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Abstract: A cyclic coloring of a plane graph is a vertex coloring such that
vertices incident with the same face have distinct colors. The minimum
number of colors in a cyclic coloring of a graph is its cyclic chromatic number
χc . Let �∗ be the maximum face degree of a graph. There exist plane graphs
with χc = �3

2 �∗�. Ore and Plummer [5] proved that χc ≤ 2 �∗, which bound
was improved to �9

5 �∗� by Borodin, Sanders, and Zhao [1], and to �5
3 �∗�

by Sanders and Zhao [7].
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We introduce a new parameter k∗, which is the maximum number of
vertices that two faces of a graph can have in common, and prove that χc ≤
max{�∗ + 3 k∗ + 2, �∗ + 14, 3 k∗ + 6, 18}, and if �∗ ≥ 4 and k∗ ≥ 4, then
χc ≤ �∗ + 3 k∗ + 2. © 2006 Wiley Periodicals, Inc. J Graph Theory 54: 58–72, 2007
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1. INTRODUCTION

Throughout this article, G is a connected plane graph with vertex set VG, edge set
EG, and face set FG. In what follows, G can have multiple edges but no loops,
while a simple graph has no multiple edges. The degree of a vertex v, denoted by
dG(v), is the number of edges incident with v. The degree of a face f , denoted by
dG(f ), is the number of vertices incident with f . We use �G and �∗

G to denote the
maximum vertex degree and maximum face degree of G, respectively.

For a cycle C we denote the sets of vertices of G lying strictly inside C and
strictly outside C by IntG(C) and ExtG(C), respectively. We say C is a separating
cycle if both IntG(C) and ExtG(C) are not empty.

A cyclic coloring of a plane graph is a vertex coloring such that two different
vertices incident with the same face receive distinct colors. The minimum number
of colors needed for a cyclic coloring, the cyclic chromatic number, is denoted by
χc

G. This concept was introduced by Ore and Plummer [5].
In the remainder the subscript G will often be omitted when it is clear what graph

we are dealing with. And instead of, say, “an edge incident with a face” or “a face
incident with a vertex,” we will sometimes write “an edge of a face” or “a face of
a vertex.”

It is obvious that a cyclic coloring of a 2-connected plane graph requires at least
�∗ colors. Note that the following plane graph has χc = � 3

2 �∗�: Take disjoint
triangles x1x2x3, y1y2y3 and join each xi with yi by a path all internal vertices of
which have degree 2, where one path has length � 1

2 �∗� − 1, while the other two
have length � 1

2 �∗� − 1. It is conjectured (see Jensen and Toft [4], page 37) that any
plane graph G has χc ≤ � 3

2 �∗�. Clearly, this bound, if true, would be best possible.
Ore and Plummer [5] proved that χc ≤ 2 �∗, which bound was improved to � 9

5 �∗�
by Borodin, Sanders, and Zhao [1], and to � 5

3 �∗� by Sanders and Zhao [7].
In this article we prove a bound for the cyclic chromatic number that depends

on �∗ and the following easily computable parameter of the graph. For a face f

in a plane graph G, let VG(f ) be the set of vertices of f . Let k∗
G (or just k∗) be the

maximum number of vertices that two faces of G can have in common:

k∗
G = max{|VG(f1) ∩ VG(f2)| | f1, f2 ∈ FG, f1 
= f2}.

Our main result is the following.

Theorem 1.1. Every connected plane graph G has

χc
G ≤ max{�∗

G + 3 k∗
G + 2, �∗

G + 14, 3 k∗
G + 6, 18}.
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Observe that for graphs with small enough k∗ the bound of Theorem 1.1 is better
than any general bound depending on �∗ only. No serious attempt has been made
by the authors to make the additive constants in Theorem 1.1 as small as possible.
It seems very likely that our proof method plus some extra detail analysis of special
cases can provide smaller values for these constants. However, we do not see how
to improve the constant 3 in front of k∗. We suggest the following conjecture, which
if true is best possible.

Conjecture 1.2. Every plane graph G with �∗
G and k∗

G large enough has a cyclic
coloring with �∗

G + k∗
G colors.

In particular this conjecture implies χc
G ≤ � 3

2 �∗
G� if �∗

G is large enough.
It is easy to check that if a plane graph G is 3-connected, then k∗

G = 2. So
Theorem 1.1 has the following corollary.

Corollary 1.3. Every 3-connected plane graph G has χc
G ≤ max{�∗

G + 14, 18}.
This upper bound on χc for 3-connected graphs of the form �∗

G + O(1) is ac-
tually close to best possible: the k-wheel Wk on k + 1 vertices is a 3-connected
plane graph with χc = �∗ + 1. The first bound of this order, χc ≤ �∗ + 9, was ob-
tained by Plummer and Toft [6]. They also conjectured that any 3-connected plane
graph has χc ≤ �∗ + 2. The best known bounds for the cyclic chromatic number of
3-connected plane graphs seem to be χc ≤ �∗ + 1 for �∗ ≥ 60 by Enomoto,
Horňák, and Jendrol’ [2], and χc ≤ �∗ + 2 for �∗ ≥ 24 by Horňák and Jendrol’ [3].

