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Abstract

Peptide T is a synthetic octapeptide fragment, which corresponds to the region 185-192 of the

gp120 HIV coat protein and functions as a viral entry inhibitor. In this work, a folding molecular

dynamics simulation of peptide T in a membrane-mimicking (DMSO) solution was performed

with the aim of characterizing the peptide’s structural and dynamical properties. We show that

peptide  T is  highly flexible  and dynamic.  The main  structural  characteristics  observed were

rapidly  interconverting  short  helical  stretches  and  turns,  with  a  notable  preference  for  the

formation of β-turns. The simulation also indicated that the C-terminal part appears to be more

stable than the rest of the peptide, with the most preferred conformation for residues 5-8 being a

β-turn. In order to validate the accuracy of the simulations, we compared our results with the

experimental NMR data obtained for the T-peptide in the same solvent. In agreement with the

simulation, the NMR data indicated the presence of a preferred structure in solution that was

consistent  with  a  β-turn  comprising  the  four  C-terminal  residues.  An additional  comparison

between  the  experimental  and  simulation-derived  chemical  shifts  also  showed  a  reasonable

agreement  between  experiment  and  simulation,  further  validating  the  simulation-derived

structural characterization of the Τ-peptide.
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1. Introduction

The exterior envelope glycoprotein of HIV, gp120, plays a significant role in receptor binding

and interactions with neutralizing antibodies. Structural information regarding gp120 is essential

for the determination of the mechanism of HIV infection and the design of new therapeutic

approaches1. It has been suggested that the interaction between HIV-1 and its host cell receptors

could entail the region 185-192 of the gp120 coat protein2, which corresponds to the gp120 V2

region3.  The  synthetic  octapeptide  fragment  with  the  sequence:  ASTTTNYT,  is  known  as

peptide  T due  to  its  high  threonine  content,  and it  was  proven to  function  as  a  viral  entry

inhibitor by blocking the binding of both isolated gp120 and HIV-1 with the CD4 receptor2-4.

Later studies have suggested that both the CD4 receptor and a co-receptor are needed for the

invasion of healthy cells by HIV-12.

The folding behavior of peptide T has been studied by Picone and her colleagues2 by means of

NMR spectroscopy at 500 MHz. More specifically, NMR spectra were obtained at 500 MHz,

double-quantum-filtered (DFQ) COSY, and NOESY spectra were run, and chemical shifts of all

backbone protons and temperature coefficients of the labile protons were reported. The chemical

shift data indicated a non-random conformational state. It was shown that residues S2 and T8,

whose resonances of the NH groups were broader than the other five, could possibly adopt a

single preferred conformation  and that  the side chains  of two of the four  threonines,  whose

methyl groups both resonate at 1.03 ppm, were in a similar environment. The same study,2 also

identified in the NOESY spectrum effects between chemical groups belonging to the four C-

terminal  residues,  a  finding  that  was  also  consistent  with  the  presence  of  well-defined

conformers. They concluded that peptide T demonstrates an unusual degree of conformational

order in the given (DMSO) solvent environment . The minimal value of the T8 chemical shift in

the range of 298-330K, the diagnostic NOE between the NH groups of Y7 and T8, and variable

temperature data were interpreted as being consistent with a type I β-turn involving the four C-

terminal  residues,  although  the  possibility  of  a  helical  conformation  could  not  be  positively

excluded. Although this conformation was proposed to be a prominent conformation in solution,

it  was  clear  that  other  peptide  conformations  were  also  present,  but  their  structural
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characterization  was  limited  by  the  non-linear  dependence  of  the  NOEs  on  interatomic

distances5.

Here, we attempt to characterize the structure and dynamics of the T-peptide in DMSO using a

4.0μs-long folding molecular dynamics simulation which was performed in explicit solvent and

with full treatment of the electrostatics. We extensively characterize the structural properties of

peptide  T,  and  examine  which  are  the  most  likely  conformations  that  it  can  adopt  in  this

membrane-mimicking solvent. Due to the availability of the experimental chemical shift data, we

are  also  able  to  critically  evaluate  the  agreement  between  the  simulation-derived  and

experimentally determined values with the aim of validating and strengthening the conclusions

derived from the simulation. 

In the following sections, we describe the simulation protocol, the trajectory analysis, and the

results obtained from a structural analysis of the trajectory.  Since one of the major concerns

when evaluating the effectiveness of MD simulations of proteins or peptides is the degree to

which the simulations faithfully sample the conformational space of the protein or peptide, we

also examine the degree to which the simulation sufficiently samples the folding landscape of

peptide T.
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2. Methods

2.1 System preparation and simulation protocol

The system preparation process and the simulation protocol have been previously described in

detail.6-12 In summary, the procedure is as follows. The starting peptide structure in the fully

extended state, along with the addition of missing hydrogen and the solvation-ionization of the

system, were all performed using the program LEAP from the AMBER tools distribution13. The

simulation was conducted using periodic boundary conditions with a cubic unit cell sufficiently

large to guarantee a minimum separation between the neighboring cells of at least 16 Å. We

studied the dynamics of the folding simulation of peptide T using the program NAMD14,15 for a

grand total of 4.04 μs using DMSO as solvent, the AMBER99SB-STAR-ILDN force field16-18,

and  the  adaptive  tempering  method19,  as  implemented  in  the  program  NAMD  (adaptive

tempering is formally equivalent to a single-copy replica exchange folding simulation with a

continuous temperature range).  For our simulation,  the temperature  ranged between 280 and

380K  inclusive.  This  temperature  range  was  applied  to  the  system  through  the  Langevin

thermostat as described below. 

