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Abstract: We introduce and study backbone colorings, a variation on
classical vertex colorings: Given a graph G = (V, E) and a spanning subgraph
H of G (the backbone of G), a backbone coloring for G and H is a proper
vertex coloring V → {1, 2, . . .} of G in which the colors assigned to adjacent
vertices in H differ by at least two. We study the cases where the backbone
is either a spanning tree or a spanning path. We show that for tree
backbones of G the number of colors needed for a backbone coloring of G
can roughly differ by a multiplicative factor of at most 2 from the chromatic
number χ(G); for path backbones this factor is roughly 3

2 . We show that
the computational complexity of the problem “Given a graph G, a spanning
tree T of G, and an integer �, is there a backbone coloring for G and T with
at most � colors?” jumps from polynomial to NP-complete between � = 4
(easy for all spanning trees) and � = 5 (difficult even for spanning paths).
We finish the paper by discussing some open problems. © 2007 Wiley Periodicals,

Inc. J Graph Theory 55: 137–152, 2007

Keywords: graph coloring; graph labeling; spanning tree; spanning path; planar graph;
computational complexity

1. INTRODUCTION AND RELATED RESEARCH

The work presented here is a full version of an extended abstract that appeared
in the Proceedings of WG 2003 [5]. It is motivated by the general framework
for coloring problems related to frequency assignment. In this application area
graphs are used to model the topology and mutual interference between transmitters
(receivers, base stations): the vertices of the graph represent the transmitters; two
vertices are adjacent in the graph if the corresponding transmitters are so close (or
so strong) that they are likely to interfere if they broadcast on the same or “similar”
frequency channels. The problem in practice is to assign the frequency channels
to the transmitters in such a way that interference is kept at an “acceptable level.”
This has led to various different types of coloring problems in graphs, depending
on different ways to model the level of interference, the notion of similar frequency
channels, and the definition of acceptable level of interference (see e.g., [15,20]).
One way of putting these problems into a more general framework is the following:

Given two graphs G1 and G2 with the property that G1 is a spanning subgraph
of G2, one considers the following type of coloring problems: Determine a
coloring of (G1 and) G2 that satisfies certain restrictions of type 1 in G1, and
restrictions of type 2 in G2, using a limited number of colors.

Many known coloring problems related to frequency assignment fit into this
general framework. We mention some of them here explicitly.
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BACKBONE COLORINGS FOR GRAPHS 139

First of all suppose that G2 = G2
1, that is, G2 is obtained from G1 by adding

edges between all pairs of vertices that are at distance 2 in G1. If one just asks for
a proper vertex coloring of G2 (and G1), this is known as the distance-2 coloring
problem. Much of the research has been concentrated on the case that G1 is a
planar graph. We refer to [1,3,4,18,21,22] for more details. In some versions of
this problem one puts the additional restriction on G1 that the colors should be
sufficiently separated, in order to model practical frequency assignment problems
in which interference should be kept at an acceptable level. One way to model this
is to use positive integers for the colors (modeling certain frequency channels) and
to ask for a coloring of G1 and G2 such that the colors on adjacent vertices in
G2 are different, whereas they differ by at least 2 on adjacent vertices in G1. This
problem is known as the L(2, 1)-labeling problem and has been studied (under
various names) in [2,7–11,19].

The so-called radio labeling problem (here also various names have been
used) models a practical setting in which all assigned frequency channels should
be distinct, with the additional restriction that adjacent transmitters should use
sufficiently separated frequency channels. Within the above framework this can be
modeled by considering the graph G1 that models the adjacencies of n transmitters,
and taking G2 = Kn, the complete graph on n vertices. The restrictions are clear:
one asks for a proper vertex coloring of G2 such that adjacent vertices in G1 receive
colors that differ by at least 2. We refer to [14] and [17] for more particulars.

In this paper, we model the situation that the transmitters form a network in
which a certain substructure of adjacent transmitters (called the backbone) is more
crucial for the communication than the rest of the network. This means we should
put more restrictions on the assignment of frequency channels along the backbone
than on the assignment of frequency channels to other adjacent transmitters. The
backbone could, for example, model so-called hot spots in the network where a very
busy pattern of communications takes place, whereas the other adjacent transmitters
supply a more moderate service. We consider the problem of coloring the graph
G2 (that models the whole network) with a proper vertex coloring such that the
colors on adjacent vertices in G1 (that model the backbone) differ by at least 2.
Throughout the paper we consider two types of backbones: spanning trees and a
special type of spanning trees also known as Hamiltonian paths. A recent paper
[6] discusses the case where the backbone is a perfect matching or a collection of
disjoint stars.

