A New Upper Bound on the Cyclic Chromatic Number ${ }^{\dagger}$

O. V. Borodin, ${ }^{1}$ H. J. Broersma, ${ }^{2}$ A. Glebov ${ }^{1}$ and
J. van den Heuvel ${ }^{3}$
${ }^{1}$ SOBOLEV INSTITUTE OF MATHEMATICS, NOVOSIBIRSK 630090, RUSSIA E-mail: brdnoleg@math.nsc.ru; angle@math.nsc.ru
${ }^{2}$ DEPARTMENT OF COMPUTER SCIENCE, DURHAM UNIVERSITY
DURHAM DH1 3LE, U.K.
E-mail: hajo.broersma@durham.ac.uk
${ }^{3}$ CENTRE FOR DISCRETE AND APPLICABLE MATHEMATICS DEPARTMENT OF MATHEMATICS, LONDON SCHOOL OF ECONOMICS houghton street, LONDON WC2A 2AE, U.K.
E-mail: jan@maths.Ise.ac.uk

Received July 13, 2004; Revised May 25, 2006

Published online 2 August 2006 in Wiley InterScience(www.interscience.wiley.com).
DOI 10.1002/jgt. 20193

Abstract

A cyclic coloring of a plane graph is a vertex coloring such that vertices incident with the same face have distinct colors. The minimum number of colors in a cyclic coloring of a graph is its cyclic chromatic number χ^{c}. Let Δ^{*} be the maximum face degree of a graph. There exist plane graphs with $\chi^{c}=\left\lfloor\frac{3}{2} \Delta^{*}\right\rfloor$. Ore and Plummer [5] proved that $\chi^{c} \leq 2 \Delta^{*}$, which bound was improved to $\left\lfloor\frac{9}{5} \Delta^{*}\right\rfloor$ by Borodin, Sanders, and Zhao [1], and to $\left\lceil\frac{5}{3} \Delta^{*}\right\rceil$ by Sanders and Zhao [7].

[^0]We introduce a new parameter k^{*}, which is the maximum number of vertices that two faces of a graph can have in common, and prove that $\chi^{c} \leq$ $\max \left\{\Delta^{*}+3 k^{*}+2, \Delta^{*}+14,3 k^{*}+6,18\right\}$, and if $\Delta^{*} \geq 4$ and $k^{*} \geq 4$, then $\chi^{c} \leq \Delta^{*}+3 k^{*}+2$. © 2006 Wiley Periodicals, Inc. J Graph Theory 54:58-72, 2007

Keywords: planer graph; cyclic coloring

1. INTRODUCTION

Throughout this article, G is a connected plane graph with vertex set V_{G}, edge set E_{G}, and face set F_{G}. In what follows, G can have multiple edges but no loops, while a simple graph has no multiple edges. The degree of a vertex v, denoted by $d_{G}(v)$, is the number of edges incident with v. The degree of a face f, denoted by $d_{G}(f)$, is the number of vertices incident with f. We use Δ_{G} and Δ_{G}^{*} to denote the maximum vertex degree and maximum face degree of G, respectively.

For a cycle C we denote the sets of vertices of G lying strictly inside C and strictly outside C by $\operatorname{Int}_{G}(C)$ and $E x t_{G}(C)$, respectively. We say C is a separating cycle if both $\operatorname{Int}_{G}(C)$ and $E x t_{G}(C)$ are not empty.

A cyclic coloring of a plane graph is a vertex coloring such that two different vertices incident with the same face receive distinct colors. The minimum number of colors needed for a cyclic coloring, the cyclic chromatic number, is denoted by χ_{G}^{c}. This concept was introduced by Ore and Plummer [5].
In the remainder the subscript G will often be omitted when it is clear what graph we are dealing with. And instead of, say, "an edge incident with a face" or "a face incident with a vertex," we will sometimes write "an edge of a face" or "a face of a vertex."

It is obvious that a cyclic coloring of a 2-connected plane graph requires at least Δ^{*} colors. Note that the following plane graph has $\chi^{c}=\left\lfloor\frac{3}{2} \Delta^{*}\right\rfloor$: Take disjoint triangles $x_{1} x_{2} x_{3}, y_{1} y_{2} y_{3}$ and join each x_{i} with y_{i} by a path all internal vertices of which have degree 2 , where one path has length $\left\lceil\frac{1}{2} \Delta^{*}\right\rceil-1$, while the other two have length $\left\lfloor\frac{1}{2} \Delta^{*}\right\rfloor-1$. It is conjectured (see Jensen and Toft [4], page 37) that any plane graph G has $\chi^{c} \leq\left\lfloor\frac{3}{2} \Delta^{*}\right\rfloor$. Clearly, this bound, if true, would be best possible. Ore and Plummer [5] proved that $\chi^{c} \leq 2 \Delta^{*}$, which bound was improved to $\left\lfloor\frac{9}{5} \Delta^{*}\right\rfloor$ by Borodin, Sanders, and Zhao [1], and to $\left\lceil\frac{5}{3} \Delta^{*}\right\rceil$ by Sanders and Zhao [7].

In this article we prove a bound for the cyclic chromatic number that depends on Δ^{*} and the following easily computable parameter of the graph. For a face f in a plane graph G, let $V_{G}(f)$ be the set of vertices of f. Let k_{G}^{*} (or just k^{*}) be the maximum number of vertices that two faces of G can have in common:

$$
k_{G}^{*}=\max \left\{\left|V_{G}\left(f_{1}\right) \cap V_{G}\left(f_{2}\right)\right| \mid f_{1}, f_{2} \in F_{G}, f_{1} \neq f_{2}\right\} .
$$

Our main result is the following.
Theorem 1.1. Every connected plane graph G has

$$
\chi_{G}^{c} \leq \max \left\{\Delta_{G}^{*}+3 k_{G}^{*}+2, \Delta_{G}^{*}+14,3 k_{G}^{*}+6,18\right\} .
$$

Observe that for graphs with small enough k^{*} the bound of Theorem 1.1 is better than any general bound depending on Δ^{*} only. No serious attempt has been made by the authors to make the additive constants in Theorem 1.1 as small as possible. It seems very likely that our proof method plus some extra detail analysis of special cases can provide smaller values for these constants. However, we do not see how to improve the constant 3 in front of k^{*}. We suggest the following conjecture, which if true is best possible.

