
Claw-Decompositions and
Tutte-Orientations∗

János Barát and Carsten Thomassen

DEPARTMENT OF MATHEMATICS
TECHNICAL UNIVERSITY OF DENMARK

DK-2800 LYNGBY, DENMARK
E-mail: c.thomassen@mat.dtu.dk

Received April 26, 2005

Published online 14 February 2006 in Wiley InterScience(www.interscience.wiley.com).
DOI 10.2002/jgt.20149

Abstract: We conjecture that, for each tree T, there exists a natural
number kT such that the following holds: If G is a kT -edge-connected
graph such that |E(T )| divides |E(G)|, then the edges of G can be divided
into parts, each of which is isomorphic to T. We prove that for T=K1,3 (the
claw), this holds if and only if there exists a (smallest) natural number
kt such that every kt -edge-connected graph has an orientation for which
the indegree of each vertex equals its outdegree modulo 3. Tutte’s 3-flow
conjecture says that kt=4. We prove the weaker statement that every
4� log n�-edge-connected graph with n vertices has an edge-decomposition
into claws provided its number of edges is divisible by 3. We also prove
that every triangulation of a surface has an edge-decomposition into claws.
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136 JOURNAL OF GRAPH THEORY

1. INTRODUCTION

LetH be a collection of graphs. We say that a multigraph G has anH-decomposition
if the edges of G can be divided into subgraphs each of which is isomorphic to a
graph in H. If H = {H}, then we speak of an H-decomposition of G. The H-
decompositions are widely studied when G is a complete graph. If H is the 3-cycle
C3, then they are the well-known Steiner triples. If G is not complete, then it may
be hard to find H-decompositions. Indeed, if H has at least three edges, then the
problem of deciding if a graph G has an H-decomposition is NP-complete [5].

Igor Pak has kindly informed us that K1,3-decompositions were studied already
in 1916 in connection with rigidity of polyhedra. Dehn [3] proved (among other
things) that every planar triangulation (minus a 3-cycle) has a K1,3-decomposition.

Jünger, Reinelt, and Pulleyblank [10] studied H-decompositions, where H has
three edges. Among other things, they proved that every 2-edge-connected graph,
whose size (that is, the number of edges) is divisible by 3, has a {P4, C3, K1,3}-
decomposition, where P4 is the path with three edges. They proposed the following,
still unsolved problem [10]:

Question 1.1. Is it true that every planar 2-edge-connected bipartite graph, whose
size is divisible by 3, has a P4-decomposition?

They also asked the following:

Question 1.2. Suppose that H is the class of 2-edge-connected graphs with s
vertices. Is there an edge-connectivity (depending on s) that guarantees a graph to
have anH-decomposition?

The answer to this question is negative: there is no such edge-connectivity, be-
cause there exist graphs of arbitrarily high connectivity and girth. Erdős [7] proved
that there are graphs of arbitrarily large chromatic number and girth. Mader [12]
proved that any such graph has a subgraph of large connectivity. In [1], it was shown
that the subgraph can also be chosen to have large chromatic number. In view of this,
we must require that a finite collectionH must contain a forest if we wish to show
that large (fixed) edge-connectivity implies the existence of an H-decomposition.
This has inspired us to the general conjecture in the Abstract.

A graph has no loops or multiple edges. A multigraph may have multiple edges.
In order to emphasize that some of the results hold only for graphs we shall some-
times call these simple graphs.

2. CONNECTIONS BETWEEN DECOMPOSITIONS

AND ORIENTATIONS

Conjecture 2.1 below is a special case of the conjecture in the Abstract.

Conjecture 2.1. There exists a smallest natural number kc such that every simple
kc-edge-connected graph G, whose size is divisible by 3, has a K1,3-decomposition.
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CLAW-DECOMPOSITIONS AND TUTTE-ORIENTATIONS 137

The graph K1,3 is also called the claw. Claw-decompositions can be expressed
in terms of orientations. For, if a graph G has a claw-decomposition, then we can
orient the edges of G as follows. Whenever there is a claw of the decomposition
with center x and leaves y1, y2, y3, then let the edges be oriented from x towards yi,
for i = 1, 2, 3. In the resulting graph, all outdegrees are congruent to 0 modulo 3.
Conversely, if G has such an orientation, then it implies the existence of a claw-
decomposition of G. Motivated by this connection, we now focus on orientations.
If v is a vertex of an oriented graph such that d+(v) ≡ d−(v) (mod 3), then we say
that the orientation is balanced at v (mod 3). An orientation of a graph G is called
a Tutte-orientation, if each vertex is balanced (mod 3).