A. Terminology and Notation

All graphs considered in this paper are assumed to be connected. Let G = (V, E) be
a connected finite undirected simple graph, and let T = (V, ET ) be a spanning tree
of G. A vertex coloring f : V → {1, 2, 3, . . .} of V is proper, if |f (u) − f (v)| ≥ 1
holds for all edges uv ∈ E. A vertex coloring is a backbone coloring for (G, T ), if
it is proper and if additionally |f (u) − f (v)| ≥ 2 holds for all edges uv ∈ ET in the
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spanning tree T . The chromatic number χ(G) is the smallest integer k for which
there exists a proper coloring f : V → {1, . . . , k}. The backbone coloring number
bbc(G, T ) of (G, T ) is the smallest integer � for which there exists a backbone
coloring f : V → {1, . . . , �}. When dealing with colorings, we say that two colors
z1 and z2 are adjacent if and only if |z1 − z2| = 1.

A Hamiltonian path of the graph G = (V, E) is a path containing all vertices
of G, that is, a sequence (v1, v2, . . . , vn) such that V = {v1, v2, . . . , vn}, all vi are
distinct, and vivi+1 ∈ E for all i = 1, 2, . . . , n − 1.

B. Results

We start our investigations of the backbone coloring number by analyzing its relation
to the classical chromatic number. How far away from χ(G) can bbc(G, T ) be in
the worst case? For each integer k ≥ 1 we define

T(k) := max {bbc(G, T ) : G a graph with spanning tree T, and χ(G) = k} (1)

It turns out that T(k) behaves quite primitively:

Theorem 1. T(k) = 2k − 1 for all k ≥ 1.

The upper bound T(k) ≤ 2k − 1 in this theorem in fact is straightforward to see.
Indeed, consider a proper coloring of G with colors 1, . . . , χ(G), and replace every
color i by a new color 2i − 1. The resulting coloring uses only odd colors, and
hence constitutes a “universal” backbone coloring for any spanning tree T of G.
The proof of the matching lower bound T(k) ≥ 2k − 1 is more involved and will
be presented in Section 2.

Next, let us discuss the situation where the backbone tree is a Hamiltonian path.
Similarly as in (1), the values

P(k) := max {bbc(G, P) : G a graph with Hamiltonian path P, and χ(G) = k}(2)

are considered. In Section 3, we will exactly determine all these values P(k) and
observe that they roughly grow like 3k/2. Their precise behavior is summarized in
the following theorem.

Theorem 2. For k ≥ 1 the function P(k) takes the following values:

(a) For 1 ≤ k ≤ 4: P(k) = 2k − 1;
(b) P(5) = 8 and P(6) = 10;
(c) For k ≥ 7 and k = 4t: P(4t) = 6t;
(d) For k ≥ 7 and k = 4t + 1: P(4t + 1) = 6t + 1;
(e) For k ≥ 7 and k = 4t + 2: P(4t + 2) = 6t + 3;
(f) For k ≥ 7 and k = 4t + 3: P(4t + 3) = 6t + 5;
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BACKBONE COLORINGS FOR GRAPHS 141

In Section 4, we discuss the computational complexity of computing the
backbone coloring number: “Given a graph G, a spanning tree T , and an integer
�, is bbc(G, T ) ≤ �?” Of course, this general problem is NP-complete. It turns
out that for this problem the complexity jump occurs between � = 4 (easy for all
spanning trees) and � = 5 (difficult even for Hamiltonian paths).

Theorem 3.

(a) The following problem is polynomially solvable for any � ≤ 4: Given a graph
G and a spanning tree T , decide whether bbc(G, T ) ≤ �.

(b) The following problem is NP-complete for all � ≥ 5: Given a graph G and
a Hamiltonian path P , decide whether bbc(G, P) ≤ �.

2. TREE BACKBONES AND THE CHROMATIC NUMBER

This section is devoted to a proof of the lower bound statement T(k) ≥ 2k − 1
in Theorem 1. Consider some arbitrary k ≥ 1. We will construct a graph G with
chromatic number χ(G) = k, and a spanning tree T of G, such that bbc(G, T ) =
2k − 1.

The graph G is a complete k-partite graph that consists of k independent sets
V1, . . . , Vk that are all of cardinality kk. Clearly, χ(G) = k. The spanning tree T

is defined as the final tree in the following inductive construction: The tree T0 is a
star with root in V1 and k − 1 leaves in the k − 1 sets V2, . . . , Vk, one in each set.
For j = 1, . . . , k the tree Tj is constructed from the tree Tj−1, by creating k − 1
new vertices for every vertex v in Tj−1 and by attaching them to v. If v is in the
set Vq, then every independent set Vi with i �= q contains exactly one of these new
vertices. Note that all newly created vertices are leaves in the tree Tj. It is easy to see
that the tree Tj consists of kj+1 vertices that are equally distributed among the sets
V1, . . . , Vk. We denote the vertex set of Tj by V (Tj). Note that V (Tj) ⊂ V (Tj+1).