Conjecture 1.2. Every plane graph G with Δ_{G}^{*} and k_{G}^{*} large enough has a cyclic coloring with $\Delta_{G}^{*}+k_{G}^{*}$ colors.
In particular this conjecture implies $\chi_{G}^{c} \leq\left\lfloor\frac{3}{2} \Delta_{G}^{*}\right\rfloor$ if Δ_{G}^{*} is large enough.
It is easy to check that if a plane graph G is 3 -connected, then $k_{G}^{*}=2$. So Theorem 1.1 has the following corollary.
Corollary 1.3. Every 3-connected plane graph G has $\chi_{G}^{c} \leq \max \left\{\Delta_{G}^{*}+14,18\right\}$.
This upper bound on χ^{c} for 3-connected graphs of the form $\Delta_{G}^{*}+O(1)$ is actually close to best possible: the k-wheel W_{k} on $k+1$ vertices is a 3-connected plane graph with $\chi^{c}=\Delta^{*}+1$. The first bound of this order, $\chi^{c} \leq \Delta^{*}+9$, was obtained by Plummer and Toft [6]. They also conjectured that any 3 -connected plane graph has $\chi^{c} \leq \Delta^{*}+2$. The best known bounds for the cyclic chromatic number of 3 -connected plane graphs seem to be $\chi^{c} \leq \Delta^{*}+1$ for $\Delta^{*} \geq 60$ by Enomoto, Horňák, and Jendrol' [2], and $\chi^{c} \leq \Delta^{*}+2$ for $\Delta^{*} \geq 24$ by Horňák and Jendrol' [3].

In the next section we give some further definitions and prove an auxiliary structural result. The proof of Theorem 1.1 itself can be found in Section 3.

2. DEFINITIONS AND STRUCTURAL RESULT

Throughout this section let $\beta \geq 4$ be an integer and G a simple 2-connected plane graph.

By a triangle we mean a face of degree three; an S-face ("small face") is a face of degree between 4 and $\beta-1$, while a B-face ("big face") is a face of degree at least β. A BB-edge is an edge incident with two B-faces; BS-edges ("S" for small) and BT-edges (" T " for triangle) are defined analogously.

A d-vertex is a vertex of degree d. A $B B B$-vertex is a 3 -vertex incident with three B-faces. A vertex is called onerous if it is either a 3-vertex incident with a triangle and two B-faces, or a 4-vertex incident with two non-adjacent triangles and two B-faces. A triangle is onerous if it is incident with three onerous vertices.

We next classify the vertices and edges of G incident with B-faces. An edge is called separating if it is a BB-edge, and irregular if it is a BS- or BT-edge. A vertex is separating if it is an onerous 4-vertex, or a 2-vertex incident with two B-faces; otherwise a vertex is irregular. Observe that if $G \neq C_{n}$, then every B-face of G has at least one irregular element (vertex or edge).

To describe the boundary of a B-face f, we define a separating path of f to be a single onerous 4 -vertex of f, or a maximal path $P=v_{1} e_{1} v_{2} e_{2} \cdots v_{\ell-1} e_{\ell-1} v_{\ell}, \ell \geq 2$,
on the boundary of f such that every edge e_{i} and every internal vertex $v_{2}, \ldots, v_{\ell-1}$ is separating. By this definition each separating path joins two B -faces in G.

The boundary of a B -face f is called an irregular path of f if Q is maximal with the property that every edge e_{i} and every internal vertex $v_{2}, \ldots, v_{\ell-1}$ is irregular. If $\ell=1$, then Q is just one irregular vertex incident with two separating edges of f. It is easy to see that each edge of f belongs to a unique irregular or separating path of f, and each end vertex of an irregular path Q is an irregular vertex or an onerous 4-vertex. Note that if a B-face f has at least one separating element on its boundary, then each irregular path of f divides two separating paths of f.

An irregular path Q is called onerous if Q is a single BBB-vertex, or Q contains an edge of an onerous triangle adjacent to f. From the definitions above it follows that each onerous irregular path has at most one edge. A separating path P of f is called onerous if it is bounded by two onerous irregular paths (by edges of two onerous triangles if P is formed by one onerous 4-vertex).

We say that a B-face f with at least one separating vertex or edge on its boundary has dimension $\operatorname{dim}(f)=m \geq 1$ if f is incident with exactly m separating paths (and m irregular paths). We set $\operatorname{dim}(f)=0$ if f has no irregular vertex or edge (and hence $G=C_{n}$). A B-face f is admissible if it is incident with at least one onerous vertex or separating 2-vertex. An admissible B-face f of dimension 5 is called critical if it has at least 4 onerous irregular paths and each irregular path of f has at most one edge.

We are now ready to give the main structural result.
Theorem 2.1. Let $\beta \geq 8$ be an integer and G a 2 -connected plane graph. Then G has at least one of the following configurations:
a. two adjacent triangles;
b. a vertex of degree at most 4 incident with at most one B-face;
c. an admissible B-face of dimension at most 4 incident with at most 5 irregular edges;
d. two B-faces f_{1}, f_{2} joined by an onerous separating path $P_{12}=$ $v_{1} e_{1} \cdots e_{\ell-1} v_{\ell}$, where f_{1} is critical, $\operatorname{dim}\left(f_{2}\right) \leq 6$, and f_{2} has at most 4 irregular edges that are not incident with v_{1}, v_{ℓ}.

Proof. We first show that it suffices to prove Theorem 2.1 for plane graphs without onerous 4 -vertices. Let G be an arbitrary 2 -connected plane graph. We form a new graph G_{1} by replacing each onerous 4 -vertex v in G incident with triangles $v x y$ and $v z t$ by a pair of onerous 3 -vertices v_{1}, v_{2}, where v_{1} is adjacent to v_{2}, x, y, while v_{2} is adjacent to v_{1}, z, t. By this definition, G_{1} is 2 -connected and has the same set of triangles, B -faces, S -faces, and irregular edges as G. Moreover, for every B-face f we have $\operatorname{dim}_{G}(f)=\operatorname{dim}_{G_{1}}(f)$. Observe that every onerous element (vertex, triangle, irregular, or separating path) of G corresponds to an onerous element (or a pair of onerous elements) of the same type in G_{1}. It follows that if some claim of Theorem 2.1 holds for G_{1} then it is also valid for G.