The simulation protocol  was the following:  the system was first  energy minimized for 2000

conjugate gradient steps and then the temperature was increased with a ΔT step of 20K until the

final  desired  temperature  of  320K  over  a  period  of  32  ps.  Subsequently,  the  system  was

equilibrated for 10 ps under constant temperature and pressure (NpT conditions) until the volume

equilibrated.  Then  the  production  NpT  run  followed,  with  the  temperature  and  pressure

controlled  using  the  Nosé-Hoover  Langevin  dynamics  and  Langevin  piston  barostat  control

methods, as implemented by the NAMD program, with adaptive tempering applied through the

Langevin  thermostat,  while  the  pressure  was  maintained  at  1  atm.  The  Langevin  damping

coefficient was set to 1 ps-1, and the piston's oscillation period to 400 fs, with a decay time of 200

fs. The  production  phase  was  performed  with  the  impulse  of  the  Verlet-I  multiple-step

integration algorithm20 was used as implemented by NAMD. The inner timestep was 2.5 fs, with

nonbonded interactions being calculated every one step. The long-range electrostatic interactions
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were calculated every two timesteps, using the Particle Mesh Ewald method (PME)21 with a grid

spacing  of  approximately  1  Å  and  a  tolerance  of 10-6.  The  cutoff  for  the  Van  der  Waals

interactions was set at 8 Å, through a switching function, and the SHAKE algorithm22 with a

tolerance of 10-8 was used to restrict all bonds involving hydrogen atoms. The trajectory was

obtained by saving the atomic coordinates every 1.0 ps.

2.2 Trajectory analysis

The programs CARMA23 and its GUI program GRCARMA24, along with custom scripts have

been  used  for  the  majority  of  our  analyses,  including  the  removal  of  overall

rotations/translations, calculation of φ, ψ dihedral angles, calculation of RMSD’s from a chosen

reference structure, dihedral space principal component analysis (dPCA)25-27 and corresponding

cluster  analysis,  calculation  of  average  structures  and  production  of  PDB  files  from  the

trajectories.  Secondary  structure  assignments  were  calculated  using  the  program  STRIDE28.

Other structural analyses were performed using the PROMOTIF29 program. Chemical shifts were

calculated using the program SPARTA+30. In order to be able to evaluate our results and make

quantitative  comparisons  between  the  experimentally  determined  and  the  simulation-derived

chemical  shifts,  we  used  two  statistical  analyses:  the  reduced  x2 and  the  linear  correlation

coefficient. All molecular graphics representations and figure preparation were performed with

the programs VMD31 and CARMA.
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3. Results

3.1 Extent of sampling

Peptide T –as will  be discussed in  the following paragraphs– is  highly flexible.  This  highly

dynamic behavior is associated with a rugged folding energy landscape and the absence of a

well-defined  gradient  towards  a  putative  ‘native’  conformation,  suggesting  that  a  folding

molecular dynamics simulation must sample the vast conformational space associated with the

disordered  state.  To  ascertain  whether  our  simulation  was  adequately  sampled  we  apply  a

recently proposed probabilistic method for estimating the convergence of molecular dynamics

trajectories. This method is based on the application of Good-Turing statistics to estimate the

probability of observing new (previously unobserved) peptide conformations. This probability is

expressed as a function of the RMSD (of these new conformers) from the structures that have

already  been observed in  the  simulation32.  The  results  from these  calculations  are  shown in

Figure 1. 

In these diagrams (Figure 1), the high probability values of unobserved conformations for low

RMSD values show –as expected– that it is highly probable to observe structures that are very

similar with some of the already observed structures, with only minor differences from them. As

the RMSD values from the already observed structures increase, the corresponding probability

values decrease. Therefore, the exact form of these graphs as well as the rate by which they

approach low probability values can inform us about the significance of the structural variability

that has been missed due to limited sampling, or equivalently, the extent to which the trajectory

has been adequately sampled.

The  results  obtained  from  the  application  of  Good-Turing  statistics  to  our  trajectory  are

presented in the form of three independent calculations. In the first calculation we considered the

entire  octapeptide  (black  upper  curve  in  Figure  1),  in  the  second  we  excluded  the  two

hypermobile N- and C-terminal residues (orange curve) , and for the last calculation we only

used residues 5-8 to obtain the Good-Turing estimates (blue curve in Figure 1). At low RMSDs,
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all three curves have high probability values and for gradually increasing RMSDs, the curves

asymptotically approach low probability values. The results from the analysis performed using

all residues (black curve) suggest the most different structure we should expect to observe if we

doubled the simulation time would differ by no more than approximately 2.0 ± 0.1 Ångström

(RMSD) from those already observed. To give a worked example of the information contained in

these graphs, if the simulation were to continue, we would expect that on average only one out of

25 previously unobserved structures (Punobserved = 0.04) would differ by an RMSD value of 1.6Å

(or more) from the already observed structures. The results from the analysis performed using

the residue selection consisting of residues 2-7 (orange curve in Figure 1) suggest that the most

different structure we should expect to observe if we doubled the simulation time would differ by

no more than approximately 1.3 ± 0.1 Ångström (RMSD) from those already observed. Finally,

when using only residues 5-8 (blue curve in Figure 1) we find that the most different structure

we should expect to observe if we doubled the simulation time would differ by no more than

approximately 0.4 ± 0.08 Ångström (RMSD) from those already observed. Clearly, the effect of

limiting  the residue selection  is  rather  dramatic:  the  curve  quickly  falls  to  small  probability

values of unobserved species for RMSD values of lower than 1Å. It can be seen that by limiting

the residue selection to the amino acids comprising the C-terminal part of the peptide, the curve

approaches low probability values faster, demonstrating that residues 5-8 correspond to more

stable  peptide  conformers  with  a  greater  tendency  to  promote  the  formation  of  secondary

structure patterns.

In summary, the conclusions derived from the application of Good-Turing statistics indicate that

the length of the simulation is sufficient for allowing a reasonable sampling of the dynamics and

the structural variability of the peptide for the given force field. This is especially true for the C-

terminal part of peptide T which appears to adopt a much more stable behavior than the rest of

the peptide. 
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3.2 T-peptide is highly flexible with a pronounced preference for forming β-turns 

Figure  2 shows the  results  obtained  from the  secondary  structure  analysis  of  the  T-peptide.