In the next section we give some further definitions and prove an auxiliary struc-
tural result. The proof of Theorem 1.1 itself can be found in Section 3.

2. DEFINITIONS AND STRUCTURAL RESULT

Throughout this section let β ≥ 4 be an integer and G a simple 2-connected plane
graph.

By a triangle we mean a face of degree three; an S-face (“small face”) is a face
of degree between 4 and β − 1, while a B-face (“big face”) is a face of degree at
least β. A BB-edge is an edge incident with two B-faces; BS-edges (“S” for small)
and BT-edges (“T” for triangle) are defined analogously.

A d-vertex is a vertex of degree d. A BBB-vertex is a 3-vertex incident with three
B-faces. A vertex is called onerous if it is either a 3-vertex incident with a triangle
and two B-faces, or a 4-vertex incident with two non-adjacent triangles and two
B-faces. A triangle is onerous if it is incident with three onerous vertices.

We next classify the vertices and edges of G incident with B-faces. An edge is
called separating if it is a BB-edge, and irregular if it is a BS- or BT-edge. A vertex
is separating if it is an onerous 4-vertex, or a 2-vertex incident with two B-faces;
otherwise a vertex is irregular. Observe that if G 
= Cn, then every B-face of G has
at least one irregular element (vertex or edge).

To describe the boundary of a B-face f , we define a separating path of f to be a
single onerous 4-vertex of f , or a maximal path P = v1e1v2e2 · · · v�−1e�−1v�, � ≥ 2,
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on the boundary of f such that every edge ei and every internal vertex v2, . . . , v�−1

is separating. By this definition each separating path joins two B-faces in G.
The boundary of a B-face f is called an irregular path of f if Q is maximal

with the property that every edge ei and every internal vertex v2, . . . , v�−1 is ir-
regular. If � = 1, then Q is just one irregular vertex incident with two separating
edges of f . It is easy to see that each edge of f belongs to a unique irregular or
separating path of f , and each end vertex of an irregular path Q is an irregular
vertex or an onerous 4-vertex. Note that if a B-face f has at least one separat-
ing element on its boundary, then each irregular path of f divides two separating
paths of f .

An irregular path Q is called onerous if Q is a single BBB-vertex, or Q contains
an edge of an onerous triangle adjacent to f . From the definitions above it follows
that each onerous irregular path has at most one edge. A separating path P of f

is called onerous if it is bounded by two onerous irregular paths (by edges of two
onerous triangles if P is formed by one onerous 4-vertex).

We say that a B-face f with at least one separating vertex or edge on its boundary
has dimension dim(f ) = m ≥ 1 if f is incident with exactly m separating paths
(and m irregular paths). We set dim(f ) = 0 if f has no irregular vertex or edge
(and hence G = Cn). A B-face f is admissible if it is incident with at least one
onerous vertex or separating 2-vertex. An admissible B-face f of dimension 5 is
called critical if it has at least 4 onerous irregular paths and each irregular path of
f has at most one edge.

We are now ready to give the main structural result.

Theorem 2.1. Let β ≥ 8 be an integer and G a 2-connected plane graph. Then
G has at least one of the following configurations:

a. two adjacent triangles;
b. a vertex of degree at most 4 incident with at most one B-face;
c. an admissible B-face of dimension at most 4 incident with at most 5 irregular

edges;
d. two B-faces f1, f2 joined by an onerous separating path P12 =

v1e1 · · · e�−1v�, where f1 is critical, dim(f2) ≤ 6, and f2 has at most 4 ir-
regular edges that are not incident with v1, v�.

Proof. We first show that it suffices to prove Theorem 2.1 for plane graphs
without onerous 4-vertices. Let G be an arbitrary 2-connected plane graph. We
form a new graph G1 by replacing each onerous 4-vertex v in G incident with
triangles vxy and vzt by a pair of onerous 3-vertices v1, v2, where v1 is adjacent to
v2, x, y, while v2 is adjacent to v1, z, t. By this definition, G1 is 2-connected and
has the same set of triangles, B-faces, S-faces, and irregular edges as G. Moreover,
for every B-face f we have dimG(f ) = dimG1 (f ). Observe that every onerous
element (vertex, triangle, irregular, or separating path) of G corresponds to an
onerous element (or a pair of onerous elements) of the same type in G1. It follows
that if some claim of Theorem 2.1 holds for G1 then it is also valid for G.
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So assume that β ≥ 8 is an integer and G is a counterexample to Theorem 2.1
without onerous 4-vertices. We next establish the following properties of G:

1. G has no adjacent triangles;
2. δG ≥ 2;
3. every vertex of degree at most 4 is incident with at least two B-faces;
4. every 2-vertex is separating;
5. every 3-vertex is either an onerous vertex, a BBB-vertex, or is incident with

two B-faces and one S-face;
6. G has no onerous 4-vertex;
6′. every 4-vertex is incident with at most one triangle;
7. every d-vertex, d ≥ 5, is incident with at most �d/2� triangles;
8. an admissible B-face of dimension at most 4 has at least 6 irregular edges;
9. every two irregular paths of a B-face are vertex-disjoint;

10. if a critical B-face f1 is joined through an onerous separating path P12 =
v1e1 · · · e�−1v� with another B-face f2, then dim(f2) ≥ 7 or f2 has at least 5
irregular edges that are not incident with v1, v�.