Consider a backbone coloring of (G, T ) with � colors where T = Tk is the final
tree in the above sequence of trees. Since G is complete k-partite, any color that is
used in some set Vi cannot be used in any Vj with j �= i. We denote by Ci the set
of colors that are used on vertices in Vi. We now go through a number of steps; in
every step, the colors in one of the color sets Ci are labeled with the labels A and B.

(Step s). If there exists some (yet unlabeled) color set Ci such that |Ci| − 1 of
the colors in Ci are adjacent to a color with label A, then: Label these |Ci| − 1
colors with label B. Label the remaining color in Ci with label A.

Eventually, there will be no more color class that satisfies the condition in the if-
part: Either, all colors have been labeled, or each of the remaining unlabeled color
classes contains at least two colors that are not adjacent to any color with label A. If
this is the case at the start, then |Ci| ≥ 2 for all i, and we obtain � ≥ 2k. We denote
by a ≤ k the number of steps performed, and may assume a ≥ 1. We denote by
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π(s) (s = 1, . . . , a) the index of the color set that is labeled in step s. Moreover, we
denote by cπ(s) the unique color in Cπ(s) that is labeled A.

Lemma 4. Let s be an integer with 1 ≤ s ≤ a. Then the following statements hold.

(L1) In the backbone coloring, all vertices v in V (Tk−s) ∩ Vπ(s) are colored by
color cπ(s).

(L2) The color cπ(s) is not adjacent to any color cπ(q) with q < s.

Proof. The proofs of (L1) and (L2) are done simultaneously by induction on
s. In step s = 1, only a color class Cπ(1) with |Cπ(1)| = 1 can be labeled. Then the
(unique) color in Cπ(1) is labeled by A, and thus becomes color cπ(1). But by the
definition of Cπ(1), in this case all vertices in Vπ(1) are colored by cπ(1). Statement
(b) is trivial for s = 1.

Now assume that we have proved the statements up to step s − 1 < a, and
consider step s. Every color in Cπ(s) − {cπ(s)} (if any) is labeled by B, and is adjacent
to some color that has been labeled by A in an earlier step. Let D be the set of these
adjacent colors. By the inductive assumption, the colors in D are the only possible
colors (from their corresponding color sets) that can be used on the vertices in
V (Tk−s+1). Every vertex v in V (Tk−s) ∩ Vπ(s) is adjacent to k − 1 leaves in Tk−s+1,
and therefore all the colors in D show up on these leaves. Consequently, they block
all colors from Cπ(s) for vertex v except color cπ(s). This proves statement (L1). In
case color cπ(s) was adjacent to some color x labeled by A in an earlier step, the
above argument with D ∪ {x} instead of D yields that there is no possible color for
vertex v. This proves statement (L2). �

Let LA denote the set of colors that are labeled by A. Since every step labels
exactly one color by A, |LA| = a. Let L+ denote the set of colors z for which z − 1
is in LA; clearly, |L+| ≥ |LA| − 1 = a − 1. By statement (L2) in Lemma 4, the
sets L+ and LA are disjoint. Moreover, there are k − a color sets with unlabeled
colors. Since they do not meet the condition in the if-part of the labeling step, each
of them contains at least two colors that are not adjacent to any color with label A.
These 2(k − a) colors are not contained in LA ∪ L+. To summarize, we have found
|LA| + |L+| + 2(k − a) pairwise distinct colors in the range 1, . . . , �. Therefore,

� ≥ |LA| + |L+| + 2(k − a) ≥ a + (a − 1) + 2(k − a) = 2k − 1

Note that these arguments also go through in the extremal case a = k. This
completes the proof of the lower bound statement in Theorem 1.

3. PATH BACKBONES AND THE CHROMATIC NUMBER

This section is devoted to a proof of Theorem 2. The upper bound is proved in
Subsection 3A by case analysis. The lower bound is proved in Subsection 3B; this
proof uses a similar idea as the proof in Section 2, but the actual arguments are
quite different.
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A. Proof of the Upper Bounds

We start with statement (c) in Theorem 2. Hence, consider a graph G = (V, E)
with χ(G) = 4t for some t ≥ 2, and let V1, . . . , V4t denote the corresponding
independent sets in the 4t-coloring. Furthermore, let P = (V, EP ) be a Hamiltonian
path in G. Consider the following color sets:

� For i = 1, . . . , 3t, we define the color set Ci = {2i − 1}.
� For i = 1, . . . , t, we define the color set C′

i = {2i, 2t + 2i, 4t + 2i}.

Note that these 4t color sets are pairwise disjoint, and that all the used colors are
from the range 1, . . . , 6t. Also note that all the colors of the sets Ci are odd, so
these colors are pairwise at distance at least two.

