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Abstract

For a graph G, we denote by i(G) the number of isolated vertices of G. We
prove that for a connected graph G of order at least five, if i(G − S) < |S| for all
∅ �= S ⊆ V (G), then G has a spanning tree T such that the distance in T between
any two leaves of T is at least four. This result was conjectured by Kaneko in
”Spanning trees with constrains on the leaf degree”, Discrete Applied Math., 115
(2001) 73–76. Moreover, the condition in the result is sharp in a sense that the
condition i(G− S) < |S| cannot be replaced by i(G− S) ≤ |S|.

1 Introduction

We consider finite graphs which have neither multiple edges nor loops. Let G be a graph
with vertex set V (G) and edge set E(G). We denote by I(G) the set of isolated vertices of
G, and by i(G) the number of isolated vertices of G, that is, i(G) = |I(G)|. The degree of
a vertex v in G is denoted by degG(v). A vertex of degree one is called a pendant vertex,
and a pendant vertex of a tree is usually called a leaf. An edge incident with an pendant
vertex is called a pendant edge.

There are many results on the existence of spanning trees with some given properties.
For example, Win [5] proved that if ω(G − S) ≤ (k − 2)|S| + 2 for all ∅ �= S ⊆ V (G),
then G has a spanning tree with maximum degree at most k, where k ≥ 2 and ω(G− S)
denotes the number of components of G− S. Ellingham, Nam and Voss [3] showed that
every m-edge connected graph has spanning tree T such that degT (v) ≤ 2+ �degG(v)/m�
for every vertex v of G. Other similar results can be found a recent survey [4] by Kouider
and Vestergaard.

In this paper, we consider a spanning tree with given leaf distance. Let T be a spanning
tree of a graph. The leaf distance of T is defined to be the minimum of distances between
any two leaves of T (see Figure 1). The leaf degree of a vertex v in T is the number of
leaves of T incident with v, and the maximum leaf degree of T is the maximum leaf degree
among the vertices of T .

1

�����



Kaneko made the following conjecture.

Conjecture 1 ([1]) Let d ≥ 4 be an integer and G be a connected graph with order at
least d + 1. If

i(G− S) <
2|S|
d− 2

for all ∅ �= S ⊆ V (G), (1)

then G has a spanning tree with leaf distance at least d.

Moreover, he showed that if the above conjecture is true for an even integer d, then
the condition (1) is sharp in a sense that there exist connected graphs G′ that have no
spanning tree with leaf distance at least d and satisfy i(G′ − S) ≤ 2|S|/(d − 2) for all
∅ �= S ⊆ V (G′). Other class of such graphs for d = 4 is the following: the corona cor(Kn)
of a complete graph Kn, which is obtained from Kn by adding a pendant edge to each
vertex of Kn, satisfies i(cor(Kn) −X) ≤ |X | for every ∅ �= X ⊆ V (cor(Kn)), but has no
spanning tree with leaf distance at least four.

Note that Conjecture 1 is true for d = 3 by the following theorem with m = 1 since
the leaf distance of a spanning tree T is at least three if and only if the maximum leaf
degree of T is one.

Theorem 2 ([1]) Let G be a connected graph and m ≥ 1 be an integer. Then G has a
spanning tree with maximum leaf degree at most m if and only if

i(G− S) < (m + 1)|S| for all ∅ �= S ⊆ V (G). (2)

In this paper, we shall prove the following theorem, which implies that Conjecture 1
is true for d = 4.

Theorem 3 Let G be a connected graph with order at least five. If

i(G− S) < |S| for all ∅ �= S ⊆ V (G), (3)

then G has a spanning tree with leaf distance at least four (Figure 1).

Figure 1: A tree with leaf distance four
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2 Proof of Theorem 3

Let G be a graph. For a subset S ⊆ V (G), we write G−S for the subgraph of G induced by
V (G)−S. For two disjoint vertex subsets S and T of G, we denote by EG(S, T ) the set of
edges of G joining a vertex in S to a vertex in T . We denote by NG(v) the neighborhood of
v, and so degG(v) = |NG(v)|. The neighborhood of S is defined by NG(S) =

⋃
x∈S NG(x).

