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Abstract

An approximate approach to quantum vibrational dynamics, “Brownian Chain
Molecular Dynamics (BCMD)”, is proposed to alleviate the chain resonance and
curvature problems in the imaginary time-based path integral (PI) simulation. Here
the non-centroid velocity is randomized at each step when solving the equation
of motion of path integral molecular dynamics. This leads to a combination of
the Newton equation and the overdamped Langevin equation for the centroid and
non-centroid variables, respectively. BCMD shares the basic properties of other PI
approaches such as centroid and ring polymer molecular dynamics: It gives the correct
Kubo-transformed correlation function at short times, conserves the time symmetry,
has the correct high-temperature/classical limits, gives exactly the position and velocity
autocorrelations of harmonic oscillator systems, and does not have the zero-point
leakage problem. Numerical tests were done on simple molecular models and liquid
water. On-the-fly ab initio BCMD simulations were performed for the protonated water
cluster, H5O

+
2 , and its isotopologue, D5O

+
2 .
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1 INTRODUCTION

Various semiclassical methods have been proposed as approximate solutions to quantum

vibrational dynamics of many-body systems.1–12 Centroid molecular dynamics (CMD)1,13

and the ring polymer molecular dynamics (RPMD)5,14 are among such representative

methods in the framework of path integral (PI) simulations. They could be categorized

as an extension of path integral molecular dynamics (PIMD) simulations that utilize the

isomorphism between the quantum fluctuation of a particle and that of a cyclic chain of

its classical replica (beads). The family of PI simulations is based on quantum statistical

mechanics and is rigorous for time-independent physical properties in the limit of infinite

number of beads. In the CMD and RPMD methods, the time correlation function from the

classical dynamics of cyclic chains is regarded as an approximation of the Kubo-transformed

quantum correlation function. These CMD and RPMD correlation functions are correct at

short times, preserves time symmetry, follows basic conservation laws, and has the correct

high temperature/classical limits. In addition, the position and velocity autocorrelation

functions are exact for harmonic oscillators. Since the thermodynamic equilibrium is

maintained in the CMD and RPMD trajectories, so-called the “zero-point leakage” problem

in semiclassical methods is not present in CMD and RPMD. Accordingly, the CMD and

RPMD methods have been applied successfully in a variety of systems.

However, the semiclassical methods always have some limitations. A common drawback

of CMD and RPMD is in the vibrational spectra of high frequency modes. As the

temperature is lower, the CMD curvature problem15,16 and the RPMD chain resonance

problem15,17 become more prominent. The former arises from a spurious coupling between

rotations and vibrations due to the adiabatic separation of the centroid variable and the

non-centroid variables. The latter is due to spurious resonance between the vibrations of the

physical mode and the vibrations of the cyclic chain. These problems appear, for example, as

peak shifts and peak splits in the OH and CH vibrations of water and methane, respectively,

which do not go away even at room temperature. The thermostatted RPMD (TRPMD)

method was later proposed to suppress chain resonances, where the RPMD equation of

motion is coupled to the Langevin thermostats.18 The path integral Liouville dynamics
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(PILD) was also proposed to solve these problems at a cost of computing the Hessian matrix.9

In this study, we propose a simple method that completely eliminates the chain resonance

problem of RPMD. This method does not eliminate the curvature problem, but it does

reduce the severity of the problem with respect to spurious frequency shifts over CMD. It

uses the same type of equation of motion used in the family of path integral simulation

techniques (PIMD, CMD, RPMD). The main difference from other methods is that the

non-centroid velocities are randomized at each step according to the Maxwell-Boltzmann

distribution. It turns out that this is equivalent to solving the Newtonian dynamics for

centroid variables and the Brownian (overdamped Langevin) dynamics for non-centroid

variables at the same time. For this reason, this method is named here as “Brownian

Chain Molecular Dynamics (BCMD)”. While randomization of the non-centroid velocities

can eliminate the chain resonance problem, the nonadiabaticity between the centroid and

non-centroid variables can alleviate the curvature problem. Yet BCMD shares the basic

nature of CMD and RPMD; the Kubo-transformed correlation function is correct at short

times, has the correct time symmetry, has the correct high-temperature/classical limits,

provides exact results for the position and velocity autocorrelations for harmonic oscillators,

and does not have the zero-point leakage problem.

In Section 2, the theory and numerical algorithm of the BCMD method are described. In

Section 3, the short-time behavior of BCMD is tested for one-dimensional oscillator model.

The vibrational spectra of BCMD are tested for gaseous OH molecule, and H2O molecule

and its isotopologues and liquid water isotopologues. BCMD results are compared with

the available data for MD, CMD, RPMD and TRPMD. The ab initio BCMD simulations

are demonstrated for H5O
+
2 and D5O

+
2 with the on-the-fly electronic structure calculations

based on the second-order Møller-Plesset perturbation theory (MP2). The infrared spectra

obtained from the dipole autocorrelation function are compared with experimental results.

In Section 4, the conclusive remarks are given.
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2 THEORY

2.1 Equation of motion in PI methods

The imaginary time path integral theory is a formulation for the statistical mechanics of

quantum many-body systems.19–21 Let us consider the simple case of a single quantum

particle moving in a one-dimensional potential energy surface, V (x), with massm. Extension

to multidimensional systems is described in Section 2.6. The quantum partition function of

the canonical ensemble at temperature T can be expressed as

Z = lim
P→∞

(
mP

2πβℏ2

)P
2
∫

dx exp

(
−S[x]

ℏ

)
(1)

where β ≡ 1
kBT

and ℏ ≡ h
2π

with the Boltzmann constant kB and the Planck constant

h. The functional S[x] ≡ βℏVeff(x) represents the action with respect to a cyclic path

x = (x1, · · · , xP )
T along the imaginary time τj =

βℏ(j−1)
P

, and

Veff(x) =
1

2
mω2

Px
TAx+ ϕ(x). (2)

Equation (1) is isomorphic to the classical partition function of a system of P replicated

particles (beads) with the effective potential of Veff(x).
22–24 In the rhs of Equation (2), the

first term is the harmonic interaction between the adjacent beads with the characteristic

frequency ωP ≡
√
P

βℏ . The elements of the matrix A is defined as Aij = 2δi,j − δi,j+1 − δi,j−1

according to a cyclic boundary condition, 0 → P and P + 1 → 1. The second term is the

bead average of the physical potential,

ϕ(x) ≡ 1

P

P∑
j=1

V (xj). (3)

