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Abstract

Let C be a family of n compact connected sets in the plane, whose intersection graph
G(C) has no complete bipartite subgraph with k vertices in each of its classes. Then
G(C) has at most n times a polylogarithmic number of edges, where the exponent of the
logarithmic factor depends on k. In the case where C consists of convex sets, we improve
this bound to O(n log n). If in addition k = 2, the bound can be further improved to
O(n).

1 Introduction

Given a collection C = {C1, . . . , Cn} of compact connected sets in the plane, let G = G(C)
denote its intersection graph. That is, let V (G) = {C1, . . . , Cn}, and connect two vertices
Ci and Cj (i 6= j) by an edge of G if and only if Ci ∩ Cj 6= ∅. In this note we investigate
how many edges G(C) can have if it has no subgraph isomorphic to a fixed graph H.

If H is not bipartite, then the assumption that G is an intersection graph does not
drastically change the answer to this question. According to the Erdős–Stone theorem [4],
the maximum number of edges that any H-free graph of n vertices can have is

ex(n,H) =

(

1 −
1

χ(H) − 1
+ o(1)

)

n2

2
.

Here χ(H) stands for the chromatic number of H. If H is not bipartite (χ(H) > 2), then
this bound is asymptotically tight, as is shown by a complete (χ(H) − 1)-partite graph
whose vertex classes are of roughly the same size. Clearly, this graph can be obtained as
the intersection graph of plane convex bodies, by representing the elements of each vertex
class by very long pairwise disjoint rectangles with parallel sides.
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The problem becomes more interesting for bipartite graphs. By the Kővári–Sós–Turán
theorem [5], the maximum number of edges of a graph with n vertices containing no complete
bipartite graph Kk,k with a constant number k of vertices in each of its classes, satisfies

ex(n,Kk,k) ≤ bkn
2− 1

k ,

where bk is a suitable constant. Restricting our attention to intersection graphs of compact
connected sets, this bound can be substantially strengthened.

Theorem 1. If the intersection graph of n compact connected sets in the plane has no
subgraph isomorphic to Kk,k, then its number of edges cannot exceed c(k)n loge(k) n, for
appropriate constants c(k), e(k) that depend on k.

In the lack of examples of collections C whose intersection graphs are Kk,k-free and have
a superlinear number of edges (in |C|), we suspect that Theorem 1 can be substantially
improved. In fact, in the special case when C consists of convex sets, we can replace the
polylogarithmic factor by log n.

Theorem 2. If the intersection graph of n convex sets in the plane has no subgraph iso-
morphic to Kk,k, then its number of edges is at most O(n log n), where the constant of
proportionality depends on k.

For k = 2, that is, when G(C) contains no C4 (cycle of length four) as a subgraph, we
can completely get rid of the logarithmic factor in Theorem 2.

Theorem 3. If the intersection graph of n convex sets in the plane has no subgraph iso-
morphic to C4, then its number of edges is at most O(n).

Since every graph can be obtained as the intersection graph of three-dimensional convex
bodies [3], we cannot expect that a similar phenomenon holds in higher dimensions.

A graph drawn in the plane with possibly crossing straight-line edges is called a geometric
graph. We assume for simplicity that no three vertices of a geometric graph are on a line.
Two sets of edges {e1, . . . , ek} and {f1, . . . , fk} in a geometric graph are said to form a k×k

grid if every ei crosses all fj.

Theorem 3 has the following corollary, established first in [7] with a different proof.

Corollary 4. [7] Any geometric graph with n vertices that contains no 2 × 2 grid has at
most O(n) edges.

2 Intersection graphs of connected sets: Proof of Theorem 1

Let C = {C1, . . . , Cn} be a collection of compact connected sets in the plane, and assume
without loss of generality that each Ci is equal to the closure of its interior int Ci. Otherwise,
we can replace Ci by a slightly larger set satisfying this condition, without changing the
intersection pattern of C.

Fix distinct points pi ∈ intCi, for i = 1, . . . , n. For any i < j with Ci ∩Cj 6= ∅, connect
pi to pj by a simple (non-selfintersecting) continuous arc γij that does not pass through any
other point ph (h 6= i, j). We can easily achieve that
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Figure 1: The drawing of G∗.

