Circular chromatic index of graphs of maximum degree 3

Peyman Afshani, Mahsa Ghandehari ${ }^{\dagger}$ Mahya Ghandehari ${ }^{\ddagger}$ Hamed Hatami, ${ }^{\S}$
Ruzbeh Tusserkani, ${ }^{\boldsymbol{I}}$ and Xuding Zhu ${ }^{\| * *}$

October 23, 2018

Mathematical Subject Classification: 05C15

Abstract

This paper proves that if G is a graph (parallel edges allowed) of maximum degree 3, then $\chi_{c}^{\prime}(G) \leq 11 / 3$ provided that G does not contain H_{1} or H_{2} as a subgraph, where H_{1} and H_{2} are obtained by subdividing one edge of K_{2}^{3} (the graph with three parallel edges between two vertices) and K_{4}, respectively. As $\chi_{c}^{\prime}\left(H_{1}\right)=\chi_{c}^{\prime}\left(H_{2}\right)=4$, our result implies that there is no graph G with $11 / 3<\chi_{c}^{\prime}(G)<4$. It also implies that if G is a 2 -edge connected cubic graph, then $\chi^{\prime}(G) \leq 11 / 3$.

1 Introduction

Graphs considered in this paper may have parallel edges but no loops. Given a graph $G=(V, E)$, and positive integers $p \geq q$, a (p, q)-coloring of G is a mapping $f: V \rightarrow\{0,1, \cdots, p-1\}$ such that for every edge $e=x y$ of $G, q \leq|f(x)-f(y)| \leq p-q$. The circular chromatic number $\chi_{c}(G)$ of G is defined as

$$
\chi_{c}(G)=\inf \{p / q: G \text { has a }(p, q) \text {-coloring }\} .
$$

It is known [4, 6] that for any graph G, the infimum in the definition is always attained and

$$
\chi(G)-1<\chi_{c}(G) \leq \chi(G)
$$

For a graph $G=(V, E)$, the line graph $L(G)$ of G has vertex set E, in which $e_{1} \sim e_{2}$, if e_{1} and e_{2} have an end vertex in common. The circular chromatic index $\chi_{c}^{\prime}(G)$ of G is defined as

$$
\chi_{c}^{\prime}(G)=\chi_{c}(L(G))
$$

Recall that the chromatic index $\chi^{\prime}(G)$ of G is defined as $\chi^{\prime}(G)=\chi(L(G))$. So we have

$$
\chi^{\prime}(G)-1<\chi_{c}^{\prime}(G) \leq \chi^{\prime}(G)
$$

If G is connected and $\Delta(G)=2$, then G is either a cycle or a path. This implies that either $\chi_{c}^{\prime}(G)=2$ or $\chi_{c}^{\prime}(G)=2+\frac{1}{k}$ for some positive integer k. Since graphs G with $\Delta(G) \geq 3$ have $\chi_{c}^{\prime}(G) \geq 3$, 'most' of the rational numbers in the interval $(2,3)$ are not the circular chromatic index of any graph. The following question was asked in 6]:

[^0]
(a)

Figure 1: (a): The graph H_{1}, (b): The graph H_{2}.

Question 1.1 For which rational $r \geq 3$, there is a graph G with circular chromatic index r ? In particular, is it true that for any rational $r \geq 3$, there is a graph G with $\chi_{c}^{\prime}(G)=r$?

If $3<\chi_{c}^{\prime}(G)<4$, then G has maximum degree 3. It is well-known that the Four Color Theorem is equivalent to the statement that every 2-edge connected cubic planar graph G has $\chi_{c}^{\prime}(G)=3$. For nonplanar 2-edge connected cubic graphs, Jaeger [2] (see also page 197 of [3]) proposed the following conjecture (Petersen Coloring Conjecture):
Conjecture 1.2 If G is a 2-edge connected cubic graph, then one can color the edges of G, using the edges of the Petersen graph as colors, in such a way that any three mutually adjacent edges of G are colored by three edges that are mutually adjacent in the Petersen graph.

Since the Petersen graph has circular chromatic index $11 / 3$, Conjecture 1.2 would imply that every 2 -edge connected cubic graph G has $\chi_{c}^{\prime}(G) \leq 11 / 3$. The following two open problems are proposed in [6]:

Question 1.3 Prove that if G is a 2-edge connected cubic planar graph, then $\chi_{c}^{\prime}(G)<4$, without using the Four Color Theorem.