If a graph has a nowhere zero 3-flow, then we obtain a Tutte-orientation by revers-
ing the edges of flow value 2. Tutte’s 3-flow conjecture states that every multigraph
with no 1-edge-cut and no 3-edge-cut has a nowhere zero 3-flow. Equivalently,
every 4-edge-connected multigraph has a Tutte-orientation. For more details on
Tutte’s 3-flow conjecture, see e.g. [2,4,9]. Jaeger proposed the following weaker
conjecture.

Conjecture 2.2 (Jaeger [8]). There exists a smallest natural number kt such that
every kt-edge-connected multigraph has a Tutte-orientation.

Thus Tutte conjectured that kt = 4, and this would imply Grötzsch’s theorem that
every planar triangle-free graph is 3-colorable. (The dual version of Grötzsch’s the-
orem states that every 4-edge-connected planar multigraph has a Tutte-orientation,
see e.g. [9].) We believe that the following holds:

Conjecture 2.3. If G is a planar, 4-edge-connected graph, whose size is divisible
by 3, then G has a claw-decomposition.

A cubic graph G has a claw-decomposition if and only if G is bipartite. For,
such a graph G has 2k vertices and 3k edges. Hence a claw-decomposition of G
must consist of k claws, and the centers must form an independent set. So, a 3-edge-
connected, planar graph need not have a claw-decomposition, and hence Conjecture
2.3 is sharp.

It would be tempting to extend Conjecture 2.3 to the stronger statement that
kc = kt = 4. But this is false. To see this, consider three copies of K4, and add
two edges between any pair such that we get a 4-regular graph G0. This graph has
12 vertices and 24 edges. Assume that a claw-decomposition of G0 exists. It must
consist of eight claws. Orient the edges of each claw away from the center. There
must be four sinks, that is, vertices of outdegree 0. By the pigeon-hole principle,
two of them must be in the same K4. This is a contradiction. Thus kc > 4, and the
planarity condition cannot be dropped in Conjecture 2.3. The construction can be
iterated as follows. Take three copies of G0 and unfold two edges between the K4’s.
These altogether six edges can be used to connect each pair of the three copies of
G0 to make the graph 4-edge-connected. Now this graph has no independent set of
twelve sinks by the pigeon-hole principle.

Perhaps kc = 5. If so, then kt ≤ 8, as we prove in the theorem below.
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138 JOURNAL OF GRAPH THEORY

Theorem 2.4. If every 8-edge-connected simple graph, whose size is divisible
by 3, has a claw-decomposition, then every 8-edge-connected multigraph has a
Tutte-orientation. In other words, if kc ≤ 8, then kt ≤ 8.

Proof. Let us assume that every 8-edge-connected graph has a claw-
decomposition. Then we prove that every 8-edge-connected multigraph has a Tutte-
orientation. We proceed by induction on the number of vertices. The multigraph
with two vertices and eight edges clearly has a Tutte-orientation. So we proceed to
the induction step.

We may assume that G is 2-connected since otherwise, we apply the induction
hypothesis to each block of G.

If e1 and e2 are parallel edges in the multigraph G under consideration, then we
contract all edges parallel with e1. The resulting multigraph is called G′. We use
the induction hypothesis for G′. We orient all edges parallel with e1 and distinct
from e1, e2 at random. We claim that G also has a Tutte-orientation. It suffices to
consider the endvertices x and y of e1. There are three different possible orientations
of the edges e1 and e2. Since they contribute to the outdegree of x by 0, 1 or 2, one
of them will give a balanced orientation at x (mod 3). Then also y will be balanced
(mod 3). We may therefore assume that G has no multiple edges.

