TRADING CROSSINGS FOR HANDLES AND CROSSCAPS
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ABSTRACT. Let ¢ = cri(G) denote the minimum number of edge crossings
when a graph G is drawn on an orientable surface of genus k. The (orientable)
crossing sequence co,C1,cC2,... encodes the trade-off between adding handles
and decreasing crossings.

We focus on sequences of the type co > ¢1 > c2 = 0; equivalently, we
study the planar and toroidal crossing number of doubly-toroidal graphs. For
every € > 0 we construct graphs whose orientable crossing sequence satisfies
c1/co > 5/6—e. In other words, we construct graphs where the addition of one
handle can save roughly 1/6th of the crossings, but the addition of a second
handle can save 5 times more crossings.

We similarly define the non-orientable crossing sequence ¢g,¢1,¢2,... for
drawings on non-orientable surfaces. We show that for every ¢o > ¢1 > 0 there
exists a graph with non-orientable crossing sequence ¢o, ¢1,0. We conjecture
that every strictly-decreasing sequence of non-negative integers can be both
an orientable crossing sequence and a non-orientable crossing sequence (with
different graphs).

1. INTRODUCTION

One of the most important classes of graphs are the planar graphs: those which
can be drawn on the plane (or on the surface of a sphere) so that edges don’t
cross. Not every graph is planar. Traditionally, there are two ways to draw such
non-planar graphs. The first is to draw them on the plane allowing edge crossings.
The goal is then to minimize the number of crossings. The second is to draw the
graph on a sphere with either handles or crosscaps attached so that edges do not
cross. The goal is then to minimize the number of handles or crosscaps.

In this paper we combine the above concepts. Namely, we investigate the crossing
number of a graph drawn on a surface. Let ¢ = eri(G) denote the minimum
number of crossings in a drawing of a graph G on the orientable surface with &
handles, Sy. We call cp,c1,co,... the (orientable) crossing sequence of G. By
studying crossing sequences we can study the “trade-off” between crossings and
handles when drawing a graph. Similarly, we define the non-orientable crossing
sequence gy, C1, Ca2, . . . for graphs embedded in non-orientable surfaces with crosscaps
and examine the trade-off between crossings and crosscaps.

What do crossing sequences look like? It is easy to see that they are strictly
decreasing (we can always use a handle or crosscap to eliminate a single crossing)
and eventually zero (when k achieves the orientable or non-orientable genus of the
graph). Moreover, it is easy to construct examples where the difference between
consecutive numbers in the crossing sequence is arbitrarily large. In the orientable
case, take a graph with large planar crossing number but with a drawing where all
crossings involve a fixed edge; in the non-orientable case take a projective planar
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graph with a large face-width (see [8] for information about the face-width of an
embedding).

Crossing sequences were first introduced by Siran [13]. He tried to characterize
orientable crossing sequences. A sequence cg, 1, ... is convex if ¢; —ci41 < ¢im1 — ¢
for all i. Sirai showed [13] that any decreasing convex sequence of non-negative
integers was the orientable crossing sequence of some graph. He conjectured that
all orientable crossing sequences are convex.

A counterexample to Siraii’s conjecture would be a non-convex crossing sequence.
For example, is there a crossing sequence where ¢; —cs > cg—c1? Loosely speaking,
if adding the second handle saves more edges than adding the first handle, why not
add the second handle first? Despite its non-intuitive nature, we will show that it
is possible to achieve this inequality with the crossing sequence of a graph.

More strongly, we believe the following.

Conjecture 1.1. Any strictly decreasing sequence of non-negative integers is the
crossing sequence of some graph. It is also the non-orientable crossing sequence of
a (different) graph.

To study the effect on the number of crossings of adding successive handles we
focus on the simplest special case: sequences cg > ¢; > ¢ = 0. In other words,
we examine the planar crossing number ¢y and the toroidal crossing number ¢; of
graphs which embed in the double torus without crossings. Our main result is the
following (where (}) denotes a binomial coefficient).

Theorem 1.2. For every m > 0, there exists a graph which embeds in the dou-
ble torus without crossings, has planar crossing number 4(3;’1), and has toroidal

crossing number 3(3;”) +3(%).