The equations of motion for PI methods (PIMD, CMD, and RPMD) can be commonly

derived from the Hamiltonian in normal mode space where the first term of Equation (2) is

diagonalized.15 This is used in the BCMD method as well. The normal mode transformation

is obtained from the diagonalization of the A matrix, PAU = λU, which can be solved

analytically. The eigenvalues are

λ2k = 4P sin2

(
πk

P

)
(k ̸= 0),

λ2k+1 = 4P sin2

(
πk

P

)
(k ≤ P−1

2
), (4)
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and the eigenvectors are

Uj,2k =

√
2

P
cos

(
2πjk

P

)
(k ̸= 0),

Uj,2k+1 =


√

1
P

(k = 0)√
2
P
sin
(
2πjk
P

)
(k ≤ P−1

2
).

(5)

Using the normal modes

q =
1√
P
UTx (6)

and its momentum conjugate p, the Hamiltonian is constructed as

H(p,q) =
1

2
pTµ−1p+

1

2
mω2

Pq
Tλq+ ϕ(x(q)), (7)

where µ is a diagonal matrix, each of whose element corresponds to the fictitious mass of the

normal mode, diag(µ) = (m,µ2, · · · , µP ). The canonical equation of motion derived from

Equation (7) is obtained as

q̇ = µ−1p, ṗ = −mω2
Pλq−∇qϕ(x(q)). (8)

The first mode is the centroid variable, q1 =
1
P

∑P
j=1 xj, and λ1 = 0. Thus, Equation (8) is

a set of equations for the centroid variable,

q̇1 =
p1
m

= v1, ṗ1 = −
∂ϕ

∂q1
, (9)

and the non-centroid variables,

q̇α =
pα
µα

= vα, ṗα = fα, (10)

where the non-centroid forces are

fα = −mω2
Pλαqα −

∂ϕ

∂qα
. (11)

In Eqs.(9) and (11), the normal mode forces with respect to ϕ can be obtained using the

relation,

∂ϕ

∂qβ
=
√
P

P∑
j=1

Uj,β

∂ϕ

∂xj

(1 ≤ β ≤ P ). (12)
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The non-centroid fictitious masses are set to µα = λαm in PIMD, µα = γ−2
cmdλαm in CMD

(where γcmd > 0 is the adiabaticity parameter, which should be sufficiently large for a

convergence), and µα = m for all α ≥ 2 in RPMD. Temperature control also depends

on the PI method. Thermostats are used to control the temperature of both centroid and

non-centroid variables in PIMD, only to the non-centroid variables in CMD and TRPMD,

but thermostats are not used in RPMD.

2.2 BCMD

The BCMD method is based on the set of equations of motion, Eq.(9) and a similar one to

Eq.(10) but with randomization of the non-centroid velocity, vα(t) = v′α(t) for α ≥ 2. In

other words, at each step interval of ∆t, v′α(t) is randomly sampled according to the Maxwell

distribution with a variance of 〈
[v′α(t)]

2
〉
=

1

βµα

. (13)

Now let us show that this leads to Brownian dynamics, which is a generator of the canonical

ensemble. Applying the velocity-Verlet algorithm to Eq.(10) with the initial non-centroid

velocities v′α(t), the short-time evolution of the non-centroid modes from t to t+∆t is given

by

qα(t+∆t) = qα(t) + v′α(t)∆t+
fα(t)

µα

(∆t)2

2
. (14)

Introducing the notations

γ ≡ 2

∆t
(15)

and

ξα(t) ≡ µαγv
′
α(t), (16)

Eq.(14) can be rewritten in the form of the Brownian dynamics (overdamped Langevin

equation),

µαγq̇α(t) = fα(t) + ξα(t), (17)
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where

q̇α =
qα(t+∆t)− qα(t)

∆t
. (18)

Combining to Eqs.(13) and (16), one obtains

〈
[ξα(t)]

2〉 = 2µαγ

β

1

∆t
, (19)

indicating that ξα(t) corresponds to a random force subject to the fluctuation-dissipation

theorem,

ξα(t) =

√
2µαγ

β
ζ(t), (20)

with the white noise ⟨ζ (t)ζ (t′)⟩ = δ(t−t′). Therefore, the BCMD is the combination between

the Newtonian dynamics with respect to the centroid variables, Eq.(9), and the Brownian

dynamics with respect to the non-centroid variables, Eq.(17).

The major difference between BCMD and (T)RPMD is that the inertia term of

(T)RPMD, i.e., mq̈α where m is the atomic mass, is not present in the non-centroid equation

of motion, Eq.(17). The presence of the inertia term together with the spring force in the

first term of the right-hand side of Eq.(17) is the source of the chain resonance problem. In

TRPMD the resonance can be diminished by applying a random force with the damping

parameter being carefully optimized. On the other hand, BCMD has no inertia term, so

it can be used safely avoiding any resonant behavior from the outset, and this is of great

advantage in the calculation of vibrational spectra using BCMD. Comparing BCMD with

RPMD and CMD, they are derived from the same equation of motion, Eq.(10), and there

is a clear correspondence among them in theory and numerical algorithm. As discussed

in Section 2.5, BCMD has also a close relationship with path integral hybrid Monte Carlo

(PIHMC) in terms of the numerical algorithm.

Eq.(10) has turned into Eq.(17) simply by randomizing the non-centroid velocities

with the Maxwell-Boltzmann distribution at each step in the velocity-Verlet algorithm;

Randomizing vα every step has changed a deterministic second-order differential equation of

qα (i.e., µαq̈α = fα) into a stochastic first-order differential equation of qα with respect to

t (i.e., Eq.(17)). As described in Eqs.(16) and (20), the random generation of velocities is
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the origin of the random force, ξα, with a white noise that obeys the fluctuation-dissipation

theorem. Thus it is guaranteed in the BCMD method thermal equilibrium of the system is

maintained. It is stressed once again that it is the nature of stochastic first-order differential

equation of the BCMD method that ensures the system being completely free of the chain

resonance behavior, in contrast to the case of the (T)RPMD method.