Question 1.4 Are there any 2 -edge connected cubic graph G with $\chi_{c}^{\prime}(G)=4$?
This paper proves the following result:
Theorem 1.5 Let H_{1} and H_{2} be the graphs as shown in Figure 11 If G is graph of maximum degree 3 and G does not contain H_{1} or H_{2} as a subgraph, then $\chi_{c}^{\prime}(G) \leq 11 / 3$.

It is easy to verify that $\chi_{c}^{\prime}\left(H_{1}\right)=\chi_{c}^{\prime}\left(H_{2}\right)=4$. Since graphs G with $\Delta(G) \geq 4$ have $\chi_{c}^{\prime}(G) \geq 4$, we have the following corollary:

Corollary 1.6 There is no graph G with $11 / 3<\chi_{c}^{\prime}(G)<4$.
Corollary 1.6 answers the second part of Question 1.1 in the negative.
To prove Theorem 1.5, it suffices to consider 2-edge connected graphs. Indeed, if a graph G is not 2-edge connected, say e is a cut edge of G, then either e is a hanging edge, i.e., incident to a degree 1 vertex, or e is a cut vertex in $L(G)$. In the latter case, $\chi_{c}(L(G))=\max \left\{\chi_{c}(B): B\right.$ is a block of $\left.L(G)\right\}$. If e is a hanging edge of G, then e has degree at most 2 in $L(G)$, and hence any (11,3)-coloring of $L(G)-e$ can be extended to a $(11,3)$-coloring of $L(G)$. In the remainder of this paper, we assume that G is 2-edge connected and hence has minimum degree at least 2 . It is easy to see that if G is 2 -edge connected and has maximum degree at most 3 , then G cannot contain H_{1} or H_{2} as a proper subgraph. Therefore Theorem 1.5 is equivalent to the following:

Theorem 1.7 Suppose G is 2 -edge connected and has maximum degree 3. If $G \neq H_{1}, H_{2}$, then $\chi_{c}^{\prime}(G) \leq$ 11/3.

Theorem 1.7 implies the following corollary, which answers Questions 1.3 and 1.4 .
Corollary 1.8 The circular edge chromatic number of every 2-edge connected cubic graph G is less than or equal to $11 / 3$.

2 Cubic graphs of girth at least 4

The remainder of the paper is devoted to the proof of Theorem 1.7. In this section, we consider triangle free cubic graphs. First we prove a lemma which is needed in our proof.

Suppose c is a k-coloring of a graph $G=(V, E)$ with colors $0,1, \cdots, k-1$. If $x y$ is an edge of G and $c(y)=c(x)+1 \quad(\bmod k)$, then we say $\overrightarrow{x y}$ is a tight arc with respect to c. Let A be the set of tight arcs, and let $D_{c}(G)=(V, A)$, which is a directed graph with vertex set V. It is known [1, 6] that if there is a k-coloring c of G for which $D_{c}(G)$ is acyclic, then $\chi_{c}(G)<k$. The following lemma is a strengthening of this result.

Lemma 2.1 Let c be a k-coloring of a graph G with colors $0,1, \cdots, k-1$, where $k>2$. If $D_{c}(G)$ is acyclic and each directed path of $D_{c}(G)$ contains at most n vertices of color $k-1$, then $\chi_{c}(G) \leq k-\frac{1}{n+1}$.

Proof. Let $p=k(n+1)-1$ and $q=n+1$. It suffices to give an (p, q)-coloring for G. For each vertex v of G, let $l(v)$ be the maximum number of vertices with color $k-1$ on a directed path of $D_{c}(G)$ which ends in v, without considering v itself. We claim that the coloring c^{\prime} defined as

$$
c^{\prime}(v)=(c(v) q+l(v)) \bmod p
$$

is a proper (p, q)-coloring of G. Consider two adjacent vertices u and v. If $2 \leq|c(u)-c(v)| \leq k-2$, then since both $l(u)$ and $l(v)$ are less than q, we have $q \leq\left|c^{\prime}(u)-c^{\prime}(v)\right| \leq p-q$. If $c(u)-c(v)=1$, then $\overrightarrow{v u}$ is a tight arc and hence $l(u) \geq l(v)$. So we have $q \leq\left|c^{\prime}(u)-c^{\prime}(v)\right| \leq p-q$. Finally, if $c(u)=0$ and $c(v)=k-1$, then $v \vec{u}$ is a tight arc and $l(u) \geq l(v)+1$. Again we have $q \leq\left|c^{\prime}(u)-c^{\prime}(v)\right| \leq p-q$.

