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Temperature Accelerated Sliced Sampling (TASS) is an efficient method to compute high
dimensional free energy landscapes. The original TASS method employs the Weighted His-
togram Analysis Method (WHAM) which is an iterative post-processing to reweight and
stitch high dimensional probability distributions in sliced windows that are obtained in the
presence of restraining biases. The WHAM necessitates that TASS windows lie close to each
other for proper overlap of distributions and span the collective variable space of interest. On
the other hand, increase in number of TASS windows implies more number of simulations,
and thus it affects the efficiency of the method. To overcome this problem, we propose herein
a new mean-force (MF) based reweighting scheme called TASS-MF, which enables accurate
computation with a fewer number of windows devoid of the WHAM post-processing. Appli-
cation of the technique is demonstrated for alanine di- and tripeptides in vacuo to compute
their two- and four-dimensional free energy landscapes, the latter of which is formidable in
conventional umbrella sampling and metadynamics. The landscapes are computed within a
kcal mol−1 accuracy, ensuring a safe usage for broad applications in computational chemistry.

I. INTRODUCTION

Free energy barriers, and free energy difference be-
tween reactants and products, are the two thermody-
namic quantities of interest in predicting the spontaneity
and kinetics of the chemical reactions and other physio-
chemical transformations. In this respect, computing
free energy landscape of such processes as a function of
few collective variables (CVs) is a commonly employed
strategy.1–8 Molecular Dynamics (MD) combined with
enhanced sampling techniques are widely used for this
purpose. Enhanced sampling methods are essential to
accelerate the transitions from one free energy basin to
another. Accelerating CVs by bias potentials9–12 and
high-temperature2,13–15 are some of strategies proposed
for this purpose. Alternative approaches include acceler-
ating the system dynamics by flattening the underlying
potential energy landscape by bias potentials, replica–
exchange based global-tempering and other generalized
ensemble methods.2,16–25

One of the simplest approaches that employ biased
sampling of CVs is Umbrella Sampling (US).9,26 Here
a bias potential,

W b
h (s) =

1

2
k [s(R)− ξh]

2
, h = 1, · · · ,M , (1)

is applied to restrain the CV s(R) at M discrete values
{ξh}. In the above, R is the set of atomic coordinates,
and k is the coupling constant. Biased canonical proba-
bility distribution of s obtained for each umbrella window
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is given as,

P̃h(s′) =
1

Z̃

∫
dR e−β[U(R)+Wb

h (s)] δ (s(R)− s′)

≡ 〈δ (s(R)− s′)〉Wb
h

(2)

where

Z̃ =

∫
dR e−β[U(R)+Wb

h (s)] ,

U is the potential energy, β = (kBT )
−1

, kB is the Boltz-
mann constant, and T is the temperature. In the above
〈· · · 〉Wb

h
specifies the ensemble average in the presence of

the bias W b
h . The Weighted Histogram Analysis Method

(WHAM)27,28 is then employed to combine the biased
probability distributions and reweight them to obtain fi-
nal (unbiased) distribution P (s). In WHAM, this is done
by computing

P (s) =

∑M
h=1 nhP̃h(s)∑M

h=1 nhgh exp [−β̃W b
h(s)]

(3)

where,

g−1h =

∫
ds exp [−β̃W b

h (s)]P (s)

is unknown. An iterative procedure is employed, where
the iteration begins with gh = 1, and improved at every
step based on the P (s) computed in the previous step.
For the correct convergence of P (s), a proper overlap of

P̃h(s) with its neighboring distributions is essential. It

is to be noted that the width of the distribution P̃h(s)
depends on the value of k; Higher the value of k, more
accurate will be the free energy estimate. On the other
hand, increasing the value of k will make the distribu-
tion narrower, and thereby the extent of overlap between
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the neighboring distributions will become smaller. As
a result, more umbrella windows have to be used with
high values of k for obtaining accurate results. Further,
when dealing with high dimensional CV-space, long MD
simulations are required to achieve sufficient overlap of
distributions. Due to this limitation, US is often used
to explore only a one-dimensional or a part of a two-
dimensional CV-space.