Now the mass of the non-centroid variables, µα, has to be determined. The smaller the

µα value, the shorter the time scale of non-centroid variables would become, and the larger

the adiabatic separation would be from the centroid variable. The limiting case of µα → 0

would simply correspond to CMD-like adiabatic dynamics. Instead, let us herein determine

the µα value from the short-time behavior of free particle system. For the case of V (x) = 0,

Eq.(17) becomes

µαγq̇α = −καqα + ξα, (21)

where

κα ≡ mω2
Pλα. (22)

Equation (21) corresponds exactly to the Ornstein-Uhlenbeck process.25 Thus, the mean

square displacement (MSD) is

〈
|qα(t)− qα(0)|

2〉 = 2

καβ

[
1− exp

(
−κα|t|

µαγ

)]
, (23)

indicating that the non-centroid position will be uncorrelated after the relaxation time,

τα = µαγ
κα

. Since it is expected that the imaginary time path integrals are not able to

describe the quantum interference effects beyond the thermal time βℏ, it should be natural

to set the relaxation time as τα = βℏ. Accordingly, in BCMD, µα is determined as

µα =
κατα
γ

. (24)

Note that with this setting the friction term, µαγq̇α, in the lhs of Eqs.(17) and (21) does not

depend on ∆t. As explained in the Appendix 5, βℏ corresponds to the time scale that free

particle wavepacket persists at temperature T = 1
kBβ

. Thus, BCMD maintains the shape of

the free particle ring polymer, which is determined by the set of non-centroid variables, on
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the same time scale. It seems that τα = βℏ is a reasonable choice, at least, for the vibrational

spectrum of OH molecule tested in Section 3.2. In this case, Eq.(24) combined with Eqs.(15)

and (22) becomes µα = 1
2
mω2

Pλα∆t(βℏ).

In BCMD, one computes the correlation function

CAB(t) =
〈
A(0)B(t)

〉
(25)

where A(0) and B(t) is the bead average of the observable X = A at time 0 and the

observable X = B at time t, respectively, which are given by

X(t) =
1

P

P∑
j=1

X(xj(t), pj(t)). (26)

In Sections 2.3 and 2.4, it will be shown that Eq.(25) is an approximation of the

Kubo-transformed correlation function, whose exact expression is

Ckubo
AB (t) =

1
βℏ

∫ βℏ
0

dτTr
(
e−βĤÂ(0)B̂(t+ iτ)

)
Tr
(
e−βĤ

) , (27)

where Ĥ = p̂2

2m
+ V̂ is the Hamiltonian operator of the system. Since BCMD does not disturb

the thermal equilibria and is time reversible, the BCMD correlation function, Eq.(25), is

invariant under time origin shifts and time sign inversions. Thus, CAB(t) = CBA(t) is even

function of t. This is consistent with the exact correlation function, Eqs.(27), which is

real-valued and even function of t with the same symmetry, Ckubo
AB (t) = Ckubo

BA (t).5

2.3 Short time correlations

Let us see how accurate Cxx(t) of Eq.(25) is compared with Ckubo
xx (t) of Eq.(27) at short

times. Since Cxx(t) is an even function of t, the Taylor expansion of the position and

velocity correlation functions near t = 0 are described as

Cxx(t) = C(0)
xx +

t2

2
C(2)

xx +
t4

24
C(4)

xx + · · · , (28)

and

Cvv(t) = −C̈xx(t) = −C(2)
xx −

t2

2
C(4)

xx − · · · , (29)
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respectively. In Eq.(28), the zeroth-order coefficient is

C(0)
xx =

〈
x2
〉
=
〈
q21
〉
, (30)

the second-order coefficient is

C(2)
xx = −

〈
ẋ
2
〉
= −

〈
q̇21
〉
= − 1

m2

〈
p21
〉
= − 1

mβ
, (31)

and the fourth-order coefficient is

C(4)
xx = −

〈
ẋ
...
x
〉
= − 1

m
⟨q̇1p̈1⟩ =

〈
q̇1
m

d

dt

∂ϕ

∂q1

〉
=

1

mP

〈
P∑

j=1

∂2V

∂xj

ẋj q̇1

〉
=

1

βm2

〈
1

P

P∑
j=1

∂2V

∂x2
j

〉
, (32)

where the principle of equipartition,
p21
m

= 1
β
, has been used. Eqs.(30), (31), and (32), on

the other hand, exactly match the zeroth, second, and fourth-order coefficients, respectively,

in the Taylor expansion of the exact correlation function, Ckubo
xx (t).14 Therefore, Cxx(t) and

Cvv(t) are accurate up to the fifth order in t, and the third order in t, respectively.

2.4 Harmonic system

Let us consider the case of harmonic system with a potential energy function, V (x) = K
2
x2,

where K is the force constant. In this case, Eq.(3) becomes

ϕ =
K

2P

P∑
j=1

x2
j =

K

2

P∑
α=1

q2α. (33)

where Eq.(6) is used with the relation UT = U−1 in Eq.(5). For the CMD and RPMD

equations of motion, Eqs.(9) and (10) become

mq̈1 = −Kq1, and µαq̈α = −κ′
αqα, (34)

respectively, where

κ′
α ≡ mω2

Pλα +K. (35)

For the BCMD equations of motion, Eqs.(21) and (32) become

mq̈1 = −Kq1, and µαγq̇α = ξα − κ′
αqα (36)
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respectively.

In both cases of Eq.(34) and (36), the motion of the centroid variable is uncoupled from

that of the non-centroid variables. The time evolution of centroid variable is

q1(t) = q1(0) cos(ωt) + q̇1(0)ω
−1 sin(ωt) (37)

where ω =
√

K
m
. From Eq.(37) the centroid position correlation function becomes

Cxx(t) = ⟨x(0)x(t)⟩ = ⟨q1(0)q1(t)⟩ =
cos(ωt)

βmω2
, (38)

where the principle of equipartition for harmonic oscillators, ⟨q21⟩ = 1
βmω2 , has been used.