Claims (1), (3), (6), (8), (10) are directly implied by the assumptions made and
the fact that G fails to satisfy any of (a)–(d) in Theorem 2.1; (2) follows from the
2-connectedness of G; (4) and (5) are consequences of (3); while (6′) follows from
(1), (3), and (6). Claims (7) and (9) follow from (1) and (6), respectively.

Euler’s Formula |VG| − |EG| + |FG| = 2 for G can be rewritten as

∑

x∈VG∪FG

(d(x) − 4) =
∑

x∈VG∪FG

µ1(x) = −8,

where µ1(x) = d(x) − 4 is called the initial charge of an element (vertex or face)
x. By (2), only triangles and vertices of degree 2 and 3 have negative initial charge.

We next redistribute initial charges according to the following rules:

(R1) A 2-vertex receives 1 from each incident B-face.
(R2) Let v be a 3-vertex incident only with B- and S-faces. Then v receives 1/3

from each incident B-face if v is a BBB-vertex, and 1/2 from each incident
B-face if v is incident with exactly two B-faces.

(R3) Let v be an onerous 3-vertex incident with a triangle vx1x2 and B-faces
f1 = vx1 . . . and f2 = vx2 . . . (see sketch below).
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If d(x1) = 3 and d(x2) > 3, then v receives 1/2 from f1 and 5/6 from
f2. If d(x1) = d(x2) = 3 or d(xi) > 3, i = 1, 2, then v receives 2/3 from
both f1 and f2.

(R4) Let v be a 4-vertex incident with a triangle T and (non-triangular) faces
f1, f2, and f3 in a cyclic order. Then v receives 1/6 from both f1 and f3 if
f1 and f3 are B-faces, or v receives 1/6 from f1 and f2 if f3 is an S-face
and (hence) f1 and f2 are B-faces.

(R5) A triangle receives 1/3 from each incident vertex.
(R6) Let v be a vertex of degree at least 5 incident with a triangle T1, a B-face

f and a triangle T2 in a cyclic order. Then v gives 1/3 to f .

Denote the resulting charge of an element x ∈ VG ∪ FG after applying rules (R1)–
(R6) by µ2(x). Because we always move charge from one element to another,

∑

x∈VG∪FG

µ2(x) =
∑

x∈VG∪FG

µ1(x) = −8.

We next check that all vertices and most faces of G have a non-negative charge
µ2. First consider vertices.

Lemma 2.2. Every v ∈ VG has µ2(v) ≥ 0.

Proof. If d(v) ≤ 4, then by (2)–(6′) and (R1)–(R5), we have µ2(v) = 0. If v is
a 5-vertex, then by (7) and (R5)–(R6), v gives 1/3 to at most two triangles and at
most one B-face. Therefore, in this case we have µ2(v) ≥ 1 − 2 × 1/3 − 1/3 = 0.
Finally, if d(v) ≥ 6, then v sends at most 1/3 to each incident face by (R5)–(R6).
Hence, µ2(v) ≥ d(v) − 4 − d(v) × 1/3 = 2 (d(v) − 6)/3 ≥ 0. �

We now start looking at the faces. If T is a triangle, then by (R5), µ2(T ) = −1 +
3 × 1/3 = 0. Note that an S-face never sends or receives charge by any rule (R1)–
(R6). Therefore, for any such face f we have µ2(f ) = µ1(f ) ≥ 0. This implies the
following property.

Lemma 2.3. If f ∈ FG is a triangle or an S-face, then µ2(f ) ≥ 0.

So we are left with B-faces. By cf (v) denotes the amount of charge that a B-face f

gives to one of its vertices v by rules (R1)–(R4) (it may happen that cf (v) = 0), and
set cf (v) = −1/3 if f receives 1/3 from v by (R6). We say that a B-face f saves
charge scf (v) = 1 − cf (v) on its vertex v. It follows from (R1)–(R4) and (R6) that
scf (v) = 0 if and only if d(v) = 2 (i.e., v is a separating vertex), and scf (v) ≥ 1/6
otherwise (and then v is an irregular vertex). Furthermore, scf (v) ≥ 5/6 if d(v) ≥ 4,
and scf (v) ≥ 1 if d(v) ≥ 5. If Q = v1e1v2 · · · e�−1v� is an irregular path of f then
we say that f saves charge scf (Q) = ∑�

i=1 scf (vi) on Q. Note that by (9), any
two irregular paths of f are vertex disjoint, so if v is an irregular vertex of f , then
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scf (v) is counted in exactly one scf (Q). Because of (6) this implies

µ2(f ) =
m∑

i=1

scf (Qi) − 4, (∗)

where m = dim(f ) and Q1, . . . , Qm are the irregular paths of f . In particu-
lar, µ2(f ) ≥ 0 if and only if f saves the total of at least 4 on its irregular
paths.

The next claim determines the amount of charge that a B-face can save on its
irregular path.

