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ABSTRACT 

Explicit treatment of electronic polarizability in empirical force fields (FFs) represents an extension 
over a traditional additive or pairwise FF and provides a more realistic model of the variations in 
electronic structure in condensed phase, macromolecular simulations. To facilitate utilization of 
the polarizable FF based on the classical Drude oscillator model, Drude Prepper has been 
developed in CHARMM-GUI. Drude Prepper ingests additive CHARMM protein structures file 
(PSF) and pre-equilibrated coordinates in CHARMM, PDB, or NAMD format, from which the 
molecular components of the system are identified. These include all residues and patches 
connecting those residues along with water, ions, and other solute molecules. This information is 
then used to construct the Drude FF-based PSF using molecular generation capabilities in 
CHARMM, followed by minimization and equilibration. In addition, inputs are generated for 
molecular dynamics (MD) simulations using CHARMM, GROMACS, NAMD, and OpenMM. 
Validation of the Drude Prepper protocol and inputs is performed through conversion and MD 
simulations of various heterogeneous systems that include proteins, nucleic acids, lipids, 
polysaccharides, and atomic ions using the aforementioned simulation packages. Stable 

simulations are obtained in all studied systems, including 5 s simulation of ubiquitin, verifying 
the integrity of the generated Drude PSFs. In addition, the ability of the Drude FF to model 
variations in electronic structure is shown through dipole moment analysis in selected systems. 
The capabilities and availability of Drude Prepper in CHARMM-GUI is anticipated to greatly 
facilitate the application of the Drude FF to a range of condensed phase, macromolecular 
systems. 
  



INTRODUCTION 

Molecular simulations based on empirical force fields (FFs) are widespread and applied to a wide 
range of chemical, biological, and pharmacological systems. The increase in the number of 
systems subjected to molecular simulations is associated with a number of driving forces from 
both the experimental and computational sides. Experimentally, X-ray crystallography, NMR, and, 
more recently, cryogenic electron microscopy (cryo-EM) are producing an ever increasing number 
of 3-dimensional structures of a range of macromolecules that can be starting points for molecular 
simulations.1 Moreover, solution techniques such as X-ray and neutron scattering, Förster 
resonance energy transfer (FRET), and other single-molecule experiments yield observables for 
which molecular simulations offer the potential of producing an atomic level interpretation.2-4 In 
addition, the combination of quantum mechanical or machine learning models in conjunction with 
molecular mechanics (QM/MM or ML/MM) methods offers the ability to understand data from 
various kinetic experiments at an atomic and electronic level.5, 6 

Computational drivers leading to the increased use of molecular simulations include both 
hardware and software contributions. Ever increasing accessibility to multicore CPU and GPU 
technologies,7 as well as specialized simulation hardware8 allow for accessibility to more 
molecular systems for extended simulation times by a larger number of researchers including 
experimentalists interested in applying simulations to accentuate their experimental portfolios. 
Software developments include programs used for performing simulations, tools for the 
preparation of simulation systems, algorithms to access larger timescales and ensembles, and 
the energy functions and FFs used in the molecular simulations. Simulation programs undergoing 
developments to take advantage of ongoing changes in hardware include GROMACS,9 
GROMOS,10 CHARMM,11 AMBER,12 NAMD,13 GENESIS14, TINKER,15 OpenMM,16 and 
LAMMPS,17 among others. These programs include a range of advanced simulation algorithms 
including free energy methods and enhanced sampling approaches including temperature and 
Hamiltonian replica exchange methods and a wide collection of meta dynamics approaches, 
many of which are implemented in the PLUMED package.18 In the area of simulation system 
preparation, most commercially available software packages, such as MOE (Chemical Computing 
Group), Maestro (Schrödinger), and Discovery Studio (BIOVIA) include system preparation 
capabilities, while there are academic tools such as CHARMM-GUI and MDWeb,19 among others. 
In particular, CHARMM-GUI (https://www.charmm-gui.org), developed in the Im laboratory with 
contributions from a number of other groups, allows for the preparation of highly heterogeneous 
biomolecular systems and is recently expanding into non-traditional biological systems such as 
polymers and materials.20-26 

Essential to the accuracy of molecular simulations is the quality of empirical FFs from which the 
energies and/or forces driving the sampling of conformational space are obtained. In other words, 
the FF accuracy, in the limit of full sampling of the partition function, dictates the quality and utility 
of the simulation outcomes. In the context of biological and pharmacological systems, a number 
of additive or pairwise FFs are available, including AMBER,27-31 CHARMM,32-37 OPLS,38-40 and 
GROMOS,41-43 among others. These FFs dominate the molecular simulation landscape due to 
their computational efficiency with a satisfactory level of accuracy. While these FFs continue to 
undergo improvements, there is evidence that inherent limitations in the underlying potential 
energy function, notably the additive approximation for the treatment of electrostatic interactions, 
ultimately place an upper limit in their accuracy44-47 with recent examples being the treatment of 
disordered proteins.48, 49  

To overcome these limitations, FFs that explicitly include the treatment of electronic polarization 
have been introduced and are now starting to be more widely used in application studies. Methods 
used to treat polarizability include induced dipole,50-53 fluctuating charge,54-58 and classical Drude 
oscillator (or charge-on-spring) models.59-61 Of these, the AMOEBA52 and Drude polarizable FFs 

https://www.charmm-gui.org/


are the most comprehensive. The AMOEBA FF includes proteins,52 nucleic acids,53 and small 
molecules.62, 63 The Drude FF, developed in the MacKerell laboratory in collaboration with Roux 
and coworkers, includes nucleic acids,64, 65 lipids,66 proteins,67 carbohydrates,68-71 ions,72, 73 and 
organic molecules61 with halogens74 and methods to automate the prediction of electrostatic 
parameters using machine learning.75 In addition to the explicit treatment of polarizability, the 
Drude FF also accounts for the anisotropic features of hydrogen bond acceptors via the inclusion 
of virtual “lone pair” particles and a non-diagonal polarizability tensor. The accuracy of nonbonded 
interactions is improved through shielded short-range electrostatic interactions via Thole scaling76 
and the use of atom pair-specific Lennard-Jones parameters (e.g., NBFIX in CHARMM 
nomenclature).77 A particular advantage of the Drude model is the use of an explicit particle to 
treat the electronic degrees of freedom allowing for steric polarization effects to be modeled, a 
property that has been used to improve the treatment of Mg2+ and halogens.74, 78 The Drude model 
is computationally efficient, having only a 3-4 fold overhead over the additive model, such that 
molecular dynamics (MD) simulations up to and beyond 1 μs are possible.61, 79 This contrasts the 
AMOEBA polarizable FF, which is slower by over an order of magnitude.80, 81  

In this work, we describe Drude Prepper (https://www.charmm-gui.org/input/drude) in CHARMM-
GUI that provides molecular systems and input scripts for simulations using the Drude polarizable 
FF. Drude Prepper takes equilibrated systems prepared and simulated with the CHARMM 
additive FF as inputs and converts them for use with the Drude FF. Current capabilities detailed 
and validated in this paper include the necessary conversions of the coordinate and “protein 
structure files” (PSF) required for polarizable simulations, as well as inputs for MD simulations 
using CHARMM,82 NAMD,83 OpenMM,84 and GROMACS,85 all of which have been extended to 
treat the Drude FF and allow for MD simulations to be performed on a range of CPU and GPU 
platforms. It should be noted that the term “PSF” is historical in nature and that a PSF may be 
created for any class of molecule. The remainder of the paper describes the additive to Drude 
polarizable FF conversion algorithms and their application to a range of macromolecular systems. 
The latest versions of the CHARMM Drude polarizable FF can be obtained separately through 
MacKerell lab website (http://mackerell.umaryland.edu/charmm_ff.shtml). The Drude FF versions 
used for this study are summarized in Supporting Information Table S1. 

 

METHODS 

Conversion of Additive FF PSF to Drude FF PSF 

The foundation of the generation of molecules in CHARMM is based on a combination of desired 
residues and patches of chemical entities to build all necessary atom connectivity information 
(i.e., PSF) required for the energy and force calculations, as well as other molecular 
manipulations. Residues are the fundamental chemical entities such as amino acids, nucleotides, 
monosaccharides, and lipids. The patch capability in CHARMM is a unique tool that manipulates 
these residues. For example, there are patches to link amino acid residues or nucleotides to 
create polypeptides or oligonucleotides, respectively, and patches allow for a nearly endless 
collection of chemical modifications, including disulfide bonds, changes in protonation states, and 
chemical modifications of amino acids or nucleotides. In addition, patches can be used as 
molecular modeling tools such as adding covalent bonds between protein residues and metals to 
assure that the chelation state of the metal is maintained throughout an MD simulation. This 
approach contrasts with other programs in which the final chemical entity must be input directly 
into the program. Indeed, the residue and patching capabilities in CHARMM allow for an infinite 
number of chemical connectivities to be readily created, with a prime example being the ability to 
create a wide range of poly- and oligosaccharides by simply listing the desired monosaccharides 
followed by the list of patches creating the various types of glycosidic linkages and chemical 
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modifications. Accordingly, several simulation packages including NAMD and OpenMM allow for 
CHARMM PSFs to be directly read, directly supplying the information required for molecular 
simulations with those programs. 

The molecular generation tools were initially developed in the context of the CHARMM additive 
FF. Currently, the CHARMM all-atom additive FF contains over 2,200 residues and 300 patches, 
representing a near comprehensive collection of chemical coverage with emphasis on biological 
and pharmacological systems, although now extending significantly beyond that range. To take 
advantage of this, the Drude FF largely uses the same molecular generation strategy, importantly, 
maintaining the same residue and atom name nomenclature as in the additive FF except water 
molecules. Accordingly, it is possible and a good strategy to perform a CHARMM additive PSF to 
Drude PSF conversion by detecting the residues and patches used in an additive FF PSF and 
creating the corresponding Drude FF PSF. 

Drude Prepper handles this conversion in two steps: 1) detecting the components and patches 
that comprise an input molecular system and 2) reassembling the components in the context of 
the Drude FF. The detection of system components is done based on the residue names in each 
segment (SEGID), e.g., a single polypeptide chain. For example, if all residues in a segment are 
amino acids, the segment is classified as a protein. DNA and RNA are detected in a similar way, 
but if the segment contains O2’ atoms, it is classified as RNA, and DNA otherwise. Default patches 
are then applied to create the respective biopolymers. Special patches applied to each segment 
are detected by checking for the existence of a certain atom in a residue. For example, an 
acetylated N-terminus is detected by confirming the presence of a CY atom at the N-terminal 
residue. In addition, a disulfide bond can be detected by searching for any SG atom bonded to 
the SG atom of another residue. 

