A NOTE ON COMPLETE SUBDIVISIONS IN DIGRAPHS OF LARGE OUTDEGREE

DANIELA KÜHN, DERYK OSTHUS, AND ANDREW YOUNG

Abstract

Mader conjectured that for all ℓ there is an integer $\delta^{+}(\ell)$ such that every digraph of minimum outdegree at least $\delta^{+}(\ell)$ contains a subdivision of a transitive tournament of order ℓ. In this note we observe that if the minimum outdegree of a digraph is sufficiently large compared to its order then one can even guarantee a subdivision of a large complete digraph. More precisely, let \vec{G} be a digraph of order n whose minimum outdegree is at least d. Then \vec{G} contains a subdivision of a complete digraph of order $\left\lfloor d^{2} /\left(8 n^{3 / 2}\right)\right\rfloor$.

1. Introduction

A fundamental result of Mader [4] states that for every integer ℓ there is a smallest $d=d(\ell)$ so that every graph of average degree at least d contains a subdivision of a complete graph on ℓ vertices. Bollobás and Thomason [1] as well as Komlós and Szemerédi (3) showed that $d(\ell)$ is quadratic in ℓ. In [6], Mader made the following conjecture, which would provide a digraph analogue of these results (a transitive tournament is a complete graph whose edges are oriented transitively).

Conjecture 1 (Mader [6]). For every integer $\ell>0$ there is a smallest integer $\delta^{+}(\ell)$ such that every digraph \vec{G} with minimum outdegree at least $\delta^{+}(\ell)$ contains a subdivision of the transitive tournament on ℓ vertices.

It is easy to see that $\delta^{+}(\ell)=\ell-1$ for $\ell \leq 3$. Mader [7] showed that $\delta^{+}(4)=3$. Even the existence of $\delta^{+}(5)$ is not known. One might be tempted to conjecture that large minimum outdegree would even force the existence of a subdivision of a large complete digraph (a complete digraph has a directed edge from v to w for any ordered pair v, w of vertices). However, for all n Thomassen [9] constructed a digraph on n vertices whose minimum outdegree is at least $\frac{1}{2} \log _{2} n$ but which does not contain an even directed cycle (and thus no complete digraph on 3 vertices). The additional assumption of large minimum indegree in Conjecture 1 does not help either. Mader [6 modified the construction in 9] to obtain digraphs having arbitrarily large minimum indegree and outdegree without a subdivision of a complete digraph on 3 vertices.

The fact that one certainly cannot replace the minimum outdegree in Conjecture \square by the average degree is easy to see: consider the complete bipartite graph with equal size vertex classes and orient all edges from the first to the second class. The resulting digraph \vec{B} has average degree $|\vec{B}| / 2$ but not even a directed cycle or a transitive tournament on 3 vertices. (On the other hand, Jagger [2] showed that if the average degree of a digraph \vec{G} is a little larger than $|\vec{G}| / 2$, then \vec{G} does contain a subdivision of a large complete digraph.)

So in some sense, the above examples and constructions show that Conjecture 1 is the only possible analogue of the result in 4 mentioned above. Our main result is that if the minimum outdegree of a digraph is sufficiently large compared to its order, then Conjecture \square is true. In fact, we show that in this case, one can even guarantee a subdivision of a complete digraph.
Theorem 2. Let \vec{G} be a digraph of order n whose minimum outdegree is at least d. Then \vec{G} contains a subdivision of the complete digraph of order $\left\lfloor d^{2} /\left(8 n^{3 / 2}\right)\right\rfloor$.

Note that the bound is nontrivial as soon as d is a little larger than $n^{3 / 4}$. Also, recall that the result of Thomassen (9) mentioned above implies that we cannot have a subdivision of a complete digraph of order at least 3 if $d \leq \frac{1}{2} \log _{2} n$. Furthermore, note that if $d=c n$, then Theorem 2 guarantees a subdivision of a complete digraph of order $\left\lfloor c^{\prime} \sqrt{n}\right\rfloor$, where $c^{\prime}=c^{2} / 8$. It is easy to see that this is best possible up to the value of c^{\prime} (consider the complete bipartite digraph with vertex classes of equal size).