Suppose c is a k-edge coloring of G and $e=x y$ is an edge of G. The two arcs $\overrightarrow{x y}$ and $\overrightarrow{y x}$ are called arcs corresponding to e. We say an arc $\overrightarrow{x y}$ is unblocked with respect to c, if there is a directed walk $W=\left(e_{1}, e_{2}, \cdots, e_{n}, e, e_{1}^{\prime}, e_{2}^{\prime}, \cdots, e_{m}^{\prime}\right)$ in $D_{c}(L(G))$ such that (i) $c\left(e_{1}\right)=c\left(e_{m}^{\prime}\right)=k-1$, and (ii) $e_{n}=x^{\prime} x$ and $e_{1}^{\prime}=y y^{\prime}$. The arc $\overrightarrow{x y}$ is blocked with respect to c if no such directed walk exists. An edge $e=x y$ is said to be blocked in the direction $x \rightarrow y$ with respect to c, if the arc $\overrightarrow{x y}$ is blocked. An edge $e=x y$ is completely blocked with respect to c, if both arcs $\overrightarrow{x y}$ and $\overrightarrow{y x}$ are blocked. Given a partial k-edge coloring c^{\prime} of G (i.e., c^{\prime} colors a subset of edges of G), we say an $\operatorname{arc} \overrightarrow{x y}$ is unblocked with respect to c^{\prime}, if c^{\prime} can be extended to a k-edge coloring c of G such that $\overrightarrow{x y}$ is unblocked with respect to c. If no such extension exists, then we say $\overrightarrow{x y}$ is blocked with respect to c^{\prime}. Similarly, we say an edge e is completely blocked with respect to c^{\prime}, if both arcs $\overrightarrow{x y}$ and $\overrightarrow{y x}$ are blocked with respect to c^{\prime}.

Theorem 2.2 If G is a cubic graph of girth at least 4 and has a perfect matching, then $\chi_{c}^{\prime}(G) \leq 11 / 3$.
Proof. By Lemma 2.1] it suffices to prove that there exists a 4-edge coloring ϕ of G such that $D_{\phi}(L(G))$ is acyclic and each directed path of $D_{\phi}(L(G))$ contains at most two vertices (i.e., two edges of G) which are colored by 3 .

Let M be a perfect matching of G. Then $G-M$ is a collection of cycles. A 4-edge coloring of G is called a valid coloring with respect to M, if the following hold:

- All the M-edges (an edge in M is called an M-edge) are colored by color 0 .
- The edges of any even cycle C of $G-M$ are colored by colors 1 and 2 .
- The edges of any odd cycle C of $G-M$ are colored by colors 1 and 2 , except one edge which is colored by color 3 .

Let c^{\prime} be a partial 4-edge coloring of G which can be extended to a valid 4-edge coloring of G with respect to M. We are interested in the blocked directions of the M-edges with respect to c^{\prime}. Suppose $e=x y$ is an M-edge, and C and C^{\prime} (not necessarily different) are cycles of $G-M$ such that $x \in V(C)$ and $y \in V\left(C^{\prime}\right)$. If $\overrightarrow{x y}$ is an unblocked arc with respect to c^{\prime}, then we say $\overrightarrow{x y}$ is an input of C^{\prime} and an output of C with respect to c^{\prime}.

Figure 2: The blocked directions of M-edges incident to C with respect to c_{C}.

Let C be a cycle of $G-M$, and let c_{C} be the partial edge coloring of G which is the restriction of a valid coloring c to $M \cup C$. If C is an even cycle, then it is easy to see that every edge $e \in M$ incident to C is completely blocked with respect to c_{C}. If C is an odd cycle of $G-M$, then Figure 2 shows the blocked directions of the M-edges incident to C with respect to c_{C}.

In Figure 2, a thick edge indicates an M-edge. An arrow on an M-edge indicates a blocked direction of that edge. An M-edge with opposite arrows is completely blocked. Since G has girth at least 4 , the four vertices $v_{1}, v_{2}, v_{3}, v_{4}$ as indicated in Figure 2 are distinct. Note that an M-edge e incident to C is completely blocked with respect to c_{C}, unless e is incident to one of the vertices $v_{1}, v_{2}, v_{3}, v_{4}$, which are the vertices on a path whose edges are colored by colors $1,2,3$. So there are at most $4 M$-edges incident to C that are not completely blocked. An M-edge incident to C could be a chord of C. If an M-edge e incident to $v_{1}, v_{2}, v_{3}, v_{4}$ is a chord of C, then e could be completely blocked. We will discuss this case later in more detail. If an M-edge e incident to C is not completely blocked with respect to c_{C}, then exactly one direction of e is blocked.

