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Abstract

This paper proves that if G is a graph (parallel edges allowed) of maximum degree 3, then
χ′
c
(G) ≤ 11/3 provided that G does not contain H1 or H2 as a subgraph, where H1 and H2 are

obtained by subdividing one edge of K3

2 (the graph with three parallel edges between two vertices)
and K4, respectively. As χ′

c
(H1) = χ′

c
(H2) = 4, our result implies that there is no graph G with

11/3 < χ′
c
(G) < 4. It also implies that if G is a 2-edge connected cubic graph, then χ′(G) ≤ 11/3.

1 Introduction

Graphs considered in this paper may have parallel edges but no loops. Given a graph G = (V,E), and
positive integers p ≥ q, a (p, q)-coloring of G is a mapping f : V → {0, 1, · · · , p− 1} such that for every
edge e = xy of G, q ≤ |f(x)− f(y)| ≤ p− q. The circular chromatic number χc(G) of G is defined as

χc(G) = inf{p/q : G has a (p, q)-coloring}.

It is known [4, 6] that for any graph G, the infimum in the definition is always attained and

χ(G)− 1 < χc(G) ≤ χ(G).

For a graph G = (V,E), the line graph L(G) of G has vertex set E, in which e1 ∼ e2, if e1 and e2 have
an end vertex in common. The circular chromatic index χ′

c(G) of G is defined as

χ′

c(G) = χc(L(G)).

Recall that the chromatic index χ′(G) of G is defined as χ′(G) = χ(L(G)). So we have

χ′(G)− 1 < χ′

c(G) ≤ χ′(G).

If G is connected and ∆(G) = 2, then G is either a cycle or a path. This implies that either χ′

c(G) = 2
or χ′

c(G) = 2 + 1

k
for some positive integer k. Since graphs G with ∆(G) ≥ 3 have χ′

c(G) ≥ 3, ‘most’
of the rational numbers in the interval (2, 3) are not the circular chromatic index of any graph. The
following question was asked in [6]:
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(a) (b)

Figure 1: (a): The graph H1, (b): The graph H2.

Question 1.1 For which rational r ≥ 3, there is a graph G with circular chromatic index r? In
particular, is it true that for any rational r ≥ 3, there is a graph G with χ′

c(G) = r?

If 3 < χ′

c(G) < 4, then G has maximum degree 3. It is well-known that the Four Color Theorem
is equivalent to the statement that every 2-edge connected cubic planar graph G has χ′

c(G) = 3. For
nonplanar 2-edge connected cubic graphs, Jaeger [2] (see also page 197 of [3]) proposed the following
conjecture (Petersen Coloring Conjecture):

Conjecture 1.2 If G is a 2-edge connected cubic graph, then one can color the edges of G, using the
edges of the Petersen graph as colors, in such a way that any three mutually adjacent edges of G are
colored by three edges that are mutually adjacent in the Petersen graph.

Since the Petersen graph has circular chromatic index 11/3, Conjecture 1.2 would imply that every
2-edge connected cubic graph G has χ′

c(G) ≤ 11/3. The following two open problems are proposed
in [6]:

Question 1.3 Prove that if G is a 2-edge connected cubic planar graph, then χ′

c(G) < 4, without using
the Four Color Theorem.

Question 1.4 Are there any 2-edge connected cubic graph G with χ′

c(G) = 4?

This paper proves the following result:

Theorem 1.5 Let H1 and H2 be the graphs as shown in Figure 1. If G is graph of maximum degree 3
and G does not contain H1 or H2 as a subgraph, then χ′

c(G) ≤ 11/3.

It is easy to verify that χ′

c(H1) = χ′

c(H2) = 4. Since graphs G with ∆(G) ≥ 4 have χ′

c(G) ≥ 4, we
have the following corollary:

Corollary 1.6 There is no graph G with 11/3 < χ′

c(G) < 4.