Figure 2A depicts the per-residue secondary structure assignments of the peptide as a function of

simulation  time.  It  is  important  to  mention  that  for  this  analysis  we  have  used  the  entire

trajectory since no considerable differences were observed when using only the structures that

correspond to stable peptide conformers. As it can be seen in Figure 2A, peptide T is highly

flexible and the majority of residues are being assigned to turn (cyan) or coil (white) states, while

assignments to helical structures (α-helices and 310-helices) are significantly less frequent. To

better characterize the peptide’s secondary structure preferences, we calculated two WebLogo

diagrams33. The first diagram (Figure 2B) is a representation of the per residue STRIDE-derived

secondary structure assignments  obtained by analyzing all  peptide structures observed in  the

simulation.  For  the  second  diagram  (Figure  2C)  only  frames  with  an  adaptive  tempering

temperature of less than 320 K were used in an attempt to increase the weight of the more stable

(from the simulation’s point of view) peptide conformations. The isolation of stable conformers

as  a  function  of  temperature  was  possible  because  the  simulation  was  performed  using  the

adaptive tempering method which automatically adjusts the thermostat according to the energy

of  the  system.  A  closer  examination  of  these  WebLogo  diagrams  reveals  that  there  are  no

pronounced differences between the two calculations, and, additionally, clearly indicate that the

termini are quite flexible. This behavior is expected for such a short peptide. Residues 3-5 tend to

form mostly turns, while we can identify some minor occurrences of coil, 310-helical, and even α-

helical structures. 

The experimental data of Picone and her colleagues2 suggested that peptide T could adopt fairly

stable conformations and proposed that a helical segment (either α-helical or 310-helical) could be

present, but the most tenable hypothesis was the one of a β-turn5 forming between the C-terminal

residues 5 to 8 (inclusive). These are the main structural characteristics observed in our analysis

as well, but the difference between those two analyses is that our results suggest a significant

degree of flexibility in the system.
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In order to further analyze the main structural characteristics (turns and helices) of peptide T and

have a more comprehensive understanding of the preferences among the different  β-turn and

helical motifs, we used the PROMOTIF program. Firstly, we analyzed the β-turns. We studied

the presence and the corresponding frequency of each  β-turn type, using the whole trajectory.

Table  I  shows the  frequency of each β-turn class  for  each  of  the five possible  tetrapeptides

contained in T-peptide, namely : a. 1-Ala-2-Ser-3-Thr-4-Thr, b. 2-Ser-3-Thr-4-Thr-5-Thr, c. 3-

Thr-4-Thr-5-Thr-6-Asn, d. 4-Thr-5-Thr-6-Asn-7-Tyr, and finally,  e.  5-Thr-6-Asn-7-Tyr-8-Thr.

Of the turns located,  β-turns type I and IV appear to be the most prominent turn motifs, while

β- turn types II, VIII, I’ and II’ are significantly less frequent. According to the above results, the

most prominent β-turn type for the amino acid sequences: 1-Ala-2-Ser-3-Thr-4-Thr and 2-Ser-3-

Thr-4-Thr-5-Thr appears to be a type I  β-turn, while the second most preferred  β-turn type is

type  IV.  For  sequences  4-  Thr-5-Thr-6-Asn-7-Tyr  and  5-Thr-6-Asn-7-Tyr-8-Thr,  the  most

preferred β-turn type is type IV, followed by a type I β-turn. It should be noted, however, that the

type IV turns are not defined by a specific geometry, and only serve as a catch-all term for a

β-turn not belonging to any of the other characterized types. 

The  next  step  was  to  analyze  the  second  most  prominent,  according  to  our  calculations,

secondary structure element, helices. Table II shows the frequency of each helix type for every

possible combination of sequential amino acid residues. According to the results presented in

Table II, of the helices located, 310-helices appear to be the most preferred helical motif, followed

by α-helices, while π-helices were only observed in a tiny fraction of the observed structures. A

comparison between the results  obtained from tables  I  and II  clearly shows a preference for

β- turns  rather  than  helices.  These  observation  are  in  agreement  with  our  previous  results

obtained from the secondary structure analysis and shown in Figure 2. Also, it is important to

mention that according to our calculations, the most preferred conformation for the amino acid

sequence 5-Thr-6-Asn-7-Tyr-8-Thr is  a  β-turn type IV (5.72%), followed by a  β-turn type I

(4.41%), while the percentage of the helical conformations at the C-terminal end of the peptide

range in the vicinity of values of about ~2-3% (the absence of helical assignments involving the

first and last residues is a consequence of the algorithm used in PROMOTIF and should not be

taken at face value). To summarize, our observations based on secondary structure analysis is in

good  agreement  with  the  experimental  conclusions,  and  indicate  that  the  most  prominent
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conformation  is  a  5-8  β-turn  rather  than  a  C-terminal  helical  segment5.  The  fact  that  the

experimental results indicated that the most likely cyclic structure is a type I  β-turn5 is also in

agreement  with  our  results  if  we  take  into  account  that  the  type  IV  are  in  reality  an

heterogeneous collection of turns not assigned to other types.  

3.3 Dihedral principal component analysis allows visualization of the peptide’s structural

characteristics.

The secondary structure analysis described above enabled us to recognize the basic structural

characteristics of the peptide. In this section, and in order to place our observations in a more

structurally oriented framework, we analyze the folding landscape of the peptide using dihedral

angle  Principal  Component  Analysis  (dPCA),  which  also  allows  us  to  identify  the  most

prominent  peptide  conformations.  Previous  studies  have  shown  that  dPCA  is  an  attractive

method  because  the  analysis  starts  with  the  relevant  part  of  the  dynamics,  preventing

unnecessary noise. Moreover, and since dPCA is based on the backbone dihedral angles, it can

easily  distinguish  between  the  kinetically  well  separated  main  conformational  states  of  the

peptide, such as the αR helical and the β extended conformations25-27. As described in section 2.2

dPCA was performed and an initial set of clusters was identified using the programs CARMA

and GRCARMA. The results  from these calculations  will  be presented  in  the  form of  two-

dimensional (log density) projections of the trajectory along its top three principal components as

shown in Figure 3. In these diagrams, high-density peaks are illustrated as dark blue regions and

correspond to clusters of structures  with similar  principal  component  values,  and as a result

similar dihedral angles and backbone structures. As shown in Figure 3, we performed two sets of

calculations. In the first set (upper row of graphs in Figure 3), all peptide residues were used for

the dPCA analysis. The resulting landscapes are blurry and complex, faithfully illustrating the

structural complexity of this highly flexible peptide. Limiting, however, the selection of residues

used for dPCA to the C-terminal half of the peptide (residues 5-8, lower row of diagrams in

Figure 3) gives a completely different picture : there is a small number of distinct and well-

defined minima corresponding to structurally and kinetically stable peptide conformers which

are  continuously  interconverting  between  them.  The  limited  number  of  distinct  structures
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suggests  that  the  C-terminal  segment  of  the  peptide  adopts  a  limited  number  of  stable

conformations corresponding to distinct  secondary structures with specific  torsion angles and

hydrogen bond patterns. These results are in agreement with the experimental conclusion that

residues 5-8 of peptide T adopt a more stable conformation. 