We call a component with order at least two a non-trivial component.
For a set X and its subset Y , we write Y ⊂ X when Y is a proper subset of X.

Lemma 4 (Kaneko and Yoshimoto [2]) Let G be a connected bipartite graph with bi-
partition A ∪ B, and f be a function defined by f : A → {2, 3, 4, . . .}. Then G has a
spanning tree T such that degT (x) ≥ f(x) for all x ∈ A if and only if

|NG(S)| ≥
∑

x∈S

f(x)− |S|+ 1 for all ∅ �= S ⊆ A. (4)

In particular, if |NG(S)| ≥ |S| + 1 for all ∅ �= S ⊆ A, then G has a spanning tree all
whose leaves are contained in B.

Proof of Theorem 3. We prove Theorem 3 by induction on the lexicographic
order of (|V (G)|, |E(G)|), and thus, when we consider a graph G, we may assume that
the theorem holds for a graph H with either |V (H)| < |V (G)| or |V (H)| = |V (G)| and
|E(H)| < |E(G)|. By (3), G has no pendant vertices, that is, degG(x) ≥ 2 for every
x ∈ V (G). We often use this fact without mentioning it.

Claim 1. We may assume that G has order at least eight.

If G has order 5 or 6, then we can easily show that G has a Hamiltonian path, which
is obviously the desired spanning tree. Suppose that G has order 7. In this case, we shall
show that G has a Hamiltonian path, or G is a graph with vertex set {u, v1, v2, v3, v4, v5, v6}
and edge set {uvi | 1 ≤ i ≤ 6} ∪ {v1v2, v3v4, v5v6}, which is called the 7-windmill and has
a spanning tree with leaf distance four. Let k be the length of a longest cycle of G. If
k ≥ 4, then by considering the cases of k = 7, 6, 5 and k = 4 one by one, we can show
that G has a Hamiltonian path. If k = 3, then we can show that G has a Hamiltonian
path or G is the 7-windmill. Hence Claim 1 follows.

Since every vertex has degree at least two, we have |E(G)| ≥ |V (G)|. If |E(G)| =
|V (G)|, then G must be a cycle, and so G has a Hamiltonian path, which is obviously the
desired spanning tree. Hence we may assume |E(G)| ≥ |V (G)| + 1, in particular, G has
an edge e0 such that G− e0 is connected.

Claim 2. There exists a subset ∅ �= R ⊂ V (G) such that 1 ≤ |R| − i(G − R) ≤ 2
and i(G − R) ≥ 1. Moreover, if |R| = 3 and i(G − R) = 1, then the two end-vertices of
e0 form an component of G−R or two vertices of R are joined by an edge of G.

If G − e0 satisfies (3), then G − e0 has the desired spanning tree by the inductive
hypotheses. Hence we may assume that G − e0 does not satisfy (3), which implies that
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there exists a subset ∅ �= S ⊂ V (G) such that i(G− e0 − S) ≥ |S|. Since i(G− e0− S) ≤
i(G− S) + 2 and (3), we have

1 ≤ |S| − i(G− S) ≤ |S| − i(G− e0 − S) + 2 ≤ 2.

If i(G−S) ≥ 1, then R = S satisfies the first statement of the claim. If i(G−S) = 1 and
|S| = 3, then i(G− e0−S) = 3 and e0 joins two isolated vertices of G− e0−S. Thus the
two end-vertices of e0 form an component of G − S, and hence R = S also satisfies the
second statement. Therefore we may assume i(G− S) = 0.

If |S| − i(G − S) = 1, then |S| = 1 and i(G − e0 − S) = 1 or 2, and so e0 joins
the unique isolated vertex y1 of G − e0 − S to a non-isolated vertex z1 of G − e0 − S,
or e0 joins the two isolated vertices y1 and y2 of G − e0 − S (see Figure 2 (a)). Thus
we have either i(G − S ∪ {z1}) = |{y1}| = 1 and |S ∪ {z1}| − i(G − S ∪ {z1}) = 1 or
i(G−S ∪{y2}) = |{y1}| = 1 and |S∪{y2}|− i(G−S ∪{y2}) = 1. Therefore R = S∪{z1}
or S ∪ {y2} satisfies the first tatement of the claim.