1. γij is the union of two simple arcs γ0
ij and γ1

ij that share only one (end)point such

that γ0
ij ⊂ Ci and γ1

ij ⊂ Cj ;

2. any two curves γij and γi′j′ have only finitely many points in common.

The curves γij form a so-called topological graph G∗ on the vertex set {p1, . . . , pn}, that is,
a graph drawn in the plane with curvilinear edges that may cross one another. Clearly, G∗

is a “drawing,” a particular embedding of the “abstract” graph G = G(C). See Figure 1 for
an illustration.

We need the following result of Pach, Radoičić, and Tóth [8].

Lemma 2.1 (Pach et al. [8]) Let G∗ be a topological graph with n vertices, containing no
m pairwise crossing edges with distinct endpoints. Then the number of edges of G∗ satisfies

|E(G∗)| ≤ cmn log2(m−3) n,

where cm is a suitable constant. 2

Suppose that |E(G∗)| = |E(G)| > cmn log2(m−3) n, where m = m(k) > 1 is an integer
to be specified later. By Lemma 2.1, we obtain that there are distinct indices i(1) < j(1),
. . . , i(m) < j(m) such that the arcs γi(1)j(1), . . . , γi(m)j(m) ∈ E(G∗) are pairwise crossing.

For any pair of distinct arcs γi(s)j(s), γi(t)j(t), at least one of the following four relations
holds:

γ0
i(s)j(s) ∩ γ0

i(t)j(t) 6= ∅,

γ0
i(s)j(s) ∩ γ1

i(t)j(t) 6= ∅,

γ1
i(s)j(s) ∩ γ0

i(t)j(t) 6= ∅,

γ1
i(s)j(s) ∩ γ1

i(t)j(t) 6= ∅.

By changing the labeling of the sets Ci and, consequently, of the points pi ∈ V (G∗), if
necessary, we can assume without loss of generality that for at least one quarter of the pairs
s < t, we have

γ0
i(s)j(s) ∩ γ0

i(t)j(t) 6= ∅.
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Construct a bipartite graph B on the vertex set V (B) = {1, 2, . . . ,m} ∪ {1′, 2′, . . . ,m′}
by connecting s and t′ with an edge if and only if s < t and

γ0
i(s)j(s) ∩ γ0

i(t)j(t) 6= ∅.

We have

|E(B)| ≥
1

4

(

m

2

)

.

Applying the Kővári–Sós–Turán theorem quoted in the Introduction, we obtain that B has
a complete bipartite subgraph Kk,k, provided that

1

4

(

m

2

)

> bk(2m)2−
1

k .

Choose m = m(k) = O(bk)
k to be the smallest positive integer that satisfies the last

inequality. We can conclude that there exist vertices s1, . . . , sk, t
′
1, . . . , t

′
k ∈ V (B) with the

property that every element of

{γ0
i(s1)j(s1), . . . , γ

0
i(sk)j(sk)}

intersects all elements of
{γ0

i(t1)j(t1), . . . , γ
0
i(tk)j(tk)}.

It follows from our construction that γ0
i(r)j(r) ⊂ Ci(r), for every 1 ≤ r ≤ m. Therefore,

the corresponding collections of sets {Ci(s1), . . . , Ci(sk)} and {Ci(t1), . . . , Ci(tk)} induce a
complete bipartite graph Kk,k in the intersection graph G(C), which leads to a contradiction
that completes the proof of Theorem 1. 2

3 Intersection graphs of convex sets: Proof of Theorem 2

The polylogarithmic factor in the bound of Theorem 1 is a consequence of the fact that our
proof was based on Lemma 2.1, a general statement on topological graphs. If the elements
of C can be arbitrary connected sets, the particular drawing of G(C) we constructed may
be quite complicated. However, if C consists of convex sets, one can explore some simple
structural properties of this drawing. Specifically, it will be sufficient to consider x-monotone
topological graphs, that is, topological graphs with the property that any vertical line
(parallel to the y-axis) intersects every edge at most once. In this special case, Valtr [9]
managed to reduce the exponent of the polylogarithmic factor in Lemma 2.1 to one.