Handling carbohydrates is the most demanding task due to the wide variety of glycosidic linkages. 
To properly recognize the glycosidic linkages between sugar residues, Drude Prepper utilizes 
Glycan Reader86, 87 that recognizes the monosaccharide types and linkages using the atomic 
coordinates and connectivity information in a PSF. The detected linkage information is passed in 
the form of a CHARMM stream file. Note that Drude Prepper only supports the sugars that are 
available in the Drude FF such as general furanoses, pyranoses, hexouronic acids, and other 
acid moieties.88 Additional monosaccharides and linkage types, such as seven-, eight-, nine-
carbon sugars, and N/O glycosidic linkages to proteins will be included as they are developed. 
More generally, Drude Prepper only covers those chemical entities explicitly in the Drude FF, 
although the coverage is currently quite extensive. On the other hand, there is currently no analog 
of the CHARMM General Force Field (CGenFF) and associated program,89 although efforts 
towards a Drude General Force Field (DGenFF) are actively ongoing. 

Water molecules are detected if a segment contains a residue named TIP3. All other components 
not described above are classified as “else”, and Drude Prepper issues an error if topologies and 
parameters for the residues in “else” are not available in the Drude FF. After all components are 
successfully recognized in the first step, they are reassembled based on the recognized residues 
and patches in the Drude FF. A mass of 0.4 AMU is subtracted from polarizable atoms (i.e., non-
hydrogen atoms) and assigned to the Drude oscillators or particles. Lone pair particles are 
generated according to the topology of the residues in the Drude FF. While charge is distributed 
onto the lone pair, no mass is assigned to the lone pair particles as the forces acting on those 
particles are transformed back to their parent atom as required for propagation of a MD trajectory. 
The TIP3P90, 91 water molecules from the additive PSF are converted to the SWM4-NDP92 water 
model; a more accurate, but computationally more demanding water model SWM6 is also 
available.93 In addition to creating the scripts to perform molecular simulations in CHARMM, Drude 
Prepper provides input scripts optimized for simulating the system with the Drude FF using NAMD, 
GROMACS, and OpenMM. Once the conversion from the additive to Drude FF PSF is complete 



and the input scripts are created, Drude Prepper then performs initial system minimization using 
CHARMM. Details of these steps and the input options for the various programs follow. 

 

Drude System Preparation and Simulation Protocols 

Drude Prepper creates a collection of CHARMM input and stream files for system setup, 
minimization, and simulation using the Drude FF. Brief descriptions of these input and stream files 
are included in Table S2. In addition, input scripts and supporting files for equilibration and 
production simulations using NAMD, OpenMM, and GROMACS can be found in each program 
directory from “download.tgz” that can be downloaded at the final step of Drude Prepper. Note 
that one can modify the inputs to adjust equilibration and production times and the trajectory 
saving steps for their specific needs. Detailed descriptions of the contents in these input files 
follow. 

CHARMM pre-equilibration with the additive FF: First, all simulation systems are assumed to 
be built using Solution Builder or Membrane Builder modules in CHARMM-GUI and are 
equilibrated using the CHARMM additive FF and the equilibration inputs provided by CHARMM-
GUI. We refer this additive FF based equilibration to as “pre-equilibration” in the context of 
preparing the simulation system for the Drude FF. Using the standard inputs generated by 
Solution Builder or Membrane Builder, the systems are minimized and equilibrated in the NVT 
(constant particle number, volume, and temperature) and NPT (constant particle number, 
pressure, and temperature) ensembles. System sizes are generated to have a minimum of 10 Å 
buffer of TIP3P water beyond the non-hydrogen atoms of the macromolecules in all directions. A 
force-switch smoothing function over 10 to 12 Å is applied for Lennard-Jones (LJ) interactions. 
The particle mesh Ewald (PME)94 method is used for long-range electrostatic interactions, and 
the SHAKE95 algorithm is utilized for fixing all bonds including hydrogen atoms. In this study, all 
pre-equilibration was performed at 303.15 K. The backbone and sidechain heavy atoms were 
harmonically restrained during this equilibration. The definition of backbone and sidechain heavy 
atoms are provided in Table S3. It needs to be emphasized that using a well pre-equilibrated 
system to initiate the Drude FF calculations is recommended, especially in cases where the 
starting structure is of low resolution, contains externally docked ligands, and/or have homology 
modeled sections, etc. 

CHARMM minimization: Since the Drude particles are initially assigned the same coordinates 
as their parent atoms, the initial minimization requires special attention. Drude Prepper performs 
this minimization using CHARMM in two stages. First, only the Drude particles are minimized with 
a very strong harmonic restraint with a force constant of 100,000 kcal/mol/Å2 applied to all real 
atoms including hydrogens. 100 steps of adopted basis Newton-Raphson (ABNR) are used in 
this stage. Next, the strong restraints on all real atoms are removed and only the non-hydrogen 
atoms (Table S3) are restrained with force constants of 1 kcal/mol/Å2 (for backbone atoms) and 
0.1 kcal/mol/Å2 (sidechain atoms). The full system is minimized for 100 steps of steepest descent 
(SD) and another 100 steps of ABNR. Long-range electrostatic interactions are computed using 
PME94 summation with a real space cutoff of 12 Å with the nonbond list maintained out to 16 Å in 

conjunction with an heuristic update, an Ewald splitting parameter () of 0.34 Å-1, a grid spacing 
of ∼1.0 Å, and a sixth-order interpolation of the charge to the grid. The LJ interactions are 

truncated at 12 Å with a switching function96, 97 over 10–12 Å. The isotropic long-range correction 
(LRC)98 is added to the non-bonded interactions that assumes the radial distribution function is 
unity beyond the real space cutoff. Future versions of Drude Prepper will include the necessary 
scripts to perform simulations using the LJ-PME treatment of long-range LJ interactions.99 The 
internal geometry of water molecules and covalent bonds involving hydrogen atoms are kept fixed 
using a separate SHAKE95 algorithm called RATTLE/Roll. The minimized coordinates of the 



system are used to generate the inputs for both equilibration and production in CHARMM or user-
selected additional MD platform(s).  

CHARMM equilibration & production: Performing a short MD equilibration is essential prior to 
production simulations. The MD equilibration involves a 100-ps simulation in the NPT ensemble 
using a small timestep of 0.5 fs. The simulation is performed with the velocity-Verlet integrator 
(VV2) developed specifically for the Drude model.82 A dual Nose-Hoover100, 101 thermostat is used, 
where the thermostat coupled to Drude particles is set to 1 K and the thermostat for real atoms is 
set to the target temperature. The friction coefficient is set to 10 ps-1 for the temperature control 
and the pressure is controlled at 1 atm by a modified Anderson-Hoover barostat.102 The 
nonbonded interaction options, the usage of RATTLE/Roll for water molecules, and positional 
harmonic restraints to the non-hydrogen atoms are the same as in the above CHARMM 
minimization. To avoid polarization catastrophe, a hard-wall constraint is used with a parent-
Drude bond length cutoff of 0.2 Å.66, 72 During the equilibration, a trajectory is saved every 2.5 ps 
for any analysis, and the final coordinate is used to initiate the production simulation. The input 
for the CHARMM production MD simulation is identical to that used for equilibration except that 
the integration timestep is set to 1 fs, coordinates are saved every 10 ps, and all positional 
harmonic restraints are removed.  

Equilibration with OpenMM, GROMACS, or NAMD uses the same timestep and positional 
restraint protocol as in the above CHARMM equilibration with the differences being in the 
integrators, thermostats, and barostats as described below for the production MD inputs.  

NAMD: The NAMD program83 uses an extended Lagrangian method for integrating Drude particle 
positions in Langevin dynamics.82, 83 For NPT simulation, the temperature is regulated by a dual 
thermostat82 with Drude particles coupled to 1 K with a damping coefficient of 20 ps-1 and real 
atoms coupled to the thermostat at the target temperature with a friction coefficient of 5 ps-1. The 
pressure is maintained at 1 atm using the Langevin piston method103 with an oscillation period of 
50 fs and a decay time of 25 fs. The timestep is set to 1 fs and coordinates are saved every 10 
ps for production. PME94 summation is used to compute long-range electrostatics with ∼1 Å grid 

spacing and an interpolation order of 6. Non-bonded interactions are calculated with a real space 
cutoff of 12 Å and a switching distance is set to 10-12 Å for the LJ interactions and the isotropic 
LJ long-range correction is applied. Note that the force switching is turned off while using the 
Drude FF and a potential switch is used for the LJ interactions. The pair lists within 16 Å are 
updated every 10 steps. Constraints are added using SHAKE to keep the covalent bonds 
involving hydrogen atoms rigid. The Drude hardwall is set to 0.2 Å.  

OpenMM: The OpenMM program16 has GPU implementation84 capability for the Drude FF. An 
extended Lagrangian dynamics simulation with velocity-Verlet integrator is implemented for 
treating the motion of atoms and the associated Drude particles. A dual thermostat with specific 
reference temperatures and friction coefficients for both real atoms and Drude particles is used 
with the same values as for CHARMM and NAMD. Differently for OpenMM, the pressure is 
maintained using a Monte Carlo barostat set to 1 atm with a coupling frequency of 100 steps. The 
timestep is set to 1 fs and coordinates are saved every 10 ps. PME is used for the electrostatic 
interactions and the LJ interactions are switched over 10 to 12 Å with a long-range isotropic 
correction. The Ewald error tolerance is set to 0.0001. The SHAKE algorithm is implemented in 
OpenMM to constrain all covalent bonds that involve hydrogen atoms, and the Drude hardwall is 
set to 0.2 Å. 

GROMACS: The GROMACS program104 allows for both GPU and CPU simulations of the Drude 
polarizable systems.85 Parallelization on CPU hardware is currently supported via OpenMP 
parallelization. The integrator implemented for extended Lagrangian dynamics in Drude systems 
is the same two-step velocity-Verlet algorithm as implemented in CHARMM. Currently, only NVT 



simulations are supported in GROMACS for the Drude FF using a dual Nosé-Hoover thermostat. 
Real atoms are coupled to a thermostat at a target temperature with a coupling constant of 0.1 
ps and Drude particles are coupled to a 1 K thermostat with a coupling constant of 0.005 ps. The 
timestep is set to 1 fs and coordinates are saved every 10 ps. The Drude hard wall constraint is 
set to a maximum value of 0.2 Å. Bonds involving hydrogen atoms are constrained via LINCS.105 
The short-range LJ potential is switched to zero over 10–12 Å. Electrostatic forces are computed 
with the smooth PME algorithm94 with a real-space cutoff of 12 Å. 

Dipole Moment Calculations  

Dipole moments of selected moieties were calculated from the trajectories and presented as 
probability distributions. Both the CHARMM additive and Drude FFs define the topologies such 
that the molecules can be divided into the groups of atoms with integer charges. While this feature 
not only facilitates the modular approach to building new chemical entities, it also provides an 
opportunity to analyze dipole moments of specific moieties in a highly specific way. The dipole 
moment is calculated from the charges of all the particles in the moiety and their spatial 
relationship.  In the case of the Drude FF, this includes all Drude particles and lone pairs, as well 
as atoms. Presented in Table S4 is the list of atom definitions for integer charge groups. When 
the sum of the charges in the moiety equals zero, the dipole moment is orientation independent. 
However, if the charge does not equal zero, the dipole moment is position dependent. In such 
cases, the structures from each simulation snapshot were aligned with the crystal structure based 
on the backbone heavy atoms and the coordinates of the selected particles were translated to 
define their center of geometry as the origin prior to the dipole moment calculation. This was 
performed with all groups of integer -1 or +1 (i.e., acidic and basic amino acids), as well as with 
PRO residues in the Drude FF whose total charge is 0.178.  