If |S| − i(G − S) = 2, then |S| = 2, i(G − e0 − S) = 2 and e0 joins the two isolated
vertices y3 and y4 of G− e0−S (see Figure 2 (b)). Thus i(G−S ∪{y4}) = |{y3}| = 1 and
|S ∪{y4}| − i(G−S ∪{y4}) = 3− 1 = 2. Hence R = S ∪{y4} satisfies the first statement
of the claim. Furthermore, since degG(y4) ≥ 2 and y4 is an isolated vertex of G− e0 − S,
there exists at least one edge joining y4 to S. Hence R = S∪{y4} also satisfies the second
statement.

S={    }

z1y1
e0 y2y1

e0 y4y3
e0

(a)  |S|=1 (b)  |S|=2

Figure 2: i(G− S) = 0; Broken lines are edges or not.

We define an integer m by

m = min{|X | − i(G−X) | R ⊆ X ⊂ V (G), i(G−X) ≥ 1},
where R is the vertex subset given in Claim 2. Since i(G − X) < |X | by (3), we have
m ≥ 1. By Claim 2, we have 1 ≤ m ≤ 2. Let S0 be a maximal subset of V (G) subject to
|S0| − i(G− S0) = m, R ⊆ S0 and i(G− S0) ≥ 1. Then we have

m < |X | − i(G−X) for every S0 ⊂ X ⊂ V (G) with i(G−X) ≥ 1. (5)

Claim 3. Every non-trivial component D of G − S0 satisfies i(D − T ) < |T | for
every subset ∅ �= T ⊆ V (D). In particular, |D| ≥ 3, and D has a Hamiltonian cycle if
3 ≤ |D| ≤ 4; and otherwise D has a spanning tree with leaf distance at least four.
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Let D be a non-trivial component of G−S0. For every ∅ �= T ⊂ V (D), by (5) we have

m = |S0| − i(G− S0) < |S0 ∪ T | − i(G− (S0 ∪ T )),

which implies i(D − T ) < |T |. Hence the Claim follows by induction.

Before going to the next step, we need some definition. Let T be a rooted tree with
root v. Then for every vertex x ∈ V (T )− v, we define the parent of x as the neighbor of
x lying on the x-v path. Similarly, we define the children of x as the neighbors of x not
lying on the x-v path. Note that there exists exactly one parent for every x ∈ V (T )− v,
but there may exist none or more than one children for some x ∈ V (T )− v.

We shall consider the following two cases accroding to m.

Case 1. m = 1.

In this case, |S0| = i(G − S0) + 1. Let B be the bipartite graph with vertex set
I(G−S0)∪S0 and edge set EG(I(G−S0), S0), which is the set of edges of G joining I(G−S0)
to S0. If |NB(X ′)| ≤ |X ′| for some subset ∅ �= X ′ ⊆ I(G − S0), then i(G − NB(X ′)) ≥
|X ′| ≥ |NB(X ′)|, which contradicts (3). Hence

|NB(X)| > |X | for all ∅ �= X ⊆ I(G− S0). (6)

v

m=1 TBI(G-S0 )={   } S0={   }(b)

eD

S0

PD

(a)

TB

TDTD

D

eD

eDeD

eD

TD
eD

eD

Figure 3: S0, I(G− S0) and a spanning tree TB.

By Lemma 4, B has a spanning tree TB such that all the leaves of TB are contained
in S0. If all the vertices in S0 are leaves of TB, then |S0| = 2, and there exists at least one
non-trivial component of G − S0 by Claim 1. Every non-trivial component D of G− S0

has a Hamiltonian cycle CD or a spanning tree TD with leaf distance at least four by
Claim 3, and G has an edge eD joining D to a vertex of S0 (Figure 3 (a)). If D has a
Hamiltonian cycle CD, then D has a Hamiltonian path PD such that eD joins a leaf of PD

to S0. Hence
T =

⋃

D

(PD + eD or TD + eD) + TB,
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where the union is taken over all the non-trivial components D of G− S0, is the desired
spanning tree of G with leaf distance at least four (see Figure 3 (a)).