The main ingredient in the proof of Theorem 2 is Lemma 4 It states that if \vec{G} has n vertices and its minimum outdegree is $\gg \sqrt{n}$, then \vec{G} has a subdigraph \vec{H} which is highly connected in the following sense: if x is any vertex of \vec{H} and y is a vertex of large indegree, then there are many internally disjoint dipaths from x to y in \vec{H}. Lemma 4 also guarantees the existence of many such vertices y. For undirected graphs, there is a much stronger result of Mader [5] which implies that every graph of minimum degree at least $4 k$ has a k-connected subgraph. Since a digraph version of this result is not known, Lemma 4 may be of independent interest. There are also several related results of Mader [6, 8] which investigate the existence of pairs of vertices with large local connectivity in digraphs of large minimum outdegree. The proof of Lemma 4 is quite elementary: if the current subdigraph \vec{H} does not satisfy the requirements, then we can use Menger's theorem to find a significantly smaller subdigraph whose minimum outdegree is almost as large as that of \vec{H}. Since this means that the density of the successive subdigraphs increases, this process must eventually terminate.

2. Proof of Theorem 2

Before we start with the proof of Theorem 2 let us introduce some notation. The digraphs \vec{G} considered in this note do not contain loops and between any ordered vertex pair $x, y \in \vec{G}$ there is at most one edge from x to y. (There might also be another edge from y to x.) We denote by $\delta^{+}(\vec{G})$ the minimum outdegree of a digraph \vec{G} and by $|\vec{G}|$ its order. We write $d_{\vec{G}}^{+}(x)$ for the outdegree of a vertex $x \in \vec{G}$ and $d_{\vec{G}}^{-}(x)$ for its indegree. A digraph \vec{H} is a subdivision of \vec{G} if \vec{H} can be obtained from \vec{G} by replacing each edge $\overrightarrow{x y} \in \vec{G}$ with a dipath from x to y such that all these dipaths are internally disjoint for distinct edges. The vertices of \vec{H} corresponding to the vertices of \vec{G} are called branch vertices.

Given two vertices x and y of a digraph \vec{G}, we define $\kappa_{\vec{G}}(x, y)$ to be the largest integer $1 \leq k \leq|\vec{G}|-2$ such that $\vec{G}-S$ contains a dipath from x to y
for every vertex set $S \subseteq V(\vec{G}) \backslash\{x, y\}$ of size $<k$. We define $\kappa_{\vec{G}}(x, y):=0$ if \vec{G} does not contain a dipath from x to y. We will use the following version of Menger's theorem for digraphs.

Theorem 3 (Menger's theorem for digraphs). Let x and y be vertices of a digraph \vec{G} such that $\kappa_{\vec{G}}(x, y) \geq k$. Then \vec{G} contains k internally disjoint dipaths from x to y.

As mentioned above, the main step in the proof of Theorem 2 is to find a subdigraph \vec{H} of \vec{G} such that the minimum outdegree of \vec{H} is still large and such that every vertex of \vec{H} sends many internally disjoint dipaths to each vertex of \vec{H} which has large indegree.

Lemma 4. Every digraph \vec{G} of order n with $\delta^{+}(\vec{G}) \geq d$ contains a subdigraph \vec{H} such that
(i) $\delta^{+}(\vec{H})>d / 2$,
(ii) $\kappa_{\vec{H}}(x, y) \geq d^{2} /(4 n)$ for all pairs $x, y \in V(\vec{H})$ with $d_{\vec{H}}^{-}(y) \geq d / 2$,
(iii) at least $d^{2} /(4 n)$ vertices of \vec{H} have indegree at least $d / 2$ in \vec{H}.