Suppose that v ∈ V (G) is a vertex of even degree. Using a theorem by Mader
(namely Theorem 10 in [13]), there exist two edges vx and vy that we can split
(that is, replace by a new edge xy) such that the edge-connectivity between any two
vertices of V (G) \ {v} does not change. Since the degree of v is even, we may split
all edges incident with v and complete the proof by induction. (Mader’s theorem
allows multiple edges. That theorem only requires that v is not a cutvertex and that
v has degree at least 4 and has at least two distinct neighbors.)

Assume next that v ∈ V (G) is of odd degree, 2k + 9 say. If k > 0, we split
two edges, and use induction for the resulting multigraph. Note that the resulting
multigraph is 8-edge-connected because v has degree at least 8 (in fact, at least 9)
after the splitting.

There remains only the case in which G is 8-edge-connected and 9-regular,
and has no multiple edges. By assumption, G has a claw-decomposition, which
corresponds to an orientation with all outdegrees divisible by 3. As all degrees are
9, such an orientation is a Tutte-orientation. �

In Theorem 2.4, the number 8 may be replaced by any number of the form 8 + 6k,
where k is a natural number. Thus, the existence of kc implies the existence of kt .

We now prove the converse, that the existence of kt implies the existence of kc.
For this, it is convenient to study more general orientations. Let G be a multigraph,
and w:V (G) → {0, 1, 2} a prescribed weight function on the vertices such that∑

v∈V (G) w(v) ≡ |E(G)| (mod 3).
If there is an orientation of the edges of G with d+(v) ≡ w(v) (mod 3) for each

v ∈ V (G), then we say that G admits the generalized Tutte-orientation prescribed
by w.
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CLAW-DECOMPOSITIONS AND TUTTE-ORIENTATIONS 139

If, for every such w : V (G) → {0, 1, 2}, there is an orientation of the edges of
G with d+(v) ≡ w(v) (mod 3) for each v ∈ V (G), then we say that G admits all
generalized Tutte-orientations.

Conjecture 2.5. There exists a smallest natural number kg such that every kg-
edge-connected multigraph admits all generalized Tutte-orientations.

Clearly kt ≤ kg. Also kc ≤ kg. (Just consider the generalized Tutte-orientation
prescribed by the zero-function.) We show that the three parameters are essentially
equal. We shall use the following fundamental result by Nash-Williams [15] and
Tutte [16].

Theorem 2.6. Every 2k-edge-connected multigraph G has k pairwise edge-
disjoint spanning trees.

Theorem 2.7. If one of kc, kt , kg exists, then they all exist. In this case, kg ≤
2kt + 2, kc ≤ kg, and kt ≤ kc + 5.

Proof. Assume that kt exists. We shall prove that kg exists and that kg ≤ 2kt + 2.
Let G be a multigraph with edge-connectivity at least 2kt + 2, and let w be any
prescribed weight function. By Theorem 2.6, G has kt + 1 edge-disjoint spanning
trees T1, . . . , Tkt+1.

Put w∗(v) = −dG(v) − w(v) for each vertex v. We orient some edges of Tkt+1

such that d+
F (v) − d−

F (v) ≡ w∗(v) (mod 3) for each v ∈ V (G), where F denotes the
resulting oriented forest F. It is an easy exercise to show that such a partial orien-
tation of Tkt+1 exists.

The unoriented edges of G form a kt-edge-connected multigraph H, which has a
Tutte-orientation by the assumption. That is d+

H (v) ≡ d−
H (v) (mod 3) for each vertex

v. Hence dH (v) = d+
H (v) + d−

H (v) ≡ 2d+
H (v) ≡ −d+

H (v) (mod 3). Similarly, dF (v) ≡
d+

F (v) + d−
F (v) = 2d+

F (v) − (d+
F (v) − d−

F (v)) ≡ −d+
F (v) − w∗(v) (mod 3) for each

vertex v. Hence d+
G(v) = d+

H (v) + d+
F (v) ≡ −dH (v) − dF (v) − w∗(v) = −dG(v) −

w∗(v) = w(v) (mod 3) for each vertex v. Hence, kg exists and kg ≤ 2kt + 2.
As noted after Conjecture 2.5, kc ≤ kg. The remark after the proof of Theo-

rem 2.4 shows that kt ≤ kc + 5. �

Corollary 2.8. If the 3-flow conjecture is true, then every 10-edge-connected
multigraph admits all generalized Tutte-orientations. In particular, every 10-edge-
connected graph has a claw-decomposition, provided its size is divisible by 3.