For a valid 4-edge coloring c of G, let $\phi(c)$ be the total number of not completely blocked M-edges. Let $\psi(c)$ be the number of not completely blocked M-edges that are chords of cycles of $G-M$.

Claim 2.3 Suppose c is a valid 4-edge coloring of G (with respect to a perfect matching M). If $G-M$ has a cycle C which has an input as well as an output, then there is a valid 4-edge coloring c^{*} of G for which $\phi\left(c^{*}\right)+\psi\left(c^{*}\right)<\phi(c)+\psi(c)$.

Proof. Assume C is a cycle of $G-M$ which has an input as well as an output with respect to a valid 4-edge coloring c. Then C is an odd cycle and the M-edges incident to C contributes at least 2 to the summation $\phi(c)+\psi(c)$. We shall construct a valid 4-edge coloring c^{*} of G such that each M-edge not incident to C contributes the same amount to $\phi\left(c^{*}\right)+\psi\left(c^{*}\right)$ and $\phi(c)+\psi(c)$. However, the M-edges incident to C contributes at most 1 to the summation $\phi\left(c^{*}\right)+\psi\left(c^{*}\right)$.

Uncolor the edges of C to obtain a partial 4-edge coloring c^{\prime} of G. The valid 4-edge coloring we shall construct is an extension of c^{\prime}. It is obvious that for any valid 4-edge coloring c^{*} of G which is an extension of c^{\prime}, each M-edge not incident to C contributes the same amount to $\phi\left(c^{*}\right)+\psi\left(c^{*}\right)$ and $\phi(c)+\psi(c)$. So we only need to make sure that the M-edges incident to C contribute at most 1 to the summation $\phi\left(c^{*}\right)+\psi\left(c^{*}\right)$.

First we consider the case that C has no chord. As each M-edge e incident to C is incident to another cycle of $G-M$, at least one direction of e is blocked with respect to c^{\prime}. Since C is an odd cycle and C has an input and an output with respect to c, it is easy to see that there are four consecutive vertices $v_{1}, v_{2}, v_{3}, v_{4}$ of C such that with respect to the partial edge coloring c^{\prime}, the M-edges incident to v_{1}, v_{2} have a common blocked direction (i.e., either both are blocked in the direction towards C or both are blocked in the direction away from C), and the M-edges incident to v_{3}, v_{4} have an opposite
blocked direction. Depending on which directions of the four edges are blocked, there are four cases as depicted in Figure 3 .

Figure 3: The blocked directions of M-edges incident to the uncolored cycle C of $G-M$
We use the following convention to interpret Figure 3 and the figures in the remaining of the paper: An M-edge without an arrow could be completely blocked, or blocked in one direction, or unblocked in both directions. An M-edge with one arrow means that the indicated direction of that edge is blocked, but the other direction of that edge could be blocked or unblocked. An M-edge with a pair of opposite arrows means that edge is completely blocked.

Consider the case indicated in Figure 3 (a) and 3 (b). We extend c^{\prime} to a valid 4-edge coloring c^{*} of G by letting $c^{*}\left(e_{1}\right)=3, c^{*}\left(e_{2}\right)=2, c^{*}\left(e_{3}\right)=1$ (the other edges of C are colored by 1 and 2 alternately). It is easy to verify that in the case indicated in Figure $3(\mathrm{a}), e_{7}$ is the only edge which is probably not completely blocked with respect to c^{*}. In Figure $3(\mathrm{~b}), e_{6}$ is the only edge which is probably not completely blocked. Thus the M-edges incident to C contributes at most 1 to the summation $\phi\left(c^{*}\right)+\psi\left(c^{*}\right)$.

For the cases in Figure $3(\mathrm{c})$ and $3(\mathrm{~d})$, let $c^{*}\left(e_{1}\right)=1, c^{*}\left(e_{2}\right)=2, c^{*}\left(e_{3}\right)=3$. Then the M-edges incident to C contributes at most 1 to the summation $\phi\left(c^{*}\right)+\psi\left(c^{*}\right)$.