Several techniques were proposed to improve the lim-
itations of US.26,29–34 Temperature Accelerated Sliced
Sampling (TASS) method7,33 extends the US method to
high dimensions by combining it with temperature ac-
celerated molecular dynamics (TAMD)/driven adiabatic
free energy dynamics (d-AFED)14,15,35 and metadynam-
ics11 methods. TASS uses the extended Lagrangian,

Lh(R, Ṙ, z, ż) = L0(R, Ṙ) +
n∑
α=1

[
1

2
µαż

2
α +

κα
2

(sα(R)− zα)2
]
−

W b
h (z1)− V b(z, t),

h = 1, · · · ,M, (4)

where L0 is the original Lagrangian of the system, µα is
the mass of the auxiliary degree of freedom zα, and κα is
the restraining force of the spring that couples the zα and
the corresponding CV sα. Two kinds of bias potentials
W b
h (z1) and V b(z, t), are added on the auxiliary degrees

of freedom. The bias W b
h (z1) is the umbrella bias po-

tential given by Eqn. 1, acting on the auxiliary variable
z1. A metadynamics bias,11,36 V b(z, t) is applied along
a small set of auxiliary variables z ≡ (z2, · · · , zm), and
m ≤ n. The dimension of the auxiliary vector space z is
less than or equal to that of z. It is preferred to choose

V b(z, t) =
∑
τ<t

wτ exp

[
−{z− zτ}2

2(δz)2

]
(5)

with

wτ = ω0 exp

[
−V

b(zτ , τ)

kB∆T

]
, (6)

and zτ ≡ z(τ) as in well-tempered metadynamics (WT-
MTD).37,38 In the above, wτ is the height of the Gaussian
deposited at time τ , δz is the width of the Gaussian, and
∆T is a parameter. In TASS, the auxiliary variables
are thermostatted to T̃ K, while the physical system is
thermostatted to T K, with T̃ � T . Here we define, β̃ =(
kBT̃

)−1
and β = (kBT )

−1
. The probability distribution

for each TASS window h is first calculated as

P̃h(z′) =

∫
dtAh(t)

∏n
α δ (zα(t)− z′α)∫

dtAh(t)
(7)

where

Ah(t) = exp
[
β̃
{
V b
h (zt, t)− ch(t)

}]
(8)

and

c(t) =
1

β̃
ln

 ∫
dz exp

[
β̃γV b(z, t)

]
∫
dz exp

[
β̃(γ − 1)V b(z, t)

]
 . (9)

As next, high dimensional probability distribution P̃ (z)
is obtained by Eqn. 3. Free energy surface at temperature
T is obtained as

F (z) = − 1

β̃
ln P̃ (z) (10)

as in TAMD/d-AFED. The main advantage of TASS is
that a large number of collective variables can be used
by virtue of the temperature acceleration of the auxiliary
space. Umbrella bias provides a way to achieve a directed
or controlled sampling when used along an appropriate
CV. The method also permits to use different transverse
coordinates for different umbrella windows depending on
the requirement. This is possible as free energy slices are
independently computed in the corresponding windows.

However, reconstruction of free energy surfaces by
WHAM encounters problems when dealing with large
number of CVs for the reasons discussed earlier. In this
paper, we propose a way to reconstruct high dimensional
free energy surfaces in TASS simulations using a mean
force based method, and dispense the computationally
inefficient WHAM approach. Most importantly, the pro-
posed method does not involve an iterative scheme, un-
like WHAM. The new method is quite general, and is
applicable not only to TASS, but also to US and WT-
MTD simulations.