Let us call a graph mod (2p + 1)-orientable if it has an orientation such that each
vertex is balanced mod (2p + 1). Jaeger also proposed the following generalization
of Conjecture 2.2.

Conjecture 2.9 (Jaeger [8]). For each p ≥ 1, there exists a smallest natural num-
ber kj(p) such that every kj(p)-edge-connected multigraph has a mod (2p + 1)-
orientation. Moreover, kj(p) ≤ 4p.
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140 JOURNAL OF GRAPH THEORY

A generalized mod (2p + 1)-orientation can be defined in the obvious way.
The methods in the proof of Theorem 2.7 show that for each natural number

p ≥ 1, the following are equivalent:

a. There exists a smallest natural number kj(p) such that every kj(p)-edge-
connected multigraph G has a mod (2p + 1)-orientation.

b. There exists a smallest natural number kc(p) such that every kc(p)-edge-
connected simple graph G, whose size is divisible by 2p + 1, has a K1,2p+1-
decomposition.

c. There exists a smallest natural number kg(p) such that every kg(p)-edge-
connected multigraph G admits all generalized mod (2p + 1)-orientations.

Clearly, (c) implies (a) and (b). The proof of Theorem 2.7 shows that (a)
implies (c). We now indicate why also (b) implies (c). Specifically, we prove
that kg(p) ≤ 4p(kc(p) + 2p). Let G be a multigraph of edge-connectivity at least
4p(kc(p) + 2p), and let w be a function, which we shall show prescribes a gen-
eralized mod (2p + 1)-orientation. If G has a multiple edge consisting of at least
2p parallel edges, then we contract them and use induction. So assume there is no
such multiple edge. For every multiple edge we orient all its edges, except pre-
cisely one, at random. We delete the oriented edges and modify the function w ac-
cordingly. The resulting simple graph has edge-connectivity at least 2(kc(p) + 2p)
and contains therefore kc(p) + 2p edge-disjoint spanning trees. We use 2p of
these spanning trees to orient some of their edges in such a way that deleting
the oriented edges and modifying w accordingly, the modified w becomes the zero
function.

The resulting graph has kc(p) edge-disjoint spanning trees and therefore edge-
connectivity at least kc(p). Then we complete the proof using the assumption of
Conjecture (b).

Note that, in this way we do not use Mader’s splitting theorem. That could also
be avoided in Theorem 2.4, but then the inequalities in Theorem 2.7 would become
weaker.

3. CLAW-DECOMPOSITION OF GRAPHS ON A FIXED SURFACE

If Conjecture 2.3 is true, then one may proceed to higher surfaces. The graph with
12 vertices described after Conjecture 2.3 can be drawn on the torus. But, it may
be that every 4-connected toroidal graph, whose size is divisible by 3 has a claw-
decomposition, provided that the graph is locally planar, that is, the graph has large
face-width. This holds at least for the Cartesian product of two cycles. To see this, let
G = C3k × Ct . Then G has a claw-decomposition using the following orientation.
We first specify the sinks in the first copy of C3k to be every third vertex. In the
second copy of C3k, we shift the sinks by one to the left, say. Repeat this t times.
If t ≡ 0, 2 (mod 3), then this gives us the set of sinks S. When t ≡ 1 (mod 3), this
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CLAW-DECOMPOSITIONS AND TUTTE-ORIENTATIONS 141

procedure does not work because the last copy is identical to the first one. (So
some sinks would be neighbors which is impossible.) In this case, we instead make
the last shift to the right. Now orient the edges towards the sinks. Then V (G) \ S

induces an Eulerian subgraph if t ≡ 0 (mod 3). If t ≡ 1 or 2 (mod 3), then there is a
matching M between the vertices of degree 1 and 3. We orient these edges towards
the vertices of degree 1. After deleting M, the remaining graph is Eulerian. Orient
the edges along an Euler walk in each component. This orientation gives us the
desired claw-decomposition.