Corollary 1.3. For every € > 0, there exists doubly-toroidal graph whose ori-
entable crossing sequence cg,c1,ca = 0, has the property (c1 —c2)/(co —c1) > 5 —e.
Equivalently, adding the first handle saves at most 1/6'" of the crossings.

Analogously, we study the effect on the number of crossings of adding successive
crosscaps by focusing on the simplest special case: é > ¢ > é& = 0. Thus we
examine the planar crossing number ¢, and the projective-plane crossing number ¢;
of graphs which embed in the Klein bottle without crossings. In this non-orientable
case we have the following stronger result.

Theorem 1.4. For every ¢y > ¢ there exists a graph which embeds on Klein’s bottle
without crossings, has planar crossing number ¢y, and projective-plane crossing
number ¢;.

In Section 2 we introduce weights on edges and define the weighted crossing
number. The purpose of the weights is to control, even prohibit, the crossings of
some edges in a drawing achieving a crossing number. In Section 3 we use the
weights to fix a large portion (called a “patch”) of any drawing that achieves a
crossing number. Again, the purpose is to restrict the types of embedding so that
the crossing number on a surface is more easily determined. In Section 4 we give the
(weighted patched) graphs demonstrating our theorem for non-orientable surfaces.
In Section 5 we give the (weighted patched) graphs demonstrating our theorem
for orientable surfaces. We conclude in Section 6 with some directions for future
research.
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2. WEIGHTS

In this section we introduce weights on edges and the concept of the weighted
crossing number. Loosely speaking by assigning a large enough (possibly infinite)
weight to an edge we can guarantee it is not involved in a crossing in a drawing
which achieves the crossing number.

A weight on an edge is a positive integer (or oo) assigned to that edge. A
weighted graph is a graph together with a weight on each edge. Let wt(e) denote
the weight of edge e. Suppose that G is a weighted graph drawn on some surface.
The weighted crossing number of the drawing is the sum wt(e) - wi(e') over all pairs
e, e’ of crossing edges. The (weighted) crossing number of a weighted graph G is the
minimum weighted crossing number over all drawings of G. The weighted crossing
number corresponds to the usual crossing number if all of the weights are 1.

Proposition 2.1. Let G be a cubic weighted graph. Then there exists a simple
unweighted graph G' with the same crossing sequence as G.

Proof. We will first modify G to a non-simple graph G” with the same crossing
sequence. Let e be an edge of G with weight k. Form G by replacing e with k
parallel edges e, e, .. ., ek, each with weight 1. (If the reader prefers finite graphs,
we replace an edge with weight oo with a sufficiently large number of parallel edges.)

We claim that G" has the same crossing sequence as G. Consider a drawing
of G". Among the new edges ey,..., e, pick the one with the fewest number of
crossings, say e;. We redraw e; alongside e; without increasing the total number
of crossings. Once all k edges are redrawn in parallel alongside e;, we can replace
them with a single edge of weight k. Thus we have constructed a drawing of G
with the same weighted crossing number.

We form the desired G' by repeating this process for each edge of weight exceed-
ing one. We then subdivide any parallel edges to make G' simple as claimed. O

3. PATCHES

Patches are a common method in topological graph theory to fix certain portions
of an embedding. A patched graph is a graph G and a collection Py, --- , Py of
edge-disjoint closed trails in G (so vertices may be repeated but not edges). An
embedding of G is a patch embedding if each P; appears as a face boundary. Notice
that we have not assigned a direction to the P;; in an oriented surface we accept
either P; or Pi_1 as the face boundary. In some instances it is helpful to talk about
the theory of oriented patches (see [2], [5] or [15]), but it is not needed here.

Patches are also known under many different names. Archdeacon referred to
identified disk spaces [1], Sirai called them relative graphs [14], while Mohar and
Robertson [10] used the word patches.

We also want to consider drawings with edge crossings in a patched graph. Specif-
ically, we assign weight oo to all edges in a patch cycle and consider the minimum
weighted crossing number over all patch embeddings in a given surface. Therefore
edges in a patch boundary cycle are not allowed to cross any other edge, nor can
the patch face contain any other portion of the graph. Define the orientable and
non-orientable crossing sequence for patched graphs similar to that for unpatched
graphs.