Proposition 2.4. Let Q = v1e1v2 · · · e�−1v�, � ≥ 1, be an irregular path of a
B-face f .

a. If Q is onerous, then scf (Q) = 2/3.
b. If Q is not onerous, then scf (Q) ≥ 1.
c. If 2 ≤ i ≤ � − 1, then scf (vi) ≥ 5/6.
d. If � = 3, then scf (Q) ≥ 3/2.
e. If � ≥ 4, then scf (Q) ≥ (5 � − 8)/6.

Proof.
a. This part follows from (R2) and (R3).
b. Suppose Q is not onerous. First assume Q = {v1}, that is, � = 1. Let u, w

be the neighbors of v1 on the boundary of f . Since Q is an irregular path,
both v1u and v1w are separating. From this we see that cf (v1) = 0, hence
scf (Q) = scf (v1) = 1.

So assume � ≥ 2 and consider the edge v1v2 of Q. If v1v2 is a BS-
edge, then by (R2) and (R4) we have scf (v1) ≥ 1/2, scf (v2) ≥ 1/2,
and hence scf (Q) ≥ 1. So we are left with the case when v1v2 is a
BT-edge and scf (v1) < 1/2. The last inequality, in particular, implies
d(v1) = 3. Since Q is not an onerous irregular path, applying (R3) to
v1 shows that d(v2) > 3. Finally we get scf (Q) ≥ scf (v1) + scf (v2) ≥
1/6 + 5/6 = 1.

c. Since vi−1vi, vivi+1 are irregular edges, hence non-BB-edges, it follows that
vi is incident with at least two non-B-faces in G. Taking into account (3), this
implies that d(vi) ≥ 4.

If d(vi) = 4, then by (R4) we have cf (vi) = 1/6 or cf (vi) = 0, hence
scf (vi) ≥ 5/6. If d(vi) ≥ 5, then from (R6) we get that cf (vi) = −1/3 or
cf (vi) = 0, hence scf (vi) ≥ 1.

d. If both v1v2 and v2v3 are BS-edges, then by (R2) and (R4) we have scf (v1) ≥
1/2, scf (v2) = 1, and scf (v3) ≥ 1/2, which implies that scf (Q) ≥ 1/2 +
1 + 1/2 > 3/2. If v1v2 is a BS-edge while v2v3 is a BT-edge, then it follows
from (R2), (R4), and (c) that scf (v1) ≥ 1/2, scf (v2) ≥ 5/6, and scf (v3) ≥
1/6. Thus, scf (Q) ≥ 3/2. Finally, assume that both vi−1vi and vivi+1 are
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BT-edges. In this case (3) and (6) show that d(vi) ≥ 5, so by (R6) we have
scf (v2) = 4/3. This gives scf (Q) ≥ 1/6 + 4/3 + 1/6 > 3/2.

e. Applying (c) yields scf (Q) ≥ (� − 2) × 5/6 + 2 × 1/6 = (5 � − 8)/6. �

We are now ready to describe the faces of G with a negative charge µ2.

Lemma 2.5. Let f ∈ FG be a face with µ2(f ) < 0. Then f is a critical B-face
and one of the following statements holds:

a. µ2(f ) = −2/3, and f has five onerous irregular paths;
b. µ2(f ) ≥ −1/3, and f has exactly four onerous irregular paths.

Proof. By Lemma 2.3, f is a B-face. Assume that f is not admissible. Then
according to (R2), (R4), and (R6), f gives at most 1/2 to each incident vertex. This
implies µ2(f ) ≥ d(f ) − 4 − d(f )/2 = (d(f ) − 8)/2 ≥ 0, a contradiction.

Denote the number of vertices in the longest irregular path of f by �. If dim(f ) =
1 or f has no separating edge, then � ≥ 7 by (8). Using (∗) and Proposition 2.4(c)
gives µ2(f ) = scf (Q) − 4 ≥ (5 · 7 − 8)/6 − 4 = 1/2 > 0.

Let dim(f ) = m ≥ 2, and let Q1, . . . , Qm be the irregular paths of f . W.l.o.g.,
we can assume that Q1 has � vertices. First consider the case m = 2. Claim
(8) shows that � ≥ 4. If � ≥ 6, then by (∗) and Proposition 2.4(a), (b), (e), we have
µ2(f ) = scf (Q1) + scf (Q2) − 4 ≥ (5 · 6 − 8)/6 + 2/3 − 4 = 1/3 > 0. If � = 5,
then Q2 has at least three vertices due to (8). Applying (∗) and Proposition 2.4(d),
(e) yields µ2(f ) ≥ (5 · 5 − 8)/6 + 3/2 − 4 = 1/3 > 0. Finally, if � = 4, then both
Q1 and Q2 have four vertices by (8), and hence µ2(f ) ≥ 2 × (5 · 4 − 8)/6 − 4 = 0.