We construct a backbone coloring for (G, P) that for i = 1, . . . , 3t colors the
vertices in the independent set Vi with the color in color set Ci, and that for i =
1, . . . , t colors the vertices in the independent set V3t+i with one of the three colors
in color set C′

i. Clearly, with this assignment of colors all edges between the vertices
from the sets Vi with i = 1, . . . , 3t satisfy the conditions of a backbone coloring
(for any backbone of G). The vertices in V3t+1, . . . , V4t are colored greedily and
in arbitrary order: Consider some vertex v in V3t+i that is to be colored with one
of the colors 2i, 2t + 2i, 4t + 2i. In the worst case, the neighbors of v along the
Hamiltonian path P have already been colored by colors x and y, and thus forbid
the six colors x − 1, x, x + 1, y − 1, y, y + 1 for vertex v. Since t ≥ 2, the three
colors in C′

i = {2i, 2t + 2i, 4t + 2i} are pairwise at distance at least four, whereas
x − 1, x + 1 and y − 1, y + 1 are at distance two. Therefore, the intersection C′

i ∩
{x − 1, x, x + 1, y − 1, y, y + 1} contains at most two elements, and C′

i contains
at least one feasible color for vertex v. This completes the proof of P(4t) ≤ 6t for
all t ≥ 2.

The cases k = 4t + 1, k = 4t + 2, k = 4t + 3 with t ≥ 2 follow by simple
modifications of the above argument: For k = 4t + 1, we add the color set C3t+1 =
{6t + 1}. For k = 4t + 2, we furthermore add the color set C3t+2 = {6t + 3}. And
for k = 4t + 3, we furthermore add the color set C3t+3 = {6t + 5}. This proves
P(4t + 1) ≤ 6t + 1, P(4t + 2) ≤ 6t + 3, and P(4t + 3) ≤ 6t + 5 for all t ≥ 2, and
settles the upper bounds in Theorem 2 for all k ≥ 8.

The upper bounds in Theorem 2 for all k ≤ 4 follow trivially from Theorem 1.
For k = 5, we use the above argument with five color sets

D1 = {1}, D2 = {3}, D3 = {5}, D4 = {8}, D5 = {2, 6, 7}
For k = 6, we add a sixth color set D6 = {10}. Finally, for k = 7 we use the seven
color sets

D′
1 = {1}, D′

2 = {3}, D′
3 = {5}, D′

4 = {7}, D′
5 = {9}, D′

6 = {11},
D′

7 = {2, 6, 10}
Journal of Graph Theory DOI 10.1002/jgt
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These three constructions prove P(5) ≤ 8, P(6) ≤ 10, and P(7) ≤ 11. The proof
of the upper bounds in Theorem 2 is complete.

B. Proof of the Lower Bounds

We consider a complete k-partite graph G with k ≥ 2 that consists of k independent
sets V1, . . . , Vk that are all of cardinality 2�k. Here �k denotes the number of
different permutations of 1, 1, 2, 2, 3, 3, . . . , k, k in which no two consecutive
symbols are the same. Each such permutation is represented by different (pairs
of) vertices in the sets V1, . . . , Vk, and corresponds to a segment, that is, a path
on 2k vertices in G. Although we do not need this for our considerations, it
is routine to deduce by inclusion-exclusion that �k = ∑k

j=0(−1)j
(
k

j

) (2k−j)!
2k−j . It is

obvious that χ(G) = k. The Hamiltonian path P consists of �k segments with
2k vertices each. Every such segment contains exactly two vertices of every
independent set, since we let each segment correspond to one permutation π of
the 2k indices 1, 1, 2, 2, 3, 3, . . . , k, k that contributes to the total number of �k

defined before, and we let the segment visit the independent sets exactly in the order
Vπ(1), Vπ(2), . . . , Vπ(2k).

The existence of all possible edges between the partite classes and the properties
of the permutations (segments) enable us to join up all the paths on 2k vertices
corresponding to the segments into one Hamiltonian path, in the following way.
For every two different integers i, j ∈ {1, 2, . . . , k} there are the same positive
number of segments with one endpoint in Vi and the other in Vj. Moreover, since
segments induced by symmetric permutations have the same endpoints, this number
is even. Consider an auxiliary multigraph M with vertices V1, . . . , Vk, in which
edges represent segments with endpoints in different sets, and these edges join the
vertices that represent these sets. Clearly, M is Eulerian. We construct a path in G

containing all the vertices of the above segments (with endpoints in different sets)
by following an Euler tour in M starting in V1. The first, third, etc. edges in this tour
are called forward edges, and the second, fourth, etc. edges are called backward
edges. We start with a path in G consisting of one vertex of V1 and extend the path
step by step as follows. If the edge ViVj is a forward edge of the tour in M, then
we extend the current path in G by joining the current end vertex in Vi of the path
under construction with the endpoint in Vj of the segment corresponding to the
edge ViVj by an edge (with exception of the first segment, which is simply the path
on 2k vertices with the first vertex in V1). If the edge ViVj is a backward edge, then
we extend the current path in G by joining the end vertex that is in some Vk with
k �= i with the endpoint in Vi of the segment corresponding to ViVj. To complete a
Hamiltonian path we now consider segments with both endpoints in the same set.
Note that for every i ∈ {1, 2, . . . , k} there are the same number of segments with
both endpoints in Vi (for k = 2 this number is 0). For k �= 2, we extend the path
we had before by consecutively adding segments with endpoints in V1, V2, . . . , Vk,
one for each i ∈ {1, 2, . . . , k}, using the edges between the partite classes; if there
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are still such segments left after this (if we do not have a Hamiltonian path in G),
we repeat this procedure a number of times, until all segments are included. We
end up with a Hamiltonian path P of G.