II. THEORY

Mean force based computation of free energies is
core to several techniques.10,39–43 Mean force based
reconstruction of free energy surfaces in the frame
work of extended Lagrangian has been reported ear-
lier for adaptive bias sampling (ABF)10,44–48, logarith-
mic mean-force dynamics24 TAMD/d-AFED, UFED and
metadynamics.42,49 Such techniques use the gradient of
the underlying free energy to compute free energy sur-
faces using thermodynamic integration as

F (z) =

∫ z

dz′
〈
dF

dz′

〉
. (11)

Such integration become tricky with increasing dimen-
sions. Using a basis set expansion42 and artificial neu-
ral network representation50 of free energy will be more
efficient approaches to overcome such issues to some ex-
tent. Here we present an alternative method that suits
the TASS approach, and is efficient for dealing with high
dimensions. We will utilize the advantages of employing
mean-forces to combine independently sampled probabil-
ity distributions (or free energy slices) by the TASS La-
grangian (Eqn. 4) to reconstruct high-dimensional free
energy surfaces. The challenge here is to reconstruct a
high-dimensional free energy landscape where the CVs
are differently biased.

First, we write the derivative of projected free energy,
F1(z1), along the auxiliary variable z1 in which the um-
brella bias is active.

F1(z1) = − 1

β̃
lnP1(z1) (12)
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where,

P1(z1) =

∫
dz2 · · · dzn e−β̃F (z1,··· ,zn) (13)

Since US bias is applied along z1, the force at z1 = ξh is

given by(
dF1

dz1

)
ξh

= −〈kh [z1 − ξh]〉ξh , h = 1, · · · ,M. (14)

Note that, other approach could be to compute the mean-
force on real CVs (i.e., s, and not the auxiliary coordi-
nates, z), as in Ref.42. Since a subset of the auxiliary
coordinates, z, is biased by time dependent metadynam-
ics potential in the TASS formalism, we can relate,

〈kh [z1 − ξh]〉ξh =

∫
dz
[
k
(
z1 − ξhh

)]
exp

[
β̃{V b(z, t)− c(t)}

]
∫
dz exp

[
β̃{V b(z, t)− c(t)}

] (15)

which in turn can be computed by the time average,∫
dtA(t)

[
k
(
z1 − ξhh

)]∫
dtA(t)

(16)

and the time dependent reweighting factor A(t) is given
by Eqn. 8. Employing these equations, we can compute
projected free energy F1 along z1 from a TASS simulation
as follows:

F1(z1) =

∫ z1

dz′1

(
dF1

dz′1

)

≈ −
M ′−1∑
h=1

∆ξh wh [gh + gh+1] (17)

where

gh = 〈kh [z1 − ξh]〉ξh . (18)

Here, M ′ is the grid index corresponding to the CV value
z1. This integral can be computed in a straight forward
manner using the trapezoidal rule, with ∆ξh = ξh+1−ξh,
and the integration weights wh = 1

2 for all the values of
h. We stress that the above equation reconstructs only
the projection of the free energy surface F (z) along the
US coordinate z1, i.e. F1(z1). Now, the multidimensional
free energy surface can related to F1(z1) as follows:

F (z1, · · · , zn) = − 1

β̃
ln
[
e−β̃F (z1,··· ,zn)

]
= − 1

β̃
ln

[
P1(z1)

P1(z1)
e−β̃F (z1,··· ,zn)

]
= − 1

β̃
lnP1(z1)− 1

β̃
ln
e−β̃F (z1,··· ,zn)

P1(z1)

= F1(z1)− 1

β̃
ln

e−β̃F (z1,··· ,zn)∫
dz2 · · · dzn e−β̃F (z1,··· ,zn)

= F1(z1)− 1

β̃
ln P̃z1(z2, · · · , zn)