Having acquired  the  distribution  of  the  principal  components  from the  dPCA analysis,  it  is

feasible to relate high-density peaks with distinct peptide conformations (note that the actual

cluster analysis was performed in the three-dimensional space defined by the top three principal

components,  and  not  in  two  dimensions  as  shown  in  Figure  3  for  clarity).  Representative

structures for the clusters were identified by calculating an average structure for each cluster and

then selecting  the frame from the trajectory  with the lowest  RMSD from the corresponding

average  structure.  To bring  forward  the  structural  heterogeneity  present  in  these  clusters,  in

Figure 4 we show not just a single structure (the representative),  but a whole set  of peptide

structures that belong to these clusters. In the center of this figure is the log density projection of

the trajectory on the first two principal components derived from dPCA. The marked peaks (1 to

7)  are  in  a  one-to-one  correspondence  with  the  structural  diagrams  at  the  periphery  of  the

diagram. The numbers below each schematic structure representation are the relative percentages

of simulation time that each of the clusters occupied. We should mention here that CARMA will

only assign a structure to a cluster if the structure is very near the core region of a peak in the

dPCA map. The result is that not all structures from the trajectory are assigned to clusters. This

can be seen in Table III which shows that in only 2,894,280 structures (corresponding to 57.24%

of the total number of 5,056,000 structures recorded) were assigned to clusters. The three main

clusters  recorded  for  peptide  T  were  cluster  1,  cluster  2,  and  cluster  4  which  occupied

approximately 16%, 12%, and 9% of the whole trajectory, or, equivalently, 28%, 22% and 16%

of  the  total  number  of  assigned peptide  structures.  These  relatively  low percentages  clearly

indicate again the flexibility and dynamic behavior of this peptide.

Figure 4 clearly demonstrates that the main structural characteristics observed were turns and

helices, as has already been discussed in the previous sections of this communication. Due to the

increased  kinetic  frustration  of  the  system,  the  representative  structures  differ  between  the

clusters, and there is also a considerable presence of unfolded random coil representatives. To
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have a more detailed view of the structural variability of the system, Table IV presents the per

residue STRIDE-derived secondary structure assignments of the five most populated motifs for

each cluster.

The  structures  in  Figure  4  clearly  indicate  the  plasticity  of  the  peptide,  but  –by  being  the

structures  closest  to  the  average–  they  obscure  the  real  extend  of  the  structural  variability,

especially for the N-terminal residues (which were not part of the dPCA-based clustering). To

bring this forward, we show in the Supporting Information Figure SI the same collection of

structures,  but  this  time  using  for  each  cluster  a  superposition  of  500  uniformly  selected

structures that belong to the respective clusters. Next to each superposition figure, we have also

added  a  WebLogo  diagram  specific  for  the  cluster  under  examination.  Naturally,  the

superpositions shown in this SI Figure are complex and noisy, making it difficult to understand

the structural content that is present in the clusters. Nevertheless, it is clear that as expected, the

C-terminus forms more compact structures than the N-terminus. 

To summarize this section, T-peptide shows a preference for mostly extended structures, rich in

transiently stable turns and, less frequently, helical structures. These structures are quickly and

constantly  interconverting  as  Figure  2(A)  clearly  indicates.  Characterization  of  the  folding

landscape  using  dPCA,  showed  that  the  C-terminal  residues  appear  to  be  better  behaving

structurally, and allowed the generation of meaningful structure schematics such as those shown

in Figure 4. Based on this analysis, it is clear that any attempt to define a single stable “native”

structure for the T-peptide is meaningless, and this we believe is the major difference with the

experimental work of  Picone  et al5 :  what the dynamics show is that the peptide should be

characterized in terms of average statistical preferences, and not in terms of a single, kinetically

stable “native” structure. It is, thus, clear that a direct comparison with NMR deliverables, such

as chemical shifts, offer a much better ground for a comparison with the actual experiment than

the one offered by comparing assumed structural characteristics of such a flexible and dynamic

peptide.
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3.4 The experimental and simulation-derived chemical shifts are highly correlated.

In  the  two  previous  sections,  we  investigated  the  major  structural  characteristics  of  the

simulation, examined the presence and the corresponding frequency of the various β-turn types

and helical conformations, and identified the preferred peptide conformers for a set of clusters

derived from the corresponding dPCA analysis. In this section, we aim to make a more detailed

and quantitative comparison between the experimental and simulation-derived results. The NMR

experiments of Picone et al. provided the numerical values of the H-chemical shifts of peptide T

in DMSO5. Unfortunately, neither the NMR data nor any structural models have been deposited

in either the PDB or BMRB databases, nor could these data been obtained from the authors. We

have, however, been able to obtain the NMR-derived chemical shifts directly from the printed

form  of  that  paper  and  to  compare  the  simulation-derived  chemical  shifts  with  their

corresponding experimental values.

Before presenting the procedure we have followed for the calculation of the simulation-derived

chemical shifts and the results obtained from the direct numerical evaluation of the differences

between the simulation and the experiment, it is important to highlight the effect of solvent on

the NMR chemical shifts. The dependence of H chemical shifts on solvent has been thoroughly

studied since the beginning of high-resolution proton NMR34. Buckingham et al.35 described four

interactions  responsible  for solvent  effects,  namely:  hydrogen bonding, the anisotropy of the

solvent molecules, polar and van der Waals effects, the impact of each one of these contributions

can vary significantly. Since it was not possible to include the effect of the organic solvent on the

calculation of the simulation-derived chemical shifts, it is important to note that due to these

constraints, our calculations may present certain limitations as will be discussed below.