4 ARCHDEACON, BONNINGTON, AND SIRAN
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FIGURE 1. A patch extension

For our purposes we need to consider only cubic patched graphs. Notice that in
a cubic patched graph the patch trails are all vertex-disjoint simple cycles. We also
allow weights on non-patch edges of a patched graph.

Let d be a positive integer and let C = (vy,...,v,) be a simple cycle. A d-dense
patch extension on C is a 3-connected planar graph P with the following properties:

(1) the outer face of P is bounded by the cycle C' formed by replacing each
edge of C' with a path on 2d + 2 edges,

(2) every internal face of P is a triangle, and

(3) any path in P joining two non-adjacent vertices of C' and internally disjoint
from C' is of length at least 2nd + 2n + 6d + 1.

Observe that it is easy to construct a d-dense patch extension for any length
simple cycle. See for example Figure 1 which illustrates a patch extension along an
edge v1v;.

The goal of this section is to prove the following.

Proposition 3.1. Let G be a weighted patched graph. Then there exists a weighted
graph G' with the same crossing sequence.

Proof. We prove the proposition for orientable sequences only. The proof in the
non-orientable case is an easy modification. Let d be the largest subscript such
that ¢4 is non-zero (that is, d + 1 is the genus of the patched graph). We form the
weighted graph G' from G by identifying each patch cycle C; with the outer face of
a d-dense patch extension P;. Each edge in the patch extension is assigned infinite
weight. The weights of edges which are not in patch cycles are left unchanged.

We need to show that for each patch drawing of G with weighted crossing number
k, there is a drawing of G’ with the same crossing number. But this is obvious: we
can place the patch P; inside the face bounded by C;.

Now suppose that G’ is drawn on S, (¢ < d) with weighted crossings k£ > 0.
We need to demonstrate a drawing of the patched G on the same surface with the
same weighted crossing number. Observe that edges in a patch extension P receive
infinite weight, and therefore are not involved in any crossings in the drawing of G'.
Now consider the restriction of the drawing that only considers the patch extension
P, capping off any unused handles or crosscaps. This restriction is an embedding
of P. Let C = (vy,...,v,) be the cycle on the boundary of P.

Claim:  Either

(1) No face has more than one v;, or
(2) There is a face F so that (v1,...,v,) appear on the boundary of F in that
order.
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In the second case we can replace the given embedding of P with the planar
embedding of the patch. This may lower the genus of the embedding, but will not
increase the crossing number. In the first case each of the n edges connecting P to
the remainder of G’ lie on a different handle. (Recall that G is cubic and hence our
patches are disjoint.) It is now easy to re-embed using the planar embedding of P.
Finally, in either case we can fill the embedding of P to get an embedding of the
patched graph G in the original surface.

To establish the claim, suppose that there is a face containing v; and v; with
boundary walk W. If W contains a sub-path internally disjoint from C’ which joins
two non-adjacent vertices of C', then

(1) |W| > 2nd+2n+6d + 1.

Let f, be the number of faces in the planar embedding and let f, be the number of
faces in the Sy-embedding. Then f, = f, —2g > f, — 2d. Let e denote the number
of edges in P. Observe that in the planar embedding all faces are triangles except
for one n(2d + 2)-gon, and hence 3(f, — 1) + n(2d + 2) = 2e. Therefore,

2e—-3f, < 2e-3(fp—2d)
= n(2d+2)+6d—3.

It follows that every face of the S;-embedding of P has length at most 2nd+2n4-6d,
contradicting Equation (1). (Indeed, if one face had length at least 2nd+2n+6d+1
then 2e > 3(f, — 1) + 2nd + 2n + 6d + 1.) It follows that there is no walk between
non-adjacent vertices of C' in W that is internally disjint from C"’.

In P, v; and v; (vertices of the original cycle C) divide C’ into two v;vj-sub-
walks W7 and W,. It follows that W contains the vertices of W; in the same order
as they appear in C’. There are two possibilities: either W contains the vertices
of C’ in the same order as they appear in W,'T/Vi_1 for some i, or W contains the
vertices W, W, '. In the latter case (vi,...v,) appear in order as claimed, so it
only remains to rule out the former case.