 

Simulation Systems 

Table 1 summarizes the diverse biomolecular systems used in this study to test Drude Prepper 
and its simulation protocols, and the respective system images are shown in Figure 1. For each 
system, we performed pre-equilibration for 1 ns, equilibration for 100 ps, and production for 100 

ns, 200 ns, or 5 s using different MD engines as described.  

 

Table 1. Simulation system descriptions. 

System name Molecular type # particles† Box size (Å3) 
Pre-equilibration / 

Equilibration / 
Production 

Ubiquitin Protein 41,694 64 × 64 × 64 
NAMD / GROMACS / 

GROMACS 

TF-DNA  Protein + DNA 51,026 66 × 66 × 66 
CHARMM / NAMD / 

NAMD 

HIV-1 TAR-TAT RBD Protein + RNA 50,444 69 × 69 × 69 
CHARMM / OpenMM / 

OpenMM 

Cas9-sgRNA-DNA 
Protein + DNA + 

RNA 
426,781 140 × 140 × 140 

OpenMM / OpenMM / 
OpenMM 

LeuT in a POPC 
bilayer 

Protein + Lipid 411,236 155 × 155 × 114 
OpenMM / OpenMM / 

OpenMM 

MalT-maltose 
complex 

Protein + Lipid + 
Carbohydrate 

382,991 150.5 × 150.5 × 112.0 
OpenMM / OpenMM / 

OpenMM 

E. coli O176-antigen 
OS 

Carbohydrate 198,373 108 × 108 × 108 
OpenMM / OpenMM / 

OpenMM 

M. catarrhalis OS Carbohydrate 12,468 43 × 43 × 43 
OpenMM / OpenMM / 

OpenMM 



HA lyase–HA 
substrate  

Protein + 
Carbohydrate 

208,974 110 × 110 × 110 
OpenMM / OpenMM / 

OpenMM 

†Including Drude particles and virtual lone pairs. 

 

Ubiquitin: Human erythrocytic ubiquitin coordinates were obtained from the 1.8 Å resolution 
crystal structure (PDB ID 1UBQ).106 The protein was solvated in a cubic box with 7,921 water 
molecules. For this system, the protein carries no net charge and simulations were performed 
without any neutralizing counterions or added salt. The initial box size was 64 × 64 × 64 Å3 (Figure 
1A). 

Transcription factor-DNA complex: A simulation system of a zinc finger transcription factor (TF) 
binding with a DNA fragment was setup using the 1.6 Å resolution X-ray structure (PDB ID 
1AAY).107 The double strand DNA contains 11 base pairs, and the TF-DNA complex was solvated 
in a cubic water box containing 9,493 water molecules and 150 mM KCl (including neutralization 
cations, 28 K+ and 25 Cl- ions). The initial box size was 66 Å × 66 Å × 66 Å3 (Figure 1B). 

 



 

Figure 1. Molecular visualizations of the simulation systems in this study: (A) Ubiquitin, (B) TF-
DNA, (C) HIV-1 TAR-TAT RBD, (D) Cas9-sgRNA-DNA. (E) LeuT in a bilayer, (F) MalT-maltose 
complex in a bilayer, (G) E. coli O176 O-antigen oligosaccharide, (H) M. catarrhalis serotype C 
oligosaccharide, and (I) HA lyase – HA substrate. Coloring scheme: green cartoon for protein, red 
cartoon for RNA, blue cartoon for DNA, cyan lines for lipids, and orange sticks for carbohydrates. 



 

HIV-1 TAR with Tat RNA binding domain (RBD): Interaction of human immunodeficiency virus 
(HIV) trans-activation-response (TAR) RNA element with the trans-activator protein (Tat) is critical 
towards viral mRNA production.108 A novel conformational rearrangement in the TAR RNA binding 
site allows Tat RNA binding domain to recognize it.109 System construction was initiated from 
model 1 of the solution NMR structure (PDB ID 6MCE).110 The RNA-peptide complex was 
solvated in a cubic box of 69 × 69 × 69 Å3 with TIP3P water and 0.15 M KCl buffer (including 
neutralization cations, 48 K+ and 27 Cl- ions) (Figure 1C).  

Cas9-sgRNA-DNA: The simulation setup for Cas9-sgRNA-DNA complex started with a cryo-EM 
structure (PDB ID 6O0Z) at 3.3 Å resolution.111 The complex was solvated in a cubic box of 140 
× 140 × 140 Å3. Overall negative charge on the complex was neutralized by adding K+ ions to the 
system along with 150 mM KCl buffer (324 K+ and 214 Cl- ions) (Figure 1D).  

LeuT in a POPC bilayer: Leucine transporter LeuT is a 12 transmembrane-helix protein that 
utilizes established electrochemical potential of Na+ ions to facilitate the transport of neutral amino 
acids. The LeuT protein (PDB ID 3TT1)112 at a resolution of 3.1 Å was embedded in a palmitoyl-
oleoyl-phosphatidylcholine (POPC) bilayer with 290 POPC at the top leaflet and 297 POPC at the 
bottom leaflet. 53,950 water molecules were added along with 150 mM NaCl (including 
neutralization ions, 146 Na+ and 154 Cl- ions), reaching an initial system size of 155 ×155 ×114 
Å3 (Figure 1E).  

MalT-maltose complex in a mixed bilayer of DOPC and DOPE: MalT, a member of the enzyme 
IIC family, is a membrane-embedded sugar transport protein that is part of the 
phosphoenolpyruvate-dependent phosphotransferases.113-115 The initial simulation system was 
built using PDB ID 5IWS, 2.55 Å resolution, for MalT from Bacillus cereus.116 To properly 
recognize the maltose substrate, the PDB structure was downloaded from RCSB not OPM.117 
Since PDB:5IWS contains only MalT monomer and a maltose substrate, a dimeric structure was 
prepared using the “Generation of Biologically Functional Unit” option in PDB Reader & 
Manipulator.118 In addition, since the protein structure from RCSB is not properly oriented to a 
membrane whose normal is along the Z-axis and center is at Z = 0, the PPM option of the OPM 
server117 was used to orient the MalT dimer. Then, the structure was embedded in a 3:1 mixed 
bilayer of dioleoyl-phosphatidylethanolamine (DOPE) and dioleoyl-phosphatidylcholine (DOPC): 
213 DOPE and 71 DOPC at the top leaflet and 228 DOPE and 76 DOPC at the bottom leaflet. 
49,355 TIP3P water molecules and 0.15 M KCl (including neutralization ions, 133 K+ and 153 Cl-) 
were added to the system, and the initial system size was 150.5 × 150.5 × 112.0 Å3 (Figure 1F). 

Escherichia coli O176 O-antigen oligosaccharide: O-antigen polysaccharides constitutes part 
of the lipopolysaccharide molecule present in the outer membrane of Gram-negative bacteria,119 
which have diverse chemical compositions even within a single species.120 In a previous study, 
Patel et al. studied the conformational preferences of an Escherichia coli O176 O-antigen 
oligosaccharide at the atomic level using NMR spectroscopy and MD simulations.121 An initial 
structure of ten repeating units of O176 O-antigen structures (Figure 2A) was built by Glycan 
Modeler24 and immersed at the center of a cubic box (108 × 108 × 108 Å3) including 150 mM KCl 
(112 K+ and 112 Cl-) (Figure 1G). 

Moraxella catarrhalis serotype C oligosaccharide: Moraxella catarrhalis is a pathogenic Gram-
negative bacterium that causes otitis media and sinusitis in children.122 In a previous study, all-
atom MD simulations were conducted to understand the conformational properties of three major 
serotypes A, B, and C that are responsible for approximately 95% of the clinical isolates.123 In this 
work, we built a serotype C oligosaccharide (Figure 2B). Lipid A and two Kdo residues in serotype 
C were replaced by O-methylation. An initial structure of the oligosaccharide was built by Glycan 



Modeler and immersed at the center of a cubic box of TIP3P water molecules (43 × 43 × 43 Å3) 
with 150 mM KCl (6 K+ and 6 Cl-) (Figure 1H). 

Hyaluronate lyase in complex with hyaluronan substrate: Hyaluronate lyase enzymes 
degrade hyaluronan, which is a linear glycosaminoglycan consisting of a polymer with N-
acetylglucosamine (GlcNAc) and glucuronic acid (GlcA) repeating units linked via alternating β1-
4 and β1-3 glycosidic bonds.124 It is present predominantly as a main polysaccharide component 
of the host connective tissues including bacterial toxins.125 An initial complex structure of 
hyaluronate lyase enzyme with hexasaccharide hyaluronan substrate (Figure 2C) was set up 
using PDB ID 1LOH125 with a resolution of 2.0 Å. The terminal GlcA ring at the non-reducing end 
of the substrate was distorted in the crystal structure,125 so its coordinates were refined using 
Glycan Modeler. This initial complex was placed into the center of a cubic box (110 × 110 × 110 
Å3), solvated with 42,412 TIP3P water molecules and 150 mM KCl (124 K+ and 107 Cl- ions 
including neutralization ions) (Figure 1I). 

 

 

Figure 2. Symbol representation of carbohydrate sequences of (A) E. coli O176 O-antigen 
repeating unit (n = 10), (B) M. catarrhalis serotype C oligosaccharide, and (C) hyaluronan 
hexasaccharide in PDB ID 1LOH: blue circle for D-glucose (Glc), green circle for D-mannose 
(Man), yellow circle for D-galactose (Gal), blue square for N-acetyl-D-glucosamine (GlcNAc), 
yellow square for N-acetyl-D-galactosamine (GalNAc), and half-filled blue diamond for D-
glucuronic acid (GlcA). 

 

RESULTS AND DISCUSSION 

The unique functionality of CHARMM-GUI is its versatility to allow users with the option to choose 
widely used simulation packages for their simulations. With Drude MD simulations now supported 
by CHARMM, NAMD, OpenMM, and GROMACS, we have been able to transfer this feature into 
Drude Prepper as well. To demonstrate it, MD simulations of various systems in Table 1 were 
carried out with different MD simulation software. While the pre-equilibration with the additive FF 
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can be performed by using any of the simulation packages, it is recommended to perform the 
equilibration and production MD simulations with the Drude FF using the same simulation 
package. In this study, we have performed 1 ns pre-equilibration for each system from which the 
last coordinates along with the additive PSF file were then used as input data for Drude Prepper. 
To evaluate the implementation of the Drude model in NAMD, OpenMM, and GROMACS, as well 
as the conversion of the CHARMM PSF to the data structures required by those programs  by 
Drude Prepper and the consistency of the respective inputs, we performed a single-point energy 
component analysis on the minimized system coordinates (Table S5). The total energy 

differences for NAMD, OpenMM, and GROMACS compared to CHARMM were less than  0.1 % 

except the carbohydrate-containing systems, which were less than  0.3 %.  

Using the input files generated by Drude Prepper, each system was equilibrated for 100 ps 

followed by 100 or 200 ns production MD simulation, or 5 s performed in the case of ubiquitin. 