Proof. Put

$$
\alpha:=\frac{d}{n} \quad \text { and } \quad \alpha^{\prime}:=\frac{d^{2}}{4 n^{2}}=\frac{\alpha^{2}}{4}
$$

By Theorem 3 we may assume that $\kappa_{\vec{G}}(x, y)<\alpha^{\prime} n$ for some vertices x, y of \vec{G} with $d_{\vec{G}}^{-}(y) \geq d / 2$. Otherwise we could take $\vec{H}:=\vec{G}$. (It is easy to check that \vec{H} then also satisfies condition (iii) of the lemma.) Let $S \subseteq V(\vec{G}) \backslash\{x, y\}$ be a set of size $<\alpha^{\prime} n$ such that $\vec{G}-S$ does not contain a dipath from x to y. Let Y be the set of all those vertices z for which $\vec{G}-S$ contains a dipath from z to y. Then $Y \cup S$ contains y as well as all the at least $d / 2=\alpha n / 2$ inneighbours of y. Let C denote the component of the undirected graph corresponding to $\vec{G}-(Y \cup S)$ which contains x. Let \vec{G}_{1} be the subdigraph of \vec{G} induced by all vertices in C. Then $\left|\vec{G}_{1}\right| \leq n-|Y \cup S|<(1-\alpha / 2) n$. Moreover, note that there exists no edge directed from a vertex of \vec{G}_{1} to a vertex outside $V\left(\vec{G}_{1}\right) \cup S$. Thus

$$
\begin{equation*}
\delta^{+}\left(\vec{G}_{1}\right) \geq \delta^{+}(\vec{G})-|S|>\left(\alpha-\alpha^{\prime}\right) n \tag{1}
\end{equation*}
$$

If \vec{G}_{1} does not satisfy condition (ii) of the lemma we again apply Theorem 3 to obtain a subdigraph $\vec{G}_{2} \subseteq \vec{G}_{1}$. We continue in this fashion until we obtain a subdigraph \vec{G}_{r} which satisfies condition (ii). We will show that \vec{G}_{r} also satisfies (i) and (iii). Put $\vec{G}_{0}:=\vec{G}$,

$$
\delta_{i}:=\frac{\delta^{+}\left(\vec{G}_{i}\right)}{\left|\vec{G}_{i}\right|} \quad \text { and } \quad \gamma_{i-1}:=\frac{\left|\vec{G}_{i-1}\right|}{\left|\vec{G}_{i}\right|}
$$

for all $i \leq r$. Similarly as in (1) it follows that

$$
\begin{equation*}
\delta^{+}\left(\vec{G}_{i}\right)=\delta_{i}\left|\vec{G}_{i}\right| \geq \delta_{i-1}\left|\vec{G}_{i-1}\right|-\alpha^{\prime} n \geq\left(\alpha-i \alpha^{\prime}\right) n \tag{2}
\end{equation*}
$$

Thus $\delta_{i} \geq \delta_{i-1} \gamma_{i-1}-\alpha^{\prime} n /\left|\vec{G}_{i}\right|=\delta_{i-1} \gamma_{i-1}-\alpha^{\prime} \prod_{j=0}^{i-1} \gamma_{j}$. Using this inequality and induction on i one can show that

$$
\begin{equation*}
\delta_{i} \geq\left(\alpha-i \alpha^{\prime}\right) \prod_{j=0}^{i-1} \gamma_{j}=\left(\alpha-i \alpha^{\prime}\right) \frac{n}{\left|\vec{G}_{i}\right|} \tag{3}
\end{equation*}
$$

Since we delete at least $d / 2=\alpha n / 2$ vertices when going from \vec{G}_{i-1} to \vec{G}_{i} (namely the inneighbours of the vertex playing the role of y), we have that $\left|\vec{G}_{r}\right| \leq n-r \alpha n / 2$. In particular this shows that $r<2 / \alpha$. However, since (3) implies that $1>\delta_{r} \geq\left(\alpha-r \alpha^{\prime}\right) /(1-r \alpha / 2)$ we even have $r<(1-\alpha) /\left(\alpha / 2-\alpha^{\prime}\right)$. Thus

$$
\begin{equation*}
\delta^{+}\left(\vec{G}_{i}\right) \stackrel{\sqrt[2]{2}}{\geq}\left(\alpha-r \alpha^{\prime}\right) n \geq\left(\alpha-\frac{1-\alpha}{2 / \alpha-1}\right) n=\frac{\alpha n}{2-\alpha}>\frac{d}{2} . \tag{4}
\end{equation*}
$$