Consider some fixed backbone coloring of (G, P) with colors 1, . . . , �. Since
G is complete k-partite, any color that shows up in some set Vi cannot show up in
any Vj with j �= i. We denote by Ci the set of colors that are used on vertices in Vi.
If |Ci| = 1, then Vi is called mono-chromatic; if |Ci| = 2, then Vi is bi-chromatic;
if |Ci| ≥ 3, then Vi is poly-chromatic. We denote by s1, s2, and s3 the number of
mono-chromatic, bi-chromatic, and poly-chromatic sets, respectively. Then clearly

s1 + s2 + s3 = k (3)

and

s1 + 2s2 + 3s3 ≤ � (4)

Colors that are used on mono-chromatic, bi-chromatic, poly-chromatic sets, are
called mono-chromatic, bi-chromatic, poly-chromatic colors, respectively. We say
that two bi-chromatic colors x, y with 1 ≤ x < y ≤ � are partner colors, if Ci =
{x, y} holds for some bi-chromatic set Vi.

Clearly, we may assume there are mono-chromatic colors. Now consider the
following process that labels some of the colors in {1, 2, . . . , �} with the labels A

and B, and that creates a number of arcs among the labeled colors.

(Phase 1). All mono-chromatic colors are labeled by label A.
(Phase 2). Repeat the following step over and over again, as long as the
condition in the if-part is met:

If there exists an unlabeled bi-chromatic color y that is adjacent to another
color z that has already been labeled A at an earlier point in time, then y is
labeled B and its partner color x is labeled A. Moreover, we create an arc
going from z to y, and another arc going from y to x.

This process eventually terminates, since the step in the second phase can be
performed at most s2 times. We denote by a and b the number of A-labels and
B-labels in the final situation after termination.

Lemma 5. After termination, the following properties are satisfied.

(T1) a = b + s1.
(T2) For every labeled color z, there is a unique directed path from some mono-

chromatic color to z.
(T3) For two adjacent colors z and z + 1, at least one of them is not labeled A.
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Proof. Proof of (T1). After the first phase, there are exactly s1 colors with A-
labels and no vertices with B-labels. Every time the step in the second phase is
performed, exactly one new label A and one new label B are created.

Proof of (T2). This is straightforward from the definition of the second phase.
Proof of (T3). Suppose for the sake of contradiction that the adjacent colors z and

z + 1 are both labeled A. By (T2), there exists a directed path from some mono-
chromatic color xφ(0) to z (note that xφ(0) = z might hold). This path goes through
colors xφ(0), yφ(1), xφ(1), yφ(2), xφ(2), . . . , yφ(f ), xφ(f ), with xφ(f ) = z. Every color
xφ(i) has an A-label, and every color yφ(i) has a B-label. Every color yφ(i) is adjacent
to color xφ(i−1). Moreover, the colors xφ(i) and yφ(i) are used on the independent set
Vφ(i). By similar considerations, we find a directed path from some mono-chromatic
color xψ(0) to z + 1 that goes through colors xψ(0), yψ(1), xψ(1), . . . , yψ(g), xψ(g), with
xψ(g) = z + 1. Every color xψ(i) has an A-label, and every color yψ(i) has a B-label.
Colors xψ(i) and yψ(i) are used on the independent set Vψ(i).

Note that the colors in the directed path from xφ(0) to z are pairwise distinct,
and that the colors in the directed path from xψ(0) to z + 1 are pairwise distinct.
Also since xφ(f ) and xψ(g) have A-labels, they cannot belong to one bi-chromatic
class. So, φ(f ) �= ψ(g). By the construction of the complete k-partite graph G,
there exists a subpath Q of the Hamiltonian path P that visits the independent sets
in the ordering

Vφ(0), Vφ(1), Vφ(2), . . . , Vφ(f ), Vψ(g), Vψ(g−1), Vψ(g−2), . . . , Vψ(1), Vψ(0)