To evaluate the stability of the systems, root mean square deviations (RMSD) of backbone atoms 
with respect to the initial structure, root mean square fluctuation (RMSF) of each residue, and 
radius of gyration (RGYR) of the macromolecules were calculated. The production trajectories 
were aligned to the backbone atoms of the respective protein, nucleic acid, or carbohydrates 
segments for these calculations. In addition, given the variation of the electronic structure of the 
molecules associated with the explicit treatment of polarization in the Drude FF, variations in 
dipole moments for selected moieties were calculated. The calculation of dipole moments, which 
can have significant impact on the dynamics and interactions,126, 127 was facilitated by the 
presence of neutral or integer charge group in the Drude FF. For example, the charges of the 

protein backbone C, O, N, H, C and H atoms sum to zero as do charges of the neutral protein 

sidechains. Definitions of the atoms, Drude particles, and lone pairs included in the different 
moieties used for the dipole moment calculations are in Table S4. In the case of charged groups, 
the individual moieties were RMSD aligned based on the non-hydrogen atoms to a reference 
frame based on the structure used to initiate the MD simulations  

Ubiquitin: The solvated structure of ubiquitin remained stable over 100 ns GROMACS simulation 
with no systematic structural deviation, as demonstrated by stable backbone RMSD (Figure S1A) 
and RGYR (Figure S1B). After an initial increase to ~3 Å, the RMSD relaxed back to ~2 Å for the 
remainder of the 100 ns simulation. The RMSF analysis revealed that the C-terminal residues 
were very flexible during the simulation, accounting for most of the structural deviation (Figure 
S1C). We also ran the equilibration and production for the same system using OpenMM to 
determine if any variations in the structure would occur in an extended long-time MD. The 
production simulation was carried out for 5 µs and the trajectory was saved every 1 ns. The protein 
stayed stable over the entire simulation with a backbone RMSD of ~3 Å (Figure 3). 

 



  

Figure 3. Backbone RMSD of ubiquitin from the 5 s MD simulation performed using OpenMM. 

 

Transcription factor-DNA complex: TF proteins modulate the transcription of genetic 
information from DNA to mRNA by binding specifically to DNA sequences. A model TF-DNA 
system was simulated with the Zif268 zinc finger TF bound to a 11 base-pair double strand DNA. 
The TF-DNA interactions were well maintained throughout the 200 ns MD simulation. The heavy 
atom RMSD of TF protein or DNA was computed by aligning the DNA structure to its initial 
structure. As illustrated in Figure 4, the DNA structures are very stable with RMSD fluctuating 
between 2 Å and 3 Å. The protein RMSD increases to ~4.5 Å after 50 ns MD simulation and then 
decrease to ~3 Å and remains stable out to 200 ns, indicating conformational dynamics of the TF 
protein.  

 

 

Figure 4. RMSD of TF-protein and DNA heavy atoms after alignment of the DNA structure with 
respect to the initial structure. 

 

HIV-1 TAR with Tat RBD: The MD simulation was started with an NMR structure (PDB ID 6MCE) 
of HIV-1 TAR RNA-Tat RBD peptide complex that contains an arginine sandwich motifs.110 We 
find that this interaction was short lived during MD simulation as Arg49 and Arg52 lost the initial 
interactions with the sandwiching nucleobases. The peptide RMSD is higher than the TAR RNA 
with most deviation coming from exposed N and C termini of the peptide (Figure 5A). However, 



the TAR RNA over the simulation adapts a conformation with Arg52 sandwiched between two 
base-pairs (Figure 5B), while Arg49 interacts with two flipped bases. Such interactions stabilize 

the RMSD during last 50 ns. We find significant standard deviations (up to 1.5 D) in dipole 

moments of some nucleobases (Figure 5C). Peptide bond dipole moments also show slight 
variations in the mean values across the residues (Figure S2).  

 

 

Figure 5. (A) RMSD of HIV-1 TAR RNA and Tat RBD with respect to their initial structure. (B) 
Snapshot of HIV-1 TAR–TAT RBD complex at 200 ns, showing Arg52 sandwiched between two 
base-pairs. Protein is shown as green cartoon and RNA is shown as cyan cartoon. (C) Dipole 
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moments of nucleobases of HIV-1 TAR RNA calculated as an average over the 200 ns sampled 
every 1 ns. The error bars represent one standard deviation. 

 

Cas9-sgRNA-DNA: This multimolecular complex is the largest of the selected systems in terms 
of number of atoms including Drude particles and lone pairs (Table 1). The RMSD of Cas9 protein, 
DNA, and RNA components shows that the complex adapts a stable conformation after 50 ns 
(Figure 6A). The major conformational change comes from the recognition lobe (Figure 7), which 
was also observed in previous MD simulations of the complex.23 The protein RGYR time series 
shows significant reduction as the recognition lobe and HNH domain tightly wrap around the 
portion showing interactions between target DNA strand and 5’ end of sgRNA (Figure 6B). We 
calculated the distributions of dipole moments of amino acid sidechains and nucleobases (Figure 
8). Compared to the additive FF, the Drude FF appears to provide broader fluctuations in the 
dipole moment to respond to the interactions. We find that there are major differences in the mean 
dipole moments of amino acids such as ASP, GLU, ASN, and GLN. In case of nucleobases, we 
find that dipole moments are consistently higher with the Drude FF. The creation of sets of atoms 
whose total charge is an integer in the Drude and CHARMM FFs is critical for the dipole moment 
comparisons. Such groups include peptide bonds, amino acid sidechains, nucleobases, 
heads/tails of lipids, etc. The selection definitions for atoms, Drude particles and lone pairs in 
each group is in Table S4. 

 

 

Figure 6. (A) RMSD of different components of Cas9 complex following alignment of each 
component to its initial structure. (B) RGYR of Cas9 protein. 
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Figure 7. Conformations of Cas9-sgRNA-DNA complex at (A) 0 ns and (B) 200 ns. The protein 
is shown as green cartoon with the recognition lobe in forest green and the HNH domain in cyan. 
The polynucleotides are shown as surface with sgRNA in red, target DNA strand in marine blue, 
and non-target DNA strand in light blue. The arrows in (A) show the movement of the recognition 
lobe and HNH domain during the simulation that results in a conformation in (B). 

 

 

Figure 8. Distributions of dipole moments of amino acid sidechains and nucleobases in the Cas9 
complex. The colored histograms correspond to the Drude FF (Cas9 – green; sgRNA – red; DNA 
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– blue) calculated based on 200 ns simulation, while the transparent gray histograms represent 
the additive FF calculated based on the 1 ns pre-equilibration trajectory. The histograms are 
normalized and the mean and standard deviation from Drude simulations is shown above each 
subplot. Comparison of Drude FF dipole moment distributions at 1 ns and 200 ns is presented in 
Figure S3. 

 

LeuT in a POPC bilayer: The availability of the high-quality Drude FF parameters for both protein 
and lipids allows the study of membrane proteins with charge polarization. A LeuT homodimer in 
an outward-open conformation was embedded in a POPC lipid bilayer and subjected to a 200 ns 
MD simulations using OpenMM. The overall protein structure is stable during the MD trajectory. 
The slowly increasing RMSD mainly reflected the conformational changes of extracellular loops 
(Figure S4).  

 

MalT-maltose complex in a mixed bilayer of DOPC and DOPE: The Drude FF has also been 
tested for a protein-carbohydrate complex in a membrane. The MalT homodimer with a maltose 
in each binding site was embedded in a mixed bilayer of DOPC:DOPE=1:3 (Figure 1F). The 
distribution of glycosidic torsion angles of maltose (Figure 9A) shows good agreement with that 
obtained from GFDB (Glycan Fragment Database)128 (Figure 9B) that is composed of a glycosidic 
torsion angle distributions of selected glycan sequences in the PDB. The dipole moments of head 
and tail groups of DOPC and DOPE lipids were calculated (Figure 10). There is no significant 
difference in the dipole moments of tail groups between DOPC and DOPE lipids, which is 
expected as they have identical acyl tails. The phosphatidyl ethanolamine (PE) head group shows 
a peak at higher dipole moments compared to phosphatidyl choline (PC), indicating that the PE 
head group is slightly more polar than the PC head group. The calculated dipole moments of lipid 
tail groups from the Drude simulations show broader distribution compared to the additive FF. In 
addition, Drude lipid head groups show higher dipole moments than the additive FF lipids. 

 

 

Figure 9. Distributions of glycosidic torsion angles of maltose in (A) MalT-maltose complex 
simulation and from (B) all PDB maltose structures. 

 

A B



 

Figure 10. Distributions of dipole moments of membrane lipid head and tail groups over 200 ns 
simulations. The colored histograms correspond to the Drude FF (DOPC tail – blue; DOPE tail – 
cyan; DOPC head – red; DOPE head - orange), while the transparent gray histograms represent 
the additive FF calculated based on the 1 ns pre-equilibration trajectory. The histograms are 
normalized and the mean and standard deviation from Drude simulations is shown above each 
subplot. 

 

Escherichia coli O176 O-antigen oligosaccharide: We also ran a 200 ns simulation of the 10 
repeating unit of O176 O-antigen oligosaccharide in solution with the Drude FF to calculate the 
ϕ/ψ glycosidic torsions, where ϕ = O5'−C1'−On−Cn, ψ = C1'−On−Cn−C (n−1), and n is the linkage 

position. The O176 O-antigen sequence is [α-D-Man(1→2)α-D-Man(1→2)β-D-Man(1→3)α-D-

GlcNAc(1→4)]10 (Figure 2A). The distribution of each glycosidic linkage is presented as a contour 

plot in Figure 11B. Except the ψ angle distribution of α-D-GlcNAc(1→4)α-D-Man (i.e., B-C in 

Figure 11A), the glycosidic torsion angles from the Drude simulation agree well with a previous 
study.121 Figure 11C shows the dipole moment distribution of each carbohydrate type, revealing 
large variations of dipole moments with different average values even for αMan and βMan. Note 
that for the carbohydrates, the charge on the monosaccharide units in the additive FF does not 
sum to be integer, so it is not possible to calculate well-defined dipole moments for a meaningful 
comparison. 

 



 

Figure 11. (A) Schematic structure of the repeating units of the O-antigen polysaccharides from 
E. coli O176. (B) Glycosidic torsion angles ϕ and ψ distributions. ϕ = O5'−C1'−On−Cn, ψ = 
C1'−On−Cn−C (n−1), where n is the linkage position. The probability range is from white, 0, to 
blue, 0.1, to green, 0.3, to yellow, 0.7, and to red, 1. (C) Distributions of dipole moments of sugar 
monomers in the Drude FF. 

 

Moraxella catarrhalis serotype C oligosaccharide: Previously, we used the CHARMM additive 
FF to perform 1 μs simulation of symmetric bilayer and solution systems of three serotypes A, B, 
and C lipooligosaccharides of M. catarrhalis. Here, the Drude FF has been tested with a serotype 
C oligosaccharide solution system. The distributions of ϕ/ψ glycosidic torsion angles over 200 ns 
are presented in Figure 12A, and these 2D distributions are consistent with the one in our 
previous study (Figure S5). In the case of ω torsion angle of β1-6 linkage at the first root residue, 
gauche–gauche (g−) conformations are dominant, almost identical to our previous study, but 
trans-gauche (t) conformations have a slightly bigger population. The ratio between rotamer 
conformations g−:g+:t from the Drude simulation is 58.4:34.7:6.9, which is consistent with the 
experimental result in that methyl α-D-glucopyranose shows a rotamer conformational ratio of 
57:38:5.129 Figure 12C shows the dipole moment distribution of each carbohydrate type, again 
revealing large variations of dipole moments with different average values for different 
carbohydrate types. 