= F1(z1) + ∆Fz1(z2, · · · , zn) (19)

where,

∆Fz1(z2, · · · , zn) = − 1

β̃
ln P̃z1(z2, · · · , zn) (20)

is the n − 1 dimensional slice of the free energy surface
at z1, and P̃z1 is the corresponding slice of the probabil-

ity distribution obtained at temperature T̃ K. We can use
the relationship in Eqn. 19 to reconstruct the high dimen-
sional free energy landscape, F (z) ≡ F (z1, z2, · · · , zn).
Since in TASS, time dependent bias acts along a subset
of the orthogonal CV space z2, · · · , zn, the reweighting
approach as discussed in Eqn. 7 has to be used for ob-
taining unbiased distribution P̃z1(z2, · · · , zn) by binning.
Interpolation schemes can be used to obtain free energy
values between the grid points ξ1, · · · , ξM along z1.

The procedure explained here does not require WHAM
for stitching the free energy slices together to obtain high
dimensional free energy surfaces. This approach which
uses the mean-force will be denoted as TASS-MF and
the WHAM based approach to reconstruct the TASS free
energy surfaces will be called TASS-WHAM, hereafter.

In practice, we perform the following steps in recon-
structing the high-dimensional free energy surface:

1. Perform TASS simulations for the windows h =
1, · · · ,M using the Lagrangian given in Eqn. 4.

2. Compute
{
V b
h

}
and {ch(t)}, for h = 1, · · · ,M .

3. From the trajectory of the auxiliary variables,
z1, · · · , zM , compute the one dimensional free en-
ergy profile F1(z1) using Eqn. 17.

4. Compute the high dimensional free energy slice for
z1 ∈ (ξ1, · · · , ξM ) using Eqn.20.

5. Reconstruct the high dimensional free energy sur-
face employing Eqn. 19.

III. RESULT AND DISCUSSION

A. Alanine Dipeptide in Vacuum

To demonstrate the accuracy of this method, free en-
ergy surface of alanine dipeptide in vacuo as a function
of Ramachandran angles (φ, ψ) was computed using var-
ious methods; see Fig. 1. The molecule was modelled
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by the ff14SB51 AMBER force field and MD simulations
were performed by using AMBER 1852 patched with the
PLUMED interface.53 The same set of calculations was
repeated using the PIMD code where the TASS method
has been implemented.54,55 The time step used for in-
tegrating the equations of motion is 1 fs. We performed
TASS simulations by applying umbrella bias along φ and
WTMTD bias along ψ. Three sets of TASS simulations
were executed by varying number of umbrella windows:
(a) 40; (b) 30; (c) 20. The umbrella restraints were
centered equal-distant in the domain φ ∈ (−π, π] and
k = 239 kcal mol−1 rad−2 was taken. For the Gaus-
sian bias (Eqn. 5), we chose w0 = 0.57 kcal mol−1,
δz = 0.05 rad, ∆T = 2700 K, and the bias was updated
every 500 fs. We took κ = 1258 kcal mol−1 rad−2 and
µ = 50 amu Å2 rad−2. Calculations were done at canon-
ical ensemble with T = 300 K, and an Langevin ther-
mostat having a frictional coefficient of 0.1 fs−1 was em-
ployed to control the temperature of the physical system.
We used T̃ = 1000 K for the extended system, and the
temperature of the extended variables was maintained
using a separate massive Langevin thermostat with a
frictional coefficient of 0.1 fs−1. For each window, we
performed 20 ns long production run. As reference free
energy data, we performed a conventional WTMTD sim-
ulation for 100 ns, where the coordinates φ and ψ were
biased using a two-dimensional Gaussian bias-potential
(as in Eqn. 5). We used ∆T = 1500 K, otherwise all the
metadynamics parameters were the same as that in the
TASS simulations.