4. TRIANGULATIONS OF SURFACES

If a graph on a surface is 3-colorable, then its dual graph has a 3-flow, and hence a
Tutte-orientation. In particular, every triangulation of a surface, other then K4, has
a Tutte-orientation.

An n-vertex triangulation of a surface of Euler genus k has 3n − 6 + 3k edges,
see e.g. [14]. Hence, it is a natural candidate for having a claw-decomposition. In
this section, we prove the stronger result, that every triangulation distinct from K4

admits all generalized Tutte-orientations.
We shall use four lemmas, some of which may be of independent interest.

Lemma 4.1. If the edges of a multigraph G can be acyclically oriented such that
each vertex, except one, has outdegree at least 2, then G admits all generalized
Tutte-orientations.

Proof. Let w be any weight function on the vertices. The assumptions imply
that the vertices of G can be labeled x1, . . . , xn such that all arcs (directed edges) go
from right to left. Each vertex has at least two outgoing arcs. In particular, there are
at least two edges between x1 and x2. Contract these edges, and use induction. Orient
the edges between x1 and x2 such that d+(x2) ≡ w(x2) (mod 3). The condition on
w implies that also d+(x1) ≡ w(x1) (mod 3). �

No graph satisfies Lemma 4.1, as multiple edges are needed. However, any tri-
angulation with one or more edges added, or one or more edges contracted satisfies
the assumption of Lemma 4.1. This follows easily from the following observation.
If G is a triangulation, and H is a connected subgraph containing at least two but
not all vertices, then G has a vertex v that is not in H but which is joined to at least
two vertices in H. (We then orient all edges between v and H from v to H, add v to
H, and repeat.)

Lemma 4.2. Let k ≥ 3 be a natural number, and let w be a weight function of
the k-wheel Wk with center c such that

∑
x∈V (Wk) w(x) ≡ |E(Wk)| (mod 3). Then the

k-wheel admits the generalized Tutte-orientation prescribed by w, unless k is odd,
and w(x) ≡ 0 (mod 3) for all vertices x ∈ Wk \ {c}.

Proof. Let x1x2 . . . xkx1 be the cycle Wk \ {c}. If k is even, and w(xi) ≡
0 (mod 3), for i = 1, 2, . . . , k, then we orient the edges of the wheel such that
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142 JOURNAL OF GRAPH THEORY

x1, x2, . . . , xk are sources and sinks alternately. So assume that w(x1) 
≡ 0 (mod 3).
If w(x1) = 1, then we orient the edge x1x2 towards x1. If w(x1) = 2, then we orient it
away from x1. Then we successively orient the two unoriented edges incident with
x2, the two unoriented edges incident with x3 etc. as prescribed by w. Clearly,
it is possible to orient the last edge incident with x1. The condition

∑
x∈V (Wk)

w(x) ≡ |E(Wk)| (mod 3) ensures that the center receives the correct prescribed
outdegree. �
Lemma 4.3. Let k ≥ 3 be a natural number, and let Uk be a multigraph obtained
from the k-wheel Wk by adding one or more edges. Then Uk admits all generalized
Tutte-orientations.

Proof. Let w be any prescribed weight function of Uk. Orient all added edges,
except one, at random. The last added edge can be oriented in two ways. For each
of these two orientations, we modify w accordingly. At least one of these two
modifications of w is not the exceptional weight function in Lemma 4.2. Hence,
Lemma 4.2 implies that Uk has the desired orientation. �
Lemma 4.4. Let x and y be adjacent vertices in a triangulation G such that at
least one of x,y, say y, has degree at least 4 and such that N(x) ∩ N(y) consists of
only two vertices. Let H be the subgraph induced by N(x) ∪ N(y). Then H admits
all generalized Tutte-orientations.