Suppose m = 3. It follows from (8) that � ≥ 3, and if � = 3, then each irregular
path of f has three vertices. If this is the case, then (∗) and Proposition 2.4(d)
imply that µ2(f ) = 3 × 3/2 − 4 = 1/2 > 0. If � = 4, then claim (8) shows that
either Q2 or Q3 has at least three vertices. Using (∗) and Proposition 2.4, we
obtain µ2(f ) ≥ (5 · 4 − 8)/6 + 3/2 + 2/3 − 4 = 1/6 > 0. If � ≥ 5, then from
(∗) and Proposition 2.4(a), (b), (e) we get µ2(f ) ≥ (5 · 5 − 8)/6 + 2 × 2/3 − 4 =
1/6 > 0.

Let m = 4. Again from (8) we obtain � ≥ 3. If � ≥ 4, then µ2(x) ≥ (5 · 4 −
8)/6 + 3 × 2/3 − 4 = 0 due to (∗) and Proposition 2.4. If � = 3, then, by (8), f

has at least two irregular paths with three vertices. Thus, µ2(f ) ≥ 2 × 3/2 + 2 ×
2/3 − 4 = 1/3 > 0.

If m ≥ 6, then µ2(f ) ≥ 6 × 2/3 − 4 = 0 by (∗) and Proposition 2.4(a), (b).
Finally, we come to the conclusion that m = 5. If � ≥ 3, then from (∗) and

Proposition 2.4 we get µ2(f ) ≥ 3/2 + 4 × 2/3 − 4 = 1/6 > 0. Hence each irreg-
ular path of f has at most one edge. If f has at most three onerous irregular
paths, then µ2(f ) ≥ 3 × 2/3 + 2 · 1 − 4 = 0 by (∗) and Proposition 2.4(a), (b). So
either f has five onerous irregular paths and then µ2(f ) = 5 × 2/3 − 4 = −2/3
by Proposition 2.4(a), or f has exactly four onerous irregular paths and µ2(f ) ≥
4 × 2/3 + 1 − 4 = −1/3 due to Proposition 2.4(a), (b). Clearly, in the first case
we have the situation of claim (a), while the second implies (b). �
Journal of Graph Theory DOI 10.1002/jgt



66 JOURNAL OF GRAPH THEORY

From now on, for a critical B-face we say that it is either of type (a) or of type (b),
according to Lemma 2.5. We see that a critical face of type (a) has five onerous
separating paths, while a critical face of type (b) has three onerous separating paths.
From (10) we know that every onerous separating path of a critical face f joins f

with another B-face having specific properties. At this point we introduce another
rule of charge distribution:

(R7) Let f1 be a critical B-face joined through an onerous separating path with
another B-face f2. Then f2 gives 1/6 to f1.

Denote the resultant charge of an element (vertex or face) x after applying rules
(R1)–(R7) by µ3(x). Clearly,

∑
x∈VG∪FG

µ3(x) = −8. The final contradiction in
proving Theorem 2.1 now follows from the following lemma.

Lemma 2.6. Every x ∈ VG ∪ FG has µ3(x) ≥ 0.

Proof. Since (R7) deals only with specific B-faces described in (10), it follows
from the Lemmas 2.2, 2.3, and 2.5 that if x ∈ VG ∪ FG is not such a face then
µ3(x) = µ2(x) ≥ 0.

If f is a critical face of type (a), then Lemma 2.5(a) implies µ2(f ) = −2/3,
and f is incident with five onerous separating paths. Applying (R7) gives µ3(f ) =
−2/3 + 5 × 1/6 = 1/6 > 0. If f is a critical face of type (b), then Lemma 2.5
(b) shows that µ2(f ) ≥ −1/3, and f is incident with three onerous separating
paths. In this case, µ3(f ) ≥ −1/3 + 3 × 1/6 = 1/6 > 0.

Suppose f is a B-face which gives charge to at least one critical face f1 by (R7).
Let P1 = v1e1 · · · e�−1v� be an onerous separating path between f and f1. It follows
from (10) that if dim(f ) ≤ 6, then f has at least five irregular edges that are not
incident with v1, v�. Since P1 is bounded by two onerous irregular paths Q1, Q2 of
f and each Qi has at most one edge, dim(f ) = m ≥ 3. If m ≥ 8, then, using (∗),
(R7), and Proposition 2.4(a), (b), we obtain µ3(f ) ≥ m × 2/3 − 4 − m × 1/6 =
(m − 8)/2 ≥ 0.

So assume that 3 ≤ m ≤ 7. First, we provide a lower bound on µ2(f ). If m = 7,
then µ2(f ) ≥ 7 × 2/3 − 4 = 2/3, due to (∗) and Proposition 2.4(a), (b). If m ≤ 6,
then by (10) there are at least five edges in the irregular paths of f other than Q1 and
Q2. Direct calculations similar to those in proving Lemma 2.5 combined with (∗)
and Proposition 2.4 show that µ2(f ) ≥ 1 if m = 3, µ2(f ) ≥ 5/6 if m ∈ {4, 6}, and
µ2(f ) ≥ 2/3 if m = 5. This implies µ3(f ) ≥ 5/6 − 4 × 1/6 = 1/6 > 0 if m ≤
4. Furthermore, in the case 5 ≤ m ≤ 7 we still have µ3(f ) ≥ 2/3 − 4 × 1/6 = 0
provided that f makes at most four donations of 1/6 by (R7). Since m ≤ 7, it
suffices to prove that it is impossible for f to give charge to three consecutive
adjacent B-faces by (R7).