So assume that $\beta \geq 8$ is an integer and G is a counterexample to Theorem 2.1 without onerous 4 -vertices. We next establish the following properties of G :

1. G has no adjacent triangles;
2. $\delta_{G} \geq 2$;
3. every vertex of degree at most 4 is incident with at least two B-faces;
4. every 2 -vertex is separating;
5. every 3 -vertex is either an onerous vertex, a BBB-vertex, or is incident with two B-faces and one S-face;
6. G has no onerous 4 -vertex;

6 . every 4 -vertex is incident with at most one triangle;
7. every d-vertex, $d \geq 5$, is incident with at most $\lfloor d / 2\rfloor$ triangles;
8. an admissible B-face of dimension at most 4 has at least 6 irregular edges;
9. every two irregular paths of a B-face are vertex-disjoint;
10. if a critical B-face f_{1} is joined through an onerous separating path $P_{12}=$ $v_{1} e_{1} \cdots e_{\ell-1} v_{\ell}$ with another B-face f_{2}, then $\operatorname{dim}\left(f_{2}\right) \geq 7$ or f_{2} has at least 5 irregular edges that are not incident with v_{1}, v_{ℓ}.

Claims (1), (3), (6), (8), (10) are directly implied by the assumptions made and the fact that G fails to satisfy any of (a)-(d) in Theorem 2.1; (2) follows from the 2 -connectedness of G; (4) and (5) are consequences of (3); while (6') follows from (1), (3), and (6). Claims (7) and (9) follow from (1) and (6), respectively.

Euler's Formula $\left|V_{G}\right|-\left|E_{G}\right|+\left|F_{G}\right|=2$ for G can be rewritten as

$$
\sum_{x \in V_{G} \cup F_{G}}(d(x)-4)=\sum_{x \in V_{G} \cup F_{G}} \mu_{1}(x)=-8,
$$

where $\mu_{1}(x)=d(x)-4$ is called the initial charge of an element (vertex or face) x. By (2), only triangles and vertices of degree 2 and 3 have negative initial charge.

We next redistribute initial charges according to the following rules:
(R1) A 2-vertex receives 1 from each incident B-face.
(R2) Let v be a 3-vertex incident only with B- and S-faces. Then v receives $1 / 3$ from each incident B-face if v is a BBB-vertex, and $1 / 2$ from each incident B -face if v is incident with exactly two B-faces.
(R3) Let v be an onerous 3 -vertex incident with a triangle $v x_{1} x_{2}$ and B-faces $f_{1}=v x_{1} \ldots$ and $f_{2}=v x_{2} \ldots$ (see sketch below).

If $d\left(x_{1}\right)=3$ and $d\left(x_{2}\right)>3$, then v receives $1 / 2$ from f_{1} and $5 / 6$ from f_{2}. If $d\left(x_{1}\right)=d\left(x_{2}\right)=3$ or $d\left(x_{i}\right)>3, i=1,2$, then v receives $2 / 3$ from both f_{1} and f_{2}.
(R4) Let v be a 4 -vertex incident with a triangle T and (non-triangular) faces f_{1}, f_{2}, and f_{3} in a cyclic order. Then v receives $1 / 6$ from both f_{1} and f_{3} if f_{1} and f_{3} are B-faces, or v receives $1 / 6$ from f_{1} and f_{2} if f_{3} is an S-face and (hence) f_{1} and f_{2} are B -faces.
(R5) A triangle receives $1 / 3$ from each incident vertex.
(R6) Let v be a vertex of degree at least 5 incident with a triangle T_{1}, a B-face f and a triangle T_{2} in a cyclic order. Then v gives $1 / 3$ to f.

Denote the resulting charge of an element $x \in V_{G} \cup F_{G}$ after applying rules (R1)(R6) by $\mu_{2}(x)$. Because we always move charge from one element to another,

$$
\sum_{x \in V_{G} \cup F_{G}} \mu_{2}(x)=\sum_{x \in V_{G} \cup F_{G}} \mu_{1}(x)=-8 .
$$

We next check that all vertices and most faces of G have a non-negative charge μ_{2}. First consider vertices.

Lemma 2.2. Every $v \in V_{G}$ has $\mu_{2}(v) \geq 0$.
Proof. If $d(v) \leq 4$, then by $(2)-\left(6^{\prime}\right)$ and (R1)-(R5), we have $\mu_{2}(v)=0$. If v is a 5 -vertex, then by (7) and (R5)-(R6), v gives $1 / 3$ to at most two triangles and at most one B-face. Therefore, in this case we have $\mu_{2}(v) \geq 1-2 \times 1 / 3-1 / 3=0$. Finally, if $d(v) \geq 6$, then v sends at most $1 / 3$ to each incident face by (R5)-(R6). Hence, $\mu_{2}(v) \geq d(v)-4-d(v) \times 1 / 3=2(d(v)-6) / 3 \geq 0$.

We now start looking at the faces. If T is a triangle, then by (R5), $\mu_{2}(T)=-1+$ $3 \times 1 / 3=0$. Note that an S-face never sends or receives charge by any rule (R1)(R6). Therefore, for any such face f we have $\mu_{2}(f)=\mu_{1}(f) \geq 0$. This implies the following property.

Lemma 2.3. If $f \in F_{G}$ is a triangle or an S-face, then $\mu_{2}(f) \geq 0$.
So we are left with B-faces. By $c_{f}(v)$ denotes the amount of charge that a B-face f gives to one of its vertices v by rules (R1)-(R4) (it may happen that $c_{f}(v)=0$), and set $c_{f}(v)=-1 / 3$ if f receives $1 / 3$ from v by (R6). We say that a B-face f saves charge $s c_{f}(v)=1-c_{f}(v)$ on its vertex v. It follows from (R1)-(R4) and (R6) that $s c_{f}(v)=0$ if and only if $d(v)=2$ (i.e., v is a separating vertex), and $s c_{f}(v) \geq 1 / 6$ otherwise (and then v is an irregular vertex). Furthermore, $s c_{f}(v) \geq 5 / 6$ if $d(v) \geq 4$, and $s c_{f}(v) \geq 1$ if $d(v) \geq 5$. If $Q=v_{1} e_{1} v_{2} \cdots e_{\ell-1} v_{\ell}$ is an irregular path of f then we say that f saves charge $s c_{f}(Q)=\sum_{i=1}^{\ell} s c_{f}\left(v_{i}\right)$ on Q. Note that by (9), any two irregular paths of f are vertex disjoint, so if v is an irregular vertex of f, then
$s c_{f}(v)$ is counted in exactly one $s c_{f}(Q)$. Because of (6) this implies

$$
\mu_{2}(f)=\sum_{i=1}^{m} s c_{f}\left(Q_{i}\right)-4,(*)
$$

where $m=\operatorname{dim}(f)$ and Q_{1}, \ldots, Q_{m} are the irregular paths of f. In particular, $\mu_{2}(f) \geq 0$ if and only if f saves the total of at least 4 on its irregular paths.

The next claim determines the amount of charge that a B-face can save on its irregular path.