Next we consider the case that C has a chord.
Since C is an odd cycle, there is an M-edge incident to C which is not a chord of C. So there is a vertex v_{2} of C which is incident to a chord of C and a neighbour v_{1} of v_{2} in C is not incident to a chord of C. Let v_{3}, v_{4} be the vertices of C following v_{1}, v_{2} (as shown in Figure (4).

Assume the M-edges incident to v_{3}, v_{4} are not chords of C and have a common blocked direction, as shown in Figure $4(\mathrm{a})$ or $4(\mathrm{~b})$. In the case as shown in Figure $4(\mathrm{a})$, extend c^{\prime} to c^{*} by letting $c^{*}\left(e_{1}\right)=1, c^{*}\left(e_{2}\right)=2, c^{*}\left(e_{3}\right)=3$ (and color the other edges of C alternately by colors 1 and 2). In the case as shown in Figure $4(\mathrm{~b})$, extend c^{\prime} to c^{*} by letting $c^{*}\left(e_{1}\right)=3, c^{*}\left(e_{2}\right)=2, c^{*}\left(e_{3}\right)=1$. In any case, it is easy to verify that all the chords of C are completely blocked, and there is at most one M-edge incident to C which is not completely blocked.

Assume the M-edges incident to v_{3}, v_{4} have opposite blocked directions or at least one of the M edges incident to v_{3}, v_{4} is a chord of C. Then depending on which direction of the M-edge incident to v_{1} is blocked (with respect to c^{\prime}), we color the edges as in Figure 5

In each of the colorings, it is straightforward to verify that the M-edges incident to C contribute at

Figure 4: The M-edges incident to v_{3}, v_{4} have a common blocked direction

Figure 5: The M-edges incident to v_{3}, v_{4} have an opposite blocked direction or one of the M-edges is a chord.
most 1 to the summation $\phi\left(c^{*}\right)+\psi\left(c^{*}\right)$. This completes the proof of Claim 2.3.
Now we choose a valid 4-edge coloring c of G such that $\phi(c)+\psi(c)$ is minimum. By Claim 2.3, no cycle C of $G-M$ has an input and an output. Since each cycle C of $G-M$ contains at most one edge of color 3, it follows that every directed path of $D_{c}(L(G))$ contains at most 2 vertices (i.e., edges of G) with color 3. By Lemma 2.1] $\chi_{c}(L(G))=\chi_{c}^{\prime}(G) \leq 11 / 3$.

Corollary 2.4 If G is a 2-edge connected graph of maximum degree 3 and has girth at least 4, then $\chi_{c}^{\prime}(G) \leq 11 / 3$.

Proof. If G is cubic, then by Petersen Theorem, G has a perfect matching. Otherwise, take the disjoint union of two copies of G, say G and G^{\prime}. For each degree 2 vertex x of G, connect x to the corresponding vertex x^{\prime} in G^{\prime} by an edge. The resulting graph $G^{\prime \prime}$ is cubic (as G has minimum degree 2) and is either 2-edge connected (if G has at least two degree 2 vertices), or has exactly one cut edge. In any case $G^{\prime \prime}$ has a perfect matching (see for example [5], page 124) and has girth at least 4. Hence $\chi_{c}^{\prime}\left(G^{\prime \prime}\right) \leq 11 / 3$ by Theorem 2.2

3 Proof of Theorem 1.7

We prove Theorem 1.7 by induction on the number of edges. If $|E(G)|=3$, then it is equal to K_{2}^{3}, and has circular chromatic index 3 . Assume $|E(G)| \geq 4$ and $G \neq H_{1}, H_{2}$. If G has girth at least 4 , then the conclusion follows from Theorem 2.2. Thus we assume that G has a pair of parallel edges or has a triangle.
Case I: Suppose there is a pair of parallel edges between u and v. Since G is 2-edge connected and $G \neq H_{1}$, we conclude that u is connected to another vertex u^{\prime}, v is connected to another vertex v^{\prime}, and $u^{\prime} \neq v^{\prime}$. Let $G \odot u v$ be the graph obtained from G by deleting the two vertices u and v from G and adding an edge between $u^{\prime} v^{\prime}$. Note that this new edge may cause a multiple edge between u^{\prime} and v^{\prime}. If $G \odot u v \notin\left\{H_{1}, H_{2}\right\}$, then by induction hypothesis, $\chi_{c}^{\prime}(G \odot u v) \leq 11 / 3$. Figure 6(a) illustrates that