Lemma 3.1 (Valtr [9]) Let G∗ be an x-monotone topological graph with n vertices, con-
taining no m pairwise crossing edges with distinct endpoints. Then the number of edges of
G∗ satisfies

|E(G∗)| ≤ c′mn log n,

where c′m is a suitable constant. 2

Suppose that C is a collection of compact convex sets in the plane. We adapt the proof
of Theorem 1 to this case. First we show that a slightly modified version of the graph G∗

we used in the proof of Theorem 1 can be drawn as an x-monotone topological graph.
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Figure 2: The drawing of G∗ in the convex case.

For any C ∈ C, let `C , rC denote the leftmost and rightmost points of C. Without
loss of generality, we may assume that these points are unique, and that the set P =
{`C , rC | C ∈ C} consists of 2n distinct points, no three of which are collinear. We now
define the topological graph G∗ on the vertex set P as follows. For each pair of intersecting
sets Ci, Cj ∈ C with i < j, connect `Ci

and rCj
by a polygonal path γij consisting of two

segments that meet at an arbitrary point of Ci ∩ Cj. Clearly, γij is an x-monotone curve,
and we have |E(G∗)| = |E(G)|. See Figure 2.

Suppose that |E(G∗)| = |E(G)| > c′m · 2n log(2n), where m = m(2k) > 1 denotes
the same integer as in the proof of Theorem 1, but defined for 2k rather than for k. By
Lemma 3.1, we obtain that there are distinct indices i(1) < j(1), . . . , i(m) < j(m) such that
the arcs γi(1)j(1), . . . , γi(m)j(m) ∈ E(G∗) are pairwise crossing. The proof now proceeds in
essentially the same way as the proof of Theorem 1. The only difference is that at the very
end of the proof, when we find a complete bipartite graph K2k,2k in the intersection graph
G(C), some of the vertices in one color class of K2k,2k may represent the same member C ∈ C
as a vertex in the other color class (because each C is represented in G∗ by two vertices).
However, we can always choose a complete bipartite subgraph Kk,k ⊂ K2k,2k, whose vertices
represent distinct sets. This leads to a contradiction that establishes Theorem 2. 2

4 Forbidden C4: Proofs of Theorem 3 and Corollary 4

First we establish Theorem 3. Let C be a collection of n convex sets in the plane such that
their intersection graph G(C) contains no C4.

For any C ∈ C, let sC denote the straight-line segment connecting the leftmost point
and the rightmost point of C. We refer to sC as the spine of C. Let S be the set of the
spines of all the sets in C. By slightly perturbing the sets if necessary, without changing the
intersection graph G(C), we can achieve that the leftmost and rightmost points of the sets
C are unique and that the spines are in general position, that is, no three of their endpoints
are collinear and no three of them pass through the same point.

Let Ξ denote the vertical decomposition of A(S), obtained by erecting a vertical segment
up and down from each endpoint of a spine and from each intersection point of two spines,
and extending these segments until they hit another spine, or else all the way to infinity
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Figure 3: The drawing of G∗ in the convex case.

[2]. Each cell ∆ of Ξ is a vertical trapezoid, bounded by portions of spines on the top
and bottom, and by vertical segments to the left and to the right; any of these boundary
segments may be missing. Let X denote the number of intersection points of the spines. By
assumption, all intersection points are simple, therefore, it is easy to verify that the number
of trapezoids (cells) in Ξ is equal to 3n + 3X + 1 = O(n + X).

Fix a cell ∆, and let A,B ∈ C be the sets such that the top (resp., bottom) boundary
of ∆ is contained in sA (resp., sB). Let K ∈ C be an object that intersects ∆, and let p be
a point in K ∩∆. The vertical line λ through p must intersect the spine sK of K. Suppose
that K 6= A,B and that sK passes below sA within the vertical slab spanned by ∆.

Suppose that λ intersects the spine sC of another set C ∈ C between sA and sK . Among
all such sets, we fix C to be the set whose spine is nearest to sA along λ. Then A and C

uniquely determine K. That is, there cannot exist another K ′ ∈ C, K ′ 6= A,C,K, such that
sK′ lies below sA and the vertical line through a point in K ′ ∩∆ meets sC between sA and
sK′. This follows by noting that such a K ′ would have formed, together with A,C, and
K, a forbidden C4 in G(C). Since sC is the spine directly preceding sA along λ, sA and sC

form a cell ∆′ of Ξ that lies below ∆, is crossed by λ, and is a neighbor of ∆ in the planar
map Ξ. See Figure 3 for an illustration.

