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ABSTRACT 

Fragment molecular orbital (FMO) method is a powerful computational tool for structure-based drug 

design, in which protein–ligand interactions can be described by the inter-fragment interaction energy 

(IFIE) and its pair interaction energy decomposition analysis (PIEDA). Here, we introduced a 

dynamically averaged (DA) FMO-based approach in which molecular dynamics simulations were 

used to generate multiple protein–ligand complex structures for FMO calculations. To assess this 

approach, we examined the correlation between the experimental binding free energies and DA-IFIEs 

of six CDK2 inhibitors whose net charges are zero. The correlation between the experimental binding 

free energies and snapshot IFIEs for X-ray crystal structures was R2 = 0.75. Using the DA-IFIEs, the 

correlation significantly improved to 0.99. When an additional CDK2 inhibitor with net charge of −1 

was added, the DA FMO-based scheme with the dispersion energies still achieved R2 = 0.99, whereas 

R2 decreased to 0.32 employing all the energy terms of PIEDA. 
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I. INTRODUCTION 

The fragment molecular orbital (FMO) method1-4 is a powerful computational tool for structure-based 

drug design (SBDD).5-7 Inter-fragment interaction energy (IFIE) analysis3 examines protein–ligand 

interactions with quantum (electronic) effects at reasonable computational costs. Furthermore, by 

means of pair interaction energy decomposition analysis (PIEDA),4 the interaction energy, ∆𝐸𝐸 , is 

decomposed into four energy terms: electrostatic (ES) exchange repulsion (EX), dispersion (DI), and 

charge transfer with high-order mixed terms (CT+mix), which offer detailed information regarding 

protein–ligand interactions. This information is valuable for rational drug design and constructive 

communications with medicinal chemists in drug discovery projects.  

 
FMO-based interaction energies obtained by PIEDA indicate the stability of protein–ligand 

complexes; therefore, they can be used to predict protein–ligand binding affinities.8-10 Although the 

FMO-based approach does not fully capture the complex phenomena of protein–ligand binding events 

and their associated energy terms, such as entropy, ligand deformation upon binding, and 

solvation/desolvation effects,11 it is expected to provide reliable estimates of protein–ligand enthalpic 

binding contributions. Recently, many studies have shown that the FMO method can be used as an in 

silico approach to predict protein–ligand binding affinities. For example, Heifetz et al.9 observed a 

moderate to high correlation range (R2 = 0.58‒0.76) between experimentally measured affinities and 

FMO-based interaction energies in vacuo for various G-protein coupled receptors by performing FMO 

calculations against computationally modeled structures. Watanabe et al.10 utilized the FMO method 

with molecular-mechanics Poisson–Boltzmann surface area (FMO+MM-PBSA) to incorporate 

desolvation effects and studied the activity cliffs of serine/threonine kinase Pim1 inhibitors; comparing 

various properties of complex structures, they observed that quantum mechanics QM/MM-optimized 

structures provided the best correlation (R2 = 0.85) between experimental pIC50 values and 

FMO+MM-PBSA binding energies. 

 

The FMO-based interaction energy can be obtained from a single protein–ligand complex structure 

(snapshot), such as an X-ray crystal structure or a computationally modeled structure. However, 

previous studies12-15 suggest that averaging the FMO-based interaction energies over multiple 

structures is more reliable than considering only a single structure. Ishikawa et al.12 performed FMO 

calculations against 40 prion protein structures generated by molecular dynamics (MD) simulations 

and examined the influence of geometrical fluctuations on FMO calculations. Fedorov et al.13 

performed MD simulations with FMO calculations for two ligands bound to a Trp-cage mini-protein 

and systematically averaged the FMO-based interaction energies to evaluate the protein–ligand 

binding energies. Hatada et al.14,15 also found the significance of structural fluctuations in the IFIE 

analysis on a complex system of SARS-CoV-2 main protease and N3 ligand. However, these studies 



 
 

have not addressed the ability of systematically averaged FMO-based interaction energies to improve 

protein–ligand binding affinity predictions using a set of multiple candidate compounds. 