 



 

Figure 12. (A) Two-dimensional distributions of ϕ/ψ glycosidic torsion angles of serotype C 
oligosaccharide of M. catarrhalis. The glycosidic torsion angle definitions are defined in Figure 
11. The probability range is from white, 0, to blue, 0.1, to green, 0.3, to yellow, 0.7, and to red, 1.  
(B) The torsion angle ω is defined as O6-C6-C5-O5, where g+ denotes gauche-trans, g− denotes 
gauche–gauche, and t denotes trans-gauche. (C) Distributions of dipole moments of sugar 
monomers. 

 

Hyaluronate lyase in complex with hyaluronan substrate: Streptococcus pneumoniae 
hyaluronate lyase enzyme in complex with a hexasaccharide hyaluronan substrate (PDB ID: 
1LOH) was simulated for 200 ns with the Drude FF. The overall complex structure was stable 
during the simulation (Figure 13A). The hexasaccharide substrate remains stably bound in the 
active site of lyase enzyme. To understand the stability of the substrate binding to the active site, 
hydrogen bond analysis was carried out. A time-series of the intermolecular hydrogen bonds 
between the lyase enzyme and the hexasaccharide is shown in Figure 13B. At least more than 
3 hydrogen bonds exist in ~80% of the trajectory. Especially, R243 and R300 form these hydrogen 
bonds with the forth sugar (O61 of GlcA) in ~64% and ~35%, N580 with the second sugar (O2 of 
GlcA) in ~44%, N290 with the second sugar (O3 of GlcA) in ~34%, E477 with the fifth sugar (O6 
of GlcNAc) in ~33%, and D293 with the third sugar (O6 of GlcNAc) in ~23% (Figure 13C,D). This 
result is well matched with the previous site-directed mutation study showing that R243 and N580 
are involved in substrate binding, whereas N349, H399, and Y408 are involved in the catalytic 
process. The lower number of hydrogen bonds in the later residues are understandable because 
this enzyme is the Y408F mutant (inactive) form. Clearly, the hyaluronan substrate is stably bound 
due to the charge complementarity between substrate negative charges and the multiple basic 
residues lining the cleft surface. Such electrostatic interactions in the binding cleft are well 



characterized in the Drude simulation, as the dipole moment distributions of amino acids around 
the substate within 4.5 Å (i.e., substrate-contact residues) are wider than the non-contact protein 
residues (Figure S6). 

 

 

Figure 13. (A) Backbone RMSD of hyaluronate lyase (purple) and hyaluronan substrate (green). 
(B) The number of hydrogen bonds between a hyaluronan substrate and its enzyme (C) A 
snapshot of complex structure at 30 ns (D) Hydrogen bonding frequencies between a hyaluronan 
substrate and its enzyme. The y-axis labels the interacting amino acid residues, and the x-axis 
labels the interacting atoms of the substrate. The color bar represents the frequency of hydrogen 
bonding observed in the simulation trajectory. 

 

CONCLUSIONS 

In this work, we present Drude Prepper, a new utility in CHARMM-GUI, a web-based tool that will 
facilitate the use of the Drude FF by the scientific community for studies of a multitude of 
biomolecular systems. The Drude FF for proteins was first released in 2013 and only a few 
research groups have been using it as compared to the number of studies using the additive FF. 
CHARMM-GUI, by providing a simplified platform to diverse users, has played an important role 
in facilitating the use of the CHARMM additive FF, and we anticipate that the Drude Prepper will 
give the same access to the CHARMM Drude FF. Here, we have demonstrated the best practices 
to use Drude Prepper by applying it to various systems including proteins, DNA, RNA, lipids, 
carbohydrates, atomic ions, and their combinations. Drude Prepper takes the advantage of using 
the same residue nomenclature as in the CHARMM additive FF to allow for the additive PSF to 
be readily converted to its Drude counterpart. This avoids the major effort that would be required 
to build each simulation system from scratch. The inputs generated by Drude Prepper are highly 
consistent across the four simulation packages (CHARMM, NAMD, OpenMM, and GROMACS), 
and the energies calculated with the 4 simulation programs with the generated data structures 



and inputs are in agreement. The inputs for GROMACS are currently available for protein only 
systems, and there are ongoing efforts to extend the inputs to other classes of molecules. While 
the analysis of simulations performed in this study demonstrate the applicability of the Drude FF, 
they also highlight the ability of the Drude FF to provide potentially important information based 
on dipole moment variations occurring in the simulations.  

 

Acknowledgements: Financial support from the NIH GM133754 (to JAL), GM131710 (to ADM 
Jr.) and GM138472 (to WI). Computational support from the University of Maryland Computer-
Aided Drug Design Center and the Extreme Science and Engineering Discovery Environment 
(XSEDE), which is supported by National Science Foundation grant number ACI-1548562. 

 

Conflict of Interest: ADM Jr. is co-founder and CSO of SilcsBio LLC. 
  



REFERENCES 

1. Renaud, J.-P.;  Chari, A.;  Ciferri, C.;  Liu, W.-t.;  Rémigy, H.-W.;  Stark, H.; Wiesmann, C., 
Cryo-EM in drug discovery: achievements, limitations and prospects. Nature Reviews Drug 
Discovery 2018, 17 (7), 471-492. 

2. Penfold, J.; Wagner, N. J., Editorial overview: Recent applications of x-ray and neutron 
scattering techniques in colloid and interfacial science, characterised by increasing diversity and 
complexity. Current Opinion in Colloid & Interface Science 2019, 42. 

3. Loura, L. M.; Prieto, M., FRET in Membrane Biophysics: An Overview. Front Physiol 2011, 
2, 82. 

4. Sotomayor, M.; Schulten, K., Single-molecule experiments in vitro and in silico. Science 
2007, 316 (5828), 1144-8. 

5. van der Kamp, M. W.; Mulholland, A. J., Combined quantum mechanics/molecular 
mechanics (QM/MM) methods in computational enzymology. Biochemistry 2013, 52 (16), 2708-
28. 

6. Butler, K. T.;  Davies, D. W.;  Cartwright, H.;  Isayev, O.; Walsh, A., Machine learning for 
molecular and materials science. Nature 2018, 559 (7715), 547-555. 

7. Glaser, J.;  Nguyen, T. D.;  Anderson, J. A.;  Lui, P.;  Spiga, F.;  Millan, J. A.;  Morse, D. C.; 
Glotzer, S. C., Strong scaling of general-purpose molecular dynamics simulations on GPUs. 
Computer Physics Communications 2015, 192, 97-107. 

8. Shaw, D. E.;  Deneroff, M. M.;  Dror, R. O.;  Kuskin, J. S.;  Larson, R. H.;  Salmon, J. K.;  Young, 
C.;  Batson, B.;  Bowers, K. J.;  Chao, J. C.;  Eastwood, M. P.;  Gagliardo, J.;  Grossman, J. P.;  Ho, C. 
R.;  Ierardi, D. J.;  Kolossváry, I.;  Klepeis, J. L.;  Layman, T.;  McLeavey, C.;  Moraes, M. A.;  Mueller, 
R.;  Priest, E. C.;  Shan, Y.;  Spengler, J.;  Theobald, M.;  Towles, B.; Wang, S. C., Anton, A Special-
Purpose Machine for Molecular Dynamics Simulation. Commun. ACM 2008, 51, 91-97. 

9. Hess, B.;  Kutzner, C.;  Van Der Spoel, D.; Lindahl, E., Gromacs 4: Algorithms for Highly 
Efficient, Load-Balanced, and Scalable Molecular Simulation. Journal of Chemical Theory and 
Computation 2008, 4, 435-447. 

10. Scott, W. R. P.;  Hünenberger, P. H.;  Tironi, I. G.;  Mark, A. E.;  Billeter, S. R.;  Fennen, J.;  
Torda, A. E.;  Huber, T.;  Krüger, P.; van Gunsteren, W. F., The GROMOS Biomolecular Simulation 
Program Package. Journal of Physical Chemistry A 1999, 103, 3596-3607. 

11. Brooks, B. R.;  Brooks, C. L., 3rd;  MacKerell, A. D., Jr.;  Nilsson, L.;  Petrella, R. J.;  Roux, B.;  
Won, Y.;  Archontis, G.;  Bartels, C.;  Boresch, S.;  Caflisch, A.;  Caves, L.;  Cui, Q.;  Dinner, A. R.;  
Feig, M.;  Fischer, S.;  Gao, J.;  Hodoscek, M.;  Im, W.;  Kuczera, K.;  Lazaridis, T.;  Ma, J.;  
Ovchinnikov, V.;  Paci, E.;  Pastor, R. W.;  Post, C. B.;  Pu, J. Z.;  Schaefer, M.;  Tidor, B.;  Venable, 
R. M.;  Woodcock, H. L.;  Wu, X.;  Yang, W.;  York, D. M.; Karplus, M., CHARMM: the biomolecular 
simulation program. J Comput Chem 2009, 30 (10), 1545-614. 

12. Case, D. A.;  Cheatham, T. E.;  Darden, T.;  Gohlke, H.;  Luo, R.;  Merz, K. M.;  Onufriev, A.;  
Simmerling, C.;  Wang, B.; Woods, R. J., The Amber biomolecular simulation programs. Journal of 
Computational Chemistry 2005, 26 (16), 1668-1688. 



13. Wang, Y.;  Harrison, C. B.;  Schulten, K.; McCammon, J. A., Implementation of Accelerated 
Molecular Dynamics in NAMD. Computational science & discovery 2011, 4 (1). 

14. Jung, J.;  Mori, T.;  Kobayashi, C.;  Matsunaga, Y.;  Yoda, T.;  Feig, M.; Sugita, Y., GENESIS: 
a hybrid-parallel and multi-scale molecular dynamics simulator with enhanced sampling 
algorithms for biomolecular and cellular simulations. WIREs Computational Molecular Science 
2015, 5 (4), 310-323. 

15. Rackers, J. A.;  Wang, Z.;  Lu, C.;  Laury, M. L.;  Lagardère, L.;  Schnieders, M. J.;  Piquemal, 
J.-P.;  Ren, P.; Ponder, J. W., Tinker 8: Software Tools for Molecular Design. Journal of Chemical 
Theory and Computation 2018, 14 (10), 5273-5289. 

16. Eastman, P.;  Swails, J.;  Chodera, J. D.;  McGibbon, R. T.;  Zhao, Y.;  Beauchamp, K. A.;  
Wang, L. P.;  Simmonett, A. C.;  Harrigan, M. P.;  Stern, C. D.;  Wiewiora, R. P.;  Brooks, B. R.; 
Pande, V. S., OpenMM 7: Rapid development of high performance algorithms for molecular 
dynamics. PLoS Comput Biol 2017, 13 (7), e1005659. 