From Eq.(38) the centroid velocity correlation function is

Cvv(t) = −C̈xx(t) =
cos(ωt)

βm
. (39)

Eqs.(38) and (39) are exactly the same as Ckubo
xx (t) and Ckubo

vv (t), respectively, for the

harmonic system.5

2.5 Numerical algorithm

Generally, overdamped Langevin dynamics can be considered as short-time case of the

hybrid Monte Carlo (HMC).26 The HMC algorithm24,26–28 is composed of the velocity

randomization, the integration of Hamilton’s equation of motion with a time reversible

and area preserving algorithm, and the Metropolis acceptance/rejection. The Metropolis

acceptance/rejection can be skipped for the short-time case because the energy is

conserved.26 An application of HMC to Eqs.(9) and (10) corresponds to path integral hybrid

Monte Carlo (PIMHC).29,30 Thus the integration of the BCMD equation of motion can

be built in a way similar to that of the PIHMC method based on the Reversible System

Propagator Algorithm (RESPA),24 which is time reversible and area preserving. In fact,

BCMD could be thought of as a special class of PIHMC applied only to the non-centroid

variables where the trial move consists of a single step, and thus the velocity randomization

of the non-centroid variables is applied each step. This leads to a pseudo-code for the BCMD
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cycle as follows:

vα ← v′α (randomized for α ≥ 2)

v1 ← v1 −
∂ϕ

∂q1

∆t

2m
, vα ← vα −

∂ϕ

∂qα

∆t

2µα

(α ≥ 2)

q1 ← q1 + v1∆t

qα ← qα cos(ωα∆t) + vαω
−1
α sin(ωα∆t) (α ≥ 2),

vα ← vα cos(ωα∆t)− qαωα sin(ωα∆t) (α ≥ 2)

calculate ∂ϕ
∂xj

, obtain ∂ϕ
∂q1

, ∂ϕ
∂qα

from Eq.(12)

v1 ← v1 −
∂ϕ

∂q1

∆t

2m
, vα ← vα −

∂ϕ

∂qα

∆t

2µα

(α ≥ 2) (40)

where

ωα =

√
mλα

µα

ωP . (41)

In Eq.(40), line 1 corresponds to the velocity randomization, while the rest corresponds to the

time integration of Eqs.(9) and (10). To ensure time reversibility, the time integration for the

force contributions from the first and second terms in the rhs of Eq.(2) are divided into lines

(4,5) and lines (2,3,7), respectively, and the analytic expression for the harmonic oscillator

is adopted for the former, which corresponds to taking the number of steps infinite for the

reference forces in the RESPA technique. The force for the second term (ϕ) is calculated at

line 6. The velocity update at Line 7 is necessary not only for the centroids but also for the

non-centroids in order to assess the energy conservation of E ′(t), see Section 2.7.

BCMD gives rise to the canonical ensemble as in PIHMC, but it has access to the

time dependence via Kubo-transformed correlation function in contrast to PIHMC. A

notable difference of the BCMD algorithm from the PIHMC algorithm is that the Metropolis

acceptance/rejection step can be omitted. This is because in BCMD a small step size ∆t

is chosen such that the energy is conserved within a single step. In other words, H defined

in Eq.(7) is almost constant when Eq.(8) is solved for a single step excluding the velocity

randomization part (as in the case of PIHMC algorithm), which corresponds to Lines 2–7 in

Eq.(40). This is in contrast to the case of PIHMC where a large step size ∆t is used such

that H is no longer conserved, and Eq.(40) is regarded as a trial move. In PIHMC, a set
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of the cycle(s) of Eq.(40) is accepted with the probability P = min(1, e−β∆H) where ∆H is

the change in H upon the trial move. In BCMD, meanwhile, P ≈ 1 if H ≪ β−1, and thus

the trial move is always accepted. The BCMD algorithm is similar to the RPMD algorithm,

except for the velocity randomization and the values for µα.

The “partially adiabatic” CMD (PACMD) using a non-large adiabaticity parameter, γcmd,

would have an aspect similar to BCMD in that the adiabatic separation between centroid

and noncentroid variables becomes incomplete. However, PACMD is difficult to establish

without ambiguity in setting up the non-centroid masses and the system-thermostat coupling.

Thus the results of PACMD should strongly depend on such setups. In contrast, BCMD is

uniquely defined by Eqs.(9) and (17) [Eqs.(45) and (48) for the multidimensional case], and

the degree of nonadiabaticity is determined unambiguously.

The simple algorithm Eq.(40) works correctly as long as the step size is small enough. It

is required that the energy is conserved, which could be checked numerically by monitoring

the energy conservation of E ′(t), as mentioned in Section 2.7. It may also be useful to confirm

that the non-centroid MSD in the absence of physical potential, Eq.(23), is reproduced with

the step size chosen. A modern algorithmic development of the Langevin equation,31–33

especially those beyond the simple “pxpT” algorithm,33 may help making it more efficient

and accurate by enabling the use of increased step sizes.

2.6 Multidimensional extension

Let us consider a system composed of N atoms in 3-dimensional space with Cartesian

coordinates (R1, · · · ,RN), and the potential energy function V (R1, · · · ,RN). Following

Section 2.1, the cyclic path of the I-th atom, RI =
(
R

(1)
I , · · · ,R(P )

I

)T
, can be represented

in normal modes QI =
(
Q

(1)
I , · · · ,Q(P )

I

)T
, using the linear transformation

QI =
1√
P
UTRI . (42)

With the set {Q} and its momentum conjugate {P}, the Hamiltonian is constructed as

H({P,Q}) =
N∑
I=1

(
1

2
PT

I µ
−1
I PI +

1

2
MIω

2
PQ

T
I λQI

)
+ ϕ({Q}), (43)
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where MI is the physical atomic mass of the I-th atom, µI is a diagonal matrix whose

elements are the fictitious normal mode masses, and

ϕ({Q}) ≡ 1

P

P∑
j=1

V
(
R

(j)
1 (Q1), · · · ,R

(j)
N (QN)

)
(44)

is the average physical potential. The canonical equation of motion derived from Eq.(43) is

as follows. For the centroid variables,

Q̇
(1)
I =

P
(1)
I

MI

= V
(1)
I , Ṗ

(1)
I = − ∂ϕ

∂Q
(1)
I

, (45)

and for the non-centroid variables α ≥ 2,

Q̇
(α)
I =

P
(α)
I

µ
(α)
I

= V
(α)
I , Ṗ

(α)
I = F

(α)
I , (46)

with

F
(α)
I = −MIω

2
Pλ

(α)Q
(α)
I −

∂ϕ

∂Q
(α)
I

. (47)