 

A limitation of FMO calculations performed in vacuo is the difficulty of predicting binding 

affinities for ligands of different net charges. This is because the total interaction energies are inclined 

to be dominated by strong electrostatic interactions between the protein and charged ligands. To 

overcome this issue, implicit solvent models such as the PBSA16 and polarizable continuum model 

(PCM)17 can be applied to consider the solvation and desolvation effects and fulfill the thermodynamic 

cycle. However, there is still a need for FMO calculations to be used to directly compare ligands with 

different net charges, particularly via dynamically averaged (DA) FMO calculations in solvent, where 

multiple FMO calculations are required to evaluate the affinity of a single ligand.  

 

Here, we examined the potential for a DA-FMO-based approach in which FMO calculations are 

performed for multiple protein–ligand complex structures, generated by MD simulations for solvated 

systems, to improve the accuracy of protein–ligand binding affinity predictions for multiple 

compounds. The correlation between the experimental binding free energies and DA-FMO-based 

interaction energies of six cyclin-dependent kinase-2 (CDK2) inhibitors, whose net charges were 

expected to be zero under physiological conditions, was examined as a test case, which was previously 

studied by means of MD approach.18 The correlation between the experimental binding free energies 

and FMO-based interaction energies in vacuo calculated with MM-optimized X-ray crystal structures 

was R2 = 0.75, whereas the correlation was significantly improved to R2 = 0.99, using the DA-FMO-

based interaction energies. Additionally, we investigated the use of the DI energy term of PIEDA alone 

to predict the binding affinities of ligands with different net charges, without additional computational 

costs. 

 

II. MATERIALS AND METHODS 

A. Target system 

CDK2 was used as the target system (Figure 1) to assess the DA-FMO-based approach. CDK2 belongs 

to the serine/threonine-protein kinase family, which controls the transition between phases during a 

cell cycle progression. CDK2 activity and regulation anomalies are critically associated with tumor 

growth, rendering CDK2 a candidate in the development of anticancer drugs.19-21 Six CDK2 inhibitors 
with experimental binding free energies (∆Gexp) ranging from −4.88 to −10.00 kcal/mol (Figure 1) 

were obtained from an earlier work by Araki et al.18 The experimentally determined binding data (the 

dissociation constant, Kd, and inhibition constant, Ki), available in the Community Structure–Activity 

Resource (CSAR) database (http://www.csardock.org/),22 were converted to binding free energy using 

http://www.csardock.org/


 
 

∆Gexp = −𝑅𝑅𝑅𝑅 ln �1
𝐾𝐾d,i
� �, where R is the gas constant and T is the absolute temperature. All inhibitors 

were expected to possess zero net charge under physiological conditions and were treated as 

electrically neutral ligands throughout the present study. 

 

B. System preparation and MD simulation 

The MD trajectories of the six CDK2 inhibitors were provided by Araki et al.18 The X-ray crystal 

structure of each complex was obtained from the Research Collaboratory for Structural Bioinformatics 

(RCSB) Protein Data Bank (PDB) (4FKL, 4FKI, 4FKQ, 4FKR, 4FKS, and 4FKW).23 The system 

preparation procedures are summarized below, as described in a previous study.18 Disordered loops 

and flexible side chains were modeled using the MODELER program,24 and the structure preparation 

module was implemented using the Molecular Operating Module (MOE, Chemical Computing Group, 

Montreal, Canada). The dominant protonation state was assigned at pH of 7.0 for the titratable residues. 

Each system was solvated with a TIP3P25 water model, and counter ions were added to electrically 

neutralize the system. The Amber ff99 force field26 was used for the proteins and ions. Ligand 

parameters were determined by the general Amber force field (GAFF)27 using the antechamber module 

of AmberTools12. The atomic partial charges of the ligand were obtained by the restrained electrostatic 

potential (RESP) model,28 using the pre-optimized structures calculated by the General Atomic and 

Molecular Electronic Structure System (GAMESS) program29 with the Hartree–Fock (HF)/6-31G* 

method. Afterward, the system was energetically minimized and equilibrated for 100 ps under constant 

temperature and volume (NVT), followed by 100 ps under constant pressure (NPT). Positional 

restraints were imposed on heavy protein and ligand atoms during the minimization and equilibration 

steps. Finally, five sets of 50 ns of production runs were performed under NPT conditions without 

positional restraints. The temperature and pressure were maintained at 298 K using the Nose–Hoover 

thermostat30,31 and at 1 bar with the Berendsen barostat,32 respectively. MD simulations were 

conducted under periodic boundary conditions, where the electrostatic interactions were calculated 

using the particle mesh Ewald (PME) method,33 implemented in the Groningen Machine for Chemical 

Simulation (GROMACS) 4 program.34 The trajectories obtained by the production run were used to 

calculate the DA-FMO-based interaction energies of the protein–ligand complex system. The MD 

snapshot structures were energetically optimized with the classical MM force field, prior to the FMO 

calculations.  