17. Dequidt, A.;  Devémy, J.; Pádua, A. A. H., Thermalized Drude Oscillators with the LAMMPS 
Molecular Dynamics Simulator. Journal of Chemical Information and Modeling 2016, 56 (1), 260-
268. 

18. Bussi, G.; Tribello, G. A., Analyzing and Biasing Simulations with PLUMED. Methods Mol 
Biol 2019, 2022, 529-578. 

19. Hospital, A.;  Andrio, P.;  Fenollosa, C.;  Cicin-Sain, D.;  Orozco, M.; Gelpí, J. L., MDWeb and 
MDMoby: an integrated web-based platform for molecular dynamics simulations. Bioinformatics 
2012, 28 (9), 1278-1279. 

20. Jo, S.;  Kim, T.;  Iyer, V. G.; Im, W., CHARMM-GUI: a web-based graphical user interface 
for CHARMM. J Comput Chem 2008, 29 (11), 1859-1865. 

21. Jo, S.;  Cheng, X.;  Islam, S. M.;  Huang, L.;  Rui, H.;  Zhu, A.;  Lee, H. S.;  Qi, Y.;  Han, W.;  
Vanommeslaeghe, K.;  MacKerell, A. D., Jr.;  Roux, B.; Im, W., CHARMM-GUI PDB Manipulator for 
Advanced Modeling and Simulations of Proteins Containing Nonstandard Residues. Advances in 
protein chemistry and structural biology 2014, 96, 235-65. 

22. Lee, J.;  Cheng, X.;  Swails, J. M.;  Yeom, M. S.;  Eastman, P. K.;  Lemkul, J. A.;  Wei, S.;  
Buckner, J.;  Jeong, J. C.;  Qi, Y.;  Jo, S.;  Pande, V. S.;  Case, D. A.;  Brooks, C. L., 3rd;  MacKerell, A. 
D., Jr.;  Klauda, J. B.; Im, W., CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, 
OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field. J 
Chem Theory Comput 2016, 12 (1), 405-13. 

23. Lee, J.;  Hitzenberger, M.;  Rieger, M.;  Kern, N. R.;  Zacharias, M.; Im, W., CHARMM-GUI 
supports the Amber force fields. J Chem Phys 2020, 153 (3), 035103. 

24. Park, S. J.;  Lee, J.;  Qi, Y.;  Kern, N. R.;  Lee, H. S.;  Jo, S.;  Joung, I.;  Joo, K.;  Lee, J.; Im, W., 
CHARMM-GUI Glycan Modeler for modeling and simulation of carbohydrates and 
glycoconjugates. Glycobiology 2019, 29 (4), 320-331. 



25. Jo, S.;  Cheng, X.;  Lee, J.;  Kim, S.;  Park, S. J.;  Patel, D. S.;  Beaven, A. H.;  Lee, K. I.;  Rui, 
H.;  Park, S.;  Lee, H. S.;  Roux, B.;  MacKerell, A. D., Jr.;  Klauda, J. B.;  Qi, Y.; Im, W., CHARMM-GUI 
10 years for biomolecular modeling and simulation. J Comput Chem 2017, 38 (15), 1114-1124. 

26. Choi, Y. K.;  Park, S.-J.;  Park, S.;  Kim, S.;  Kern, N. R.;  Lee, J.; Im, W., CHARMM-GUI Polymer 
Builder for Modeling and Simulation of Synthetic Polymers. Journal of Chemical Theory and 
Computation 2021. 

27. Foley, B. L.;  Tessier, M. B.; Woods, R. J., Carbohydrate force fields. Wiley Interdisciplinary 
Reviews: Computational Molecular Science 2012, 2 (4), 652-697. 

28. Cerutti, D. S.;  Swope, W. C.;  Rice, J. E.; Case, D. A., ff14ipq: A Self-Consistent Force Field 
for Condensed-Phase Simulations of Proteins. J Chem Theory Comput 2014, 10 (10), 4515-4534. 

29. Debiec, K. T.;  Cerutti, D. S.;  Baker, L. R.;  Gronenborn, A. M.;  Case, D. A.; Chong, L. T., 
Further along the Road Less Traveled: AMBER ff15ipq, an Original Protein Force Field Built on a 
Self-Consistent Physical Model. J Chem Theory Comput 2016, 12 (8), 3926-47. 

30. Ivani, I.;  Dans, P. D.;  Noy, A.;  Perez, A.;  Faustino, I.;  Hospital, A.;  Walther, J.;  Andrio, 
P.;  Goni, R.;  Balaceanu, A.;  Portella, G.;  Battistini, F.;  Gelpi, J. L.;  Gonzalez, C.;  Vendruscolo, 
M.;  Laughton, C. A.;  Harris, S. A.;  Case, D. A.; Orozco, M., Parmbsc1: a refined force field for 
DNA simulations. Nat Methods 2016, 13 (1), 55-8. 

31. Aytenfisu, A. H.;  Spasic, A.;  Grossfield, A.;  Stern, H. A.; Mathews, D. H., Revised RNA 
Dihedral Parameters for the Amber Force Field Improve RNA Molecular Dynamics. J Chem Theory 
Comput 2017, 13 (2), 900-915. 

32. Guvench, O.;  Mallajosyula, S. S.;  Raman, E. P.;  Hatcher, E.;  Vanommeslaeghe, K.;  Foster, 
T. J.;  Jamison, F. W., 2nd; Mackerell, A. D., Jr., CHARMM additive all-atom force field for 
carbohydrate derivatives and its utility in polysaccharide and carbohydrate-protein modeling. J. 
Chem. Theory Comp. 2011, 7 (10), 3162-3180. 

33. Denning, E. J.;  Priyakumar, U. D.;  Nilsson, L.; MacKerell, A. D., Jr., Impact of 2'-hydroxyl 
sampling on the conformational properties of RNA: Update of the CHARMM all-atom additive 
force field for RNA. J Comput Chem 2011, 32 (9), 1929-1943. 

34. Hart, K.;  Foloppe, N.;  Baker, C. M.;  Denning, E. J.;  Nilsson, L.; Mackerell, A. D., Jr., 
Optimization of the CHARMM additive force field for DNA: Improved treatment of the BI/BII 
conformational equilibrium. J. Chem. Theory Comp. 2012, 8 (1), 348-362. 

35. Best, R. B.;  Zhu, X.;  Shim, J.;  Lopes, P. E. M.;  Mittal, J.;  Feig, M.; MacKerell Jr., A. D., 
Optimization of the additive CHARMM all-atom protein force field targeting improved sampling 
of the backbone φ, ψ and side-chain χ1 and χ2 dihedral angles. J. Chem. Theory and Comp. 2012, 
8, 3257–3273. 

36. Venable, R. M.;  Sodt, A. J.;  Rogaski, B.;  Rui, H.;  Hatcher, E.;  MacKerell, A. D., Jr.;  Pastor, 
R. W.; J.B., K., CHARMM All-Atom Additive Force Field for Sphingomyelin: Elucidation of Hydrogen 
Bonding and of Positive Curvature. Biophysical Journal 2014, 107, 134-145. 



37. Huang, J.;  Rauscher, S.;  Nawrocki, G.;  Ran, T.;  Feig, M.;  de Groot, B. L.;  Grubmuller, H.; 
MacKerell, A. D., Jr., CHARMM36m: an improved force field for folded and intrinsically disordered 
proteins. Nature Methods 2017, 14, 71–73. 

38. Harder, E.;  Damm, W.;  Maple, J.;  Wu, C.;  Reboul, M.;  Xiang, J. Y.;  Wang, L.;  Lupyan, D.;  
Dahlgren, M. K.;  Knight, J. L.;  Kaus, J. W.;  Cerutti, D. S.;  Krilov, G.;  Jorgensen, W. L.;  Abel, R.; 
Friesner, R. A., OPLS3: A Force Field Providing Broad Coverage of Drug-like Small Molecules and 
Proteins. J Chem Theory Comput 2016, 12 (1), 281-96. 

39. Robertson, M. J.;  Tirado-Rives, J.; Jorgensen, W. L., Improved Peptide and Protein 
Torsional Energetics with the OPLS-AA Force Field. Journal of Chemical Theory and Computation 
2015, 11 (7), 3499-3509. 

40. Dodda, L. S.;  Cabeza de Vaca, I.;  Tirado-Rives, J.; Jorgensen, W. L., LigParGen web server: 
an automatic OPLS-AA parameter generator for organic ligands. Nucleic Acids Research 2017, 45 
(W1), W331-W336. 

41. Soares, T. A.;  Hunenberger, P. H.;  Kastenholz, M. A.;  Kraeutler, V.;  Lenz, T.;  Lins, R.;  
Oostenbrink, C.; van Gunsteren, W., An improved nucleic acid parameter set for the GROMOS 
force field. J. Comp. Chem. 2005, 26, 725-737. 

42. Oostenbrink, C.;  Soares, T. A.;  van der Vegt, N. F. A.; van Gunsteren, W. F., Validation of 
the 53A6 GROMOS force field. Eur. Biophys. J. 2005, 34, 273-284. 

43. Reif, M. M.;  Winger, M.; Oostenbrink, C., Testing of the GROMOS Force-Field Parameter 
Set 54A8: Structural Properties of Electrolyte Solutions, Lipid Bilayers, and Proteins. Journal of 
Chemical Theory and Computation 2013, 9 (2), 1247-1264. 

44. Halgren, T. A.; Damm, W., Polarizable force fields. Curr. Opin. Struct. Biol. 2001, 11, 236-
242. 

45. Rick, S. W.; Stuart, S. J., Potentials and Algorithms for Incorporating Polarizability in 
Computer Simulations. Rev. Comp. Chem. 2002, 18, 89-146. 

46. Cieplak, P.;  Dupradeau, F.-Y.;  Duan, Y.; Wang, J., Polarization effects in molecular 
mechanical force fields. J. Phys.: Condens. Matter 2009, 21, 333102. 

47. Zhu, X.;  Lopes, P. E.; MacKerell, A. D., Jr., Recent Developments and Applications of the 
CHARMM force fields. Wiley Interdiscip Rev Comput Mol Sci 2012, 2 (1), 167-185. 

48. Levine, Z. A.; Shea, J. E., Simulations of disordered proteins and systems with 
conformational heterogeneity. Curr Opin Struct Biol 2017, 43, 95-103. 

49. Huang, J.; MacKerell, A. D., Jr., Force field development and simulations of intrinsically 
disordered proteins. Curr Opin Struct Biol 2018, 48, 40-48. 

50. Harder, E.;  Kim, B.;  Friesner, R. A.; Berne, B. J., Efficient Simulation Method for Polarizable 
Protein Force Fields: Application to the Simulation of BPTI in Liquid Water. J. Chem. Theory Comp. 
2005, 1, 169-180. 



51. Kaminski, G. A.;  Ponomarev, S. Y.; Liu, A. B., Polarizable Simulations with Second order 
Interaction Model - force field and software for fast polarizable calculations: Parameters for small 
model systems and free energy calculations. J Chem Theory Comput 2009, 5 (11), 2935-2943. 