In BCMD, the non-centroid velocities are randomized at each step (V
(α)′
I ). Then, following

Section 2.2, one obtains the Brownian equation

µ
(α)
I γQ̇

(α)
I (t) = ξ

(α)
I (t) + F

(α)
I (t), (48)

where

ξ
(α)
I =

√
2µ

(α)
I γ

β
ζ(t) (49)

is the random force. Eqs.(48) and (49) are the working BCMD equation of motion for

multidimension systems. The masses are set to µ
(1)
I = MI for the centroids, and

µ
(α)
I =

1

2
MIω

2
Pλ

(α)(∆t)τα, (50)

with τα = βℏ for the non-centroids (α ≥ 2), which is obtained by combining Eq.(24) with

Eqs.(15) and (22).
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2.7 Conservation laws

To calculate the vibrational spectrum, it is useful to remove the total momentum. In the

case of gaseous systems in the free boundary condition, it is also useful to remove the full

angular momentum. If the potential V has the translation symmetry, BCMD conserves the

total centroid momentum, Pcent ≡
∑N

I=1MIQ̇
(1)
I , because

Ṗcent =
N∑
I=1

MIQ̈
(1)
I = −

N∑
I=1

∂ϕ

∂Q
(1)
I

= − 1

P

P∑
k=1

(
N∑
I=1

∂V

∂R
(k)
I

)
= 0. (51)

Thus, Pcent = 0 is satisfied by setting at the initial step,

Q̇
(1)
I ← Q̇

(1)
I −

∑N
J=1 MJQ̇

(1)
J∑N

J=1 MJ

. (52)

On the other hand, BCMD does not conserve by itself the total angular momentum of the

centroid variables, Lcent ≡
∑N

I=1

(
Q

(1)
I ×MIQ̇

(1)
I

)
. However, Lcent = 0 can be imposed in

BCMD using the rotational correction technique, as done in CMD and RPMD as well.15

This technique removes at each step the rotational component of the centroid velocities by

Q̇
(1)
I ← Q̇

(1)
I −

(
I−1
centLcent

)
×Q

(1)
I , (53)

and the rotational component of the centroid forces by

F
(1)
I ← F

(1)
I −

(
I−1
centNcent

)
×Q

(1)
I , (54)

where Icent is a 3×3 matrix for the centroid moment of inertia, and Ncent is a 3N -dimensional

vector for the centroid torque.

The energy conservation of the classical isomorph is useful in determining a reasonable

step size, ∆t. In the BCMD algorithm, the energy conservation for H({P,Q}) defined in

Eq.(43) is kept in the time integration part, but is broken in the velocity randomization part.

For this reason, one can introduce a modified energy for BCMD as

E ′(t) = H({P,Q})−
∑
s<t

N∑
I=1

P∑
α=2

µ
(α)
I

2

(∣∣∣V(α)′
I (s)

∣∣∣2 − ∣∣∣V(α)
I (s)

∣∣∣2) , (55)

where the second term in the rhs corrects the jumps in the kinetic energy due to the velocity

randomization. E ′(t) is conserved for small step size ∆t in the absence of the rotational
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correction. When the rotational correction is applied, E ′(t) is not strictly conserved.

However, the energy shift due to the rotational correction is small, as was experienced in

CMD and RPMD as well. Thus the conservation error of E ′(t) is acceptable within tens of

picoseconds of BCMD trajectories required in the computation of vibrational spectra.

3 CALCULATIONS

All the calculations in this study were performed using the in-house version of the PIMD

software,30,34,35 with the BCMD method newly implemented.

3.1 One dimensional models

The BCMD method was first tested on one-dimensional models, as done in previous studies

of the CMD and RPMD methods.5,13,36,37 Figures 1 and 2 show the Kubo-transformed

correlation functions Cxx(t) for mildly anharmonic and quartic potentials, respectively.

Figure 3 shows the function Caa(t) for a harmonic potential, where a = x2. The BCMD

results were compared with the results of MD, CMD, RPMD, and the exact solution. The

CMD and RPMD results are consistent with earlier works such as Figures 1–2 in Reference5,

Figures 7–8 in Reference37, and Figure 1 of Reference38. Note in Figure 3 of this paper that

the correlation functions where nonlinear operators are involved are not necessarily exact in

BCMD as well as CMD and (T)RPMD even for a harmonic system.

In general, the performance of BCMD shown in Figures 1–3 of this paper is similar to

those of CMD and RPMD. However, there is a slight difference in the low temperatures

case of quartic potential shown in the bottom panel of Figure 2. Here it can be seen that

the BCMD captures the amplitude of long-time vibrations better than RPMD, but worse

than CMD. The stronger the anharmonicity and the lower the temperature, the faster the

deviation from the exact solution will be. BCMD, like CMD and RPMD, cannot describe

long-time quantum interference in anharmonic oscillations, as expected from theory. This

means that this method is more suitable for condensed phase systems where the interference

effects are expected to be rapidly quenched.
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3.2 OH molecule

Next, the BCMD method was tested on the vibrational spectra for the harmonic and Morse

models of gaseous OH molecule. These models were used in previous studies to test the

CMD, RPMD and TRPMD methods.15,18 The harmonic model is not a quadratic function

with respect to the Cartesian coordinates of the O and H atoms, but a quadratic function

with respect to the shift of the beadwise OH distance in three dimensional space from the

equilibrium distance. For this reason, BCMD, CMD, and RPMD do not provide the exact

results for this model.

The BCMD, CMD, and RPMD simulations were performed at temperatures 100, 200,

300 and 600 K with P = 96, 48, 32 and 16 beads, respectively. Starting from the equilibrated

structures of the PIMD simulations, 100–300 trajectories of 2.5 ps long were computed for

each case. For CMD, the adiabaticity parameter was set to γcmd = 10. The rotational

correction was applied to fix the molecular orientation. The MD simulations were performed

in the same way as above, but with a single bead, P = 1.