 

C. Dynamical averaging of FMO interaction energy 

MM-optimized MD snapshots were used to evaluate the DA-FMO-based interaction energies. First, 

the snapshots were extracted every 2 ns at and after 12 ns of the 50 ns production run, which yielded 

100 MD snapshots (20 snapshots × 5 trials) for each protein–ligand complex system. All snapshots 



 
 

were energy-minimized using the MOE (ver. 2018.01) with an AMBER:10EHT force field to relieve 

the steric clashes, prior to the FMO calculations using Auto-FMO protocol,35 which is an automated 

pretreatment protocol developed with the BIOVIA Pipeline Pilot.36 The heavy protein atoms were 

fixed, and the heavy atoms of ligand and water molecules were positionally restrained with a force of 

1.0 kcal/mol/Å, while all the hydrogen atoms were unrestrained. The restraint weight was defined such 

that the binding poses of the ligands did not deviate excessively far from their initial positions. All 

counter ions were removed, and water molecules within 6 Å of the protein–ligand complex system 

were included in the minimization step. Similar to the DNA hydration system we previously studied37, 

water molecules within 6 Å of the complex structure were able to account for the solvation effect (see 

Table S1 and Figure S1).  The MM-optimized structures of the MD snapshots were applied as input 

structures for the FMO calculations using the FMO2-MP2/6-31G* method38,39. FMO calculations 

were performed with the ABINIT-MP program of the Mizuho BioStation version 3.0 40 ,41 using the K 

supercomputer42 and other Japanese HPCI systems such as TSUBAME3.0 and Oakforest-PACS. The 

FMO-based inter-fragment interaction energy (IFIE), ∆𝐸𝐸FMO, at the MP2 level is given by40, 41 

 

∆𝐸𝐸𝐼𝐼𝐼𝐼FMO =  ∆𝐸𝐸𝐼𝐼𝐼𝐼ES + ∆𝐸𝐸𝐼𝐼𝐼𝐼EX + ∆𝐸𝐸𝐼𝐼𝐼𝐼CT+mix + ∆𝐸𝐸𝐼𝐼𝐼𝐼DI,              (1) 

 

where ∆𝐸𝐸𝐼𝐼𝐼𝐼FMO is the IFIE of the fragment pair IJ, while ∆𝐸𝐸ES, ∆𝐸𝐸EX, ∆𝐸𝐸CT+mix, and ∆𝐸𝐸DI represent 

the electrostatic, exchange repulsion, charge transfer with high-order mixed terms, and DI energy 

terms, obtained by PIEDA. The DA-FMO-based interaction energy of a ligand is evaluated by 

〈∆𝐸𝐸FMO〉 =  〈𝐸𝐸FMO〉pl + 〈𝐸𝐸FMO〉wl =
1
N
��∆𝐸𝐸𝑖𝑖FMO�,
N

 𝑖𝑖=1

               (2) 

where i and N denote the indices of the MD snapshots and the total number of MD snapshots, 

respectively. 〈∆𝐸𝐸FMO〉  includes the IFIEs of protein–ligand 〈𝐸𝐸FMO〉pl  and water–ligand 〈𝐸𝐸FMO〉wl 

interaction pairs, whereas 〈𝐸𝐸FMO〉pl only considers the IFIEs of the protein–ligand pairs. Here, the 

water-protein IFIEs are neglected because the protein (CDK2) is common for all the ligands and its 

interaction energy with water would be irrelevant for the binding of ligand in the present case. The 

FMO results obtained from a single structure can be distinguished from the DA-FMO results, where 

the FMO-based interaction energies in the former are expressed without brackets. 