Suppose that W contains the vertices of W Wfl in that order. Recall that every
edge of C' has been replaced by a path with 2d 4+ 2 edges and that d > g. Hence,
among the vertices of W; we have 2g+43 consecutive vertices ug, u1, . .. u2442. Inside
of the face W we draw g + 1 chords connecting the two occurrences of u;, where
i=1,3,...,2g9 + 1. These chords correspond to simple cycles in the surface, and
hence they are homologically non-null. Because the surface is of genus ¢, in any
collection of g + 1 disjoint cycles there are at least two cycles (chords in our case)
whose removal disconnects the surface. However, by the choice of the u;’s, we have
that removal of two vertices disconnects the graph P, a contradiction.

We have established the claim and so the proposition follows. a

4. NON-ORIENTABLE CROSSING SEQUENCES

We begin with the non-orientable case because the construction is slightly easier
to describe.

Theorem 4.1. Let ¢y > ¢; > ¢2 = 0. Then there exists a weighted patched graph
G with non-orientable crossing sequence ¢y, €1, Cs.

Proof. We begin by showing that n,n — 1,0 is the non-orientable crossing sequence
of a patched graph. The graph is shown in Figure 2. This graph comprises a
Hamiltonian cubic graph together with a patch (shown as shading) on a fixed
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a1 G2 ag G

FIGURE 2. The patched graph for non-orientable sequences

FiGURE 3. Embedding the patched graph in the projective plane

Hamiltonian cycle (b,a1,...,am,b,am,...,a1,b). We need to show the two claims
about the non-orientable crossing numbers.

We first show that the planar crossing number is as claimed. There is a unique
embedding of this patched graph in the plane with a simple cycle on the boundary
of the only unpatched face. All other edges must lie in this face. Two edges cross
if and only if their edge ends alternate in the boundary of this cycle. Hence the
crossing pairs of edges are exactly bb and a;a;, i = 1,...,m. There are exactly n
edge crossings.

We next show the graph embeds on the Klein bottle (the non-orientable surface
of genus 2). This is clear since G' — {bb} is planar. Hence we can add a single
anti-handle (the equivalent of two crosscaps) to accommodate the edge bb.

We need only show the claim for the projective crossing number. We can assume
that all non-infinity weight edges lie in a single face which contains a crosscap.
Notice that the crossing number is at most n — 1 since we can exclude a single
crossing in the planar embedding by adding a crosscap. (See Figure 3, the dotted
circle represents a crosscap).

Suppose that we have a drawing achieving the projective crossing number. Then
there must exist a k such that bb does not cross axay (if not, there would exist at
least n crossings). Consider the unique projective embedding without crossings of
the graph formed by deleting all edges a;a; where i # k. This embedding must be
induced by the drawing achieving the crossing number. But in this embedding a;
and a; lie on different faces. Hence the edge a;a; must cross another edge in the
drawing. Since there are n — 1 such edges, there are at least n — 1 crossings.

To achieve an arbitrary sequence ¢y > ¢ > ¢ = 0 we vary the construction
slightly. Namely, we pick one of the edges aray and assign it weight ¢; — éo. The
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a1 -..0Qp bl...bg

FIGURE 4. The patched graph G, for orientable sequences (m = 2)

total number of vertical edges is m = é; — & + 1. Again, it is easy to see the graph
has the desired drawings on the plane and on Klein’s bottle. A drawing on the
projective plane can eliminate at most one unweighted crossing. This is minimized
by eliminating the crossing with edge apay. O

5. ORIENTABLE CROSSING SEQUENCES

In this section we give graphs with an interesting orientable crossing sequence.
These graphs will embed on the double-torus but not on the torus. The toroidal
crossing number will be almost 5/6th of the planar crossing number. Thus the
addition of a second handle saves a greater number of edge crossings than did the
addition of the first handle. By Propositions 2.1 and 3.1 it suffices to show the
result for weighted patched graphs.