Corollary 1.6 answers the second part of Question 1.1 in the negative.
To prove Theorem 1.5, it suffices to consider 2-edge connected graphs. Indeed, if a graph G is not

2-edge connected, say e is a cut edge of G, then either e is a hanging edge, i.e., incident to a degree 1
vertex, or e is a cut vertex in L(G). In the latter case, χc(L(G)) = max{χc(B) : B is a block of L(G)}.
If e is a hanging edge of G, then e has degree at most 2 in L(G), and hence any (11, 3)-coloring of
L(G)− e can be extended to a (11, 3)-coloring of L(G). In the remainder of this paper, we assume that
G is 2-edge connected and hence has minimum degree at least 2. It is easy to see that if G is 2-edge
connected and has maximum degree at most 3, then G cannot contain H1 or H2 as a proper subgraph.
Therefore Theorem 1.5 is equivalent to the following:

Theorem 1.7 Suppose G is 2-edge connected and has maximum degree 3. If G 6= H1, H2, then χ
′

c(G) ≤
11/3.

Theorem 1.7 implies the following corollary, which answers Questions 1.3 and 1.4.

Corollary 1.8 The circular edge chromatic number of every 2-edge connected cubic graph G is less
than or equal to 11/3.
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2 Cubic graphs of girth at least 4

The remainder of the paper is devoted to the proof of Theorem 1.7. In this section, we consider triangle
free cubic graphs. First we prove a lemma which is needed in our proof.

Suppose c is a k-coloring of a graph G = (V,E) with colors 0, 1, · · · , k− 1. If xy is an edge of G and
c(y) = c(x) + 1 (mod k), then we say ~xy is a tight arc with respect to c. Let A be the set of tight arcs,
and let Dc(G) = (V,A), which is a directed graph with vertex set V . It is known [1, 6] that if there is a
k-coloring c of G for which Dc(G) is acyclic, then χc(G) < k. The following lemma is a strengthening
of this result.

Lemma 2.1 Let c be a k-coloring of a graph G with colors 0, 1, · · · , k − 1, where k > 2. If Dc(G) is
acyclic and each directed path of Dc(G) contains at most n vertices of color k−1, then χc(G) ≤ k− 1

n+1
.

Proof. Let p = k(n+ 1)− 1 and q = n+ 1. It suffices to give an (p, q)-coloring for G. For each vertex
v of G, let l(v) be the maximum number of vertices with color k− 1 on a directed path of Dc(G) which
ends in v, without considering v itself. We claim that the coloring c′ defined as

c′(v) = (c(v)q + l(v)) mod p

is a proper (p, q)-coloring of G. Consider two adjacent vertices u and v. If 2 ≤ |c(u) − c(v)| ≤ k − 2,
then since both l(u) and l(v) are less than q, we have q ≤ |c′(u) − c′(v)| ≤ p − q. If c(u) − c(v) = 1,
then ~vu is a tight arc and hence l(u) ≥ l(v). So we have q ≤ |c′(u)− c′(v)| ≤ p− q. Finally, if c(u) = 0
and c(v) = k− 1, then ~vu is a tight arc and l(u) ≥ l(v)+ 1. Again we have q ≤ |c′(u)− c′(v)| ≤ p− q.

Suppose c is a k-edge coloring of G and e = xy is an edge of G. The two arcs ~xy and ~yx are called
arcs corresponding to e. We say an arc ~xy is unblocked with respect to c, if there is a directed walk
W = (e1, e2, · · · , en, e, e

′

1, e
′

2, · · · , e
′

m) in Dc(L(G)) such that (i) c(e1) = c(e′m) = k− 1, and (ii) en = x′x
and e′1 = yy′. The arc ~xy is blocked with respect to c if no such directed walk exists. An edge e = xy is
said to be blocked in the direction x → y with respect to c, if the arc ~xy is blocked. An edge e = xy is
completely blocked with respect to c, if both arcs ~xy and ~yx are blocked. Given a partial k-edge coloring
c′ of G (i.e., c′ colors a subset of edges of G), we say an arc ~xy is unblocked with respect to c′, if c′

can be extended to a k-edge coloring c of G such that ~xy is unblocked with respect to c. If no such
extension exists, then we say ~xy is blocked with respect to c′. Similarly, we say an edge e is completely
blocked with respect to c′, if both arcs ~xy and ~yx are blocked with respect to c′.

Theorem 2.2 If G is a cubic graph of girth at least 4 and has a perfect matching, then χ′

c(G) ≤ 11/3.

Proof. By Lemma 2.1 it suffices to prove that there exists a 4-edge coloring φ of G such that Dφ(L(G))
is acyclic and each directed path of Dφ(L(G)) contains at most two vertices (i.e., two edges of G) which
are colored by 3.