 

III. RESULTS AND DISCUSSION 

A. Correlation between experimental binding free energies and DA-FMO-based interaction 

energies 

The DA-FMO-based interaction energies were assessed in terms of the coefficient of determination 

(R2) and root-mean-square error (RMSE) with respect to the experimental binding free energies, 



 
 

∆Gexp. The DA-FMO-based interaction energies of 〈∆𝐸𝐸FMO〉 and 〈∆𝐸𝐸FMO〉pl both showed an R2 > 

0.9, whereas the result obtained using MM-optimized X-ray crystal structures, ∆𝐸𝐸plFMO, was R2 = 0.75 

(Figure 2). This result suggests that averaging FMO-based interactions over multiple structures 

generated by MD simulations can offer improvement in predicting binding affinities, compared to 

those considering a single structure. It is also noted that the high correlations between the experimental 

binding free energy and the computational binding energy observed in this study may be due to the 

mutual cancellations of entropic, desolvation and ligand-distortion effects for the binding of similar 

ligands to a common protein. 

 

Interestingly, 〈∆𝐸𝐸FMO〉pl showed slightly better results than 〈∆𝐸𝐸FMO〉. The R2 and RMSE (in units 

of kcal/mol) were 0.99 and 0.16, respectively, for 〈∆𝐸𝐸FMO〉pl; the corresponding values for 〈∆𝐸𝐸FMO〉 

were 0.91 and 0.52, respectively. 〈∆𝐸𝐸FMO〉pl was successful in ranking all six inhibitors, according to 

their binding free energies, even though the ∆Gexp of the four most potent inhibitors differed only by 

approximately 1.5 kcal/mol. In contrast, 〈∆𝐸𝐸FMO〉  ranked the four most potent inhibitors less 

accurately. While the sampling of phase space was limited by the simulation time, water molecules 

were expected to be highly mobile and more difficult to sample than the protein residues near the 

binding site. The exclusion of the water–ligand interaction pairs from the FMO-based interaction 

energy may have systematically reduced the noise associated with insufficient sampling. Preferably, 

the effect of water molecules could be excluded, except for those that are highly oriented and play a 

critical role in protein–ligand interactions, when averaging the FMO interaction energies. 

  On the other hand, the presence of water affects the interaction energy distribution. Figure S3 shows 

the distribution of IFIE/PIEDA energies of the complex structures sampled every 2 ns. Comparing 
〈𝐸𝐸FMO〉pl plus 〈𝐸𝐸FMO〉wl with water and 〈𝐸𝐸FMO〉pl only without water, the total interaction energies 

were stabilized by about 40 kcal/mol (with the exception of CS4, whose ligand has a charge). For each 

component, the ES, CT+mix, and DI interactions tend to be more stable, and the steric repulsion 

represented by the EX term tends to be larger. 

Next, we investigated the effects of the extraction numbers of MD snapshots and individual trials 

of MD simulations on the performance of 〈∆𝐸𝐸FMO〉pl . The results of 〈∆𝐸𝐸FMO〉pl  were compared 

between those evaluated by MD snapshots that were extracted every 2 ns (〈∆𝐸𝐸FMO〉pl,2ns) and 4 ns 

(〈∆𝐸𝐸FMO〉pl,4ns ). The R2 and RMSE of 〈∆𝐸𝐸FMO〉pl,4ns  were 0.99 and 0.19, respectively, which is 

comparable with those of 〈∆𝐸𝐸FMO〉pl,2ns (R2 = 0.99 and RMSE = 0.16). The R2 and RMSE fell in 

ranges of 0.95‒0.99 and 0.16‒0.38, respectively, depending on the MD simulation trials (Table 1). 

This suggests that averaging over multiple structures will probably be more affected by the distribution 

of structural conformations, rather than the number of snapshots.  

 



 
 

B. Application of DI energy in PIEDA to comparison among ligands with different net charges  

An additional study was performed to investigate the use of the DI energy term in PIEDA to predict 

the binding affinities of ligands with different net electric charges. DI energy is the electron correlation 

energy that describes the weak molecular interactions associated with the electronic polarization and 

van der Waals interactions, which play important roles in molecular recognition.40, 41 An additional 
inhibitor, CS4 (Figure S2), with a net charge of −1 and ∆Gexp = −7.12 kcal/mol, was added to the 

original dataset (Figure 1). The correlation between the ∆Gexp and DA-FMO-based interaction energy 

of the DI energy term, 〈∆𝐸𝐸DIFMO〉pl, was then investigated. The 〈∆𝐸𝐸DIFMO〉pl was evaluated using MD 

snapshots that were extracted every 2 ns from the production run. 