52. Shi, Y.;  Xia, Z.;  Zhang, J.;  Best, R.;  Wu, C.;  Ponder, J. W.; Ren, P., Polarizable Atomic 
Multipole-Based AMOEBA Force Field for Proteins. J Chem Theory Comput. 2013, 9, 4046-4064. 

53. Zhang, C.;  Lu, C.;  Jing, Z.;  Wu, C.;  Piquemal, J.-P.;  Ponder, J. W.; Ren, P., AMOEBA 
Polarizable Atomic Multipole Force Field for Nucleic Acids. Journal of Chemical Theory and 
Computation 2018, 14, 2084–2108. 

54. Patel, S.;  MacKerell, A. D., Jr.; Brooks, C. L., III, CHARMM fluctuating charge force field for 
proteins: II Protein/solvent properties from molecular dynamics simulations using a nonadditive 
electrostatic model. J Comput Chem 2004, 25, 1504-1514. 

55. Zhong, Y.; Patel, S., Binding structures of tri-N-acetyl-beta-glucosamine in hen egg white 
lysozyme using molecular dynamics with a polarizable force field. J Comput Chem 2013, 34 (3), 
163-74. 

56. Oostenbrink, C.; van Gunsteren, W. F., Free energies of ligand binding for structurally 
diverse compounds. Proceedings of the National Academy of Sciences of the United States of 
America 2005, 102 (19), 6750-6754. 

57. Patel, S.;  Davis, J. E.; Bauer, B. A., Exploring ion permeation energetics in gramicidin A 
using polarizable charge equilibration force fields. J. Am. Chem. Soc. 2009, 131 (39), 13890-1. 

58. Soniat, M.;  Hartman, L.; Rick, S. W., Charge Transfer Models of Zinc and Magnesium in 
Water. J Chem Theory Comput 2015, 11 (4), 1658-67. 

59. Kunz, A. P.; van Gunsteren, W. F., Development of a nonlinear classical polarization model 
for liquid water and aqueous solutions: COS/D. J. Phys. Chem. A 2009, 113 (43), 11570-11579. 

60. Rick, S. W., A polarizable, charge transfer model of water using the drude oscillator. J 
Comput Chem 2016, 37 (22), 2060-6. 

61. Lemkul, J. A.;  Huang, J.;  Roux, B.; MacKerell, A. D., Jr., An Empirical Polarizable Force Field 
Based on the Classical Drude Oscillator Model: Development History and Recent Applications. 
Chem Rev 2016, 116 (9), 4983-5013. 

62. Ren, P.;  Wu, C.; Ponder, J. W., Polarizable Atomic Multipole-based Molecular Mechanics 
for Organic Molecules. J Chem Theory Comput 2011, 7 (10), 3143-3161. 

63. Zhang, C.;  Bell, D.;  Harger, M.; Ren, P., Polarizable Multipole-Based Force Field for 
Aromatic Molecules and Nucleobases. J Chem Theory Comput 2017, 13 (2), 666-678. 

64. Savelyev, A.; MacKerell, A. D., Jr., All-Atom Polarizable Force Field for DNA Based on the 
Classical Drude Oscillator Model. J Comput Chem 2014, 35, 1219-1239. 

65. Savelyev, A.; MacKerell, A. D., Jr., Balancing the interactions of ions, water and DNA in the 
Drude polarizable force field. J Phys Chem B 2014, 118, 6742-675. 



66. Chowdhary, J.;  Harder, E.;  Lopes, P. E.;  Huang, L.;  MacKerell, A. D., Jr.; Roux, B., A 
Polarizable Force Field of Dipalmitoylphosphatidylcholine Based on the Classical Drude Model for 
Molecular Dynamics Simulations of Lipids. J. Phys. Chem. B 2013, 117, 9142–9160. 

67. Lopes, P. E. M.;  Huang, J.;  Shim, J.;  Luo, Y.;  Li, H.;  Roux, B.; MacKerell, A. D., Jr., 
Polarizable Force Field for Peptides and Proteins based on the Classical Drude Oscillator. J. Chem. 
Theory Comp. 2013, 9, 5430–5449. 

68. He, X.;  Lopes, P. E. M.; MacKerell, A. D., Jr., Polarizable Empirical Force Field for Acyclic 
Poly-Alcohols Based on the Classical Drude Oscillator. Biopolymers 2013, 99, 724-738. 

69. Patel, D. S.;  He, X.; MacKerell, A. D., Jr., Polarizable empirical force field for hexopyranose 
monosaccharides based on the classical Drude oscillator. J Phys Chem B 2015, 119 (3), 637-652. 

70. Aytenfisu, A. H.;  Yang, M.; MacKerell, A. D., Jr., CHARMM Drude Polarizable Force Field 
for Glycosidic Linkages Involving Pyranoses and Furanoses. J Chem Theory Comput 2018, ASAP 
Article. 

71. Yang, M.;  Aytenfisu, A. H.; MacKerell, A. D., Jr., Proper Balance of Solvent-Solute and 
Solute-Solute Interactions in the Treatment of the Diffusion of Glucose using the Drude 
Polarizable Force Field. Carbohydrate Research 2018, 457, 41-50. 

72. Yu, H.;  Whitfield, T. W.;  Harder, E.;  Lamoureux, G.;  Vorobyov, I.;  Anisimov, V. M.;  
MacKerell, A. D., Jr.; Roux, B., Simulating Monovalent and Divalent Ions in Aqueous Solution Using 
a Drude Polarizable Force Field. J Chem Theory Comput 2010, 6 (3), 774-786. 

73. Luo, Y.;  Jiang, W.;  Yu, H.;  MacKerell, A. D., Jr.; Roux, B., Simulation study of ion pairing 
in concentrated aqueous salt solutions with a polarizable force field. Faraday Discussions 2013, 
160, 135 - 149. 

74. Lin, F.-Y.; MacKerell, A. D., Polarizable Empirical Force Field for Halogen-Containing 
Compounds Based on the Classical Drude Oscillator. Journal of Chemical Theory and Computation 
2018, 14 (2), 1083-1098. 

75. Heid, E.;  Fleck, M.;  Chatterjee, P.;  Schröder, C.; MacKerell, A. D., Toward Prediction of 
Electrostatic Parameters for Force Fields That Explicitly Treat Electronic Polarization. Journal of 
Chemical Theory and Computation 2019, 15 (4), 2460-2469. 

76. Harder, E.;  Anisimov, V. M.;  Whitfield, T.;  MacKerell, A. D., Jr.; Roux, B., Understanding 
the Dielectric Properties of Liquid Amides from a Polarizable Force Field. J. Phys. Chem. B 2008, 
112, 3509-3521. 

77. Baker, C. M.;  Lopes, P. E.;  Zhu, X.;  Roux, B.; MacKerell, A. D., Jr., Accurate Calculation of 
Hydration Free Energies using Pair-Specific Lennard-Jones Parameters in the CHARMM Drude 
Polarizable Force Field. J Chem Theory Comput 2010, 6 (4), 1181-1198. 

78. Lemkul, J. A.; MacKerell, A. D., Jr., Balancing the Interactions of Mg2+ in Aqueous Solution 
and with Nucleic Acid Moieties For a Polarizable Force Field Based on the Classical Drude 
Oscillator Model. J Phys Chem B 2016, 120 (44), 11436-11448. 



79. Huang, J.;  Lemkul, J. A.;  Eastman, P. K.; MacKerell, A. D., Jr., , Molecular Dynamics 
Simulations of Explicitly Solvated Drude Polarizable Systems on GPUs: Implementation, 
Validation, and Benchmark. J. Comp. Chem. 2018, 39, 1682–1689. 

80. Lindert, S.;  Bucher, D.;  Eastman, P.;  Pande, V.; McCammon, J. A., Accelerated Molecular 
Dynamics Simulations with the AMOEBA Polarizable Force Field on Graphics Processing Units. J 
Chem Theory Comput 2013, 9 (11), 4684-4691. 

81. Lagardere, L.;  Jolly, L.-H.;  Lipparini, F.;  Aviat, F.;  Stamm, B.;  Jing, Z. F.;  Harger, M.;  
Torabifard, H.;  Cisneros, G. A.;  Schnieders, M. J.;  Gresh, N.;  Maday, Y.;  Ren, P. Y.;  Ponder, J. 
W.; Piquemal, J.-P., Tinker-HP: a massively parallel molecular dynamics package for multiscale 
simulations of large complex systems with advanced point dipole polarizable force fields. 
Chemical Science 2018, 9 (4), 956-972. 

82. Lamoureux, G.; Roux, B., Modelling Induced Polarizability with Drude Oscillators: Theory 
and Molecular Dynamics Simulation Algorithm. J. Chem. Phys. 2003, 119, 5185-5197. 

83. Jiang, W.;  Hardy, D. J.;  Phillips, J. C.;  Mackerell, A. D., Jr.;  Schulten, K.; Roux, B., High-
performance scalable molecular dynamics simulations of a polarizable force field based on 
classical Drude oscillators in NAMD. J Phys Chem Lett 2011, 2 (2), 87-92. 

84. Huang, J.;  Lemkul, J. A.;  Eastman, P. K.; MacKerell, A. D., Jr., Molecular dynamics 
simulations using the drude polarizable force field on GPUs with OpenMM: Implementation, 
validation, and benchmarks. J Comput Chem 2018, 39 (21), 1682-1689. 

85. Lemkul, J. A.;  Roux, B.;  van der Spoel, D.; MacKerell, A. D., Jr., Implementation of 
extended Lagrangian dynamics in GROMACS for polarizable simulations using the classical Drude 
oscillator model. J Comput Chem 2015, 36 (19), 1473-9. 

86. Jo, S.;  Song, K. C.;  Desaire, H.;  MacKerell Jr, A. D.; Im, W., Glycan reader: Automated 
sugar identification and simulation preparation for carbohydrates and glycoproteins. Journal of 
Computational Chemistry 2011, 32 (14), 3135-3141. 

87. Park, S.-J.;  Lee, J.;  Patel, D. S.;  Ma, H.;  Lee, H. S.;  Jo, S.; Im, W., Glycan Reader is improved 
to recognize most sugar types and chemical modifications in the Protein Data Bank. 
Bioinformatics 2017, 33 (19), 3051-3057. 

88. Pandey, P.;  Aytenfisu, A. H.;  MacKerell, A. D.; Mallajosyula, S. S., Drude Polarizable Force 
Field Parametrization of Carboxylate and N-Acetyl Amine Carbohydrate Derivatives. Journal of 
Chemical Theory and Computation 2019, 15 (9), 4982-5000. 

89. Vanommeslaeghe, K.;  Hatcher, E.;  Acharya, C.;  Kundu, S.;  Zhong, S.;  Shim, J.;  Darian, 
E.;  Guvench, O.;  Lopes, P.;  Vorobyov, I.; Mackerell Jr, A. D., CHARMM general force field: A force 
field for drug-like molecules compatible with the CHARMM all-atom additive biological force 
fields. Journal of Computational Chemistry 2010, 31 (4), 671-690. 