The weighted patched graph G,,, m = 2, is shown in Figure 4. It has two
patched faces (outside the large rectangle and inside the small rectangle), and two
edges with infinite weights (shown in bold). There are 12m other edges of weight
1. These 12m edges are broken into 4 groups of size 3m, each group on vertices
a;, b;, i, d; respectively. The graph G,,, m # 2 is defined similarly, differing only
in the number 3m of edges in each of the 4 groups. In particular, any two edges
from the same group cross in the drawing shown.

Theorem 5.1. The orientable crossing sequence of G, is

3m 3m m
COZ4<2>, C1:3<2>+3<2>, 62:0.

Proof. Let H,, denote the patched subgraph consisting of the two patch faces and
the two infinite weight edges in G,,. Observe that H,, has exactly two embeddings
in an unoriented plane. In one embedding the faces are as shown in Figure 5; in
the other the inside patch face can be reflected about a horizontal line containing
the infinite-weight edges so that a; and a; lie on different unpatched faces. We call
these the matched and unmatched embeddings respectively.
Our proof proceeds by a sequence of claims.

Claim 1: The planar crossing number of G, is 4(3;”). The upper bound on this
crossing number is established by the drawing in Figure 4. To show the lower bound
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F1GURE 5. The matched embedding of Hy,.

FIGURE 6. An embedding of G,,, in the double torus

we first consider the embedding of H,,. If H,, has the unmatched embedding, then
there is no face with a; and @; on the same face. It follows that the edge aja;
crosses a second edge of infinite weight or crosses a patch. No such drawing has a
finite crossing number.

It follows that H,, has the matched embedding. For each z € {a,b,c,d} and
each 7 there is a unique unpatched face of H,, containing z; and Z;. It follows that
in any drawing achieving the minimal crossing number has the edge x;Z; in this
face. Two edges cross in this face if and only if they lie in the same group. A simple
count gives the desired lower bound.

Claim 2: G, embeds on the double torus The proof is established in Figure 6.
In this figure there are two handles indicated by a dotted ellipse labelled with one
or two arrows to indicate the orientation. Identifying the arrows in the directions
indicated gives the desired embedding.

Claim 3: The toroidal crossing number of G, where H,, has the unmatched em-
bedding is at least 18m?.  To avoid crossing an infinite weight edge the boundary
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FiGUure 8. Two non-toroidal patched graphs

cycles of the two unpatched faces in the planar embedding must bound the same
face in the toroidal embedding restricted to H,,. Hence this face is a cylinder
bounded by two cycles as shown in Figure 7.

Consider an arbitrary set of three vertices x;,y;, 2 where i+ j+k = 0(mod 3m)
and z,y, z are distinct elements from the set {a, b, ¢,d}. Observe that the embedding
of Hy, U{x;Z;,y;;, 212k } is non-planar. Hence there must exist a crossing among
these three new edges in an optimal drawing of G,,. There are 4(3m)? such triples.
These triples count each crossing at most twice: if say z;z; and y;y; cross, then the
third edge is either 2z or wywy where i +j+ k=0 (mod 3m) and z,y,z,w
are all distinct. Hence this drawing of G,,, has at least 4(3m)?/2 = 18m? crossings
as claimed.

The reader may note that considering these edges as points and these triples as
blocks yields a group-divisible design with 4 groups of size 3m each, block size 3,
and A = 2. See [7] for details.

Claim 4: The toroidal crossing number of G, where H,, has the matched embed-
ding is 3(*]") +3("}).  We first note that one of the two unpatched faces in the
planar embedding of H,, is also a face in the restricted embedding of G,,. Without
loss of generality say it is the face with d;d; and cj¢;. It follows that there are
2(°") crossings in that face.

We now turn our attention to crossings in the other face. First, suppose that
there exist edges a;a;, aja; which do not cross and edges bkl_)k, bib; which do not
cross. Then the restriction of Gy, to Hyp, U {a;ai,a;a;, bibk, bib} has no crossings.
However, this patched embedding is non-toroidal, a contradiction (see the left side
of Figure 8). We conclude that without loss of generality each pair of edges bibr, biby
cross in an optimal drawing of G,,. Note that this gives a total of 3(3?) crossings
among edges of the form z;Z; where z € {b, ¢, d}.