 

The correlation plots for the ∆Gexp and the FMO-based interaction energies of 〈∆𝐸𝐸FMO〉pl and 

〈∆𝐸𝐸DIFMO〉pl are shown in Figure 3. The FMO-based interaction energy, 〈∆𝐸𝐸FMO〉pl, of CS4 was lower 

by few tens of kcal/mol than those of the other inhibitors because of the strong electrostatic interactions 

in the protein–ligand complex and behaved as an outlier, as expected. The R2 and RMSE of 〈∆𝐸𝐸FMO〉pl 

were 0.32 and 1.37, respectively, indicating difficulty in directly comparing ligands with different net 

charges. In contrast, 〈∆𝐸𝐸DIFMO〉pl showed a significant correlation (R2 = 0.99), suggesting that the DI 

energy term of PIEDA can be used to predict the binding affinities of ligands with different net charges. 

The exclusion of the ES energy term from the FMO-based interaction energy may have implicitly 

accounted for the desolvation effect to some extent because of the offset relationship between the ES 

and desolvation energies.41 The EX and CT+mix energy terms can be excluded, as these two energies 

are related to the short-range repulsive and attractive forces of the occupied orbitals, which tend to 

have offset relationships with each other.  

 

In addition, we performed a dynamic averaging of the MM-PBSA energies with the same 

structures used in the FMO calculations. The MM-PBSA energies were calculated using mmpbsa.py,44 

implemented in AmberTools14, with an ionic strength of 150 mM. The Amber FF14SB force field45 

was used for the protein, and GAFF parameters were employed for the ligands with an empirical 

charge model, AM1-BCC, using the ANTECHAMBER AmberTools14 program. Furthermore, the 

FMO-based interaction energies of 〈∆𝐸𝐸FMO〉pl were combined with the solvation energies obtained 

by PBSA calculations (FMO+MM-PBSA). The R2 and RMSE evaluated by MM-PBSA were 0.60 and 

1.05, respectively, while the corresponding values for FMO+MM-PBSA were 0.73 and 0.86, 
respectively. Although MM-PBSA and FMO+MM-PBSA showed moderate correlations with ∆Gexp, 

the DA-FMO-based interaction energy of the DI energy term, 〈∆𝐸𝐸DIFMO〉pl, showed the best correlation 

(R2 = 0.99), among the methods examined in this study. 

 



 
 

C. Interaction energy analysis between CDK2 and ligands 

In order to understand the ligand binding properties of CDK2, we analyzed the interaction energies 

between the ligand and the surrounding residues in each complex. The results of PIEDA on the X-ray 

crystal structures (initial structures of MD calculation) are shown in Figures 4-5 (see also Figures S3 
and S4). Figure 4a to Figure 4f are arranged in order of increasing ∆Gexp, showing that the number 

of interactions acquired increases as ∆Gexp is stabilized. A detailed analysis of CS262, which has the 

highest number of interactions and the largest absolute value of ∆Gexp, is shown in Figure 5. As shown 

in Figure 5a, the crystal structure suggests that CS262 forms hydrogen bonds with Lys33, Glu81, 

Leu83, Gln85, Asp86, and Lys89. The IFIE/PIEDA results (Fig. 5b-e) show that all of these residues 

have ES and CT+mix terms, indicating that they are hydrogen-bonded, and in particular, Asp86, 

followed by Lys89, Lys33, and Phe82 are strongly hydrogen-bonded. Note that the C=O group of 

Glu81 backbone belongs to the Phe82 fragment.41 In addition, five residues, Ile10, Val18, Phe80, 

Leu134 and Asp145, whose main IFIE component is DI (-4.7~-5.6 kcal/mol), are located around the 

indole ring of CS262, indicating many CH/π interactions and dispersion interactions between 

hydrophobic groups. Structural analysis using the CHPI program47 build into BioStation Viewer48 

showed that the indole ring of CS262 ligand is sandwiched between two CH bonds each with Leu134 

and Ala31 and one CH bond each with Val18 and Ala144, all of which have CH/π interactions. The 

benzene ring of CS262 had CH/π interactions with Gln85 and Asp86, and their DI components were 

also substantial at -6.8 and 8.0 kcal/mol, respectively. Many of these DI energies vary with the induced 

fit of the ligand structure and are less affected by the charge distribution, which can be an effective 

indicator for predicting ligand binding affinity, as shown in Figure 3.  