Proof. Let w be any weight function, and let x1, x2, . . . , xk−1, x be the neigh-
bors of y in clockwise order. The graph induced by {y} ∪ N(y) is a wheel Wy

and possibly some additional edges that we first orient at random. Now we re-
peat the procedure from the proof of Lemma 4.2 with a slight modification. We
orient the edge x1x2 arbitrarily. Then we orient successively the two unoriented
edges of Wy incident with x2, . . . , xk−2 to achieve the prescribed outdegrees at
these vertices. The remaining unoriented edges of H form a wheel Wx with center
x, and possibly some additional edges that we orient at random. As the orientation
of x1x2 can be chosen in two ways, we may assume that the exceptional case in
Lemma 4.2 does not occur now for Wx. Hence, we can orient the edges of Wx by
Lemma 4.2. �
Theorem 4.5. Let G 
= K3, K4 be a triangulation of any surface S. Then G admits
all generalized Tutte-orientations.

Proof. If G contains a non-facial triangle, then let x be one of the vertices of
this triangle, and let H be the subgraph of G induced by x and its neighbors. Then
H is a wheel with at least one additional edge.

If all triangles of G are facial, then we let x be any vertex. As G 
= K3, K4, x has
a neighbor y of degree at least 4. As all triangles containing x are facial, x and y
have only two neighbors in common. In this case, we let H be the subgraph of G
induced by x, y and the neighbors of x, y.

Let w be any weight function of G. We contract H into a single vertex, and we
modify w accordingly. By the remark after Lemma 4.1, the resulting multigraph
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CLAW-DECOMPOSITIONS AND TUTTE-ORIENTATIONS 143

has the desired orientation. By Lemma 4.3 or Lemma 4.4, the orientation can be
extended to H. �

Theorem 4.5 shows that every triangulation has a claw-decomposition. The de-
composition may possibly be chosen such that (almost) every vertex is the center
of a claw. We now prove that this holds for triangulations of surfaces of Euler genus
at most 2. For this, we use the following well-known consequence of Edmonds’
matroid partition theorem [6]. For completeness, we indicate a short proof.

Theorem 4.6. Let G be a graph with n vertices, and let k1, k2, . . . , kn be non-
negative integers. Then G has an orientation satisfying d+(vi) ≤ ki for i = 1, . . . , n

if and only if |E(H)| ≤ ∑
i:vi∈V (H) ki for any subgraph H ⊆ G.

Proof. The necessity is obvious. For the sufficiency, let Mi be the matroid on
E(G) whose independent sets are the sets that consist of at most ki edges, each
of which is adjacent to vi. Then the matroid partition theorem gives us a partition
of E(G) into sets E1, . . . , En such that Ei is independent in Mi if and only if
for any S ⊆ E(G) we have |S| ≤ ∑

i:S∩Mi 
=∅ ki. Now orient the edges in Ei away
from vi. �

Theorem 4.7. Let G be a triangulation of the plane or the projective plane or the
torus or the Klein bottle. Then G has an orientation such that all outdegrees are 3
or 0, except when G = K4 in the plane.

Proof. We prescribe all outdegrees ki to be at most 3, except for two independent
vertices in the plane and one vertex in the projective plane for which we put ki = 0.
Then we apply Theorem 4.6. The required inequalities hold by Euler’s formula.
Since all outdegrees (except one or two) are at most 3, all of them (except one or
two) are precisely 3, again by Euler’s formula. �

Conjecture 4.8. Let G be a triangulation of a surface of Euler genus k ≥ 2.
Then G has an orientation such that each outdegree is at least 3, and divisible
by 3.

Theorem 4.7 shows that Conjecture 4.8 holds for k = 2.

5. DENSE GRAPHS

Lai and Zhang [11] proved that every 4�log n�-edge-connected multigraph has a
nowhere zero 3-flow. We now prove that any such graph admits all generalized
Tutte-orientations.

Theorem 5.1. Every 4�log n�-edge-connected multigraph with n vertices admits
all generalized Tutte-orientations.

Proof. Assume for simplicity that log n is a natural number. Let w be any
prescribed weight function on the vertices. We show that G can be oriented as
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prescribed by w. The idea is to find log n pairwise edge-disjoint spanning Eule-
rian subgraphs G1, G2, . . . , Glog n. We orient the remaining edges arbitrarily, and
modify w accordingly. We use G1 to give half of the vertices the prescribed outde-
gree modulo 3. We then use G2 to take care of half of the remaining vertices, and
so on.