Previous studies pointed out that there are chain resonance and curvature problems in

the RPMD and CMD vibrational spectra, respectively. When P is large, the chain resonance

is found at the RPMD normal mode frequencies, ωn = 2nπ
βℏ where n is a natural number. At

300 K, ωn = 1310 × n cm−1, are within the frequency range of physical vibrations (0–5000

cm−1). As the temperature decreases, the amount of resonant modes in this region increases,

making the spurious peak splittings become more noticable. This is shown in the bottom

right panel of Figures 4 and 5. TRPMD diminishes the chain resonance, but it does not

completely remove it even with the optimal damping parameter. On the other hand, the

curvature problem arises from the spurious coupling between the rotation and vibration of the

system. The coupling is amplified by the adiabaticity between the centroid and non-centroid

variables which is assumed in the CMD equation of motion. This leads to an unnatural red

shift and broadening of the spectra as the temperature decreases, as shown in the bottom-left

panel of Figures 4 and 5.

The results of BCMD are shown in the top-left panels of Figures 4 and 5. The peak

positions from Figure 5 were plotted in the left panel of Figure 6. An advantage of BCMD
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is in the complete absence of peak splitting due to spurious resonances, which is often a

fundamental requirement in vibrational spectroscopy. On the other hand, the peak shift due

to the curvature problem of BCMD does not seem to be as severe as CMD. The reason is that

BCMD breaks the adiabaticity between the centroid and non-centroid variables, and thus

weakens the spurious coupling between rotation and vibration. Still, in this case, the peak

shift of BCMD cannot be ignored, especially at temperatures below 200 K in this case. The

BCMD peak positions reasonably matches the exact frequency of the (v, r) = (0, 0)→ (1, 0)

transition in both the harmonic and Morse models. For the Morse model, the peak position

in BCMD (top-left panel) shows a redshift relative to that of MD (top-right panel), improving

the agreement with the exact result. This shows that BCMD properly considers the nuclear

quantum effects of anharmonic vibrations.

The peak width for the Morse model are shown in the right panel of Figure 6. Here the

full-width at half minimum (FWHM) values were evaluated by fitting the spectrum to the

Lorenzian function. This result shows the limitation of BCMD that unphysical broadening

of the spectrum becomes noticeable at low temperatures, especially below 200 K in this case.

CMD and TRPMD also show more or less unphysical broadening at low temperatures as

well.

Further tests on the vibrational spectra of methane molecule is shown in Appendix B. As

a general trend, the performance of BCMD shown in Figure 10 and 11 was similar to those

seen in Figures 4 and 5. The unphysical peak shift and broadening were found to decrease

for the vibrational modes with lower frequency. They are generally smaller for the HOH and

HCH bending modes than in the OH and CH stretching modes, and they are smaller in the

D isotopologues than in the H isotopologues.

3.3 Gaseous water

The BCMD, CMD, RPMD, and MD simulations of gaseous water molecule and its

isotopologues were carried out at 300 K using the q-TIP4P/F model.39 The simulation

settings were the same as those described in Section 3.2. In Figure 7, the results are compared

to the solution of vibrational Schrödinger equation based on the full vibrational configuration

interaction (VCI) method40 using the SINDO code,41 with a 3-mode representation and 11
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grid points per mode. Since the q-TIP4P/F potential is quartic with respect to the OH bonds,

the exact peak frequencies in the spectra are red-shifted from the harmonic frequencies.

In all cases studied for H2O, D2O, HDO and HTO molecules, the BCMD vibrational

spectra were significantly improved compared to the MD vibrational spectra. This indicates

that the nuclear quantum effects on the vibrational spectra were properly taken into account

in the BCMD method. Assuming that the VCI frequencies are correct, the mean absolute

error and the maximum absolute error of the BCMD peaks were 22 and 41 cm−1, respectively.

These values are lower than the mean absolute error and the maximum absolute error of

the CMD peaks (44 and 129 cm−1, respectively), the RPMD peaks (52 and 156 cm−1,

respectively), the MD peaks (77 and 151 cm−1, respectively), and the harmonic frequencies

(85 and 166 cm−1, respectively). In this respect, the BCMD method outperforms the CMD

and RPMD methods in these cases. However, the spectral broadening of the BCMD method

remains a problem when dealing with vibrational spectra of the gas phase molecules at the

low temperature, and it seems that PILD outperforms BCMD in this sense.9

3.4 Liquid water

As a typical example of condensed phase systems, the BCMD method was tested on the

vibrational spectra of liquid water and its isotopologues at a temperature of 300 K. TIP3P

and modified TIP3P (mTIP3P) models were used for comparison with previous studies on

MD and CMD simulations.16 In addition, the q-TIP4P/F model was used for comparison

with previous studies on MD and (T)RPMD simulations.18 The BCMD simulations of liquid

H2O were performed using P = 32 beads, for a system of 256 H2O molecules contained

in a cubic box with a side length of 19.7 Å. Ewald sum technique was used to compute

the electrostatic interaction under the periodic boundary condition. Starting from the

equilibrated structures of the PIMD simulations, 100 independent BCMD trajectories were

run for 2.5 ps each with a step size of ∆t = 0.25 fs. The same procedure was repeated for

the BCMD simulations of liquid D2O and HDO. The intensity of the vibrational spectra

was computed by the formula

α(ω) ∝ βω2

∫ ∞

−∞
CMM(t) exp(−iωt)dt (56)
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where CMM(t) is the Kubo-transformed dipole autocorrelation function. In this case, the

dipole trajectories were computed by

M(j)(t) =
N∑
I=1

ρIR
(j)
I (t) (57)

where RI(t) and ρI are the Cartesian coordinates (in the expanded space of periodic

boundary) and the TIP3P charge, respectively, of the I-th atom.

Figure 8 shows the BCMD results compared with the MD, CMD, and (T)RPMD

results. Here, the spectral peaks correspond respectively to intermolecular vibrations (0-1000

cm−1), DOD bending (1200–1300 cm−1), HOD bending (1500–1600 cm−1), HOH bending

(1700–1800 cm−1), the OD stretching (2200–2500 cm−1), and the OH stretching (2900–3400

cm−1). It was pointed out that CMD shows a significant redshift in the spectra compared to

MD, partly due to the curvature problem.16 It is expected that the correct peak positions is

somewhere between those of MD and CMD, when the physical redshifts due to the nuclear

quantum effects were taken into account. In this respect, the results of BCMD are indeed

convincing, since the peak positions are found systematically between those of MD and CMD.