Comparing the correlation plots in Figs. 2 and 3 with the PIEDA results in Fig. 4, CS242 appeared 

to be over-stabilized as seen from PIEDA in Fig. 4c and was also an outlier in Fig. 2a, but was greatly 

improved in the DA-FMO results (Fig. 2b). Similarly, the relationship between the FMO energies of 

CS245 and CS246 was reversed in the crystal structure, but improved by DA-FMO. These facts 

suggest that the complex structure, which is over-stabilized by crystal packing and other effects, is 

relaxed by MD calculation, and that DA-FMO calculation is a more accurate evaluation method that 

reproduces the fluctuating structure in solution. The FMO calculation results of these X-ray crystal 

structures have already been registered in the FMO database (FMODB),35,46 where simple analyses 

can be performed through the web interface and all calculation data files can be downloaded. The 

FMODB IDs of these FMO results are given in Figure 4. In addition, the FMO calculation results for 

MD snapshots have also been registered in the FMODB (see also Supplementary Material). 

 

IV. CONCLUSION 
The experimental binding free energies, ∆Gexp, of CDK2 inhibitors were compared with those from a 

DA-FMO-based approach in which MD simulations were used to generate multiple protein–ligand 



 
 

complex structures for FMO calculations. The DA-FMO-based approach was assessed using six 

CDK2 inhibitors whose net charges were expected to be zero under physiological conditions. The DA-

FMO-based interaction energies of the protein–ligand complexes, 〈∆𝐸𝐸FMO〉pl , showed higher 

correlations (R2 = 0.99) with ∆Gexp than the correlations of those obtained with the MM-optimized 

X-ray crystal structure (R2 = 0.75). This result suggests that the DA-FMO-based approach can further 

improve the accuracy of protein–ligand binding affinity predictions, compared to FMO-based methods 

that consider only a single structure. The DA-FMO-based approach showed a slightly higher R2 value 

by excluding the water–ligand interaction pairs. The exclusion of the contribution of water molecules 

may have systematically reduced the noise because of insufficient sampling for water to an extent. The 

R2 value was not significantly affected by the number of snapshots used to evaluate the interaction 

energies by the DA-FMO-based approach, indicating that averaging over multiple structures will 

probably be more affected by the distribution of the structural conformations, rather than the number 

of snapshots. Additionally, it was observed that the DI energy term of PIEDA can be used alone to 

better predict the binding affinities of ligands with different net charges. The DA-FMO-based 

interaction energies of the DI energy term, 〈∆𝐸𝐸DIFMO〉pl, achieved R2 = 0.99, whereas R2 decreased to 

0.32, with 〈∆𝐸𝐸FMO〉pl , which considered all four energy terms in PIEDA. The exclusion of the 

electrostatic and other energy terms of PIEDA may have implicitly accounted for the desolvation effect 

to an extent.  

  The interaction energy analysis of CDK2 with ligand also showed that the distorted interaction with 

surrounding residues in the X-ray crystal structure was improved by DA-FMO analysis. A large 

number of CH/π and DI interactions between CDK2 and the aromatic rings of the ligand, such as 

benzene and indole rings, were observed, which may be responsible for the high correlation between 

〈∆𝐸𝐸DIFMO〉pl and ∆Gexp. 

 

This is a case study in which the FMO-IFIE analysis has been carried out only for one protein 

(CDK2) and seven ligand compounds, thus demanding future investigations for more general cases.  

The DA-FMO-based approach can be computationally expensive if the FMO calculation is performed 

for numerous structures and ligands. To overcome this difficulty, a reinforcement learning-based 

approach called multiarmed bandits49-51 can be used to allocate a limited amount of computational 

resources to more promising ligands. The ligands and FMO-based interaction energies are regarded as 

arms and rewards for the original bandit problems in this approach. 
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See the Supplementary Material for additional information on ligand binding energy, water shell, 

charged ligand and PIEDA. 
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Table 1. Correlation (R2) and error (RMSE in units of kcal/mol) between experimental binding free 
energies and dynamically averaged (DA) FMO-based interactions, 〈∆𝐸𝐸〉pl. Subscripts “2ns” and “4ns” 
represent the simulation time interval by which the molecular dynamics (MD) trajectories were 
sampled to calculate 〈∆𝐸𝐸〉pl. Total IFIE energies (in units of kcal/mol) are also shown for comparison.  
 