Therefore we may assume that S0 contains a vertex v that is not a leaf of TB. We
regard TB as a rooted tree with root v. Since all the leaves of TB are contained in S0

and m = |S0| − i(G − S0) = 1, for every vertex y ∈ I(G − S0), there exists exactly one
child of y in S0 (Figure 2 (b)). Let D be a non-trivial component of G − S0. By the
same argument as above, D has a Hamiltonian path PD or a spanning tree TD with leaf
distance at least four, and a leaf of PD or a vertex of TD are joined to S0 by an edge eD

of G. Then
T =

⋃

D

(PD + eD or TD + eD) + TB, (7)

where the union is taken over all the non-trivial components D of G− S0, is the desired
spanning tree of G with leaf distance at least four.

Case 2. m = 2.

Let B, TB, D, PD, TD and eD be the same as in the proof of Case 1. Note that the
existence of them are guaranteed by the same argument as in the proof of Case 1.

If all the vertices in S0 are leaves of TB, then |S0| = 3 and i(G − S0) = 1. Put
S0 = {u1, u2, u3} and I(G−S0) = {w} (see Figure 4 (a)). By Calim 2, |R| ≤ |S0| = 3 and
by the definition of m, we have 2 = m ≤ |R| − i(G− R) ≤ 2, |R| = 3 and i(G− R) = 1,
which imply S0 = R. By the second statement of Claim 2 and Claim 3, two vertices of
S0 are joined by an edge of G. Without loss generality, we may assume that u1 and u2

are joined by an edge of G (see Figure 4 (a)).
Assume that there exists a non-trivial component D of G − S0 such that the edge

eD joins D to u3. If there exists another non-trivial D of G − S0 which is joined to
ui ∈ {u1, u2} by an edge eD, then for a spanning tree TB = {u3w, wuj, ujui} of B, where
{ui, uj} = {u1, u2},

T =
⋃

D

(PD + eD or TD + eD) + TB,

forms the desired spanning tree of G. If for every non-trivial component D of G − S0,
the edge eD joins D to {u1, u2}, then by choosing ui ∈ {u1, u2} so that at least one
eD is incident with ui and by letting TB = {u3w, wuj, ujui}, where {ui, uj} = {u1, u2},
T =

⋃
D (PD + eD or TD + eD) + TB, forms the desired spanning tree of G. Therefore

we may assume that S0 contains at least one vertex of TB which is not a leaf of TB.
Let v ∈ S0 be a vertex that is not a leaf of TB. We regard TB as a rooted tree with root

v. Since all the end-vertices of TB are contained in S0 and m = |S0| − |I(G − S0)| = 2,
I(G − S0) has exactly one vertex x that has exactly two children, say y1 and y2, and
every other vertex of I(G − S0) − x has exactly one child. (Fig. 2 (b) (c)). If at least
one of {y1, y2} is not an pendant vertex of TB (Fig. 2 (c)), then we can obtain the desired
spanning tree T =

⋃
D (PD + eD or TD + eD) +TB, which is given in the proof of Case 1.

Hence we hereafter assume that both y1 and y2 are end-vertices of TB (Figure 2 (b)).
If G has an edge joining {y1, y2} to a non-trivial component D of G − S0, then by

choosing eD to be such an edge, we obtain the desired spanning tree T =
⋃

D (PD +
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         m=2 
S0=R={u1,u2,u3}

(a)

v v

y1 y2

x

TBTB

x

I(G-S0 )={   }
S0={   }

(b) (c)

y1 y2x’
u1 u2

u3

w

eD

TD
D

m=2
TD PD

eD u

u

u

u

u

eD

Figure 4: S0, I(G− S0) and a spanning tree TB.

eD or TD + eD) + TB of G. So we may assume that no edge of G joins {y1, y2} to
V (G)− (S0 ∪ I(G− S0)). If y1 and y2 are adjacent in G, then

T =
⋃

D

(PD + eD or TD + eD) + TB + y1y2 − xy2

is the desired spanning tree of G. Thus we may assume that y1 and y2 are not adjacent
in G. Since degG(y1) ≥ 2, y1 is adjacent to a vertex u of TB, which is not y2. Let x′ be
the parent of x. Then

T =
⋃

D

(PD + eD or TD + eD) + TB + y1u− xx′

is the desired spanning tree of G.
Consequently the proof is complete.
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