Let M be a perfect matching of G. Then G−M is a collection of cycles. A 4-edge coloring of G is
called a valid coloring with respect to M , if the following hold:

• All the M -edges (an edge in M is called an M -edge) are colored by color 0.

• The edges of any even cycle C of G−M are colored by colors 1 and 2.

• The edges of any odd cycle C of G −M are colored by colors 1 and 2, except one edge which is
colored by color 3.

Let c′ be a partial 4-edge coloring of G which can be extended to a valid 4-edge coloring of G with
respect to M . We are interested in the blocked directions of the M -edges with respect to c′. Suppose
e = xy is an M -edge, and C and C′ (not necessarily different) are cycles of G−M such that x ∈ V (C)
and y ∈ V (C′). If ~xy is an unblocked arc with respect to c′, then we say ~xy is an input of C′ and an
output of C with respect to c′.
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Figure 2: The blocked directions of M -edges incident to C with respect to cC .

Let C be a cycle of G−M , and let cC be the partial edge coloring of G which is the restriction of
a valid coloring c to M ∪C. If C is an even cycle, then it is easy to see that every edge e ∈M incident
to C is completely blocked with respect to cC . If C is an odd cycle of G−M , then Figure 2 shows the
blocked directions of the M -edges incident to C with respect to cC .

In Figure 2, a thick edge indicates anM -edge. An arrow on anM -edge indicates a blocked direction
of that edge. An M -edge with opposite arrows is completely blocked. Since G has girth at least 4, the
four vertices v1, v2, v3, v4 as indicated in Figure 2 are distinct. Note that an M -edge e incident to C
is completely blocked with respect to cC , unless e is incident to one of the vertices v1, v2, v3, v4, which
are the vertices on a path whose edges are colored by colors 1, 2, 3. So there are at most 4 M -edges
incident to C that are not completely blocked. An M -edge incident to C could be a chord of C. If an
M -edge e incident to v1, v2, v3, v4 is a chord of C, then e could be completely blocked. We will discuss
this case later in more detail. If an M -edge e incident to C is not completely blocked with respect to
cC , then exactly one direction of e is blocked.

For a valid 4-edge coloring c of G, let φ(c) be the total number of not completely blocked M -edges.
Let ψ(c) be the number of not completely blocked M -edges that are chords of cycles of G−M .

Claim 2.3 Suppose c is a valid 4-edge coloring of G (with respect to a perfect matching M). If G−M
has a cycle C which has an input as well as an output, then there is a valid 4-edge coloring c∗ of G for
which φ(c∗) + ψ(c∗) < φ(c) + ψ(c).

Proof. Assume C is a cycle of G−M which has an input as well as an output with respect to a valid
4-edge coloring c. Then C is an odd cycle and the M -edges incident to C contributes at least 2 to the
summation φ(c) + ψ(c). We shall construct a valid 4-edge coloring c∗ of G such that each M -edge not
incident to C contributes the same amount to φ(c∗) + ψ(c∗) and φ(c) + ψ(c). However, the M -edges
incident to C contributes at most 1 to the summation φ(c∗) + ψ(c∗).

Uncolor the edges of C to obtain a partial 4-edge coloring c′ of G. The valid 4-edge coloring we
shall construct is an extension of c′. It is obvious that for any valid 4-edge coloring c∗ of G which is
an extension of c′, each M -edge not incident to C contributes the same amount to φ(c∗) + ψ(c∗) and
φ(c) + ψ(c). So we only need to make sure that the M -edges incident to C contribute at most 1 to the
summation φ(c∗) + ψ(c∗).

First we consider the case that C has no chord. As each M -edge e incident to C is incident to
another cycle of G−M , at least one direction of e is blocked with respect to c′. Since C is an odd cycle
and C has an input and an output with respect to c, it is easy to see that there are four consecutive
vertices v1, v2, v3, v4 of C such that with respect to the partial edge coloring c′, the M -edges incident
to v1, v2 have a common blocked direction (i.e., either both are blocked in the direction towards C or
both are blocked in the direction away from C), and the M -edges incident to v3, v4 have an opposite
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blocked direction. Depending on which directions of the four edges are blocked, there are four cases as
depicted in Figure 3.

e1
e2 2

e3

e4e5

e6

e7

e1
e2

e3

e4e5

e6

e7

e1
e2

e3

e4e5

e6

e7

e1
e2

e3

e4e5

e6

e7

(a) (b)

(c) (d)

v1v2

v3

v4

v1
v3

v4

v2
v3

v4

v1
v3

v4

v2

v1 v

Figure 3: The blocked directions of M -edges incident to the uncolored cycle C of G−M

We use the following convention to interpret Figure 3 and the figures in the remaining of the paper:
An M -edge without an arrow could be completely blocked, or blocked in one direction, or unblocked in
both directions. An M -edge with one arrow means that the indicated direction of that edge is blocked,
but the other direction of that edge could be blocked or unblocked. An M -edge with a pair of opposite
arrows means that edge is completely blocked.