We now argue formally. By Theorem 2.6, G has 2 log n pairwise edge-disjoint
spanning trees T1, T2, . . . , T2 log n. It is well known and easy to see that the
union of any two of these contains a connected spanning Eulerian subgraph.
Therefore G contains log n pairwise edge-disjoint spanning Eulerian subgraphs
G1, G2, . . . , Glog n.

We orient all edges not in E(G1) ∪ E(G2) ∪ . . . ∪ E(Glog n) at random, and we
modify w accordingly. Then we define w∗ as in the proof of Theorem 2.7. In other
words, we are going to orient G1 ∪ G2 ∪ . . . ∪ Glog n such that for each vertex v,
there are w∗(v) outgoing arcs, and the remaining d(v) − w∗(v) arcs incident with
v are balanced at v (mod 3). (We assume here that w∗(v) is one of 0,1,2.) We now
define the mode of a vertex v. Initially the mode of v is w∗(v). If all vertices are
in mode 0, then we just orient each Gi, for 1 ≤ i ≤ log n, such that each vertex is
balanced. If some vertices are in a mode 
= 0, then we orient G1, G2, . . . , Glog n

successively such that we use each Gi to turn at least half of the vertices of mode 
= 0
into mode 0. We explain how this is done for G1. The procedure for G2, . . . , Glog n

is similar. So, we let v1, e1, v2, e2, . . . , em, v1 be a closed Euler walk of G1. There
may be repetition of vertices. Suppose v2 is in mode 2. Then we orient both edges
e1, e2 away from v2. Suppose we have already oriented e1, e2, . . . , ek−1, and that
ek−1 is directed towards vk. If vk is in mode 0, then we direct ek away from vk,
and we say that vk is still in mode 0. If vk is in mode 1, then we direct ek to-
wards vk, and we say that vk is in mode 0. Now vk is in the required mode and
will remain there. Finally, we consider the case in which vk is in mode 2. In this
case, we consider the first vertex vp in the sequence vk+1, vk+2, . . . which is not
in mode 0. We orient the edges ek, ek+1, . . . , ep such that vp turns into mode 0,
and vk+1, . . . , vp−1 remain in mode 0. Then vk will be in either mode 1 or mode
2. If there are k vertices in the undesired mode 1 or 2, then we change in this
way at least (k − 1)/2 of these into the desired mode 0. We repeat this argu-
ment for G2, . . . , Glog n. When this procedure terminates, all vertices will be in
mode 0. �
Theorem 5.2. There exists a constant n1 such that every graph G with n ≥ n1

vertices and minimum degree δ(G) ≥ n/2 admits all generalized Tutte-orientations.

Proof. If the edge-connectivity of G is at least 4�log n�, then the claim holds
by Theorem 5.1. Otherwise, G has an edge-cut of size smaller than 4�log n�. The
minimum degree ensures that there are at least n

2 − 4�log n� vertices on both sides
of the cut. When n is large enough, both sides are 4�log n�-edge-connected, and
hence they admit all generalized Tutte-orientations. So, for any prescribed weight
function w on V (G), we first orient the edges in the cut and then apply Theorem 5.1
to each side of the cut. We only need to make sure that the modified weight functions
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satisfy the congruence relation. As the cut has at least two edges, this is always
possible. �

If n is even, then the graph consisting of the union of two copies of Kn
2

and one
edge between them has neither a Tutte-orientation nor a claw-decomposition. The
degree condition in Theorem 5.2 is therefore sharp. However, for 2-edge-connected
graphs, there is a better bound.

Theorem 5.3. There exists a constant n2 such that every 2-edge-connected graph
G with n ≥ n2 vertices and minimum degree δ(G) ≥ n/4 admits all generalized
Tutte-orientations.

The proof of Theorem 5.3 is similar to, but more tedious than that of Theorem
5.2. Theorem 5.3 is best possible in the following sense: If n is divisible by 4,
then take the union of four copies of Kn

4
. Add six independent edges such that

there is precisely one edge between any two copies of Kn
4
. The resulting graph has

minimum degree n
4 − 1 but has no Tutte-orientation.
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