
i

ke

[(
1− i

ke

)
+

ke + i

keU

]
, (26)

where

U=
q2 − (ke + i)2

1+Q2
. (27)

The triple differential cross section (TDCS) is defined as:

d3σ

dΩsdΩedEe
=

1

4π2

kske

ki
|T1ske

(q)|2, (28)

with Ee = k2
e/2 the energy of the ejected electron. Ωe and Ωs are the solid angles for the ejected

and the scattered electron, respectively. We have calculated the TDCS for coplanar geometry at

Ei = k2
i /2 = 250 eV and scattering angle of 3◦ for ke = 0.25, 1.00 and 1.75, with either real or

complex Gaussian expansions. Both results, shown in Figure 6, are very close to the exact values

given by eq. (26), and display a similar accuracy. As discussed before, this can be related to the fact

that the first partial functions Dl,ke
(r) (making the largest contribution to the TDCS) are relatively

smooth and can be well reproduced by both real and complex Gaussians with an equal precision.

The very good reproduction of the exact cross section is also due to the presence of a fast decaying

initial state (e−r) so that any error from outside the fitting box will not affect the correct evaluation

of the matrix element (see discussion in section 2).

Other scattering quantities can be tested. For example, by integrating over the solid angle of
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Figure 6: Upper panels: Triple differential cross section (TDCS) for the ionization of a hydrogen

atom in the ground state by a 250 eV electron, in coplanar geometry, with a scattering angle of 3◦

and for ejected electron momentum ke = 0.25, 1.00, or 1.75 a.u.: Solid curves represent the exact

analytical TDCS computed with eq. (26), and dotted/dashed curves represent the TDCS calculated

with either real Gaussians (rG) or complex Gaussians (cG). The corresponding absolute error is

shown in the bottom panels.

the scattered electron, one can define a doubly differential cross section (DDCS)

d2σ

dEedΩe
=

∫
d3σ

dΩsdΩedEe
dΩs. (29)

The integration of the TDCS (28) is to be performed numerically from either the closed form of the

form factor (Eq. (26) and (27)) or its partial expansion (Eq. (23), (24) and (25)) up to lmax terms that

make use of the Gaussian representation. As an illustration, in figure (7) we show the results as a

function of the ejected energy Ee = k2
e/2, for an incident energy Ei = 250 eV, a coplanar geometry

and the ejected angle fixed at θe = 0. We clearly observe that with lmax = 8 in the continuum state

representation, the expected cross section is recovered (with an error of less than 1 percent).

3.2 Photoionization

We now consider a hydrogen atom in the initial state φi illuminated by a photon of energy Eγ =

k2
e/2+Vion, where Vion is the energy needed to ionize the target. This photon interacts with the atom

leading to an ion and a photo-electron of energy Eke
= k2

e/2. The photoionization cross section is
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defined as [42]

σ =
4π2keEγ

c

1

2li +1
∑
mi

∫
dΩke

|Tike
|2 , (30)

where c is the speed of light in vacuum and Ωke
is the solid angle of the ejected photo-electron. In

the length gauge and the dipole approximation the transition matrix element is given by

Tike
= 〈ψ−

ke
(r)|− ε̂ · r|φi(r)〉, (31)

where ε̂ defines the polarization direction. Here we expand the hydrogen continuum wavefunc-

tion (10) in the standard way; expansion (14) presents the advantage that selection rules reduce

the summation over l to just l = li − 1 and l = li + 1. In contrast, when using expansion (15),

converged photoionization calculations require many partial terms in order to cover large physical

distances. For example we found that for a 1s hydrogen target, about 10 partial terms Dl,ke
(r) are

needed to achieve a relative error of the order 0.01, and one has to consider ≈ 30 partial terms to

reach a similar accuracy if the hydrogen is initially in the radially more extended 2s state. With

expansion (14), only two partial terms appear in both 1s and 2s cases.

The calculation of transition matrix elements (31) involves two integrals:

J ang =

∫
Y m∗

l (r̂)Y 0
1 (r̂)Y

mi

li
(r̂)dΩr, (32)

and

J rad
l =

∫ ∞

0
Fl,ke

(r)Rnili(r)r2 dr. (33)

The angular integral J ang imposes the selection rules l = li ±1 and m = mi. The radial function

Rnili(r) is fitted by real Gaussians as in eq. (18), and the functions Fl,ke
(r) are written as

Fli±1,ke
(r) = ∑

s

[cs]li±1,ke
exp(−[αs]li±1r2). (34)

with the different Gaussian parameters optimized to fit the E set, given in Table 1. Using these

Gaussian representations, the radial integral becomes

J rad
li±1 =

√
π

4
∑
s,t

[cs]li±1,ke
bt([αs]li±1 +βt)

− 3
2 . (35)
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Figure 8: Hydrogen photo-ionization cross section (in Mb) in terms of photo-electron wavenumber

(in a.u.). The hydrogen atom is initially in the 1s state (upper panels), and in the 2s state (bottom

panels). Black crosses, green circles and blue squares refer respectively to cross sections computed

with real Gaussians with Powell, real Gaussians with BOBYQA by imposing reduced bounds, and

complex Gaussians with BOBYQA. On the right panels, the histograms show the corresponding

relative errors on the cross section computed with Gaussians.