The  process  followed  for  our  calculations  was  the  following:  intending  to  obtain  the

experimental  secondary  chemical  shifts,  we  used  the  experimental  chemical  shifts  from the

Picone  et  al.  publication5 and  the  1H random coil  chemical  shifts  for  peptides  of  sequence

GGXAGG (where X is any of the 20 naturally occurring amino acids or the modified amino acid

4-hydroxyproline) measured in DMSO from Tremblay, Banks & Rainey36. For the calculation of

the  simulation-derived  secondary  chemical  shifts,  we  first  calculated  the  simulation-derived
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chemical shifts using the programs CARMA and SPARTA+ through a perl script, taking into

account  all  5056000 frames  of  our  trajectory  and the  random coil  chemical  shifts  from the

Tremblay, Banks & Rainey publication36. This perl script produces pdb files for each frame of

the trajectory, the pdb files are read by SPARTA+ and then the chemical shifts, as well as the

mean and the standard deviation values are calculated. The detailed numerical results are shown

in Tables SI and SII of the Supplementary Information file, but before discussing in detail those

results,  we must  evaluate  the limitations  of the methodology we applied for the comparison

between the experimental and simulation-derived shifts.

As already hinted above, the basic problem with this analysis is that, due to lack of suitable

analytical tools, it is not feasible to calculate chemical shifts in DMSO for the approximately five

million peptide structures obtained from the simulation. Tremblay, Banks & Rainey36, however,

have shown that the secondary chemical shifts are more affected by protein secondary structure

than  solvent  environment.  We  perceived  this  as  an  opportunity  for  proceeding  with  the

calculation as follows. In the first step,  expected chemical shifts  of the peptide structures  in

water are calculated using established procedures, in our case, the SPARTA+ program. Because

of the effect of solvent (DMSO vs water), these calculated shifts will differ significantly from the

experimental, but this difference will be mostly a difference in scale and not a difference in the

exact  motif  that  the shifts follow along the peptide chain.  Note that the expectation that  the

differences between the measurements can be approximated as a residue-dependent shift of the

values  assumes  (a)  that  the  chemical  shifts  are  indeed  more  affected  by  protein  secondary

structure  than  solvent  environment,  and,  more  importantly,  (b)  that  the  simulation  correctly

captures the structural ensembles visited by the T-peptide. If both of these assumptions hold true,

then we would expect that the raw experiment vs simulation shifts would be highly correlated

but  with  a  systematic  translation/drift  of  the  values  arising  from  the  different  shielding  or

deshielding effect that DMSO has on specific atomic types. Figure 5 shows a direct comparison

between the HA and HN chemical shifts as obtained from experiment and simulation. For the

HA shifts, the graph shows the unscaled (raw) data, for the HN case the two graphs have been

scaled  to  one  another.  What  Figure  5  clearly  shows  is  that  the  experimental  and

simulation-derived shifts are indeed highly correlated (with respective correlation coefficients of
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0.78 and 0.87 for HA and HN), but, as expected, translated relative to one another due to the

effect of the solvent.

The findings of Figure 5 do indicate that the simulation meaningfully captures the structures and

dynamics of the peptide in DMSO, but due to the offset of the chemical shift values, we can not

properly quantify this agreement in terms of a suitable statistic like the reduced χ2. We attempted

to correct for this problem of scale by applying an additional correction to the simulation-derived

shifts as follows. Our argument rests on the assumption that a useful numerical estimate for the

shielding/deshielding  effect  of  DMSO (relative  to  water)  can  be obtained  by comparing  the

differences between the  random coil  shifts for the various amino acids in DMSO and water.

Values for the random coil shifts in these solvents (and for the various amino acids) are readily

available, and these differences can be applied to the simulation-derived chemical shifts to bring

them on approximately the same scale as the experimental values. This procedure may sound

reasonable, but introduces additional errors that are hard to estimate, with the most important

being that the random coil shifts are not some well-known fixed values, and various estimates of

these  can  differ  even  by  a  factor  of  2  (see  Figure  2  of  Tremblay,  Banks  &  Rainey36 and

references therein for a clear indication of the amount of deviation observed when using different

estimates of the random coil shifts). With these precautions, we show in the  Supplementary

Information Table SI the complete listing of both the experimental and simulation-derived shifts

(including the correction for the random coil  shifts).  In this  same table,  we also include the

estimated random coil shifts in water and in DMSO, as well as two estimated sources of error :

the standard deviation obtained from the simulation per se, and the estimated standard error as

reported by SPARTA+ for the calculation of chemical shifts in water. These two estimated errors

are not independent in the sense that the detailed structural variance giving rise to the variance of

chemical  shifts  is  already incorporated  in  the SPARTA+ standard deviations.  Given that  the

SPARTA-derived standard deviation is almost always higher than the simulation-derived, we

resorted to using only the SPARTA-derived values as the sole source of estimated error of the

simulation-derived chemical shifts.

Having obtained the primary data shown in Table SI, we can now calculate the experimental and

simulation-derived  HA and  HN secondary  chemical  shifts  as  shown in  the   Supplementary
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Information file Table SII. For this calculation we have used the corrected simulation-derived

data  and the  random coil  shifts  of  Tremblay,  Banks & Rainey36.  The  reasonable  agreement

between the experimental and simulation-derived secondary shifts is obvious even from the raw

data, and it is made clear in Table V of the manuscript in which we tabulate the values of the

reduced χ2 and linear correlation coefficient statistics for various combinations of the derived

quantities. 