In Figure 1(b-e), we have presented the free en-
ergy surfaces using WTMTD, TASS with WHAM
based reweighting with equidistant 40 umbrella windows
(TASS-WHAM (40)), and the new method presented
here, i.e., using the mean-force (TASS-MF). TASS-MF
reweighting was carried out with 40, 30 and 20 equidis-
tant windows, and they are indicated as TASS-MF
(40), TASS-MF (30), and TASS-MF (20), respectively.
Clearly, the positions of the minima and saddles are ex-
actly identical in all the landscapes; See Fig 1(b)-(e).
A quantitative comparison of the free energy barriers
on the F (φ, ψ) surface was carried out for WTMTD,
TASS-WHAM, TASS-MF simulations; see Table I. In the
WTMTD simulations, free energy barriers A → B and
B → A were converged to 9.7 and 8.0 kcal mol−1, re-
spectively; See Appendix B for convergence study. The
same computed from TASS-WHAM converged to 9.4 and
7.8 kcal mol−1 in 20 ns per window; see also Appendix
B. The differences between the free energy barriers from
the two simulations are less than 1 kcal mol−1. Of great
importance, the barriers computed from TASS-MF (40)
with the same TASS windows agree well with the TASS-
WHAM (40) data. The errors in the free energy barriers
using TASS-MF (30), and TASS-MF (20) are also less
than 1 kcal mol−1. Further, the L2 errors (Appendix A),
computed by taking the WTMTD free energy surface as
the reference were found to be less than 0.6 kcal mol−1.
It is to be noted that WHAM will not converge well with
30 and 20 umbrella windows.

FIG. 1. (a) Ball and stick representation of alanine dipep-
tide. φ and ψ are the Ramachandran angles, specifically the
torsional angle between atoms C-N-Cα-C and N-Cα-C-N, re-
spectively, as shown in the figure. Color code: H (white), C
(black), O(red), and N (blue). The free energy surface re-
constructed in the (φ, ψ)-space computed from (b) WTMTD
(100 ns), and (c) TASS-WHAM with 40 equidistant windows
are used as the reference data. The same computed using
TASS-MF with 20 and 40 equidistant windows are shown in
the subfigures (d), and (e). The contours are drawn for every
1 kcal mol−1

Method
∆F ‡ (kcal mol−1)

L2error (kcal mol−1)
A → B B → A

WTMTD 9.7 8.0 0.0
TASS-WHAM 9.4 7.8 0.4
TASS-MF (40) 9.7 7.9 0.5
TASS-MF (30) 9.6 7.8 0.4
TASS-MF (20) 8.9 7.1 0.6

TABLE I. Free energy barriers (∆F ‡) for the transitions A
→ B and B → A computed from various methods. L2error
was calculated by taking WTMTD as reference.

B. Alanine tripeptide

To demonstrate the application of the method to high-
dimensional free energy landscapes, we reconstructed the
four dimensional free energy landscape of alanine tripep-
tide in vacuo as a function of four Ramachandran angles
(φ1, ψ1, φ2, ψ2); see Fig. 2(a). We note that the four-
dimensional free energy surface was available in our cal-
culation from TASS but not from WTMTD, since the lat-
ter was computationally prohibitive. Here, umbrella bias
was applied along φ1, metadynamics bias was applied
along φ2, while all the four CVs were enhanced sampled
at high temperature as per the TASS formalism. Equi-
libration run for each window was carried out for about



5

1 ns followed by 40 ns of production run. All the parame-
ters and simulation details for the TASS simulation were
kept the same as in the case of alanine dipeptide except
that µ was taken as 450 amu Å2 rad−2. After carrying
out the TASS simulation with four CVs (φ1, ψ1, φ2, ψ2)
the reconstructed four-dimensional free energy was pro-
jected along (φ1, φ2), (φ1, ψ1) and (φ2, ψ2) spaces; see
Figs. 2(b)-(e), 3, and 4. The performance of TASS-
WHAM with 40 umbrella windows was compared with
TASS-MF with 40, 30, and 20 windows. The comparison
of the free energy barriers on the F (φ1, φ2), F (φ1, ψ1),
and F (φ2, ψ2) surfaces, computed from TASS-WHAM
and TASS-MF simulations, are presented in Tables II.
The difference in the free energy barriers computed from
TASS-WHAM (40) and TASS-MF (40) is not greater
than 0.2 kcal mol−1. Free energy barriers computed from
TASS-MF using 40, 30, and 20 windows are agreeing
within an acceptable margin of 1 kcal mol−1. The L2