Consider the case indicated in Figure 3 (a) and 3 (b). We extend c′ to a valid 4-edge coloring c∗ of
G by letting c∗(e1) = 3, c∗(e2) = 2, c∗(e3) = 1 (the other edges of C are colored by 1 and 2 alternately).
It is easy to verify that in the case indicated in Figure 3(a), e7 is the only edge which is probably
not completely blocked with respect to c∗. In Figure 3(b), e6 is the only edge which is probably
not completely blocked. Thus the M -edges incident to C contributes at most 1 to the summation
φ(c∗) + ψ(c∗).

For the cases in Figure 3(c) and 3(d), let c∗(e1) = 1, c∗(e2) = 2, c∗(e3) = 3. Then the M -edges
incident to C contributes at most 1 to the summation φ(c∗) + ψ(c∗).

Next we consider the case that C has a chord.
Since C is an odd cycle, there is an M -edge incident to C which is not a chord of C. So there is

a vertex v2 of C which is incident to a chord of C and a neighbour v1 of v2 in C is not incident to a
chord of C. Let v3, v4 be the vertices of C following v1, v2 (as shown in Figure 4).

Assume the M -edges incident to v3, v4 are not chords of C and have a common blocked direction,
as shown in Figure 4(a) or 4(b). In the case as shown in Figure 4(a), extend c′ to c∗ by letting
c∗(e1) = 1, c∗(e2) = 2, c∗(e3) = 3 (and color the other edges of C alternately by colors 1 and 2). In the
case as shown in Figure 4(b), extend c′ to c∗ by letting c∗(e1) = 3, c∗(e2) = 2, c∗(e3) = 1. In any case,
it is easy to verify that all the chords of C are completely blocked, and there is at most one M -edge
incident to C which is not completely blocked.

Assume the M -edges incident to v3, v4 have opposite blocked directions or at least one of the M -
edges incident to v3, v4 is a chord of C. Then depending on which direction of the M -edge incident to
v1 is blocked (with respect to c′), we color the edges as in Figure 5.

In each of the colorings, it is straightforward to verify that the M -edges incident to C contribute at
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(a) (b)

e

e
v1

v2
v3

v4

e1
2

3

e

e
v1

v2
v3

v4

e1
2

Figure 4: The M -edges incident to v3, v4 have a common blocked direction

1

(a) (b)

v1

v2
v3

v4
v1

v2
v3

v4

1
2

3

12 2

1
2

3

Figure 5: The M -edges incident to v3, v4 have an opposite blocked direction or one of the M -edges is
a chord.

most 1 to the summation φ(c∗) + ψ(c∗). This completes the proof of Claim 2.3.
Now we choose a valid 4-edge coloring c of G such that φ(c) + ψ(c) is minimum. By Claim 2.3, no

cycle C of G−M has an input and an output. Since each cycle C of G−M contains at most one edge
of color 3, it follows that every directed path of Dc(L(G)) contains at most 2 vertices (i.e., edges of G)
with color 3. By Lemma 2.1, χc(L(G)) = χ′

c(G) ≤ 11/3.

Corollary 2.4 If G is a 2-edge connected graph of maximum degree 3 and has girth at least 4, then
χ′

c(G) ≤ 11/3.

Proof. If G is cubic, then by Petersen Theorem, G has a perfect matching. Otherwise, take the disjoint
union of two copies of G, say G and G′. For each degree 2 vertex x of G, connect x to the corresponding
vertex x′ in G′ by an edge. The resulting graph G′′ is cubic (as G has minimum degree 2) and is either
2-edge connected (if G has at least two degree 2 vertices), or has exactly one cut edge. In any case G′′

has a perfect matching (see for example [5], page 124) and has girth at least 4. Hence χ′

c(G
′′) ≤ 11/3

by Theorem 2.2.