Suppose there are three consecutive onerous separating paths P1, P2, P3 on the
boundary of f joining f with critical faces f1, f2, f3, respectively. By the definition
of an onerous separating path, the faces f, f1, f2 either have a BBB-vertex in com-
mon or are adjacent to a common onerous triangle, and the same is true for f, f2, f3.
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This means that there exist separating paths P12, P23 joining f2 with f1, f3, respec-
tively. Since f2 is critical, it has a sequence of at least three consecutive onerous sep-
arating paths on its boundary. In particular, at least one of P12, P23 must be onerous.
However, since each of fi is critical and has dimension 5, this contradicts (10). �

This completes the proof of Theorem 2.1. �

3. PROOF OF THEOREM 1.1

Throughout this section we fix β = 8. For a plane graph G we set

M∗
G = max{�∗

G + 3 k∗
G + 2, �∗

G + 14, 3 k∗
G + 6, 18}.

Suppose G is a counterexample to Theorem 1.1 with the fewest edges. Note
that if a plane graph H satisfies �∗

H ≤ max{�∗
G, 4} and k∗

H ≤ max{k∗
G, 4}, then

M∗
H ≤ M∗

G.
We first prove some structural properties of G and then apply Theorem 2.1 to

show that G cannot exist.

Lemma 3.1. G has no multiple edges.

Proof. Suppose G has edges e1, e2, both joining vertices v1 and v2. If the cycle
C = v1e1v2e2v1 is not separating, then removing e2 gives a graph H with �∗

H = �∗
G

and k∗
H = k∗

G, so M∗
H = M∗

G. By minimality of G, H has a cyclic coloring with at
most M∗

G colors, which is also a cyclic coloring of G with at most M∗
G colors, a

contradiction.
If C is separating, then denote the subgraphs of G induced by C ∪ Int(C) and

C ∪ Ext(C) by G1 and G2, respectively. It is straightforward that �∗
Gi

≤ �∗
G and

k∗
Gi

≤ k∗
G, i = 1, 2. By minimality of G, both G1 and G2 can be colored with at

most M∗
G colors. Since G1 and G2 have only two vertices in common and each face

of G is also a face in G1 or in G2, we can combine the colorings of G1 and G2 to
obtain a cyclic coloring of G using at most M∗

G colors. �

Lemma 3.2. G is 2-connected.

Proof. Suppose G has a cut vertex z, and let G1, G2 be two subgraphs obtained
by separating G along z. Again we can color both G1 and G2 with at most M∗

G

colors. Also, G1 has a face f1 and G2 has a face f2 whose boundaries together
form the boundary of a face f in G. Since M∗

G > �∗
G + 1 ≥ |VG(f )| + |{z}| =

|VG(f1)| + |VG(f2)|, we can use different colors for all vertices of f1 and f2, and
use the same color for z. Combining the colorings of G1 and G2 gives a coloring
of G. �

By Lemmas 3.1 and 3.2, G is a simple 2-connected graph. Hence G must have one
of the configurations described in Theorem 2.1.

Lemma 3.3. G has no adjacent triangles.
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Proof. Suppose G has adjacent triangles T1 = uvx, T2 = uvy. Remove the
edge uv from G. The resultant graph H has fewer edges than G and has only one
face f = uxvy which is not in G. Since dH (f ) = 4, f has at most four vertices in
common with any other face and hence �∗

H ≤ max{�∗
G, 4} and k∗

H ≤ max{k∗
G, 4}.

Therefore, H has a cyclic coloring using at most M∗
H ≤ M∗

G colors, which is also
a cyclic coloring of G. �

A cyclic neighbor of a vertex v is a vertex u 
= v such that there is a face incident
with both u and v. The cyclic degree dc

G(v) of a vertex v in G is the number of cyclic
neighbors of v.

Proposition 3.4. G cannot have a vertex of degree at most 4 and cyclic degree at
most M∗

G − 1.

Proof. Suppose v is such a vertex with degree d ≤ 4. Denote the neighbors of
v in a cyclic order by u1, u2, . . . , ud . Form the plane graph H by removing the
vertex v and adding edges u1u2, u2u3, . . ., ud−1ud , udu1. By this definition, H has
fewer vertices than G and the new face formed by the edges uiui+1 has degree at
most 4, so �∗

H ≤ max{�∗
G, 4}, k∗

H ≤ max{k∗
G, 4}. Hence, H has a cyclic coloring

using at most M∗
G colors. This also gives a cyclic coloring of G with at most M∗

G

colors in which v is not colored yet. Since dc
G(v) ≤ M∗

G − 1, there is at least one
color not appearing on the cyclic neighbors of v. Hence the coloring can be extended
to a cyclic coloring of G with at most M∗

G colors, a contradiction. �

Lemma 3.5. G cannot have a vertex of degree at most 4 incident with at most
one B-face.