Proposition 2.4. Let $Q=v_{1} e_{1} v_{2} \cdots e_{\ell-1} v_{\ell}, \ell \geq 1$, be an irregular path of a B-face f.
a. If Q is onerous, then $s c_{f}(Q)=2 / 3$.
b. If Q is not onerous, then $s c_{f}(Q) \geq 1$.
c. If $2 \leq i \leq \ell-1$, then $s c_{f}\left(v_{i}\right) \geq 5 / 6$.
d. If $\ell=3$, then $s c_{f}(Q) \geq 3 / 2$.
e. If $\ell \geq 4$, then $s c_{f}(Q) \geq(5 \ell-8) / 6$.

Proof.

a. This part follows from (R2) and (R3).
b. Suppose Q is not onerous. First assume $Q=\left\{v_{1}\right\}$, that is, $\ell=1$. Let u, w be the neighbors of v_{1} on the boundary of f. Since Q is an irregular path, both $v_{1} u$ and $v_{1} w$ are separating. From this we see that $c_{f}\left(v_{1}\right)=0$, hence $s c_{f}(Q)=s c_{f}\left(v_{1}\right)=1$.

So assume $\ell \geq 2$ and consider the edge $v_{1} v_{2}$ of Q. If $v_{1} v_{2}$ is a BSedge, then by (R2) and (R4) we have $s c_{f}\left(v_{1}\right) \geq 1 / 2, s c_{f}\left(v_{2}\right) \geq 1 / 2$, and hence $s c_{f}(Q) \geq 1$. So we are left with the case when $v_{1} v_{2}$ is a BT-edge and $s c_{f}\left(v_{1}\right)<1 / 2$. The last inequality, in particular, implies $d\left(v_{1}\right)=3$. Since Q is not an onerous irregular path, applying (R3) to v_{1} shows that $d\left(v_{2}\right)>3$. Finally we get $s c_{f}(Q) \geq s c_{f}\left(v_{1}\right)+s c_{f}\left(v_{2}\right) \geq$ $1 / 6+5 / 6=1$.
c. Since $v_{i-1} v_{i}, v_{i} v_{i+1}$ are irregular edges, hence non-BB-edges, it follows that v_{i} is incident with at least two non-B-faces in G. Taking into account (3), this implies that $d\left(v_{i}\right) \geq 4$.

If $d\left(v_{i}\right)=4$, then by (R4) we have $c_{f}\left(v_{i}\right)=1 / 6$ or $c_{f}\left(v_{i}\right)=0$, hence $s c_{f}\left(v_{i}\right) \geq 5 / 6$. If $d\left(v_{i}\right) \geq 5$, then from (R6) we get that $c_{f}\left(v_{i}\right)=-1 / 3$ or $c_{f}\left(v_{i}\right)=0$, hence $s c_{f}\left(v_{i}\right) \geq 1$.
d. If both $v_{1} v_{2}$ and $v_{2} v_{3}$ are BS-edges, then by (R2) and (R4) we have $s c_{f}\left(v_{1}\right) \geq$ $1 / 2, s c_{f}\left(v_{2}\right)=1$, and $s c_{f}\left(v_{3}\right) \geq 1 / 2$, which implies that $s c_{f}(Q) \geq 1 / 2+$ $1+1 / 2>3 / 2$. If $v_{1} v_{2}$ is a BS-edge while $v_{2} v_{3}$ is a BT-edge, then it follows from (R2), (R4), and (c) that $s c_{f}\left(v_{1}\right) \geq 1 / 2, s c_{f}\left(v_{2}\right) \geq 5 / 6$, and $s c_{f}\left(v_{3}\right) \geq$ $1 / 6$. Thus, $s c_{f}(Q) \geq 3 / 2$. Finally, assume that both $v_{i-1} v_{i}$ and $v_{i} v_{i+1}$ are

BT-edges. In this case (3) and (6) show that $d\left(v_{i}\right) \geq 5$, so by (R6) we have $s c_{f}\left(v_{2}\right)=4 / 3$. This gives $s c_{f}(Q) \geq 1 / 6+4 / 3+1 / 6>3 / 2$.
e. Applying (c) yields $s c_{f}(Q) \geq(\ell-2) \times 5 / 6+2 \times 1 / 6=(5 \ell-8) / 6$.

We are now ready to describe the faces of G with a negative charge μ_{2}.
Lemma 2.5. Let $f \in F_{G}$ be a face with $\mu_{2}(f)<0$. Then f is a critical B-face and one of the following statements holds:
a. $\mu_{2}(f)=-2 / 3$, and f has five onerous irregular paths;
b. $\mu_{2}(f) \geq-1 / 3$, and f has exactly four onerous irregular paths.

Proof. By Lemma 2.3, f is a B-face. Assume that f is not admissible. Then according to (R2), (R4), and (R6), f gives at most $1 / 2$ to each incident vertex. This implies $\mu_{2}(f) \geq d(f)-4-d(f) / 2=(d(f)-8) / 2 \geq 0$, a contradiction.

Denote the number of vertices in the longest irregular path of f by ℓ. If $\operatorname{dim}(f)=$ 1 or f has no separating edge, then $\ell \geq 7$ by (8). Using ($*$) and Proposition 2.4(c) gives $\mu_{2}(f)=s c_{f}(Q)-4 \geq(5 \cdot 7-8) / 6-4=1 / 2>0$.

Let $\operatorname{dim}(f)=m \geq 2$, and let Q_{1}, \ldots, Q_{m} be the irregular paths of f. W.l.o.g., we can assume that Q_{1} has ℓ vertices. First consider the case $m=2$. Claim (8) shows that $\ell \geq 4$. If $\ell \geq 6$, then by ($*$) and Proposition 2.4(a), (b), (e), we have $\mu_{2}(f)=s c_{f}\left(Q_{1}\right)+s c_{f}\left(Q_{2}\right)-4 \geq(5 \cdot 6-8) / 6+2 / 3-4=1 / 3>0$. If $\ell=5$, then Q_{2} has at least three vertices due to (8). Applying (*) and Proposition 2.4(d), (e) yields $\mu_{2}(f) \geq(5 \cdot 5-8) / 6+3 / 2-4=1 / 3>0$. Finally, if $\ell=4$, then both Q_{1} and Q_{2} have four vertices by (8), and hence $\mu_{2}(f) \geq 2 \times(5 \cdot 4-8) / 6-4=0$.