The values of the linear correlation coefficients in Table V are all in the ~0.80 range, reaching

values of even ~0.87 for the secondary shifts of the HA atoms. Such high values clearly indicate

that the simulation correctly captures the kinetics and the structural ensembles visited by the

T-peptide. We must add here that this agreement between the NMR data and the simulation is

obvious  even at  the level  of  raw data  (without  our correction for random coil  shifts)  as  we

already showed in the diagrams of Figure 5. Turning our attention to the reduced χ2 values, we

note that all of them are lower than 1.0, reaching values as low as ~0.25 for the HN chemical

shifts. We believe that such low values of χ2 are not so much the result of an excellent agreement

between experiment and simulation, but that they are a by-product of the possibly overestimated

standard deviation values reported by SPARTA+. One last observation concerns the fact that the

residues  with  the  largest  deviations  between  experiment  and  simulation  are  two  terminal

residues, Ala1 and Thr8. This observation may indicate that the termini are not as disordered as

the simulation  indicated,  and that,  for  example,  the turn-forming propensity  of the peptide’s

C-terminus may by significantly higher than the approximately ~10% frequency estimated from

the simulation (Table Ι). Whether this is indeed the case, and whether this points to a deficiency

in the force field parameters of the peptide, or of the DMSO, it is impossible to ascertain from

the presently available data.

To summarize this section, we have shown a reasonable agreement between the experimental

and  simulation-derived  chemical  shifts  for  the  T-peptide.  The  simulation,  even  without  any

additional  correction  for the solvent  differences,  correctly  captures  the variation  of chemical

shifts  along  the  peptide  chain  (Figure  5).  By  using  the  established  differences  between  the

random coil values for the two solvents (DMSO and water), we attempted to empirically correct

for  the  solvent  effects  on  chemical  shifts  and  obtained  a  significantly  improved  agreement
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between  experiment  and  simulation,  with  values  of  the  linear  correlation  coefficient  of

approximately 0.80, and reduced χ2 values close to 1.0. Having said that, we believe that little

confidence  must be placed upon our  ad hoc attempt to obtain quantitatively  useful shifts  in

DMSO.  The  shear  number  of  assumptions  and  approximations  involved,  makes  the

computationally corrected shifts questionable. It is only the direct comparison of the uncorrected

shifts of Figure 5 that gives us any confidence that the simulation captured the peptide’s essential

dynamics.
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4. Summary and Conclusions

The  prime  objective  of  this  communication  was  to  validate  the  application  of  molecular

dynamics  simulations  for  predicting  the  structure  and  dynamics  of  peptide  T  through  a

comparison with the experimental  (NMR) data  obtained by Picone and coworkers5.  Such an

analysis is useful mainly due to the non-aqueous solvent used in both the computational and

experimental  work,  which  would  validate  the  application  of  folding  molecular  dynamics

simulations even in organic solvents.

The synthetic octapeptide fragment with the sequence ASTTTNYT  is known as peptide T due to

its high threonine content and it known to function as a viral entry inhibitor. Peptide T is the

fragment corresponding to the region 185-192 of the gp120 HIV coat protein2,3,4. Picone et al.

studied peptide T as a zwitterion in DMSO solution by means of NMR spectroscopy at 500

MHz. Their results suggested that a type I β-turn including the four C-terminal residues, T5, N6,

Y7, and T8 was the most prominent structure. However, they also noted that this conformation

was not the only one present in solution and seemed to be the only one detectable due to the non-

linear dependence of NOE on interatomic distances5. 

Secondary structure analysis using the programs STRIDE and Weblogo showed that peptide T is

highly flexible and that it comprises a dynamic system. The majority of residues were assigned

to turn or coil  states, while assignments to helical  structures were very rare.  Both WebLogo

diagrams indicated that the first and last residues are quite flexible and correspond to coil states.

Residues 3-5 tend to form mostly turns, while some minor occurrences of coil, 310-helical, and

even  α-helical  structures  were  also  identified.  The  above  mentioned  main  structural

characteristics were also observed by Picone and her colleagues5, but unlike their findings, our

results suggested a significant degree of flexibility in the system. 

The structural analysis of turns and helices performed using the promotif program enabled us to

gain a more detailed view of the specific types of turns and helices that peptide T could adopt.

According to our results, the most preferred β-turn types were types I and IV, while β-turns type

II, VIII, I’ and II’ were not so frequent. In more detail, the most prominent β-turn type for the
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amino acid sequences: 1-Ala-2-Ser-3-Thr-4-Thr and 2-Ser-3-Thr-4-Thr5-Thr was a type I β-turn,

while the second most preferred β-turn type was type IV. For the sequences 4-Thr-5-Thr-6-Asn-

7-Tyr and 5-Thr-6-Asn-7-Tyr-8-Thr, the most preferred  β-turn type was type IV, followed by

type I. Regarding the helices, the most preferred type of helix was 310-helix, followed by α-helix,

while  π-helix was extremely rare. Overall, our calculations clearly showed a preference for  β-

turns rather than helices. Also, according to our calculations, the most preferred conformation for

the amino acid sequence 5-Thr-6-Asn7-Tyr-8-Thr was a  β-turn type IV, followed by a  β-turn

type I, while no helical conformations were observed for this combination and the 4-8 one. This

observation is in agreement with the experimental conclusions, where it is stated that the most

prominent  conformation  is  a  5-8  β-turn  rather  than  a  4-8  helical  segment5.  But  unlike  our

findings, the experimental results state that the most likely cyclic structure is a type I  β-turn

rather than a type IV. 

The dPCA analysis suggested that the 5-8 amino acid residue segment of peptide T adopts more

stable  conformations,  which correspond to distinct  secondary structures  with specific  torsion

angles  and  hydrogen  bond  patterns.  These  results  are  in  agreement  with  the  experimental

conclusions.  The  association  of  high-density  peaks  with  distinct  peptide  conformers

demonstrated once again that the main structural characteristics were turns and helices. Due to

the increased kinetic frustration of the system, the representative structures differed between the

clusters, while many coil conformations were apparent as well.  

To ascertain whether our simulation was efficiently sampled we applied Good-Turing statistics.