Proof. The cyclic degree of a vertex v is at most the sum of the degrees of
the faces incident with v subtracted by 2 dG(v). Indeed, v itself is counted in each
of these face degrees, and each neighbor of v is counted in at least two of such
degrees. Since a non-B-face has degree at most 7, while a B-face has degree at most
�∗

G, it follows that any vertex v with dG(v) ≤ 4 and that is incident with at most
one B-face has dc

G(v) ≤ �∗
G + 3 · 7 − 2 · 4 = �∗

G + 13 ≤ M∗
G − 1, contradicting

Proposition 3.4. �

At this point we know that G must have one of the structures (c), (d) in Theorem 2.1.
In order to show that these options also lead to a contradiction, we do some further
analysis of the structure of B-faces and separating paths of G.

Property 3.6. A separating path of a B-face has at most k∗
G vertices.

Proof. Indeed, any such path lies on the boundary of two different B-faces. �

Proposition 3.7. Let v be a 2-vertex or an onerous vertex incident with a B-face
f1 of dimension m. If the face f1 has at most t irregular edges on its boundary, then
dc

G(v) ≤ �∗
G + (m − 1) k∗

G + t − m − 1.
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Proof. Suppose v is incident with a B-face f1 of dimension m and f1 has at
most t irregular edges. By Lemma 3.5, v is also incident with another B-face f2.
First observe that every cyclic neighbor of v is incident with either f1 or f2. This is
clear if v is a 2-vertex. If v is onerous, then v is incident with one or two triangles.
However, it follows from the definition of an onerous vertex that the vertices of
these triangles are also incident with either f1 or f2.

By the above, v is a separating vertex or an onerous 3-vertex and hence belongs
to a separating path P1 joining f1 with f2. Let P2, . . . , Pm be the other separating
paths of f1. Denote the number of irregular paths of f1 consisting of a single vertex
by m1. Since f1 has dimension m, there are exactly m2 = m − m1 irregular paths of
f1 having at least one edge. Clearly, each end vertex of an irregular path is also an
end vertex of some separating path. So if an irregular path consists of a single vertex
x, then x is an end vertex of two separating paths of f1. Hence f1 has m1 vertices
that are covered twice by separating paths. On the other hand, every irregular path
of f1 with r ≥ 1 edges has r − 1 internal vertices that are not covered by separating
paths. As f1 has m2 such irregular paths formed by at most t irregular edges, the
total number of vertices of f1 not covered by separating paths can be at most t − m2.

These arguments, combined with Property 3.6 and the fact that every vertex of
P1 is incident with f2, yield

dc
G(v) ≤ dG(f2) − 1 + |VG(P2)| + · · · + |VG(Pm)| − m1 + t − m2

≤ �∗
G − 1 + (m − 1) k∗

G + t − m.

�

Lemma 3.8. G cannot have an admissible B-face of dimension at most 4 incident
with at most 5 irregular edges.

Proof. Suppose f is such a face. Since f is admissible, it has a vertex v which
is either a separating 2-vertex or an onerous vertex. Using t = 5, m ≤ 4, and k∗

G ≥ 2
in Proposition 3.7, we deduce that dc

G(v) ≤ �∗
G + 3k∗

G < M∗
G − 1, a contradiction

with Proposition 3.4. �

Proposition 3.9. A critical B-face cannot have two adjacent BBB-vertices on its
boundary.

Proof. Let f be such a face, and let v1, v2 be adjacent BBB-vertices on its
boundary. Then e = v1v2 is a BB-edge and P = v1 e v2 is an onerous separating
path of f . An easy analysis as in the proof of Proposition 3.7 and Lemma 3.8
shows that f is incident with an onerous or separating vertex v such that dc

G(v) ≤
�∗

G − 1 + |VG(P)| + 3k∗
G + 5 − 5 = �∗

G + 3k∗
G + 1 ≤ M∗

G − 1. Again we obtain
a contradiction with Proposition 3.4. �

Using Theorem 2.1 and the previous claims in this section, we conclude that G

has B-faces f1 and f2 as described in Theorem 2.1(d). In particular, f1 is a critical
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B-face joined with f2 through an onerous separating path P12 = v1e1 · · · e�−1v�.
The definition of an onerous separating path shows that there is a unique B-face
f3 
∈ {f1, f2} incident with v1 if v1 is a BBB-vertex, or with the onerous triangle
incident with v1 if v1 is an onerous vertex. Similarly, at the other end of the path
P12 we can find a unique B-face f4.

By the definition of an onerous irregular path there exists a separating path P13

which joins f1 with f3 and starts at the vertex a13 which can be v1 or a vertex of an
onerous triangle incident with v1. Let b13 be the other end vertex of P13 (and hence
we have a13 = b13 if the path is just one onerous 4-vertex). Similarly, we can find a
separating path P14 between f1 and f4 with end vertices a14, b14, a separating path
P23 between f2 and f3 with end vertices a23, b23, and a separating path P24 between
f2 and f4 with end vertices a24, b24.

Note that if a13 
= v1, then a13 is an onerous vertex, and hence all its cyclic
neighbours are in VG(f1) ∪ VG(f3). The same holds for any internal vertex of P13,
if such a vertex exists, and for the other paths too.