errors in the F (φ1, φ2) estimates by the TASS-MF cal-
culations (by taking TASS-WHAM as the reference) are
also less than or equal to 0.5 kcal mol−1, and the highest
error was observed for TASS-MF (20).

FIG. 2. (a) Ball and stick representation of alanine tripeptide.
The free energy surface reconstructed in the (φ1, φ2)-space
computed from (b) WHAM-40 can be compared with those
using the TASS-MF method with 40 (c), 30 (d), and 20 (e)
equidistant windows. The contours are drawn for every 1 kcal
mol−1.

IV. CONCLUSIONS

An efficient as well as computationally straightforward
reweighing scheme for TASS is presented here. In this
approach the high-dimensional free energy estimate is di-
vided into two parts, in which the first part contains the
free energy projected along the umbrella sampling coordi-

FIG. 3. (a) The free energy surfaces F (φ1, ψ1) computed
from TASS-WHAM with 40 equidistant windows is presented
together with the same computed using TASS-MF with 40
(b), 30 (c) and 20 (d) equidistant windows. The contours are
drawn for every 1 kcal mol−1.

FIG. 4. (a) The free energy surfaces F (φ2, ψ2) computed
from TASS-WHAM with 40 equidistant windows is presented
together with the same computed using TASS-MF with 40
(b), 30 (c) and 20 (d) equidistant windows. The contours are
drawn for every 1 kcal mol−1.

nate, while the second term is the low-dimensional slice of
the free energy surface. We show that the first term can
be directly computed by integrating the reweighted mean
force acting along the umbrella coordinate at the equi-
librium position of the umbrella potential, whereas the
second term can be obtained by binning and reweight-
ing. The advantage of the new method is that WHAM
iteration can be completely avoided in order to combine
free energy slices. We demonstrated the accuracy of the
method by reconstructing the free energy surfaces of ala-
nine dipeptide and alanine tripeptide systems. The sur-
faces were computed accurately even with half the num-
ber of umbrella windows, with a maximum difference
in free energy barriers not beyond than 0.5 kcal mol−1

compared to that of TASS-WHAM. As the TASS-MF
method proposed here permits us to perform reconstruc-
tion of high-dimensional free energy surfaces with much
less number of umbrella windows, the method improves
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Method
∆F ‡ (kcal mol−1)

L2error (kcal mol−1)
P → Q Q → P R → Q Q → R M → N N → M M′ → N′ N′ → M′

TASS-WHAM (40) 6.6 8.9 6.7 8.5 7.4 6.6 9.1 7.7 0.0
TASS-MF (40) 6.6 8.9 6.7 8.3 7.2 6.6 9.0 7.6 0.1
TASS-MF (30) 6.7 8.7 6.5 8.1 7.5 6.7 9.0 7.8 0.4
TASS-MF (20) 6.7 8.7 6.3 7.8 6.9 6.1 8.9 7.4 0.5

TABLE II. Free energies barriers (∆F ‡) for P → Q, Q → P, R → Q, and Q → R in (φ1, φ2) space, M → N, N → M in
(φ1,ψ1) space, M′ → N′, and N′ → M′ in (φ2,ψ2) space computed from various methods. L2error was calculated for F (φ1, φ2)
by taking TASS-WHAM (40) as reference.

the efficiency of the TASS simulations.
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Appendix A: Calculation of Least Square Error: L2error42

L2error =

√√√√ 1

N

N∑
i

[F (zi)− Fref(zi)]2 (A1)

Here, N is the total number of the grid points, F (zi) is
the value of computed free energy for various methods
and Fref(zi) is the value of reference free energy at ith

grid.