90. Jorgensen, W. L.;  Chandrasekhar, J.;  Madura, J. D.;  Impey, R. W.; Klein, M. L., Comparison 
of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79 (2), 926-935. 

91. Durell, S. R.;  Brooks, B. R.; Bennaim, A., Solvent-induced forces between 2 hydrophilic 
groups. J. Phys. Chem. 1994, 98 (8), 2198-2202. 



92. Lamoureux, G.;  Harder, E.;  Vorobyov, I. V.;  Roux, B.; MacKerell, A. D., A polarizable model 
of water for molecular dynamics simulations of biomolecules. Chemical Physics Letters 2006, 418 
(1-3), 245-249. 

93. Yu, W.;  Lopes, P. E. M.;  Roux, B.; MacKerell, A. D., Six-site polarizable model of water 
based on the classical Drude oscillator. The Journal of Chemical Physics 2013, 138 (3), 034508. 

94. Essmann, U.;  Perera, L.;  Berkowitz, M. L.;  Darden, T.;  Lee, H.; Pedersen, L. G., A smooth 
particle mesh Ewald method. The Journal of Chemical Physics 1995, 103 (19), 8577-8593. 

95. Ryckaert, J. P.;  Ciccotti, G.; Berendsen, H. J. C., Numerical integration of the cartesian 
equations of motion of a system with constraints: molecular dynamics of n-alkanes. Journal of 
Computational Physics 1977, 23 (3), 327-341. 

96. Brooks, B. R.;  Bruccoleri, R. E.;  Olafson, B. D.;  States, D. J.;  Swaminathan, S.; Karplus, M., 
CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. 
Journal of Computational Chemistry 1983, 4 (2), 187-217. 

97. Steinbach, P. J.; Brooks, B. R., New spherical-cutoff methods for long-range forces in 
macromolecular simulation. Journal of Computational Chemistry 1994, 15 (7), 667-683. 

98. Allen, M. P.; Tildesley, D. J., Computer simulations of liquids. Clarendon Press: Oxford, 
England, 1987. 

99. Leonard, A. N.;  Simmonett, A. C.;  Pickard, F. C.;  Huang, J.;  Venable, R. M.;  Klauda, J. B.;  
Brooks, B. R.; Pastor, R. W., Comparison of Additive and Polarizable Models with Explicit 
Treatment of Long-Range Lennard-Jones Interactions Using Alkane Simulations. Journal of 
Chemical Theory and Computation 2018, 14 (2), 948-958. 

100. Nosé, S., A unified formulation of the constant temperature molecular dynamics 
methods. The Journal of Chemical Physics 1984, 81 (1), 511-519. 

101. Hoover, W. G., Canonical dynamics: Equilibrium phase-space distributions. Physical 
Review A 1985, 31 (3), 1695-1697. 

102. Martyna, G. J.;  Tobias, D. J.; Klein, M. L., Constant pressure molecular dynamics 
algorithms. The Journal of Chemical Physics 1994, 101 (5), 4177-4189. 

103. Feller, S. E.;  Zhang, Y.;  Pastor, R. W.; Brooks, B. R., Constant pressure molecular dynamics 
simulation: The Langevin piston method. The Journal of Chemical Physics 1995, 103 (11), 4613-
4621. 

104. Abraham, M. J.;  Murtola, T.;  Schulz, R.;  Páll, S.;  Smith, J. C.;  Hess, B.; Lindahl, E., 
GROMACS: High performance molecular simulations through multi-level parallelism from laptops 
to supercomputers. SoftwareX 2015, 1-2, 19-25. 

105. Hess, B., P-LINCS:  A Parallel Linear Constraint Solver for Molecular Simulation. Journal of 
Chemical Theory and Computation 2008, 4 (1), 116-122. 

106. Vijay-Kumar, S.;  Bugg, C. E.; Cook, W. J., Structure of ubiquitin refined at 1.8Åresolution. 
Journal of Molecular Biology 1987, 194 (3), 531-544. 



107. Elrod-Erickson, M.;  Rould, M. A.;  Nekludova, L.; Pabo, C. O., Zif268 protein&#x2013;DNA 
complex refined at 1.6&#xe5;: a model system for understanding zinc finger&#x2013;DNA 
interactions. Structure 1996, 4 (10), 1171-1180. 

108. Dingwall, C.;  Ernberg, I.;  Gait, M. J.;  Green, S. M.;  Heaphy, S.;  Karn, J.;  Lowe, A. D.;  
Singh, M.;  Skinner, M. A.; Valerio, R., Human immunodeficiency virus 1 tat protein binds trans-
activation-responsive region (TAR) RNA in vitro. Proceedings of the National Academy of Sciences 
of the United States of America 1989, 86 (18), 6925-6929. 

109. Puglisi, J. D.;  Tan, R.;  Calnan, B. J.;  Frankel, A. D.; Williamson, Conformation of the TAR 
RNA-arginine complex by NMR spectroscopy. Science 1992, 257 (5066), 76. 

110. Pham, V. V.;  Salguero, C.;  Khan, S. N.;  Meagher, J. L.;  Brown, W. C.;  Humbert, N.;  de 
Rocquigny, H.;  Smith, J. L.; D’Souza, V. M., HIV-1 Tat interactions with cellular 7SK and viral TAR 
RNAs identifies dual structural mimicry. Nature Communications 2018, 9 (1), 4266. 

111. Zhu, X.;  Clarke, R.;  Puppala, A. K.;  Chittori, S.;  Merk, A.;  Merrill, B. J.;  Simonović, M.; 
Subramaniam, S., Cryo-EM structures reveal coordinated domain motions that govern DNA 
cleavage by Cas9. Nature Structural & Molecular Biology 2019, 26 (8), 679-685. 

112. Krishnamurthy, H.; Gouaux, E., X-ray structures of LeuT in substrate-free outward-open 
and apo inward-open states. Nature 2012, 481 (7382), 469-474. 

113. Cao, Y.;  Jin, X.;  Levin, E. J.;  Huang, H.;  Zong, Y.;  Quick, M.;  Weng, J.;  Pan, Y.;  Love, J.;  
Punta, M.;  Rost, B.;  Hendrickson, W. A.;  Javitch, J. A.;  Rajashankar, K. R.; Zhou, M., Crystal 
structure of a phosphorylation-coupled saccharide transporter. Nature 2011, 473 (7345), 50-54. 

114. Ren, Z.;  Lee, J.;  Moosa, M. M.;  Nian, Y.;  Hu, L.;  Xu, Z.;  McCoy, J. G.;  Ferreon, A. C. M.;  
Im, W.; Zhou, M., Structure of an EIIC sugar transporter trapped in an inward-facing 
conformation. Proceedings of the National Academy of Sciences 2018, 115 (23), 5962. 

115. Lee, J.;  Ren, Z.;  Zhou, M.; Im, W., Molecular Simulation and Biochemical Studies Support 
an Elevator-type Transport Mechanism in&#xa0;EIIC. Biophysical Journal 2017, 112 (11), 2249-
2252. 

116. McCoy, Jason G.;  Ren, Z.;  Stanevich, V.;  Lee, J.;  Mitra, S.;  Levin, Elena J.;  Poget, S.;  
Quick, M.;  Im, W.; Zhou, M., The Structure of a Sugar Transporter of the Glucose EIIC Superfamily 
Provides Insight into the Elevator Mechanism of Membrane Transport. Structure 2016, 24 (6), 
956-964. 

117. Lomize, M. A.;  Pogozheva, I. D.;  Joo, H.;  Mosberg, H. I.; Lomize, A. L., OPM database and 
PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Research 
2011, 40 (D1), D370-D376. 

118. Jo, S.;  Cheng, X.;  Islam, S. M.;  Huang, L.;  Rui, H.;  Zhu, A.;  Lee, H. S.;  Qi, Y.;  Han, W.;  
Vanommeslaeghe, K.;  MacKerell, A. D.;  Roux, B.; Im, W., Chapter Eight - CHARMM-GUI PDB 
Manipulator for Advanced Modeling and Simulations of Proteins Containing Nonstandard 
Residues. In Advances in protein chemistry and structural biology, Karabencheva-Christova, T., 
Ed. Academic Press: 2014; Vol. 96, pp 235-265. 



119. Im, W.; Khalid, S., Molecular Simulations of Gram-Negative Bacterial Membranes Come 
of Age. Annual Review of Physical Chemistry 2020, 71 (1), 171-188. 

120. Iguchi, A.;  Iyoda, S.;  Kikuchi, T.;  Ogura, Y.;  Katsura, K.;  Ohnishi, M.;  Hayashi, T.; 
Thomson, N. R., A complete view of the genetic diversity of the Escherichia coli O-antigen 
biosynthesis gene cluster. DNA Research 2014, 22 (1), 101-107. 

121. Patel, D. S.;  Blasco, P.;  Widmalm, G.; Im, W., Escherichia coli O176 LPS structure and 
dynamics: A NMR spectroscopy and MD simulation study. Current Research in Structural Biology 
2020, 2, 79-88. 

122. Hays, J. P., Moraxella catarrhalis: A mini review. Journal of Pediatric Infectious Diseases 
2009, 4, 211-220. 

123. Gao, Y.;  Lee, J.;  Widmalm, G.; Im, W., Preferred conformations of lipooligosaccharides 
and oligosaccharides of Moraxella catarrhalis. Glycobiology 2019, 30 (2), 86-94. 

124. Li, S.;  Kelly, S. J.;  Lamani, E.;  Ferraroni, M.; Jedrzejas, M. J., Structural basis of hyaluronan 
degradation by Streptococcus pneumoniae hyaluronate lyase. The EMBO Journal 2000, 19 (6), 
1228-1240. 

125. Jedrzejas, M. J.;  Mello, L. V.;  de Groot, B. L.; Li, S., Mechanism of Hyaluronan Degradation 
byStreptococcus pneumoniae Hyaluronate Lyase: STRUCTURES OF COMPLEXES WITH THE 
SUBSTRATE. Journal of Biological Chemistry 2002, 277 (31), 28287-28297. 

126. Lemkul, J. A.;  Huang, J.; MacKerell, A. D., Induced Dipole–Dipole Interactions Influence 
the Unfolding Pathways of Wild-Type and Mutant Amyloid β-Peptides. The Journal of Physical 
Chemistry B 2015, 119 (51), 15574-15582. 

127. Lemkul, J. A., Same fold, different properties: polarizable molecular dynamics simulations 
of telomeric and TERRA G-quadruplexes. Nucleic Acids Research 2020, 48 (2), 561-575. 

128. Jo, S.; Im, W., Glycan fragment database: a database of PDB-based glycan 3D structures. 
Nucleic Acids Research 2013, 41 (D1), D470-D474. 

129. Kirschner, K. N.; Woods, R. J., Solvent interactions determine carbohydrate conformation. 
Proceedings of the National Academy of Sciences 2001, 98 (19), 10541. 

 


	ABSTRACT
	INTRODUCTION
	METHODS
	Conversion of Additive FF PSF to Drude FF PSF
	Drude System Preparation and Simulation Protocols
	Dipole Moment Calculations
	Simulation Systems

	RESULTS AND DISCUSSION
	CONCLUSIONS
	REFERENCES