Suppose $m=3$. It follows from (8) that $\ell \geq 3$, and if $\ell=3$, then each irregular path of f has three vertices. If this is the case, then $(*)$ and Proposition 2.4(d) imply that $\mu_{2}(f)=3 \times 3 / 2-4=1 / 2>0$. If $\ell=4$, then claim (8) shows that either Q_{2} or Q_{3} has at least three vertices. Using (*) and Proposition 2.4, we obtain $\mu_{2}(f) \geq(5 \cdot 4-8) / 6+3 / 2+2 / 3-4=1 / 6>0$. If $\ell \geq 5$, then from $(*)$ and Proposition 2.4(a), (b), (e) we get $\mu_{2}(f) \geq(5 \cdot 5-8) / 6+2 \times 2 / 3-4=$ $1 / 6>0$.

Let $m=4$. Again from (8) we obtain $\ell \geq 3$. If $\ell \geq 4$, then $\mu_{2}(x) \geq(5.4-$ $8) / 6+3 \times 2 / 3-4=0$ due to $(*)$ and Proposition 2.4. If $\ell=3$, then, by (8), f has at least two irregular paths with three vertices. Thus, $\mu_{2}(f) \geq 2 \times 3 / 2+2 \times$ $2 / 3-4=1 / 3>0$.
If $m \geq 6$, then $\mu_{2}(f) \geq 6 \times 2 / 3-4=0$ by $(*)$ and Proposition 2.4(a), (b).
Finally, we come to the conclusion that $m=5$. If $\ell \geq 3$, then from ($*$) and Proposition 2.4 we get $\mu_{2}(f) \geq 3 / 2+4 \times 2 / 3-4=1 / 6>0$. Hence each irregular path of f has at most one edge. If f has at most three onerous irregular paths, then $\mu_{2}(f) \geq 3 \times 2 / 3+2 \cdot 1-4=0$ by $(*)$ and Proposition 2.4(a), (b). So either f has five onerous irregular paths and then $\mu_{2}(f)=5 \times 2 / 3-4=-2 / 3$ by Proposition 2.4(a), or f has exactly four onerous irregular paths and $\mu_{2}(f) \geq$ $4 \times 2 / 3+1-4=-1 / 3$ due to Proposition 2.4(a), (b). Clearly, in the first case we have the situation of claim (a), while the second implies (b).

From now on, for a critical B-face we say that it is either of type (a) or of type (b), according to Lemma 2.5. We see that a critical face of type (a) has five onerous separating paths, while a critical face of type (b) has three onerous separating paths. From (10) we know that every onerous separating path of a critical face f joins f with another B-face having specific properties. At this point we introduce another rule of charge distribution:
(R7) Let f_{1} be a critical B-face joined through an onerous separating path with another B-face f_{2}. Then f_{2} gives $1 / 6$ to f_{1}.

Denote the resultant charge of an element (vertex or face) x after applying rules (R1)-(R7) by $\mu_{3}(x)$. Clearly, $\sum_{x \in V_{G} \cup F_{G}} \mu_{3}(x)=-8$. The final contradiction in proving Theorem 2.1 now follows from the following lemma.

Lemma 2.6. Every $x \in V_{G} \cup F_{G}$ has $\mu_{3}(x) \geq 0$.
Proof. Since (R7) deals only with specific B-faces described in (10), it follows from the Lemmas 2.2, 2.3, and 2.5 that if $x \in V_{G} \cup F_{G}$ is not such a face then $\mu_{3}(x)=\mu_{2}(x) \geq 0$.

If f is a critical face of type (a), then Lemma 2.5(a) implies $\mu_{2}(f)=-2 / 3$, and f is incident with five onerous separating paths. Applying (R7) gives $\mu_{3}(f)=$ $-2 / 3+5 \times 1 / 6=1 / 6>0$. If f is a critical face of type (b), then Lemma 2.5 (b) shows that $\mu_{2}(f) \geq-1 / 3$, and f is incident with three onerous separating paths. In this case, $\mu_{3}(f) \geq-1 / 3+3 \times 1 / 6=1 / 6>0$.

Suppose f is a B-face which gives charge to at least one critical face f_{1} by (R7). Let $P_{1}=v_{1} e_{1} \cdots e_{\ell-1} v_{\ell}$ be an onerous separating path between f and f_{1}. It follows from (10) that if $\operatorname{dim}(f) \leq 6$, then f has at least five irregular edges that are not incident with v_{1}, v_{ℓ}. Since P_{1} is bounded by two onerous irregular paths Q_{1}, Q_{2} of f and each Q_{i} has at most one edge, $\operatorname{dim}(f)=m \geq 3$. If $m \geq 8$, then, using $(*)$, (R7), and Proposition 2.4(a), (b), we obtain $\mu_{3}(f) \geq m \times 2 / 3-4-m \times 1 / 6=$ $(m-8) / 2 \geq 0$.

So assume that $3 \leq m \leq 7$. First, we provide a lower bound on $\mu_{2}(f)$. If $m=7$, then $\mu_{2}(f) \geq 7 \times 2 / 3-4=2 / 3$, due to $(*)$ and Proposition 2.4(a), (b). If $m \leq 6$, then by (10) there are at least five edges in the irregular paths of f other than Q_{1} and Q_{2}. Direct calculations similar to those in proving Lemma 2.5 combined with $(*)$ and Proposition 2.4 show that $\mu_{2}(f) \geq 1$ if $m=3, \mu_{2}(f) \geq 5 / 6$ if $m \in\{4,6\}$, and $\mu_{2}(f) \geq 2 / 3$ if $m=5$. This implies $\mu_{3}(f) \geq 5 / 6-4 \times 1 / 6=1 / 6>0$ if $m \leq$ 4. Furthermore, in the case $5 \leq m \leq 7$ we still have $\mu_{3}(f) \geq 2 / 3-4 \times 1 / 6=0$ provided that f makes at most four donations of $1 / 6$ by (R7). Since $m \leq 7$, it suffices to prove that it is impossible for f to give charge to three consecutive adjacent B-faces by (R7).

Suppose there are three consecutive onerous separating paths P_{1}, P_{2}, P_{3} on the boundary of f joining f with critical faces f_{1}, f_{2}, f_{3}, respectively. By the definition of an onerous separating path, the faces f, f_{1}, f_{2} either have a BBB-vertex in common or are adjacent to a common onerous triangle, and the same is true for f, f_{2}, f_{3}.

This means that there exist separating paths P_{12}, P_{23} joining f_{2} with f_{1}, f_{3}, respectively. Since f_{2} is critical, it has a sequence of at least three consecutive onerous separating paths on its boundary. In particular, at least one of P_{12}, P_{23} must be onerous. However, since each of f_{i} is critical and has dimension 5, this contradicts (10).

This completes the proof of Theorem 2.1.