Let vφ(i) and v′
ψ(j) be the corresponding vertices on Q. What are the possible colors

for these vertices in the backbone coloring under investigation? Vertex vφ(0) is in a
mono-chromatic set, and so it must get color xφ(0). Vertex vφ(1) is in a bi-chromatic
set, and can be colored by color xφ(1) or by color yφ(1). However, vφ(0) is adjacent
to vφ(1), and its color xφ(0) is adjacent to yφ(1). Therefore, vφ(1) must be colored by
xφ(1). Analogous arguments show that every vertex vφ(i) is colored by color xφ(i),
and that every vertex v′

ψ(i) is colored by color xψ(i).
Now we arrive at the desired contradiction: Vertex vφ(f ) is colored by color

xφ(f ) = z, vertex v′
ψ(g) is colored by color xψ(g) = z + 1, and hence two adjacent

vertices on the backbone are colored by adjacent colors. �

Let L denote the set of colors z for which z + 1 is labeled A after termination.
If color 1 is labeled A, then |L| = a − 1, and otherwise |L| = a. In any case,
|L| ≥ a − 1. No color in L can be labeled A, since this would contradict property
(T3) in Lemma 5. At most b of the colors in L can be labeled B. Hence, L contains
at least a − 1 − b = s1 − 1 unlabeled colors, where the equation follows from
(T1). None of these s1 − 1 unlabeled colors can be bi-chromatic; otherwise, there
would be another possible step in the second phase. Hence, these s1 − 1 unlabeled
colors in L must all be poly-chromatic. Among the � colors used by the backbone
coloring, there are s1 mono-chromatic ones, 2s2 bi-chromatic ones, and at least

Journal of Graph Theory DOI 10.1002/jgt



BACKBONE COLORINGS FOR GRAPHS 147

s1 − 1 poly-chromatic ones. Therefore,

2s1 + 2s2 − 1 ≤ � (5)

Adding inequality (4) to inequality (5), and subtracting three times the equation in
(3) yields

3k + s2 − 1 ≤ 2� (6)

Since s2 is non-negative, (6) implies that � ≥ �(3k − 1)/2�. For the three cases (c)
k = 4t, (d) k = 4t + 1, (e) k = 4t + 2 in Theorem 2 this already implies the claimed
lower bounds (c) � ≥ 6t, (d) � ≥ 6t + 1, and (e) � ≥ 6t + 3, respectively. The case
(f) k = 4t + 3 can be handled as follows: If s1 + s2 ≥ 3t + 3, then (5) implies
� ≥ 6t + 5. If s1 + s2 ≤ 3t + 2, then subtracting three times (3) from (4) yields

� − 3k ≥ −2s1 − s2 ≥ −2(s1 + s2) ≥ −6t − 4,

and hence � ≥ 6t + 5 as desired in statement (f).
It remains to prove the “small” cases k ≤ 6 in statements (a) and (b) of Theorem

2. The cases k = 1 and k = 2 are trivial.

Proof of the case k = 3. Suppose that for the case k = 3 there is a backbone
coloring of (G, T ) with � ≤ 4 colors. Then the equations and inequalities (3)–(6)
do not have any solution s1, s2, s3 over the non-negative integers. This settles the
case k = 3.

Proof of the case k = 4. Suppose that for the case k = 4 there is a backbone
coloring of (G, T ) with � ≤ 6 colors. Then the equations and inequalities (3)–
(6) have s1 = 3, s2 = 0, s3 = 1 as unique solution over the non-negative integers.
Up to symmetric cases Lemma 5.(T3) only allows C1 = {1}, C2 = {3}, C3 = {5},
and C1 = {1}, C2 = {3}, C3 = {6} as mono-chromatic color sets. In the first case
C4 = {2, 4, 6} and in the second case C4 = {2, 4, 5}. There exists a vertex v ∈ V4

that is adjacent to vertices from C2 and from C3 on the Hamiltonian path P . In
either case, there is no feasible color for this vertex v, and we arrive at the desired
contradiction.