Appendix B: Convergence of Free Energy Barriers: Alanine
Dipeptide In Vaccuo
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48A. Lesage, T. Lelièvre, G. Stoltz, and J. Hénin, J. Phys. Chem.
B 121, 3676 (2017).

49M. A. Cuendet and M. E. Tuckerman, J. Chem. Theory Comput.
10, 2975 (2014).

50E. Schneider, L. Dai, R. Q. Topper, C. Drechsel-Grau, and M. E.
Tuckerman, Phys. Rev. Lett. 119, 150601 (2017).

51J. A. Maier, C. Martinez, K. Kasavajhala, L. Wickstrom, K. E.
Hauser, and C. Simmerling, J. Chem. Theory Comput. 11, 3696
(2015).

52D. A. Case, I. Y. Ben-Shalom, S. R. Brozell, D. S. Cerutti, T. E.
Cheatham, III, V. W. D. Cruzeiro, T. A. Darden, R. E. Duke,
D. Ghoreishi, M. K. Gilson, H. Gohlke, A. W. Goetz, D. Greene,
R. Harris, N. Homeyer, Y. Huang, S. Izadi, A. Kovalenko,
T. Kurtzman, T. S. Lee, S. LeGrand, P. Li, C. Lin, J. Liu,
T. Luchko, R. Luo, D. J. Mermelstein, K. M. Merz, Y. Miao,
G. Monard, C. Nguyen, H. Nguyen, I. Omelyan, A. Onufriev,
F. Pan, R. Qi, D. R. Roe, A. Roitberg, C. Sagui, S. Schott-
Verdugo, J. Shen, C. L. Simmerling, J. Smith, R. Salomon-Ferrer,
J. Swails, R. C. Walker, J. Wang, H. Wei, R. M. Wolf, X. Wu,
L. Xiao, D. M. York, and P. A. Kollman, AMBER 2018 (Uni-
versity of California, San Francisco, 2018).

53M. Bonomi, D. Branduardi, G. Bussi, C. Camilloni, D. Provasi,
P. Raiteri, D. Donadio, F. Marinelli, F. Pietrucci, R. A. Broaglia,
and M. Parrinello, Comput. Phys. Commun. 180, 1961 (2009).

54S. Ruiz-Barragan, K. Ishimura, and M. Shiga, Chemical Physics
Letters 646, 130 (2016).

55M. Shiga, PIMD version 2.4.0 (2020),
https://ccse.jaea.go.jp/software/PIMD/index.en.html.

http://dx.doi.org/10.1021/ct300978b
http://dx.doi.org/10.1021/ct300978b
http://dx.doi.org/10.1063/1.2052648
http://dx.doi.org/10.1021/acs.jctc.7b00252
http://dx.doi.org/10.1021/acs.jctc.7b00252
http://dx.doi.org/ 10.1021/acs.jpcb.6b10055
http://dx.doi.org/ 10.1021/acs.jpcb.6b10055
http://dx.doi.org/ 10.1103/PhysRevLett.119.150601
http://dx.doi.org/ https://ccse.jaea.go.jp/software/PIMD/index.en.html
http://dx.doi.org/ https://ccse.jaea.go.jp/software/PIMD/index.en.html

	Mean Force Based Temperature Accelerated Sliced Sampling: Efficient Reconstruction of High Dimensional Free Energy Landscapes 
	Abstract
	I Introduction
	II Theory
	III Result and Discussion
	A Alanine Dipeptide in Vacuum
	B Alanine tripeptide

	IV Conclusions
	 Acknowledgments
	A Calculation of Least Square Error: L2 error Tuckerman:2012
	B Convergence of Free Energy Barriers: Alanine Dipeptide In Vaccuo