We applied this method using the Cα atoms of all residues of the peptide and then we limited the

residue selection to residues 5-8. Our results clearly indicate that the structural variability of this

part  of the peptide has been sufficiently  sampled,  confirming that the C-terminal  part  of the

peptide corresponds to more stable conformations. Lastly, the quantitative comparisons between

the experimental and the simulation-derived chemical shifts showed a reasonable agreement with

values of the linear correlation coefficient for the HA and HN chemical shifts were close to

~0.85.
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Overall,  we  consider  this  to  be  a  successful  application  of  a  folding  molecular  dynamics

simulation in an organic,  membrane-mimicking solvent.  The simulation appears to reproduce

most of the findings obtained from the experimental NMR studies, and to capture the pattern of

the NMR-derived chemical shifts along the length of the peptide chain, while providing a rich

view of the structural malleability of the T-peptide. 
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Figure captions

Figure 1. Extent of sampling and statistical significance. The black upper curve is the Good-

Turing estimate obtained for the full-length peptide. The orange curve shows the results obtained

after exclusion of the terminal residues. The blue curve is the estimate obtained from the C-

terminal half of the peptide (residues 5-8 inclusive). See section 3.1 for a detailed discussion of

this figure.

Figure 2. Secondary structure analysis. (A) Evolution of the peptide’s secondary structure

versus simulation time as obtained from STRIDE. The color coding is pink for α-helices, purple

for 310-helices, cyan for turns and white for coil. (B) WebLogo representation of the per residue

STRIDE-derived  secondary  structure  assignments  corresponding  to  all  the  frames  of  the

simulation. (C) WebLogo representations of the per residue STRIDE-derived secondary structure

assignments  corresponding  to  the  frames  of  the  simulation  with  an  adaptive  tempering

temperature of less than 320 K. For (B) and (C) each letter corresponds to a different secondary

structure element: H for α-helices, G for 310-helices, T for turns and C for random coil.

Figure  3.  Structural  analysis  :  dihedral  principal  component  analysis.  Two dimensional

projections  of  the  dihedral-PCA-derived  distributions  obtained  from  the  peptide  structures

sampled during the simulation. Two sets of the projections are shown, the first (top row) using

all residues, the second (lower row) using only the C-terminal half of the peptide. For both sets,

the log density distributions along the components 1-2, 1-3 and 2-3 are shown (origin at the top

left  corner, first component vertical).  Low density areas are dark brown/yellow, high density

areas are blue/dark blue.

Figure 4. Structural analysis : Clusters, representative structures and their frequencies.

The distribution in the center of the diagram is the log density projection of the trajectory on the

first two dihedral-PCA-derived principal components obtained from using only the C-terminal

half  of the peptide  for the analysis.  For  the  top 7 (out  of 8) prominent  conformers,  peptide

structures  and relative  frequencies  of  the  corresponding clusters  are  indicated.  The structure

schematics  are  superpositions  of  representative  members  of  each  cluster,  drawn and colored

- 26 -



according to secondary structure content (pink for α-helices, purple for 310-helices, cyan for turns

and white for coil). In all diagrams, the peptide structures have been oriented in such a way that

the  C-terminus  is  pointing  upwards.  The  percentages  below  the  structures  are  the  relative

frequencies of the corresponding clusters.

Figure  5. Per-residue  comparison  between  the  experimental  (NMR)  and  simulation-derived

chemical shifts for the HA (upper graph) and HN (lower graph) protons. For the HN case the

simulation-derived shifts have been scaled to fit the experimental range of values.
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Table I

Table I.  Populations (%) of the different β-turn types sampled in the MD trajectoriesa.

β-Turn

typeb 1A 2S 3T 4T 2S 3T 4T 5T 3T 4T 5T 6N 4T 5T 6N 7Y 5T 6N 7Y 8T

I 11.86% 14.83% 11.27% 5.93% 4.41%

II 0.19% 0.2% - 0.0001% 0.12%

VIII 1% 0.9% 0.51% 0.97% 0.68%

I’ 0.17% 0.37% - - 0.05%

II’ 0.02% 0.02%     0.03% 0.005% 0.03%

IV 7.17% 12.01% 11.81% 6.7% 5.72%

aShown are the % trajectory populations of the various β-turn types for every possible 

sequential amino acid tetrad. The assignment of β-turns was performed using the PROMOTIF 

program.

bTypes VIa1, VIa2, and VIb are excluded from our analysis  since they require a Pro

residue in position i+2. 

- 28 -



Table II

Table II.  Populations (%) of the different types of helical conformations sampled in the MD
trajectoriesc.

Residue selection 310-helix α-helix               π helix

     2 - 4       3.44%        -         -

     3 - 5       3.34%        -         -

      4 - 6       5.84%        -         -

      5 - 7       1.19%        -         -

                  2 - 5       1.19%    3.11%         -

      3 - 6       1.5%    1.64%         -

                  4 - 7       1.04%    3.52%         -

      2 - 6       1.09%    0.59%      0.01%

      3 - 7       0.37%    0.64%      0.01%

      2 - 7       0.32%    0.51%      0.0002%

cShown are the % trajectory populations of the various helical conformations for every

possible  combination  of  sequential  amino  acid  residues.  The  assignment  of  helices  was

performed using the PROMOTIF program.
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Table III

Table III. Populations of the eight clusters (in number of frames) produced by dPCA along with

the percentage of clustered structures.

Cluster Number of structures

(out of 5056000)

Percentage

1 829017 16.4%

2 627294 12.4%

3 360755 7.1%

4 456049 9.0%

5 310782 6.1%

6 144079 2.8%

7 128426 2.5%

8 37878 0.7%
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Table IV

Table  IV.  Per  residue  STRIDE-derived  secondary  structure  assignments  of  the  five  most

populated motifs for each cluster.

Cluster

number

 Most populated motifs

1st 2nd 3rd 4th 5th

1 CCCGGGCC CCTTTTTC TTTTTTTC CCCTTTTC TTTGGGCC

2 CCCCCCCC CTTTTTCC CCTTTTCC TTTTTTCC CGGGCCCC

3 CTTTTTTCC CCCCCCCC CCTTTTCC TTTTCCCC TTTTTTCC

4 CCCCCCCC TTTTTCCC CTTTTCCC TTTTCCCC CGGGCCCC

5 CCTTTTTC TTTTTTTC CCCGGGCC CTTTTTTC CCGGGCCC

6 CCCCCCCC TTTTTCCC CTTTTCCC TTTTCCCC CGGGCCCC

7 CCCCCCCC CTTTTCCC TTTTTCCC TTTTCCCC CBTTBCCC

8 CCCCCCCC CTTTTCCC TTTTCCCC TTTTTCCC CCTTTTCC
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Table V

Table  V.  Reduced  χ2 and  correlation  coefficient  values  between  the  experimental  and

simulation-derived data for the chemical shifts (HA and HN) and the secondary chemical shifts

(Δδ, Δδ ΗΑ and Δδ ΗΝ).