Thus it seems that BCMD is capable of improving CMD with respect to the vibrational

spectra of liquid water. Comparing the results of BCMD and TRPMD, the peaks of the OH

stretching and HOH bending were found similar to each other, but the peak of intermolecular

vibrations in BCMD were found at higher frequency than that in TRPMD.18

3.5 Protonated water: Ab initio BCMD

The final test is on the applicability of ab initio BCMD simulations where the electronic

structure calculations are performed on the fly. Here the infrared spectra of the protonated

water dimer (Zundel ion), H5O
+
2 , and its isotopologue, D5O

+
2 , were taken as an example.

In this system, the anharmonicity in vibration due to quantum and thermal fluctuations is

important.42

Electronic structure calculations were performed using the SMASH code43 which was built

into the PIMD software.44 Potential energy (V ) and force (−∇V ) were calculated by the

MP2 method with the 6-31G(d) basis set.45,46 The infrared spectrum was calculated from
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the dipole correlation function, Eq.(56). In this case the dipole trajectories were computed

by the Hartree-Fock (HF) theory using the 6-31G(d) basis set,

M(j)(t) =
N∑
I=1

ZIR
(j)
I (t)− ⟨ϕ(j)(t)|

n∑
i=1

er̂i|ϕ(j)(t)⟩, (58)

where e, n, r̂i, ZI , and ϕ(j)(t) represent the elementary charge, the number of electrons, the

position operator of the i-th electron, the nuclear charge of the I-th nucleus, and the HF

wavefunction of the j-th bead at time t, respectively. Ab initio PIMD and BCMD simulations

with P = 24 beads were performed at the temperature 300 K. After the equilibration with

the ab initio PIMD simulation, ab initio BCMD simulations were run for 50 trajectories,

each with the length of 2.5 ps. The rotational correction was applied to fix the orientation

of the system. The step size was set to ∆t = 0.25 fs. The ab initio MD simulations were

performed in the same way but using a single bead, at the temperature 300 K.

The results are shown in Figure 9. It can be seen that the infrared spectra calculated from

ab initio BCMD are overall in good agreement with the experimental results47 for both H5O
+
2

and D5O
+
2 . The spectra of H5O

+
2 is also in reasonable agreement with the optimally-damped

TRPMD calculations based on ab initio-based force field.18 For the OD and OH stretching

peaks near 2600 cm−1 and 3600 cm−1, respectively, the BCMD peak positions are redshifted

compared to the MD peak positions, and are closer to the experimental peak positions. Also

for the DOD and HOH bending peaks near 1300 cm−1 and 1800 cm−1, respectively, the

BCMD peak positions are redshifted compared to the MD peak positions, and are closer to

the experimental peak positions. For the peaks of the shared hydrogen vibrational modes

of D5O
+
2 and H5O

+
2 near 800 cm−1 and 1100 cm−1, respectively, the BCMD peak positions

are blueshifted compared to the MD peak positions, and are higher than the experimental

peak positions. However, because this peak is temperature sensitive, it may not be fair to

directly compare theory and experiments with different temperature settings. In fact, it was

experimentally observed that the peak in the Ar-tagged H5O
+
2 is blueshifted compared to

the Ne-tagged H5O
+
2 .

47 Further research should be necessary to verify this issue.
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4 CONCLUSIVE REMARKS

In this paper, the BCMD method was proposed as a new approximation of quantum

vibrational dynamics. BCMD is similar to CMD and RPMD in its accuracy in the short-time

correlation, in the classical/high temperature limits, and in the harmonic oscillator systems.

However, in the computation of vibrational spectra, BCMD eliminates the chain resonance

problem of RPMD, and it alleviates the curvature problem of CMD. The BCMD causes

spectral broadening at low temperatures, which one should be most cautious of. BCMD

requires about the same computational effort as RPMD and CMD. The ab initio BCMD

simulation can be run in parallel computing, and should be useful for a wide range of

applications.

5 APPENDIX

A: Wavepacket propagation

Following the textbook by Schatz and Ratner,48 a free particle wavepacket is expressed by

the superposition of plane waves

Ψ(x, t) = N0

∫ ∞

−∞
c(p) exp

(
− p2

2m

it

ℏ
+

ipx

ℏ

)
dp, (59)

where N0 is a normalization constant, and c(p) is a function describing the distribution

of momentum, p, in the wavepacket. Assuming the Maxwell-Boltzmann distribution at

temperature T = 1
kBβ

, c(p) =
√
w(p) and

w(p) =

√
β

2πm
e−β p2

2m , (60)

the probability distribution of the wavepacket is

|Ψ(x, t)|2 =
√

π

a(t)
exp

(
−a(t)x2

)
, (61)

where a(t) = 2βm
(2t)2+(ℏβ)2 and N0 =

1√
2πℏ . Thus, the wavepacket starts changing its shape after

about t = βℏ
2
, and it is broadened by

√
5 ≈ 2.2 times at t = βℏ.
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B: Gaseous methane

Figures 10 and 11 show the infrared spectra of gaseous CH4 and CD4 molecules, respectively,

of a harmonic force field used in Reference15. The potential energy function of this model is

given by

V =
4∑

j∈CH

Kr

2
(rj −R)2 +

6∑
j∈HCH

Kθ

2
(θj −Θ)2 (62)

where rj is the j-th CH bond length, θj is the j-th HCH bond angle, R = 2.0598 bohr,

Kr = 0.3035 hartree·bohr−2 Θ = 107.8 deg. Kθ = 3.1068 × 10−5 hartree·deg.−2. The

BCMD, CMD, RPMD, and MD simulations were carried out in the same manner as done

for gaseous OH molecule in Section 3.2.
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6 FIGURE CAPTIONS

• Figure 1: Kubo-transformed correlation function Cxx(t) of a mild anharmonic

potential, V (x) = 1
2
x2 + 1

10
x3 + 1

10
x4 with m = 1 and ℏ = 1. The results are shown

for BCMD (solid blue lines), MD (black double-dotted-dashed lines), CMD (violet

single-dotted-dashed lines), RPMD (green dashed lines), and the exact results Ckubo
xx (t)

(grey dotted lines) at a high temperature, β = 1 (top panel) and at a low temperature,

β = 8 (bottom panel). The number of beads is set to P = 1
4β

for BCMD.