Proof of the case k = 5. Suppose for the sake of contradiction that for the case
k = 5 there is a backbone coloring of (G, T ) with � ≤ 7 colors. Then the equations
and inequalities (3)–(6) have s1 = 4, s2 = 0, s3 = 1 as unique solution over the non-
negative integers. By Lemma 5.(T3), the only possible mono-chromatic color sets
are C1 = {1}, C2 = {3}, C3 = {5}, C4 = {7}. Hence, the poly-chromatic color set
must be C5 = {2, 4, 6}. But there exists a vertex v ∈ V5 that is adjacent to vertices
from C2 and from C3 on the Hamiltonian path P . Hence, there is no feasible color
for v and we arrive at the desired contradiction.
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Proof of the case k = 6. Suppose that for the case k = 6 there is a backbone
coloring of (G, T ) with � ≤ 9 colors. Then the equations and inequalities (3)–(6)
have only two solutions over the non-negative integers: s1 = 5, s2 = 0, s3 = 1,
or s1 = 4, s2 = 1, s3 = 1. Using Lemma 5.(T3), the first solution yields only one
possibility for the mono-chromatic color sets, with colors 1, 3, 5, 7, 9, respectively.
Since there exists a vertex v in the poly-chromatic set that is adjacent to vertices
with colors 3 and 7 in P , there is no feasible color for v. We continue with the
second solution. Suppose the colors c1, c2, c3, and c4 for the mono-chromatic color
sets C1, C2, C3, C4 are chosen in increasing order, and let C5 and C6 denote the
bi-chromatic and poly-chromatic color set, respectively. For a vertex v5 ∈ V5 and
a vertex v6 ∈ V6 that are adjacent to vertices with colors c2 and c4 on P , we have
no feasible color within the set {c1, c2 − 1, c2, c2 + 1, c3, c4 − 1, c4} of different
colors, and we obtain an extra forbidden color if c4 �= 9. We conclude that c4 = 9,
and by symmetry (using c3 and c1) that c1 = 1. If c3 �= c2 + 2, then by considering
two vertices from V5 and V6 that are adjacent to vertices with colors c2 and c3 on P ,
we obtain the eight forbidden colors 1, c2 − 1, c2, c2 + 1, c3 − 1, c3, c3 + 1, and 9,
so we cannot color both of these vertices. Hence, c3 = c2 + 2. There remain two
possibilities, up to symmetry: c2 = 3 (or 5) or c2 = 4.

If c2 = 4, we have mono-chromatic colors 1, 4, 6, 9; we obtain a contradiction
in the following way: considering vertices v5 ∈ V5 and v6 ∈ V6 adjacent to vertices
with colors 1 and 6 in P , we deduce that colors 3 and 8 are not in the same set;
similarly with colors 4 and 6, we deduce that colors 2 and 8 are in different sets;
finally with colors 6 and 9, we obtain that colors 2 and 3 are in different sets, which
is absurd.

We are left with the case that c2 = 3, and with mono-chromatic colors 1, 3, 5, 9.
Using colors 3 and 5 as in the previous case, we conclude that colors 7 and 8 cannot
be in the same set (V5 or V6); using colors 3 and 9, the same holds for colors 6 and
7; using colors 5 and 9, the same holds for colors 2 and 7. The only possibility is a
bi-chromatic set C5 = {4, 7} and a poly-chromatic set C6 = {2, 6, 8}. Now consider
a subpath Q of P on four vertices visiting the sets in the order V2, V5, V6, V2. Since
V2 has color 3, the only possible color on Q in V5 is 7, and we cannot find a feasible
color on Q in V6, our final contradiction.

4. COMPLEXITY RESULTS

This section is devoted to a proof of Theorem 3.
We start with the following straightforward observation that is useful throughout

this section.

Observation 6. Let G = (V, E) be a graph, let f, g : V → {1, . . . , k} be two
colorings of V such that f (v) + g(v) = k + 1 for all v ∈ V . Then for any spanning
tree T of G, coloring f is a backbone coloring of (G, T ) if and only if g is a
backbone coloring of (G, T ).
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We start with the positive result in statement (a). The cases where � ≤ 2 are trivial.
Now let � ≥ 3 and let G = (V, E) be a graph with a spanning tree T = (V, ET ). Let
V = V0 ∪ V1 be the bipartition of the vertex set induced by T . Then in any backbone
coloring with colors {1, 2, 3}, the color 2 cannot be used at all. Consider some fixed
vertex v ∈ V0. By Observation 6, we may assume without loss of generality that
the color of v is 1. Then all vertices in V0 must be colored by 1, and all vertices in
V1 must be colored by 3. Hence, bbc(G, T ) = 3 if and only if G is bipartite.

Next, consider the case of backbone colorings with {1, 2, 3, 4}. Consider some
fixed vertex v ∈ V0. By Observation 6, we may assume without loss of generality
that the color of v is in {1, 2}. Then all vertices in V0 must be colored by colors {1, 2},
and all vertices in V1 must be colored by colors {3, 4}. Hence, bbc(G, T ) ≤ 4 if and
only if the two subgraphs of G that are induced by V0 and by V1 are both bipartite
with the additional condition that none of the edges of ET has end vertices with color
2 in V0 and color 3 in V1. Checking these conditions can be modeled as a 2-SAT
problem, as follows. We introduce a Boolean variable xv for each vertex v ∈ V (G),
where we let the two literals xv and xv correspond to assigning color 1 or 2 to v, if
v ∈ V0, and to assigning color 3 or 4 to v, if v ∈ V1. Now G[V0] is bipartite if and
only if there is a satisfying truth assignment for (xu ∨ xv) ∧ (xu ∨ xv) for each edge
uv ∈ E(G[V0]). The same statement holds for G[V1]. Finally, an edge uv ∈ ET with
u ∈ V0 is properly colored according to a backbone 4-coloring if and only if there
is a satisfying truth assignment for xu ∨ xv. Since 2-SAT is polynomially solvable
(see Garey & Johnson [12]), this completes the proof of the statement in (a).