 
ΗΑ ΗΝ Δδ Δδ ΗΑ Δδ ΗΝ

 

χ2 
 

0.8724
 

0.2539
 

0.5450
 

-
 

-

 
r
 

 

0.8428
 

0.8514
 

0.8126
 

0.8688
 

0.7865
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Figure 1

Figure 1. Extent of sampling and statistical significance. The black upper curve is the Good-

Turing estimate obtained for the full-length peptide. The orange curve shows the results obtained

after exclusion of the terminal residues. The blue curve is the estimate obtained from the C-

terminal half of the peptide (residues 5-8 inclusive). See section 3.1 for a detailed discussion of

this figure.
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Figure 2

Figure 2. Secondary structure analysis. (A) Evolution of the peptide’s secondary structure

versus simulation time as obtained from STRIDE. The color coding is pink for α-helices, purple

for 310-helices, cyan for turns and white for coil. (B) WebLogo representation of the per residue

STRIDE-derived  secondary  structure  assignments  corresponding  to  all  the  frames  of  the

simulation. (C) WebLogo representations of the per residue STRIDE-derived secondary structure

assignments  corresponding  to  the  frames  of  the  simulation  with  an  adaptive  tempering

temperature of less than 320 K. For (B) and (C) each letter corresponds to a different secondary

structure element: H for α-helices, G for 310-helices, T for turns and C for random coil.
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Figure 3

Figure  3.  Structural  analysis  :  dihedral  principal  component  analysis.  Two dimensional

projections  of  the  dihedral-PCA-derived  distributions  obtained  from  the  peptide  structures

sampled during the simulation. Two sets of the projections are shown, the first (top row) using

all residues, the second (lower row) using only the C-terminal half of the peptide. For both sets,

the log density distributions along the components 1-2, 1-3 and 2-3 are shown (origin at the top

left  corner, first component vertical).  Low density areas are dark brown/yellow, high density

areas are blue/dark blue.
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Figure 4

Figure 4. Structural analysis : Clusters, representative structures and their frequencies.

The distribution in the center of the diagram is the log density projection of the trajectory on the

first two dihedral-PCA-derived principal components obtained from using only the C-terminal

half  of the peptide  for the analysis.  For  the  top 7 (out  of 8) prominent  conformers,  peptide
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structures  and relative  frequencies  of  the  corresponding clusters  are  indicated.  The structure

schematics  are  superpositions  of  representative  members  of  each  cluster,  drawn and colored

according to secondary structure content (pink for α-helices, purple for 310-helices, cyan for turns

and white for coil). In all diagrams, the peptide structures have been oriented in such a way that

the  C-terminus  is  pointing  upwards.  The  percentages  below  the  structures  are  the  relative

frequencies of the corresponding clusters.
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Figure 5

Figure  5. Per-residue  comparison  between  the  experimental  (NMR)  and  simulation-derived

chemical shifts for the HA (upper graph) and HN (lower graph) protons. For the HN case the

simulation-derived shifts have been scaled to fit the experimental range of values.
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Table SI

Table SI. Experimental and simulation-derived HA and HN chemical shifts, along with the random coil and standard deviation values.

Residue number Residue Atom Experimental chemical shifts Simulation
chemical shifts

  Raw / Corrected

Random coil
chemical shifts

in DMSO

Random coil
chemical shifts

(SPARTA+)

σ (simulation) σ (SPARTA+)

1 A ΗΑ 3.81 4.318      4.168 4.47 4.320 0.056 0.217

2 S HA 4.42 4.479      4.449 4.50 4.470 0.225 0.221

HN 8.69 8.403      8.463 8.37 8.310 0.275 0.531

3 T HA 4.31 4.423      4.363 4.41 4.350 0.181 0.280

HN 7.90 8.158      7.918 8.00 8.240 0.348 0.531

4 T HA 4.30 4.383      4.323 4.41 4.350 0.259 0.280

HN 7.85 8.183      7.943 8.00 8.240 0.310 0.531

5 T HA 4.25 4.405      4.345 4.41 4.350 0.188 0.280

HN 7.69 8.107      7.867 8.00 8.240 0.301 0.531

6 N HA 4.51 4.735      4.735 4.74 4.740 0.183 0.186

HN 8.02 8.217      8.237 8.40 8.380 0.351 0.424

7 Y HA 4.37 4.619      4.569 4.60 4.550 0.189 0.263

HN 8.00 8.191      8.291 8.38 8.280 0.436 0.523

8 T HA 3.96 4.322      4.262 4.41 4.350 0.101 0.280

HN 7.54 8.199      7.959 8.00 8.240 0.308 0.531



Table SII

Table SII. Experimental and simulation-derived HA and HN secondary chemical shifts.

Residue number Residue Atom Δδ
experimental

Δδ
simulation

1 Α HA -0.66 -0.3016

2 S HA -0.08 -0.051

HN 0.32 0.0932

3 T HA -0.1 -0.0469

HN -0.1 -0.082

4 T HA -0.11 -0.0873

HN -0.15 -0.0565

5 T HA -0.16 -0.0648

HN -0.31 -0.1332

6 N HA -0.23 -0.0049

HN -0.38 -0.163

7 Y HA -0.23 -0.0304

HN -0.38 -0.0884

8 T HA -0.45 -0.148

HN -0.46 -0.0402
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Figure S1

Figure S1. Superposition and WebLogo diagrams for each of the eight clusters identified by the

dPCA for residues 5-8. The second column represents the superposition of 500 structures that

belong to each cluster derived from the dPCA. The color coding is cyan for C atoms, blue for N

atoms and red for O atoms. The third column consists of WebLogo diagrams of the per residue

STRIDE-derived secondary structure assignments.

Cluster Superimposed structures Secondary structure logo

1

829017 structures

2

627294 structures
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3

360755 structures

4

456049 structures

5

310782 structures
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6

144079 structures

7

128426 structures

8

37878 structures
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