3. PROOF OF THEOREM 1.1

Throughout this section we fix $\beta=8$. For a plane graph G we set

$$
M_{G}^{*}=\max \left\{\Delta_{G}^{*}+3 k_{G}^{*}+2, \Delta_{G}^{*}+14,3 k_{G}^{*}+6,18\right\} .
$$

Suppose G is a counterexample to Theorem 1.1 with the fewest edges. Note that if a plane graph H satisfies $\Delta_{H}^{*} \leq \max \left\{\Delta_{G}^{*}, 4\right\}$ and $k_{H}^{*} \leq \max \left\{k_{G}^{*}, 4\right\}$, then $M_{H}^{*} \leq M_{G}^{*}$.

We first prove some structural properties of G and then apply Theorem 2.1 to show that G cannot exist.

Lemma 3.1. G has no multiple edges.
Proof. Suppose G has edges e_{1}, e_{2}, both joining vertices v_{1} and v_{2}. If the cycle $C=v_{1} e_{1} v_{2} e_{2} v_{1}$ is not separating, then removing e_{2} gives a graph H with $\Delta_{H}^{*}=\Delta_{G}^{*}$ and $k_{H}^{*}=k_{G}^{*}$, so $M_{H}^{*}=M_{G}^{*}$. By minimality of G, H has a cyclic coloring with at most M_{G}^{*} colors, which is also a cyclic coloring of G with at most M_{G}^{*} colors, a contradiction.
If C is separating, then denote the subgraphs of G induced by $C \cup \operatorname{Int}(C)$ and $C \cup \operatorname{Ext}(C)$ by G_{1} and G_{2}, respectively. It is straightforward that $\Delta_{G_{i}}^{*} \leq \Delta_{G}^{*}$ and $k_{G_{i}}^{*} \leq k_{G}^{*}, i=1,2$. By minimality of G, both G_{1} and G_{2} can be colored with at most M_{G}^{*} colors. Since G_{1} and G_{2} have only two vertices in common and each face of G is also a face in G_{1} or in G_{2}, we can combine the colorings of G_{1} and G_{2} to obtain a cyclic coloring of G using at most M_{G}^{*} colors.

Lemma 3.2. G is 2 -connected.
Proof. Suppose G has a cut vertex z, and let G_{1}, G_{2} be two subgraphs obtained by separating G along z. Again we can color both G_{1} and G_{2} with at most M_{G}^{*} colors. Also, G_{1} has a face f_{1} and G_{2} has a face f_{2} whose boundaries together form the boundary of a face f in G. Since $M_{G}^{*}>\Delta_{G}^{*}+1 \geq\left|V_{G}(f)\right|+|\{z\}|=$ $\left|V_{G}\left(f_{1}\right)\right|+\left|V_{G}\left(f_{2}\right)\right|$, we can use different colors for all vertices of f_{1} and f_{2}, and use the same color for z. Combining the colorings of G_{1} and G_{2} gives a coloring of G.

By Lemmas 3.1 and 3.2, G is a simple 2-connected graph. Hence G must have one of the configurations described in Theorem 2.1.

Lemma 3.3. G has no adjacent triangles.

Proof. Suppose G has adjacent triangles $T_{1}=u v x, T_{2}=u v y$. Remove the edge $u v$ from G. The resultant graph H has fewer edges than G and has only one face $f=u x v y$ which is not in G. Since $d_{H}(f)=4, f$ has at most four vertices in common with any other face and hence $\Delta_{H}^{*} \leq \max \left\{\Delta_{G}^{*}, 4\right\}$ and $k_{H}^{*} \leq \max \left\{k_{G}^{*}, 4\right\}$. Therefore, H has a cyclic coloring using at most $M_{H}^{*} \leq M_{G}^{*}$ colors, which is also a cyclic coloring of G.

A cyclic neighbor of a vertex v is a vertex $u \neq v$ such that there is a face incident with both u and v. The cyclic degree $d_{G}^{c}(v)$ of a vertex v in G is the number of cyclic neighbors of v.

Proposition 3.4. G cannot have a vertex of degree at most 4 and cyclic degree at most $M_{G}^{*}-1$.

Proof. Suppose v is such a vertex with degree $d \leq 4$. Denote the neighbors of v in a cyclic order by $u_{1}, u_{2}, \ldots, u_{d}$. Form the plane graph H by removing the vertex v and adding edges $u_{1} u_{2}, u_{2} u_{3}, \ldots, u_{d-1} u_{d}, u_{d} u_{1}$. By this definition, H has fewer vertices than G and the new face formed by the edges $u_{i} u_{i+1}$ has degree at $\operatorname{most} 4$, so $\Delta_{H}^{*} \leq \max \left\{\Delta_{G}^{*}, 4\right\}, k_{H}^{*} \leq \max \left\{k_{G}^{*}, 4\right\}$. Hence, H has a cyclic coloring using at most M_{G}^{*} colors. This also gives a cyclic coloring of G with at most M_{G}^{*} colors in which v is not colored yet. Since $d_{G}^{c}(v) \leq M_{G}^{*}-1$, there is at least one color not appearing on the cyclic neighbors of v. Hence the coloring can be extended to a cyclic coloring of G with at most M_{G}^{*} colors, a contradiction.

Lemma 3.5. G cannot have a vertex of degree at most 4 incident with at most one B-face.

Proof. The cyclic degree of a vertex v is at most the sum of the degrees of the faces incident with v subtracted by $2 d_{G}(v)$. Indeed, v itself is counted in each of these face degrees, and each neighbor of v is counted in at least two of such degrees. Since a non-B-face has degree at most 7 , while a B-face has degree at most Δ_{G}^{*}, it follows that any vertex v with $d_{G}(v) \leq 4$ and that is incident with at most one B-face has $d_{G}^{c}(v) \leq \Delta_{G}^{*}+3 \cdot 7-2 \cdot 4=\Delta_{G}^{*}+13 \leq M_{G}^{*}-1$, contradicting Proposition 3.4.

At this point we know that G must have one of the structures (c), (d) in Theorem 2.1. In order to show that these options also lead to a contradiction, we do some further analysis of the structure of B-faces and separating paths of G.

Property 3.6. A separating path of a B-face has at most k_{G}^{*} vertices.
Proof. Indeed, any such path lies on the boundary of two different B-faces.
Proposition 3.7. Let v be a 2 -vertex or an onerous vertex incident with a B-face f_{1} of dimension m. If the face f_{1} has at most tirregular edges on its boundary, then $d_{G}^{c}(v) \leq \Delta_{G}^{*}+(m-1) k_{G}^{*}+t-m-1$.