A symmetric argument shows that if L ∈ C is an object that intersects ∆ at some point
q, with sL lying above sB within the vertical slab spanned by ∆, then either sL lies directly
above sB, or else B and the set D ∈ C, whose spine lies directly above sB along the vertical
line through q, uniquely determine L.

Sweep ∆ by a vertical line λ from left to right. At any step during the sweep, λ

passes through a bottom neighbor cell ∆′ and through a top neighbor cell ∆′′. The triple
(∆,∆′,∆′′) changes only when either the top neighbor or the bottom neighbor changes,
implying that the number of such triples, with ∆ fixed, is at most the number of top and
bottom neighbors of ∆ in Ξ. Since Ξ is a planar map whose dual map has no digonal faces,
we conclude that the overall number of such triples is O(|Ξ|) = O(n + X).

As argued above, a fixed triple (∆,∆′,∆′′) determines at most six sets of C that can
intersect ∆ at points p that lie “in between” ∆′ and ∆′′, in the sense that the vertical line
through p intersects both ∆′ and ∆′′. Hence, the number of pairs of sets in C that can
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intersect within this portion of ∆ is O(1). This implies that the number of edges of G(C) is
O(n + X).

To complete the proof of Theorem 3, it remains to show that X = O(n).

Lemma 4.1 Let S be a set of n straight-line segments in general position in the plane,
whose intersection graph has no C4 as a subgraph. Then the number of crossings between
the elements of S satisfies X ≤ 21n.

Proof: Consider the arrangement A(S) of S as a planar map M , that is, introduce a new
vertex at each crossing. Clearly, M has no digons (faces with two sides) and no quadrilateral
faces, for this would correspond to a C4 in G(C). The number of vertices of M is V = 2n+X,
and the number of its edges is E = n + 2X. Let F and F3 denote the number of faces and
the number of triangular faces of M , respectively. Obviously, we have 3F3+5(F −F3) ≤ 2E,
or, equivalently,

F ≤
2

5
E +

2

5
F3 ≤

2

5
(n + 2X) +

2

5
F3.

Applying Euler’s formula, we obtain

2 ≤ V − E + F ≤ (2n + X) − (n + 2X) +
2

5
(n + 2X) +

2

5
F3,

which implies that
X ≤ 7n + 2F3 − 10. (1)

It remains to bound F3. Since we assumed that the segments were in general position, no
two triangular faces f, f ′ can share a vertex w, unless they lie in opposite wedges formed
by the two spines meeting at w. However, this case cannot arise, because then the four
spines that bound f and f ′ would induce a forbidden C4 in G(C); see Figure 4. Hence, the
F3 triangular faces define 3F3 distinct crossing points, so 3F3 ≤ X. Substituting this in (1)
yields

X ≤ 7n + 2F3 − 10 ≤ 7n +
2

3
X − 10, or X ≤ 21n − 30.

This completes the proof of Lemma 4.1 and hence of Theorem 3. 2

To establish Corollary 4, we have to recall the so-called Crossing Lemma of Ajtai et
al. [1] and Leighton [6].
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Lemma 4.2 Any topological graph with n vertices and e > 4n edges determines at least
e3

64n2 crossings. 2

Consider now a geometric graph G with n vertices and e edges, determining no 2 × 2
grid. Notice that the intersection graph of the set of segments obtained from the edges of G

by clipping them near their endpoints has no C4. Thus, we can apply Lemma 4.1 to obtain
that the number of crossings between the edges satisfies X ≤ 21e. On the other hand,
Lemma 4.2 implies that X ≥ e3

64n2 , provided that e > 4n. Comparing these two bounds, we
conclude that e < 40n, completing the proof of Corollary 4. 2
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[5] T. Kővári, V. T. Sós, and P. Turán, On a problem of K. Zarankiewicz, Colloquium Math.
3 (1954), 50–57.

[6] F. T. Leighton, Complexity Issues in VLSI, MIT Press, Cambridge, MA, 1983.

[7] J. Pach, R. Pinchasi, M. Sharir, and G. Tóth, Topological graphs with no large grids,
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