Put X = VG(P12), Y3 = VG(P13) \ (X ∪ {b13}), W3 = VG(P23) \ (X ∪ {b23}),
Y4 = VG(P14) \ (X ∪ {b14}), and W4 = VG(P24) \ (X ∪ {b24}). From Proposi-
tion 3.9 it follows that there is a vertex x ∈ X which is either separating or onerous.
Therefore, the face f2 is admissible, and Lemma 3.8 shows that dim(f2) ≥ 3. Al-
though X is not empty, any of Y3, W3, Y4, W4 may be empty. Also, since both
f1 and f2 have dimension at least three, all these sets are disjoint. Finally, from
the previous paragraph we obtain that all vertices in Y3 have cyclic neighbors in
VG(f1) ∪ VG(f3), and similarly for W3, Y4, W4.

Let the neighbors of the vertex x be u1, u2, . . . , ud in a cyclic order. We form the
plane graph H by removing the vertex x and adding edges u1u2, u2u3, . . ., ud−1ud ,
udu1. Then H has fewer vertices than G. Also, the new face formed by the edges
uiui+1 has degree at most four and hence has at most four vertices in common with
any other face. This means that �∗

H ≤ max{�∗
G, 4} and k∗

H ≤ max{k∗
G, 4}. So H

has a cyclic coloring using at most M∗
G colors. This also gives a cyclic coloring of

G with at most M∗
G colors where x is not colored yet.

Proposition 3.10. There exist vertices in Y3 and in Y4 whose colors do not appear
on vertices of f2. (In particular, Y3 and Y4 are not empty.)

Proof. Suppose all the colors of vertices in Y3 also appear at f2. Then the
number of colors appearing on the cyclic neighbors of x is at most

|VG(f2)| − 1 + |VG(f1) \ (X ∪ Y3)| ≤ �∗
G − 1 + 3 k∗

G + 1 < M∗
G − 1.

Here, we use that dim(f1) = 5, each irregular path of f1 has at most one edge,
and X ∪ Y3 = VG(P12) ∪ VG(P13) \ {b13} contains all but one of the vertices of two
separating paths. Thus, x can be colored with a color different from the colors of
its cyclic neighbors, a contradiction.

The same argument works for Y4. �
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Proposition 3.11. The color of every vertex in W3 ∪ W4 also appears at f1.

Proof. Suppose there is a vertex w3 ∈ W3 whose color cw does not appear at
f1. Then after removing the color from w3, we can color x with cw. Now we can not
find a new color for w3 only if its cyclic neighbors use all M∗

G ≥ �∗
G + 3 k∗

G + 2
colors. Since w3 has at most �∗

G − 1 cyclic neighbors from f3, there is a set C of
at least 3 k∗

G + 2 colors that appear on vertices in VG(f2) \ {x, w3} but not appear
at f3.

By Proposition 3.10 there is a vertex y3 ∈ Y3 whose color cy does not appear at
f2. So after removing the color from y3, we can color x with cy. Exactly as in the
previous paragraph we conclude that there is the same set C of at least 3 k∗

G + 2
colors appearing on vertices in VG(f1) \ {x, y3}. Hence, the number of colors used
for the cyclic neighbors of x is at most

|VG(f2)| − 1 + |VG(f1)| − |C| ≤ �∗
G − 1 + 5 k∗

G − (3 k∗
G + 2) < M∗

G − 1.

Thus, x can be colored with a color different from any of its cyclic neighbors, a
contradiction.

The same argument works for W4. �

By Proposition 3.11, every color of a vertex in W3 ∪ W4 appears at f1. Recall that
dim(f2) ≤ 6 and f2 has at most four irregular edges that are not incident with the
end vertices of P12. Since the colors of the vertices in X ∪ W3 ∪ W4 occur on f1,
and since X ∪ W3 ∪ W4 contains all but two of the vertices of three separating paths
of f2, it follows that the maximal number of colors appearing on cyclic neighbors
of x is

|VG(f1)| − 1 + |VG(f2) \ (X ∪ W3 ∪ W4)|
≤ �∗

G − 1 + 3 k∗
G + 4 − 4 + 2 ≤ M∗

G − 1.

So again we can find a suitable color for x, the final contradiction in the proof of
Theorem 1.1. �

We do not think that our proof approach can be extended to prove Conjecture 1.2,
but we hope that our article opens new perspectives towards proving that χc ≤
� 3

2 �∗� for plane graphs in general, and χc ≤ �∗ + 1 for 3-connected plane graphs.

ACKNOWLEDGEMENT

The authors thank the anonymous referee for very helpful comments. The authors
also thank the Faculty of Mathematical Sciences of the University of Twente for
hospitality. OVB, HJB, and AG are supported by NWO grant 047-008-006; OVB is
also supported by grant 02-01-00039 of the Russian Foundation for Basic Research
and AG by grant 03-01-00796 of RFBR.

Journal of Graph Theory DOI 10.1002/jgt



72 JOURNAL OF GRAPH THEORY

REFERENCES

[1] O. V. Borodin, D. Sanders, and Y. Zhao, On cyclic colorings and their general-
izations, Disc Math 203 (1999), 23–40.
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