Proof. Suppose v is incident with a B-face f_{1} of dimension m and f_{1} has at most t irregular edges. By Lemma 3.5, v is also incident with another B-face f_{2}. First observe that every cyclic neighbor of v is incident with either f_{1} or f_{2}. This is clear if v is a 2 -vertex. If v is onerous, then v is incident with one or two triangles. However, it follows from the definition of an onerous vertex that the vertices of these triangles are also incident with either f_{1} or f_{2}.
By the above, v is a separating vertex or an onerous 3-vertex and hence belongs to a separating path P_{1} joining f_{1} with f_{2}. Let P_{2}, \ldots, P_{m} be the other separating paths of f_{1}. Denote the number of irregular paths of f_{1} consisting of a single vertex by m_{1}. Since f_{1} has dimension m, there are exactly $m_{2}=m-m_{1}$ irregular paths of f_{1} having at least one edge. Clearly, each end vertex of an irregular path is also an end vertex of some separating path. So if an irregular path consists of a single vertex x, then x is an end vertex of two separating paths of f_{1}. Hence f_{1} has m_{1} vertices that are covered twice by separating paths. On the other hand, every irregular path of f_{1} with $r \geq 1$ edges has $r-1$ internal vertices that are not covered by separating paths. As f_{1} has m_{2} such irregular paths formed by at most t irregular edges, the total number of vertices of f_{1} not covered by separating paths can be at most $t-m_{2}$.
These arguments, combined with Property 3.6 and the fact that every vertex of P_{1} is incident with f_{2}, yield

$$
\begin{aligned}
d_{G}^{c}(v) & \leq d_{G}\left(f_{2}\right)-1+\left|V_{G}\left(P_{2}\right)\right|+\cdots+\left|V_{G}\left(P_{m}\right)\right|-m_{1}+t-m_{2} \\
& \leq \Delta_{G}^{*}-1+(m-1) k_{G}^{*}+t-m .
\end{aligned}
$$

Lemma 3.8. G cannot have an admissible B-face of dimension at most 4 incident with at most 5 irregular edges.

Proof. Suppose f is such a face. Since f is admissible, it has a vertex v which is either a separating 2 -vertex or an onerous vertex. Using $t=5, m \leq 4$, and $k_{G}^{*} \geq 2$ in Proposition 3.7, we deduce that $d_{G}^{c}(v) \leq \Delta_{G}^{*}+3 k_{G}^{*}<M_{G}^{*}-1$, a contradiction with Proposition 3.4.

Proposition 3.9. A critical B-face cannot have two adjacent BBB-vertices on its boundary.

Proof. Let f be such a face, and let v_{1}, v_{2} be adjacent BBB-vertices on its boundary. Then $e=v_{1} v_{2}$ is a BB-edge and $P=v_{1} e v_{2}$ is an onerous separating path of f. An easy analysis as in the proof of Proposition 3.7 and Lemma 3.8 shows that f is incident with an onerous or separating vertex v such that $d_{G}^{c}(v) \leq$ $\Delta_{G}^{*}-1+\left|V_{G}(P)\right|+3 k_{G}^{*}+5-5=\Delta_{G}^{*}+3 k_{G}^{*}+1 \leq M_{G}^{*}-1$. Again we obtain a contradiction with Proposition 3.4.

Using Theorem 2.1 and the previous claims in this section, we conclude that G has B-faces f_{1} and f_{2} as described in Theorem 2.1(d). In particular, f_{1} is a critical

B-face joined with f_{2} through an onerous separating path $P_{12}=v_{1} e_{1} \cdots e_{\ell-1} v_{\ell}$. The definition of an onerous separating path shows that there is a unique B-face $f_{3} \notin\left\{f_{1}, f_{2}\right\}$ incident with v_{1} if v_{1} is a BBB-vertex, or with the onerous triangle incident with v_{1} if v_{1} is an onerous vertex. Similarly, at the other end of the path P_{12} we can find a unique B-face f_{4}.

By the definition of an onerous irregular path there exists a separating path P_{13} which joins f_{1} with f_{3} and starts at the vertex a_{13} which can be v_{1} or a vertex of an onerous triangle incident with v_{1}. Let b_{13} be the other end vertex of P_{13} (and hence we have $a_{13}=b_{13}$ if the path is just one onerous 4-vertex). Similarly, we can find a separating path P_{14} between f_{1} and f_{4} with end vertices a_{14}, b_{14}, a separating path P_{23} between f_{2} and f_{3} with end vertices a_{23}, b_{23}, and a separating path P_{24} between f_{2} and f_{4} with end vertices a_{24}, b_{24}.

Note that if $a_{13} \neq v_{1}$, then a_{13} is an onerous vertex, and hence all its cyclic neighbours are in $V_{G}\left(f_{1}\right) \cup V_{G}\left(f_{3}\right)$. The same holds for any internal vertex of P_{13}, if such a vertex exists, and for the other paths too.

Put $X=V_{G}\left(P_{12}\right), \quad Y_{3}=V_{G}\left(P_{13}\right) \backslash\left(X \cup\left\{b_{13}\right\}\right), \quad W_{3}=V_{G}\left(P_{23}\right) \backslash\left(X \cup\left\{b_{23}\right\}\right)$, $Y_{4}=V_{G}\left(P_{14}\right) \backslash\left(X \cup\left\{b_{14}\right\}\right)$, and $W_{4}=V_{G}\left(P_{24}\right) \backslash\left(X \cup\left\{b_{24}\right\}\right)$. From Proposition 3.9 it follows that there is a vertex $x \in X$ which is either separating or onerous. Therefore, the face f_{2} is admissible, and Lemma 3.8 shows that $\operatorname{dim}\left(f_{2}\right) \geq 3$. Although X is not empty, any of $Y_{3}, W_{3}, Y_{4}, W_{4}$ may be empty. Also, since both f_{1} and f_{2} have dimension at least three, all these sets are disjoint. Finally, from the previous paragraph we obtain that all vertices in Y_{3} have cyclic neighbors in $V_{G}\left(f_{1}\right) \cup V_{G}\left(f_{3}\right)$, and similarly for W_{3}, Y_{4}, W_{4}.

