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Abstract

The circular chromatic number of a graph is a well-studied refinement of the chromatic

number. Circular-perfect graphs is a superclass of perfect graphs defined by means of this

more general coloring concept. This paper studies claw-free circular-perfect graphs. A

consequence of the strong perfect graph theorem is that minimal circular-imperfect graphs

G have min{α(G), ω(G)} = 2. In contrast to this result, it is shown in [9] that minimal

circular-imperfect graphs G can have arbitrarily large independence number and arbitrarily

large clique number. We prove that claw-free minimal circular-imperfect graphs G have

min{α(G), ω(G)} ≤ 3.
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Let G = (V, E) be a graph with vertex set V and edge set E, then a k-coloring

of G is a mapping f : V → {1, . . . , k} with f(u) 6= f(v) if uv ∈ E, i.e., adjacent

vertices receive different colors. The minimum k for which G admits a k-coloring is

called the chromatic number χ(G). The clique number ω(G) (resp. independence

number α(G)) of G is the order of a largest clique (resp. independent set) of G,

i.e., the maximum number of pairwise adjacent (resp. non-adjacent) vertices of G.

The circular chromatic number and circular clique number of graphs are refine-

ments of the chromatic number and the clique number. Suppose G = (V, E) is a

graph with at least one edge, and k ≥ 2d are positive integers. A (k, d)-circular

coloring of G is a mapping f : V → {0, . . . , k−1} with d ≤ |f(u)−f(v)| ≤ k−d

if uv ∈ E. The circular chromatic number χc(G) is the minimum k
d

taken over all

(k, d)-circular colorings of G. Since every (k, 1)-circular coloring is a usual k-

coloring of G, we have χc(G) ≤ χ(G). On the other hand, it is known [13] and

easy to see that for any graph G, χc(G) > χ(G) − 1, and hence χ(G) = ⌈χc(G)⌉.

So χc(G) is a refinement of χ(G).

Let Kk/d with k ≥ 2d denote the graph with the k vertices 0, . . . , k − 1 and

edges ij such that d ≤ |i− j| ≤ k−d. The graphs Kk/d are called circular cliques.

Circular cliques include all cliques Kt = Kt/1, all odd antiholes C2t+1 = K(2t+1)/2,

and all odd holes C2t+1 = K(2t+1)/t. The circular clique number is defined as

ωc(G) = max{k
d

: Kk/d ⊆ G, gcd(k, d) = 1}. It follows from the definition that

ω(G) ≤ ωc(G). It is also known [17] that for any graph G, ωc(G) < ω(G)+1, and

hence ω(G) = ⌊ωc(G)⌋. Therefore ωc(G) is a refinement of ω(G).

Obviously ω(G) is a lower bound for χ(G). A graph G is perfect if each in-

duced subgraph G′ ⊆ G has ω(G′) = χ(G′). Similarly, ωc(G) is a lower bound for

χc(G). A graph G is called circular-perfect [17] if each induced subgraph G′ ⊆ G

has χc(G
′) = ωc(G

′).

Perfect graphs have been studied extensively since the concept and two con-

jectures (the weak and the strong perfect graph conjectures) were proposed by

Berge [1] in 1961. The weak perfect graph conjecture was settled by Lovász [8]

in 1972. Recently, the strong perfect graph conjecture has been settled by Chud-

novsky, Robertson, Seymour and Thomas in [2], which gives a characterization of

perfect graphs by means of forbidden induced subgraphs: a graph G is perfect if

and only if G contains neither chordless odd cycles C2k+1 with k ≥ 2, nor their

complements C2k+1.

It follows from the definitions that for any graph G, ω(G) ≤ ωc(G) ≤ χc(G) ≤
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χ(G). Therefore every perfect graph is circular-perfect. However, odd cycles and

their complements are circular-perfect graphs but not perfect graphs. So the class

of circular-perfect graphs is a proper superclass of the class of perfect graphs.