After summation over the magnetic numbers mi, the cross section can be simply expressed as:

σ =
8π Eγ

3(2li +1)ke c

[
li

(
J rad

li−1

)2

+(li +1)
(
J rad

li+1

)2

]
(36)

For a hydrogen target initially in a ns state the cross section calculation involves only the l = 1

partial function (5) which is expanded using the different Gaussian sets optimized to fit the E set

given in section 2.

Figure 8 shows the photoionization cross section as a function of the photo-electron wavenum-

ber ke for initial states 1s or 2s, calculated with real Gaussians optimized using Powell (rG POW-

ELL), real Gaussians optimized using BOBYQA with reduced bounds (rG BOBYQA RB), com-
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plex Gaussians optimized using BOBYQA (cG BOBYQA) and the exact results given by [43]:

σ1s =
25π2e

−4
arctan(ke)

ke

3cE4
γ

(
1− e

−2 π
ke

) , (37)

and

σ2s =
π2
(

8+ 3
Eγ

)
e
−4

arctan(2ke)
ke

6cE4
γ

(
1− e

−2 π
ke

) . (38)

The corresponding relative errors are plotted in a histogram. The results are consistent with the

quality of the fitting detailed in section 2. Concerning H(1s), there is no important difference

between the different Gaussian basis sets except for the largest energy, ke = 1.75 where the rG

POWELL method fails. As explained in section 2, this is due to large deviations outside the fitting

box. For H(2s) the calculation with rG POWELL completely fails except for the small energy case

ke = 0.50. The calculation with rG BOBYQA RB gives a small relative error at low energies, but

fails above ke = 1.25. Only the cG BOBYQA choice achieves a very good accuracy in both 1s and

2s cases for all energies. These photoionisation cross section calculations demonstrate that care

must be taken when using Gaussian expansions for continuum states, especially at higher energies

and if they appear in matrix elements whose integrands extend on a large radial domain. For these

delicate cases, complex Gaussians are clearly superior to their real counterpart.

4 Conclusions

In this work we applied a full nonlinear optimization to represent oscillating functions with both

real and complex Gaussians by using a least square approach in combination with a quadratic

approximation method. We have shown that real Gaussians may be sufficient to correctly span the

space of functions within the fitting box, however they behave erroneously outside with sometimes

very large errors due to diverging coefficients. Real Gaussian representation of continuum radial

functions can nevertheless be used in ionization integrals if the decay factor associated with the

bound state decreases fast enough to compensate this weakness. This may not be the case for highly

excited states. Imposing a constraint on the Gaussian exponents reduces the error magnitude at

small energies but it also reduces the fitting accuracy in the box and does not resolve the problem of
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ill-conditioned coefficients. On the other hand, complex Gaussians have an intrinsically oscillating

behavior and are clearly more appropriate to fit bound functions that spread over large distances

(highly excited or Rydberg states) and scattering functions.

As an illustrative application, we have used the regular Coulomb wavefunctions fitted by Gaus-

sians in hydrogen ionization problems. The accuracy of cross sections reproduced with complex

Gaussians is as good as that obtained with real Gaussians at small energies while it is clearly su-

perior at large energies, where real Gaussians fail completely. The application also allowed us to

show the advantage provided by an all-Gaussian approach: the matrix elements can be evaluated

analytically once all involved functions, bound and continuum, are expanded in real or complex

Gaussians. In the present work we considered pure Coulomb continuum functions but our numeri-

cal strategy can be applied in the same manner to any one-center distorted wavefunctions generated

analytically or numerically. We have already successfully tested the complex Gaussian representa-

tion of positive energy generalized Sturmian functions [44]; with an adequately chosen asymptotic

behavior, the latter can be used as an efficient basis to expand any distorted wave and thus to study

collision problems.

Extension to more complicated situations, including many-electron atoms and those molecules

that can be described successfully with one-center expansions, do not present any additional tech-

nical difficulties. Going beyond scattering from a central potential, electron-electron integrals can

be treated within a multipolar approach, and dealing with the ensuing integrals is part of our cur-

rent investigations. Work is also ongoing to extend our proposal to study ionization processes with

molecular targets, and thus to deal with multicenter integrals. For molecules the initial electronic

wavefunctions are often already calculated in Gaussian bases. The representation of continuum

states by Gaussians, even with complex exponents, should provide a way to simplify some of the

multidimensional numerical integrations needed in scattering calculations. The use of the Gaussian

product theorem will lead to some meaningless complex centers. These, however, do not lead to

mathematical obstacles that cannot be dealt with as indicated in the work of Kuang and Lin [34,35].
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