Let the neighbors of the vertex x be $u_{1}, u_{2}, \ldots, u_{d}$ in a cyclic order. We form the plane graph H by removing the vertex x and adding edges $u_{1} u_{2}, u_{2} u_{3}, \ldots, u_{d-1} u_{d}$, $u_{d} u_{1}$. Then H has fewer vertices than G. Also, the new face formed by the edges $u_{i} u_{i+1}$ has degree at most four and hence has at most four vertices in common with any other face. This means that $\Delta_{H}^{*} \leq \max \left\{\Delta_{G}^{*}, 4\right\}$ and $k_{H}^{*} \leq \max \left\{k_{G}^{*}, 4\right\}$. So H has a cyclic coloring using at most M_{G}^{*} colors. This also gives a cyclic coloring of G with at most M_{G}^{*} colors where x is not colored yet.

Proposition 3.10. There exist vertices in Y_{3} and in Y_{4} whose colors do not appear on vertices of f_{2}. (In particular, Y_{3} and Y_{4} are not empty.)

Proof. Suppose all the colors of vertices in Y_{3} also appear at f_{2}. Then the number of colors appearing on the cyclic neighbors of x is at most

$$
\left|V_{G}\left(f_{2}\right)\right|-1+\left|V_{G}\left(f_{1}\right) \backslash\left(X \cup Y_{3}\right)\right| \leq \Delta_{G}^{*}-1+3 k_{G}^{*}+1<M_{G}^{*}-1 .
$$

Here, we use that $\operatorname{dim}\left(f_{1}\right)=5$, each irregular path of f_{1} has at most one edge, and $X \cup Y_{3}=V_{G}\left(P_{12}\right) \cup V_{G}\left(P_{13}\right) \backslash\left\{b_{13}\right\}$ contains all but one of the vertices of two separating paths. Thus, x can be colored with a color different from the colors of its cyclic neighbors, a contradiction.
The same argument works for Y_{4}.

Proposition 3.11. The color of every vertex in $W_{3} \cup W_{4}$ also appears at f_{1}.
Proof. Suppose there is a vertex $w_{3} \in W_{3}$ whose color c_{w} does not appear at f_{1}. Then after removing the color from w_{3}, we can color x with c_{w}. Now we can not find a new color for w_{3} only if its cyclic neighbors use all $M_{G}^{*} \geq \Delta_{G}^{*}+3 k_{G}^{*}+2$ colors. Since w_{3} has at most $\Delta_{G}^{*}-1$ cyclic neighbors from f_{3}, there is a set C of at least $3 k_{G}^{*}+2$ colors that appear on vertices in $V_{G}\left(f_{2}\right) \backslash\left\{x, w_{3}\right\}$ but not appear at f_{3}.
By Proposition 3.10 there is a vertex $y_{3} \in Y_{3}$ whose color c_{y} does not appear at f_{2}. So after removing the color from y_{3}, we can color x with c_{y}. Exactly as in the previous paragraph we conclude that there is the same set C of at least $3 k_{G}^{*}+2$ colors appearing on vertices in $V_{G}\left(f_{1}\right) \backslash\left\{x, y_{3}\right\}$. Hence, the number of colors used for the cyclic neighbors of x is at most

$$
\left|V_{G}\left(f_{2}\right)\right|-1+\left|V_{G}\left(f_{1}\right)\right|-|C| \leq \Delta_{G}^{*}-1+5 k_{G}^{*}-\left(3 k_{G}^{*}+2\right)<M_{G}^{*}-1 .
$$

Thus, x can be colored with a color different from any of its cyclic neighbors, a contradiction.
The same argument works for W_{4}.
By Proposition 3.11, every color of a vertex in $W_{3} \cup W_{4}$ appears at f_{1}. Recall that $\operatorname{dim}\left(f_{2}\right) \leq 6$ and f_{2} has at most four irregular edges that are not incident with the end vertices of P_{12}. Since the colors of the vertices in $X \cup W_{3} \cup W_{4}$ occur on f_{1}, and since $X \cup W_{3} \cup W_{4}$ contains all but two of the vertices of three separating paths of f_{2}, it follows that the maximal number of colors appearing on cyclic neighbors of x is

$$
\begin{aligned}
& \left|V_{G}\left(f_{1}\right)\right|-1+\left|V_{G}\left(f_{2}\right) \backslash\left(X \cup W_{3} \cup W_{4}\right)\right| \\
& \quad \leq \Delta_{G}^{*}-1+3 k_{G}^{*}+4-4+2 \leq M_{G}^{*}-1 .
\end{aligned}
$$

So again we can find a suitable color for x, the final contradiction in the proof of Theorem 1.1.

We do not think that our proof approach can be extended to prove Conjecture 1.2, but we hope that our article opens new perspectives towards proving that $\chi^{c} \leq$ $\left\lfloor\frac{3}{2} \Delta^{*}\right\rfloor$ for plane graphs in general, and $\chi^{c} \leq \Delta^{*}+1$ for 3-connected plane graphs.

ACKNOWLEDGEMENT

The authors thank the anonymous referee for very helpful comments. The authors also thank the Faculty of Mathematical Sciences of the University of Twente for hospitality. OVB, HJB, and AG are supported by NWO grant 047-008-006; OVB is also supported by grant 02-01-00039 of the Russian Foundation for Basic Research and AG by grant 03-01-00796 of RFBR.

REFERENCES

[1] O. V. Borodin, D. Sanders, and Y. Zhao, On cyclic colorings and their generalizations, Disc Math 203 (1999), 23-40.
[2] H. Enomoto, M. Horňák, and S. Jendrol', Cyclic chromatic number of 3-connected plane graphs, SIAM J Discrete Math 14 (2001), 121-137.
[3] M. Horňák and S. Jendrol', On a conjecture by Plummer and Toft, J Graph Theory 30 (1999), 177-189.
[4] T. R. Jensen and B. Toft, Graph Coloring Problems, John Wiley \& Sons, New York (1995).
[5] O. Ore and M. D. Plummer, Cyclic coloration of plane graphs, In: Recent Progress in Combinatorics, Proceedings of the Third Waterloo Conference on Combinatorics, Academic Press, San Diego (1969) 287-293.
[6] M. D. Plummer and B. Toft, Cyclic coloration of 3-polytopes, J Graph Theory 11 (1987), 507-515.
[7] D. P. Sanders and Y. Zhao, A new bound on the cyclic chromatic number, J Comb Th Ser B 83 (2001), 102-111.

[^0]: ${ }^{\dagger}$ Research for this article was done during visits of OVB, AG, and JvdH to the University of Twente, while HJB was employed there.
 Contract grant sponsor: NWO; Contract grant number: 047-008-006; Contract grant sponsor: Russian Foundation for Basic Research; Contract grant number: 02-0100039, 03-01-00796.

 Journal of Graph Theory
 (3)WILEY
 © 2006 Wiley Periodicals, Inc.
 InterScience ${ }^{\circ}$