3 Proof of Theorem 1.7

We prove Theorem 1.7 by induction on the number of edges. If |E(G)| = 3, then it is equal to K3
2 , and

has circular chromatic index 3. Assume |E(G)| ≥ 4 and G 6= H1, H2. If G has girth at least 4, then
the conclusion follows from Theorem 2.2. Thus we assume that G has a pair of parallel edges or has a
triangle.
Case I: Suppose there is a pair of parallel edges between u and v. Since G is 2-edge connected and
G 6= H1, we conclude that u is connected to another vertex u′, v is connected to another vertex v′, and
u′ 6= v′. Let G ⊙ uv be the graph obtained from G by deleting the two vertices u and v from G and
adding an edge between u′v′. Note that this new edge may cause a multiple edge between u′ and v′.
If G ⊙ uv 6∈ {H1, H2}, then by induction hypothesis, χ′

c(G ⊙ uv) ≤ 11/3. Figure 6(a) illustrates that
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a

a a
b

c

c

a b

c

c

a

ab

b

a b

ca

ab

b

(a):

(b):

(c):

Figure 6: (a), (b), and (c) show that how a (11/3)-edge coloring of the new graph leads to a (11, 3)-edge
coloring of the previous one: (a): In the (11, 3)-edge coloring of the main graph b = (a+3) mod 11 and
c = (a+ 6) mod 11, (b): contracting a triangle with three vertices of degree 3, (c): after contracting a
triangle with one vertex of degree 2, we can always find a color c to complete the (11, 3)-coloring of the
old graph.

a (11, 3)-coloring of L(G ⊙ uv) can be ‘extended’ to a (11, 3)-coloring of L(G). If G ⊙ uv ∈ {H1, H2},
then G is one of the graphs illustrated in Figure 7 or Figure 8, where a (7, 2)-coloring of L(G) is given.
Case II: Suppose G has a triangle uvw. Since G is 2-edge connected and G 6= H1, there are no multiple
edges in this triangle. Let G ⊙ uvw be the graph obtained from G by contracting the triangle uvw
in G to a new vertex. If G ⊙ uvw 6∈ {H1, H2}, then by induction hypothesis, χ′

c(G ⊙ uvw) ≤ 11/3.
Figure 6(b,c) illustrates that a (11, 3)-coloring of L(G⊙ uvw) can be ‘extended’ to a (11, 3)-coloring of
L(G). If G⊙ uvw ∈ {H1, H2}, then G is one of the graphs illustrated in Figure 7 or Figure 8, where a
(7, 2)-coloring of L(G) is given. So in any case, χ′

c(G) ≤ 11/3. This completes the proof of Theorem 1.7.
Based on the result in this paper, we propose the following conjecture:

Conjecture 3.1 For any integer k ≥ 2, there is an ǫ > 0 such that the open interval (k− ǫ, k) is a gap
for circular chromatic index of graphs, i.e., no graph G has k − ǫ < χ′

c(G) < k.

If Conjecture 3.1 is true, then let ǫk be the largest real number for which (k − ǫk, k) is a gap for
the circular chromatic index of graphs. The next problem would be to determine the value of ǫk. For

(a) (b) (c)

0

2

4 5

1

6 3

5

3

0

2

4

6

1

Figure 7: The graphs that can be converted to H1 by the “⊙” operation. For each graph other than
H2 a (7, 2)-edge coloring is given.
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(a) (b) (c)

(d) (e) (f)

0 3

5
2 1

0 4

4 6

2

1

3 65

1

4

63

0 20 2

4

6

1

6

3

1

5

3

4

2 4

61

0 2

3 5

0

5

2

3

1

2

4

6

0

0

5

2

0
4

0

2

5

1

3

6

4

Figure 8: The graphs that can be converted to H2 by the “⊙” operation. For each graph a (7, 2)-edge
coloring is given.

k = 2, 3, 4, Conjecture 3.1 is true and we know that ǫ2 = 1, ǫ3 = 1/2 and ǫ4 = 1/3. So a natural guess
for ǫk is that ǫk = 1/(k− 1). However, at present time, support for such a conjecture is still weak. For
k ≥ 4, we do not have natural candidate graphs G with χ′

c(G) = k − 1/(k − 1).
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