Now let us prove the negative result in statement (b) of Theorem 3. The reduction
is done from the NP-complete classical �-coloring problem (see Garey & Johnson
[12] for more information): Given a graph H = (VH, EH ), does there exist a proper
�-coloring of H?

Let H = (VH, EH ) be an instance of �-coloring, and let v1, v2, . . . , vn be an
enumeration of the vertices in VH . We create 3(n − 1) new vertices ai, bi, ci

with 1 ≤ i ≤ n − 1. For every i = 1, . . . , n − 1 we introduce the new edges
viai, aibi, bici, and civi+1. The graph that results from adding these 3(n − 1)
new vertices and these 4(n − 1) new edges to H is denoted by G. The vertices
v1, a1, b1, c1, v2, a2, b2, . . . , cn−1, vn form a Hamiltonian path P in G. We claim
that χ(H) ≤ � if and only if bbc(G, P) ≤ �.

Indeed, assume that bbc(G, P) ≤ � and consider such a backbone �-coloring.
Then the restriction to the vertices in VH yields a proper �-coloring of H . Next
assume that χ(H) ≤ �, and consider a proper �-coloring f : VH → {1, . . . , �} . We
extend f to a backbone �-coloring of (G, P): Every vertex bi receives color 3. If
f (vi) ≤ 3, then ai is colored �, and otherwise it is colored 1. If f (vi+1) ≤ 3, then ci

is colored �, and otherwise it is colored 1. This completes the proof of Theorem 3.

5. CONCLUSION

In this paper, we have analyzed the combinatorics and the complexity of backbone
colorings of graphs where the backbone is formed by a Hamiltonian path or by a
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spanning tree. We have investigated the relation of the backbone coloring number
to the classical chromatic number, and we proved that the general problem is NP-
complete.

Since this area is new, it contains many open problems. We suppose that it would
be interesting to investigate the relation between the backbone coloring number
and the chromatic number for different classes of perfect graphs. We did it for split
graphs.

A split graph is a graph whose vertex set can be partitioned into a clique (i.e., a
set of mutually adjacent vertices) and an independent set (i.e., a set of mutually non-
adjacent vertices), with possibly edges in between. Split graphs were introduced
by Hammer & Földes [16]; see also the book [13] by Golumbic. Split graphs
are perfect graphs, and hence satisfy χ(G) = ω(G), where ω(G) is the size of a
largest clique in G. It is known (see [5] for detailed information), that for every
spanning tree T in a split graph G, bbc(G, T ) ≤ χ(G) + 2. Also if ω(G) �= 3, then
for every Hamiltonian path P in G, bbc(G, P) ≤ χ(G) + 1, and if ω(G) = 3, then
bbc(G, P) ≤ 5. All these bounds are tight.

What about more interesting classes of perfect graphs like chordal graphs? It can
be shown that bbc(G, P) ≤ χ(G) + 4 whenever G is chordal and P is a Hamiltonian
path of G. We just use induction and the existence of a simplicial vertex v (its
neighbor set S induces a clique in G). Observe that the graph edges and Hamiltonian
path edges forbid at most |S| + 4 colors for v, while χ(G) ≥ |S| + 1. Does this result
carry over to arbitrary spanning trees, that is, does bbc(G, T ) ≤ χ(G) + c hold for
any chordal graph G with spanning tree T ?

Another question is what can be said about triangle-free graphs G? Does there
exist a small constant c such that bbc(G, T ) ≤ χ(G) + c holds for all triangle-free
graphs G?

Finally, what about planar graphs? The four-color theorem together with
Theorem 1 implies that bbc(G, T ) ≤ 7 holds for any planar graph G with spanning
tree T . However, this bound 7 is probably not best possible. Can it be improved to 6?
The planar graph G∗ in Figure 1 demonstrates that this bound cannot be improved to

FIGURE 1. A planar graph G∗ with a spanning tree T∗ (bold edges) such that
BBC(G∗, T∗) = 6.
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5: Note that graph G∗ consists of four copies of K4 that all have a K1,3 as spanning
tree. In any backbone coloring of such a K4 with only five colors, the central vertex
of the K1,3 must either receive color 1 or color 5. With this observation, it is easy
to see that bbc(G∗, T ∗) ≥ 6 (= 6).

An example of a planar graph G with a Hamiltonian path P such that
bbc(G, P) = 6 appears in [6].

Another open question for planar graphs is how to prove (these) upper bounds
for the backbone coloring number of a planar graph without using the four-color
theorem.

We finish the paper with a final open problem on general graphs. One may
consider requiring a larger separation between the colors along the backbone, say
|f (u) − f (v)| ≥ λ for some fixed integer λ. Would one still get a tight bound in
the analogues of the results for tree and path backbones? For matching and star
backbones the answer is affirmative by results that appear in [6].
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