Is there a simple characterization of circular-perfect graphs by means of for-

bidden induced subgraphs? It is shown in [14] that the line graph L(G) of a cubic

graph G is circular-perfect if and only if G is 3-edge colourable. Thus such a

characterization of circular-perfect graphs implies a characterization of critically

non-3-edge colourable cubic graphs, which is known to be a difficult problem. So

it is unlikely that there is a simple forbidden induced subgraph characterization of

circular-perfect graphs. Some sufficient conditions for a graph to be circular-perfect

were obtained in [16,17]. Classes of (minimal) circular-imperfect graphs were con-

structed in [9,11,12,15]. Minimal circular-imperfect line graphs were studied in

[14]. In this paper, we study claw-free circular-perfect graphs.

A graph G is claw-free if K1,3 is not an induced subgraph of G. Claw-free

graphs is a superclass of line graphs and has been studied extensively in the lit-

terature. Recently, Chudnovsky and Seymour [4,3] presented a structural charac-

terization of claw-free graphs. A graph G for which the neighbourhood of each

vertex can be covered by two cliques is called a quasi-line graph. We use their

characterization, restricted to quasi-line graphs, to prove a structural property of

minimal circular-imperfect graphs. One consequence of the strong perfect graph

theorem is that minimal imperfect graphs G have min{ω(G), α(G)} = 2. It was

asked in [11] whether min{ω(G), α(G)} is bounded for minimal circular-imperfect

graphs G. This question was answered in the negative in [9], where it is proved

that for any positive integer k, there is a minimal circular-imperfect graph G with

min{ω(G), α(G)} ≥ k.

We show that if restricted to claw-free graphs, the question above has a posi-

tive answer: if G is a claw-free minimal circular-imperfect graph, then min{ω(G),
α(G)} ≤ 3.

Before the strong perfect graph conjecture becomes a theorem, the conjecture

was confirmed for claw-free graphs in [7][10]. Our result above implies an alterna-

tive proof of this result, of course without making use of the strong perfect graph

theorem [2].

Sketch of the proof

Suppose G is a claw-free graph with independence number at least 3. It was proved

by Fouquet [6] that for any vertex x of G, the neighborhood NG(x) of x either

contains an induced C5, or can be covered with two cliques. If G is circular-perfect,

then NG(x) does not contain an induced C5, for otherwise G contains the odd wheel



W5, which is circular-imperfect. Thus we have the following observation: if G is a

claw-free circular-perfect graph with independence number at least 3, then G is a

quasi-line graph.

It turns out that claw-free circular-perfect graphs with an induced odd antihole

of size at least 7 have a basic structure:

Theorem 1. If G is a connected claw-free circular-perfect graph with an induced

odd antihole H of size at least 7 then G \ H is a clique. Furthermore α(G) = 2.

Since every minimal circular-imperfect graph is 2-connected, we have the fol-

lowing corollary:

Corollary 1. If G is a claw-free minimal circular-imperfect graph and contains

an induced odd antihole H of size at least 7, then α(G) ≤ 3.

It remains to study claw-free circular perfect graphs G that do not contain an

odd antihole of order at least 7. Due to Theorem 1, G has independence number

at least 3, and is therefore, as mentioned above, quasi-line. We establish that if G

has clique number at least 4 then G has an independent set I that intersects each

maximum clique.

We prove a stronger statement:

Theorem 2. If G is a quasi-line graph, ω(G) = k ≥ 4 and for every vertex x,

G− x has a k-colouring, then either G is the complement of a circular clique or G

has a stable set which intersects every maximum clique of G.

As a consequence, a claw-free graph G with ω(G) = k ≥ 4 and α(G) ≥ 4 can

not be minimal circular-imperfect. Because otherwise, G is not the complement

of a circular-clique [5], is quasi-line since it does not contain the odd wheel W5

(which is already minimal circular-imperfect). Hence there is an independent set

I intersecting each maximum clique. Since G − I is circular-perfect, we have

ωc(G − I) = χc(G − I). Due to Corollary 1, G, and thus G − I , does not contain

K(2p+1)/2 for p ≥ 3. It follows that ωc(G − I) = ω(G − I) = k − 1 and hence

χ(G − I) = χc(G − I) = k − 1. But then χ(G) = ω(G) = k, and hence G is

circular-perfect.
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