Figure 6: (a), (b), and (c) show that how a (11/3)-edge coloring of the new graph leads to a (11, 3)-edge coloring of the previous one: (a): In the (11,3)-edge coloring of the main graph $b=(a+3) \bmod 11$ and $c=(a+6) \bmod 11,(\mathrm{~b}):$ contracting a triangle with three vertices of degree 3 , (c): after contracting a triangle with one vertex of degree 2 , we can always find a color c to complete the (11,3)-coloring of the old graph.
a $(11,3)$-coloring of $L(G \odot u v)$ can be 'extended' to a $(11,3)$-coloring of $L(G)$. If $G \odot u v \in\left\{H_{1}, H_{2}\right\}$, then G is one of the graphs illustrated in Figure 7 or Figure 8 where a $(7,2)$-coloring of $L(G)$ is given. Case II: Suppose G has a triangle $u v w$. Since G is 2-edge connected and $G \neq H_{1}$, there are no multiple edges in this triangle. Let $G \odot u v w$ be the graph obtained from G by contracting the triangle uvw in G to a new vertex. If $G \odot u v w \notin\left\{H_{1}, H_{2}\right\}$, then by induction hypothesis, $\chi_{c}^{\prime}(G \odot u v w) \leq 11 / 3$. Figure 6(b,c) illustrates that a (11,3)-coloring of $L(G \odot u v w)$ can be 'extended' to a (11,3)-coloring of $L(G)$. If $G \odot u v w \in\left\{H_{1}, H_{2}\right\}$, then G is one of the graphs illustrated in Figure 7 or Figure 8 , where a $(7,2)$-coloring of $L(G)$ is given. So in any case, $\chi_{c}^{\prime}(G) \leq 11 / 3$. This completes the proof of Theorem 1.7

Based on the result in this paper, we propose the following conjecture:
Conjecture 3.1 For any integer $k \geq 2$, there is an $\epsilon>0$ such that the open interval $(k-\epsilon, k)$ is a gap for circular chromatic index of graphs, i.e., no graph G has $k-\epsilon<\chi_{c}^{\prime}(G)<k$.

If Conjecture 3.1 is true, then let ϵ_{k} be the largest real number for which $\left(k-\epsilon_{k}, k\right)$ is a gap for the circular chromatic index of graphs. The next problem would be to determine the value of ϵ_{k}. For

Figure 7: The graphs that can be converted to H_{1} by the " \odot " operation. For each graph other than H_{2} a (7,2)-edge coloring is given.

Figure 8: The graphs that can be converted to H_{2} by the " \odot " operation. For each graph a (7,2)-edge coloring is given.
$k=2,3,4$, Conjecture 3.1 is true and we know that $\epsilon_{2}=1, \epsilon_{3}=1 / 2$ and $\epsilon_{4}=1 / 3$. So a natural guess for ϵ_{k} is that $\epsilon_{k}=1 /(k-1)$. However, at present time, support for such a conjecture is still weak. For $k \geq 4$, we do not have natural candidate graphs G with $\chi_{c}^{\prime}(G)=k-1 /(k-1)$.

References

[1] D.R. Guichard. Acyclic graph coloring and the complexity of the star chromatic number. J. Graph Theory, 17:129-134, 1993.
[2] F. Jaeger. Nowhere-zero flow problems. In: L.W.Beineke and Sheehan, editors, Selected Topics in Graph Theory, 3:71-95, 1988.
[3] T.R. Jensen and B. Toft. Graph Coloring Problems. John Wiley \& Sons, United States of America, 1995.
[4] A. Vince. Star chromatic number. J. Graph Theory, 12:551-559, 1988.
[5] D.B. West. Introduction to Graph Theory. Prentice-Hall, Inc, USA, 2001. 2nd Edition.
[6] X. Zhu. Circular chromatic number: a survey. Discrete Math., 229:371-410, 2001.

[^0]: *Department of Computer Science, University of Waterloo
 ${ }^{\dagger}$ Department of Industrial Engineering, Sharif University of Technology
 \ddagger Department of Mathematics \& Statistics, Concordia University
 §Department of Computer Science, University of Toronto
 【Department of Computer Engineering, Sharif University of Technology
 ${ }^{\|}$Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung, Taiwan 80424, e-mail: zhu@math.nsysu.edu.tw
 ${ }^{* *}$ This research was partially supported by the National Science Council under grant NSC92-2115-M-110-007