MD index ALL MD1 MD2 MD3 MD4 MD5 
〈∆𝐸𝐸〉pl,2ns       

R2 0.99 0.98 0.99 0.98 0.97 0.98 

RMSE 0.16 0.23 0.21 0.25 0.31 0.23 

Total IFIE -604.71 -591.56 -622.09 -616.28 -598.38 -596.44 

〈∆𝐸𝐸〉pl,4ns       

R2 0.99 0.98 0.97 0.98 0.95 0.98 

RMSE 0.19 0.24 0.32 0.24 0.38 0.27 

Total IFIE -603.54 -596.10 -616.99 -616.81 -604.04 -585.20 

 
  



 
 

 

 
 

Figure 1. Ligand structures, experimental binding free energies (∆Gexp), and the molecular weights 

(MWs) of six cyclin-dependent kinase-2 (CDK2) inhibitors. The protein data bank (PDB) codes are 

shown in parentheses. The complex structure of CDK2 and CS262 is also shown. 

 
  



 
 

 

 
 

Figure 2. Plots of correlation between experimental binding free energies (∆Gexp ) and fragment 

molecular orbital (FMO)-based interaction energies, where R2 denotes a squared correlation 

coefficient. RMSE is also shown in units of kcal/mol. (a) Correlation with FMO-based interaction 

energies using the molecular mechanics (MM)-optimized X-ray crystal structures, ∆𝐸𝐸plFMO, obtained 

from protein–ligand (pl) interaction pairs. (b) Correlation with dynamically averaged (DA) FMO-

based interactions, 〈∆𝐸𝐸FMO〉 , obtained from protein–ligand and water–ligand interaction pairs. (c) 
Correlation with FMO-based interactions, 〈∆𝐸𝐸FMO〉pl, obtained from protein–ligand interaction pairs. 

 
  



 
 

 
Figure 3. Plots of correlation between experimental binding free energies (∆Gexp ) and fragment 

molecular orbital (FMO)-based interaction energies of (a) dynamically averaged (DA) FMO-based 

interactions of 〈∆𝐸𝐸FMO〉pl and (b) DA-FMO-based interactions of 〈∆𝐸𝐸DIFMO〉pl with dispersion (DI) 

energy, including a charged ligand (CS4). The meaning of R2 and RMSE is the same as in Fig. 2. 

 



 
 

 
 
Figure 4. Pair interaction energy decomposition analysis (PIEDA) between ligand and each amino 

acid residue constituting the ligand-binding pocket for X-ray complex structure. The neutral ligands 

are (a) CS12 (PDB ID: 4FKL, FMODB ID: 666RZ), (b) CS9 (PDB ID: 4FKI, FMODB ID: R55K8), 

(c) CS242 (PDB ID: 4FKQ, FMODB ID: 7GGZK), (d) CS245 (PDB ID: 4FKR, FMODB ID: M332Z), 

(e) CS246 (PDB ID: 4FKS, FMODB ID: 9GG22), and (f) CS262 (PDB ID: 4FKW, FMODB ID: 

J33R9); and the charged ligand is (g) CS4 (PDB ID: 4FKG, FMODB ID: Q114Y). Here, FMODB 

means the FMO database.35,46 
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Figure 5. Intermolecular interaction energies between ligand and each amino acid residue constituting 

the ligand-binding pocket for X-ray complex structure with CS262 (PDB ID: 4FKW, FMODB ID: 

J33R9). A schematic diagram of the interaction around the ligand drawn by MOE is shown in (a), IFIE 

result is shown in (b) and (c), and PIEDA result is shown in (d) and (e). The ligand is represented by 

the yellow ball and stick model. The amino acid residues on CDK2 are represented by stick models 

that are colored with the gradation of the intensity of IFIE (b) and PIEDA main component (d).  
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SUMMARY 

Experimental binding free energies of CDK2 inhibitors were compared with the binding energies by 

DA-FMO-based approach in which MD simulations were used to generate multiple protein–ligand 

complex structures. For six CDK2 inhibitors with zero charges, the DA-FMO-based interaction 

energies of the protein–ligand complexes showed higher correlations with the experimental values 

than those calculated with the X-ray crystal structure. The dispersion term of DA-FMO-based 

interaction energies retained the high correlation even including a charged ligand.  