We finally turn our attention to crossings on edges a;a;. First suppose that
there were four pairwise non-crossing edges a;a;, a;a;, apax, a;a;. Then the drawing
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a, a2 a3 a4 a5 Aas

as a5 G4 a3 a2 a1

FIGURE 9. Part of the torodial drawing of G, with crossing num-
ber 3(*7") +3(77)

of Gy, restricted to H,, U{a;a;,a;a;,aray, a;d } has no crossings. But this patched
embedding is non-toroidal, a contradiction (see the right side of Figure 8).

Now form a graph T, as follows. The vertex set of T, are the 3m edges a;a;.
Join two of these vertices ¢, j with an edge of T}, if the corresponding edges a;a;, a;a;
do not cross in the drawing of G,,,. Note that to minimize the number of crossings
in G,;, is to maximize the number of edges in T;,. Also note that since there does
not exist four pairwise non-crossing edges in G,,, there is no induced Ky in T,,.
By Turan’s Theorem [16] the maximum number of edges in a K4-free graph on 3m
vertices is (*)") — 3('7). Hence there are at least 3(") crossings involving edges
a;a; and the claim follows. (See [12] for a similar application of Turdn’s Theorem
to crossing numbers.)

A toroidal drawing of G, with crossing number 3(3;'1) + 3(73) can be obtained
with a small modification of the drawing G, in Figure 4: Place near the a;a; group
of edges a single handle that carries two-thirds (= 2m) of the edges, as shown in
Figure 9. The crossings that occur in this drawing are the (3?) crossings in each
of the groupings bil_)i, ¢;¢; and d,di, plus the 3(7;) crossings that occur in the a;a;
group near the handle.

After having established Claims 1-4, the proof of Proposition 5.1 is complete. O

6. CONCLUSION

We conclude with a discussion of some directions for future research.

Initially, the authors felt that a non-convex crossing sequence was not possible.
However, we quickly discovered a counter-example with crossing sequence 3,2, 0.
This was subsequently generalized to the following example. Consider the weighted
patched graph illustrated in Figure 10. The thick edges have weights a > b > ¢,
and the optimal planar drawing is the one given. One can easily show that an
optimal toroidal drawing is achieved by attaching the ends of a handle to dashed
regions 1 and 2 to carry the edge crossing the edge weighted a. The double-toroidal
embedding is achieved by adding a second handle to dashed region 3 and the first
handle. Hence, the crossing sequence is a + b + ¢, b + ¢, 0. In other words, one can
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obtain any crossing sequence co, ¢1,c2 = 0, where

G -6 < 2.
Co — C1

For some time, the authors felt that this upper bound on the ratio might be the best

possible. However, our Theorem 5.1 now leads us to believe it can be arbitrarily

large (see Conjecture 1.1).

FicUurk 10. First non-convex example

In [4], Archdeacon and Bonnington discuss crossings that arise when two graphs
are jointly embedded on the same surface — the only crossings permissible were
crossings involving edges from different graphs. If one relaxes this restriction, the
notion of jointly embedding graphs can give rise to “joint crossing sequences”. Let
cri(G, H) denote the minimum number of crossings possible in a drawing of G
and H simultaneously on the same surface Si. Now, it is clear that crof (G, G) <
2¢r(G). Indeed, to obtain a drawing that achieves this upper bound, take two
optimal drawings of G on two disjoint copies of Sy, and “glue” the two surfaces to
a single Sog.

Do there exist graphs G for which crqx(G,G) < 2cri(G)? (In other words,
is there a better way of drawing two copies of G on Ss; other than the method
described?) Our main theorem implies that (at least for some graphs and k = 1)
the answer is in the affirmative. Indeed, let G be one of the double-toroidal graphs
from Theorem 5.1. Take a double-toroidal embedding of G and insert into one of the
faces of this embedding a (planar) drawing of a second copy of G. Therefore, clearly
we have cry(G,G) < cro(G). However, by Theorem 5.1, cr2(G,G) < 2cri(G),
as required. (In the nonorientable case, one can obtain an even larger difference
between cr2 (G, G) and 2cr1(G).)
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