• Figure 2: Kubo-transformed correlation function Cxx(t) of a quartic potential, V (x) =

1
2
x4, otherwise the same as Figure 1.

• Figure 3: Kubo-transformed correlation function Caa(t) with a = x2 of a harmonic

potential V (x) = 1
2
x2, otherwise the same as Figure 1. For CMD, the result of the

effective classical operator13,38 is shown.

• Figure 4: Vibrational spectra of OH molecule obtained from the BCMD (top left),

MD (top right), CMD (bottom left), RPMD (bottom right), and optimally-damped

TRPMD (bottom right) methods for harmonic model, V = K
2
(r −R)2, where r is the

OH bond length. The parameters are K = 0.49536 hartree·bohr−2 and R = 1.8897

bohr. The black line represents the exact frequency of (v, r) = (0, 0)→ (1, 0) transition

of this model. The dotted lines in BCMD, RPMD and TRPMD are the magnified

views.

• Figure 5: Vibrational spectra of OH molecule obtained in the same way as Figure 4,

but for Morse model, V = D
(
1− e−A(r−R)

)2
, where r is the OH bond length. The

parameters are R = 1.8324 bohr, D = 0.1875 hartree, and A = 1.1562 bohr−1. The

black solid line represents the exact frequency of (v, r) = (0, 0) → (1, 0) transition,

while the black dashed line represents the harmonic frequency of this model. The

results of TRPMD using the same Morse model were reproduced from Reference18.

The dotted lines in BCMD and RPMD are the magnified views.

• Figure 6: The temperature dependence on the position (left) and the FWHM value
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(right) of the spectral peak shown in Figure 5. The results of TRPMD using the same

Morse model were reproduced from Reference18.

• Figure 7: Vibrational spectra of gaseous H2O (top-left), D2O (top-right), HDO

(bottom-left), and HTO (bottom-right) at 300 K using the q-TIP4P/F model. The

results of BCMD, MD, CMD, RPMD are shown along with the frequencies of (v, r) =

(0, 0)→ (1, 0) transitions obtained by the VCI calculations, and those in the harmonic

approximation (HAR). The peak positions were obtained by fitting the spectrum to

the sum of Lorentzian functions.

• Figure 8: Vibrational spectra of liquid H2O (top-left), D2O (top-right) and HDO

(bottom-left) obtained from the MD and BCMD methods using the TIP3P and

mTIP3P models, and vibrational spectra of liquid H2O obtained from the MD and

BCMD methods using the q-TIP4P/F model (bottom-right). The results of the

CMD method were reproduced from Reference16, and the results of the RPMD and

the optimally-damped TRPMD methods were reproduced from Reference18. The

experimental infrared spectrum was reproduced from Reference49. The peak positions

were obtained by fitting the spectrum to the sum of Lorentzian functions.

• Figure 9: The infrared spectra of H5O
+
2 (top) and D5O

+
2 (bottom) obtained from the ab

initio MD and BCMD methods at 300 K. The peak positions were obtained by fitting

the spectrum to the sum of Lorentzian functions. The result of the optimally-damped

TRPMD methods using ab initio-based force field were reproduced from Reference18.

The experimental results were reproduced from Reference47, for those of H5O
+
2 ·Ne and

D5O
+
2 ·Ar.

• Figure 10: Vibrational spectra of CH4 molecule obtained from the BCMD (top left),

MD (top right), CMD (bottom left), RPMD and optimally-damped TRPMD (bottom

right) methods using the harmonic force field in Reference15. The black lines represent

the harmonic frequencies of this model for the infrared active modes (solid) and inactive

modes (dotted).

• Figure 11: The same as Figure 10, but for CD4 molecule.
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An approximate approach to quantum vibrational dynamics, “Brownian Chain Molecular
Dynamics”, is proposed to alleviate the chain resonance and curvature problems in the
imaginary time-based path integral simulation. Here the non-centroid velocity is randomized
at each step when solving the equation of motion of path integral molecular dynamics. This
leads to a combination of the Newton equation and the overdamped Langevin equation for
the centroid and non-centroid variables, respectively.
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Figure 1: Shiga, submitted to JCC.
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Figure 2: Shiga, submitted to JCC.
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Figure 3: Shiga, submitted to JCC.
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Figure 4: Shiga, submitted to JCC.
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Figure 5: Shiga, submitted to JCC.
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Figure 6: Shiga, submitted to JCC.
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Figure 7: Shiga, submitted to JCC.
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Figure 8: Shiga, submitted to JCC.
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Figure 9: Shiga, submitted to JCC.

39



 0

 1

 2

 3

 4

 5

 0  1000  2000  3000  4000  5000

100 K

200 K

300 K

600 K

BCMD
1209

1194

1202

1209

1218

2979

2980

2967

2958

2939

(1382)
(2820)

inactive:

In
te

ns
ity

 α
(ω

)[
ar

bi
tr

ar
y 

un
it]

Frequency ω[cm-1]

 0

 1

 2

 3

 4

 5

 0  1000  2000  3000  4000  5000

100 K

200 K

300 K

600 K

MD

1196

1202

1202

1206

2991

2987

2985

2983

Frequency ω[cm-1]

 0

 1

 2

 3

 4

 5

 0  1000  2000  3000  4000  5000

100 K

200 K

300 K

600 K

CMD

1193

1196

1194

1194

2974

2946

2915

2790

In
te

ns
ity

 α
(ω

)[
ar

bi
tr

ar
y 

un
it]

Frequency ω[cm-1]

 0

 1

 2

 3

 4

 5

 0  1000  2000  3000  4000  5000

100 K

100 K

200 K

300 K

600 K

RPMD

TRPMD

1192

1189

1191

1190

1200

2977

(2920)

(2987)

(2957)

2975

Frequency ω[cm-1]

Figure 10: Shiga, submitted to JCC.
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Figure 11: Shiga, submitted to JCC.
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