 
  



 
 

Supplementary Material 
 
Table S1. The ∆𝐸𝐸plFMO between CDK2 and CS4 ligand, number of fragments, and calculation time 

by water shell size. 256 nodes of the K supercomputer were used for calculations. 

        

Shell size (Å) 3 4 5 6 7  

∆𝐸𝐸plFMO(CS4) −209.90 −208.40 −205.49 −204.78 −204.81  

(kcal/mol) 

No. of fragments  814  1366 1849 2293 2806  

 

Calculation time  8.1 7.6 8.4 10.2 14.4  

(h)        

 



 
 

    

Figure S1. The relationship between water shell size and the ∆𝐸𝐸plFMO between CDK2 and CS4 ligand. 
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Figure S2. Additional ligand (CS4) structure with a net charge of −1. The Protein Data Bank 

(PDB) code is shown in parentheses. 
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Figure S3. The distribution of PIEDA energies. Total, ES, EX, CT+mix and DI, with and without 

water for the complex structures: (a) CS9, (b) CS12, (c) CS242, (d) CS245, (e) CS246, (f) CS262, 

and (g) CS4, sampled every 2 ns from MD simulations. 

 
 



 
 

 

 
Figure S4. Ligand binding mode in the X-ray crystal structures. (a) CS12 (PDB ID: 4FK), (b) CS9 

(PDB ID: 4FKI), (c) CS242 (PDB ID: 4FKQ), (d) CS245 (PDB ID: 4FKR), (e) CS246 (PDB ID: 

4FKS), (f) CS262 (PDB ID: 4FKW), and the charged ligand, (g) CS4 (PDB ID: 4FKG). 
 
 

(g) CS4

(b) CS9(a) CS12

(c) CS242 (d) CS245

(e) CS246 (f) CS262

5


	Protein–Ligand Binding Affinity Prediction of CDK2 Inhibitors by Dynamically Averaged FMO-based Interaction Energy
	ABSTRACT
	I. INTRODUCTION
	II. MATERIALS AND METHODS
	A. Target system
	B. System preparation and MD simulation
	C. Dynamical averaging of FMO interaction energy

	III. RESULTS AND DISCUSSION
	A. Correlation between experimental binding free energies and DA-FMO-based interaction energies
	B. Application of DI energy in PIEDA to comparison among ligands with different net charges
	C. Interaction energy analysis between CDK2 and ligands

	IV. CONCLUSION
	SUPPLEMENTARY MATERIAL
	DATA AVAILABILITY STATEMENTS
	ACKNOWLEDGEMENTS
	REFERENCES
	Table 1. Correlation (R2) and error (RMSE in units of kcal/mol) between experimental binding free energies and dynamically averaged (DA) FMO-based interactions, ,,∆𝐸.-pl.. Subscripts “2ns” and “4ns” represent the simulation time interval by which the...
	Figure 1. Ligand structures, experimental binding free energies (∆,G-exp.), and the molecular weights (MWs) of six cyclin-dependent kinase-2 (CDK2) inhibitors. The protein data bank (PDB) codes are shown in parentheses. The complex structure of CDK2 a...
	Figure 2. Plots of correlation between experimental binding free energies (∆,G-exp.) and fragment molecular orbital (FMO)-based interaction energies, where R2 denotes a squared correlation coefficient. RMSE is also shown in units of kcal/mol. (a) Corr...
	Figure 3. Plots of correlation between experimental binding free energies (∆,G-exp.) and fragment molecular orbital (FMO)-based interaction energies of (a) dynamically averaged (DA) FMO-based interactions of ,〈∆,𝐸-FMO.〉-pl. and (b) DA-FMO-based inter...
	Figure 5. Intermolecular interaction energies between ligand and each amino acid residue constituting the ligand-binding pocket for X-ray complex structure with CS262 (PDB ID: 4FKW, FMODB ID: J33R9). A schematic diagram of the interaction around the l...