Altogether this shows that $\vec{G}_{r}=: \vec{H}$ satisfies conditions (i) and (ii) of the lemma. To check that \vec{H} also satisfies condition (iii) let ℓ denote the number of vertices of indegree $\geq d / 2$ in \vec{H}. Then

$$
\frac{\alpha n|\vec{H}|}{2-\alpha} \stackrel{4 \pi}{\leq} \delta^{+}(\vec{H})|\vec{H}| \leq|\vec{H}| \frac{d}{2}+\ell|\vec{H}|,
$$

which implies that $\ell \geq \alpha d /(4-2 \alpha) \geq d^{2} /(4 n)$, as required.
Proof of Theorem 2, Let $\ell:=\left\lfloor d^{2} /\left(8 n^{3 / 2}\right)\right\rfloor$. We first apply Lemma 4 to obtain a subdigraph $\vec{H} \subseteq \vec{G}$ as described there. We pick a set $X \subseteq V(\vec{H})$ of ℓ vertices having indegree $\geq d / 2$ in \vec{H}. (Such a set X exists by condition (iii) of Lemma (4) X will be the set of our branch vertices. For every pair $x, y \in X$ there exist at least $d^{2} /(4 n)$ internally disjoint dipaths from x to y. Thus the average number of inner vertices on such a path is at most $4 n^{2} / d^{2}$. Hence \vec{H} contains at least $d^{2} /(8 n)$ internally disjoint dipaths from x to y such that each of these has at most $8 n^{2} / d^{2}$ inner vertices. Let us call such a dipath short. This shows that we can connect all pairs of branch vertices greedily (in both directions) by choosing each time a short dipath which is internally disjoint from all the short dipaths chosen before. In each step we destroy at most $8 n^{2} / d^{2}$ further dipaths. But $\left(|X|^{2}-1\right) 8 n^{2} / d^{2}<8 \ell^{2} n^{2} / d^{2} \leq d^{2} /(8 n)$, so we can connect all pairs of branch vertices by short dipaths.

References

[1] B. Bollobás and A. Thomason, Proof of a conjecture of Mader, Erdős and Hajnal on topological complete subgraphs, European Journal of Combinatorics 19 (1998), 883-887.
[2] C. Jagger, Extremal Digraph Results for Topological Complete Subgraphs, European Journal of Combinatorics 19 (1998), 687-694.
[3] J. Komlós and E. Szemerédi, Topological Cliques in Graphs II, Combinatorics, Probability and Computing 5 (1996), 70-90.
[4] W. Mader, Homomorphieeigenschaften und mittlere Kantendichte von Graphen, Math. Annalen 174 (1967), 265-268.
[5] W. Mader, Existenz n-fach zusammenhängender Teilgraphen in Graphen genügend großer Kantendichte, Abh. Math. Sem. Univ. Hamburg 37 (1972), 86-97.
[6] W. Mader, Degree and Local Connectivity in Digraphs, Combinatorica 5 (1985), 161-165.
[7] W. Mader, On Topological Tournaments of order 4 in Digraphs of Outdegree 3, Journal of Graph Theory 21 (1996), 371-376.
[8] W. Mader, Existence of vertices of local connectivity k in digraphs of large outdegree, Combinatorica 15 (1995), 533-539.
[9] C. Thomassen, Even Cycles in Directed Graphs, European Journal of Combinatorics 6 (1985), 85-89.

Daniela Kühn, Deryk Osthus \& Andrew Young
School of Mathematics
University of Birmingham
Edgbaston
Birmingham
B15 2TT
UK
E-mail addresses: \{kuehn,osthus, younga\}@maths.bham.ac.uk

