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Abstract

An interval coloring of a graph G is a proper coloring of E(G) by positive integers such

that the colors on the edges incident to any vertex are consecutive. A (3, 4)-biregular bigraph

is a bipartite graph in which each vertex of one part has degree 3 and each vertex of the

other has degree 4; it is unknown whether these all have interval colorings. We prove that G

has an interval coloring using 6 colors when G is a (3, 4)-biregular bigraph having a spanning

subgraph whose components are paths with endpoints at 3-valent vertices and lengths in

{2, 4, 6, 8}. We provide sufficient conditions for the existence of such a subgraph.

Keywords: path factor, interval edge-coloring, biregular bipartite graph

AMSclass: 05C15, 05C70

1 Introduction

An interval coloring or consecutive coloring of a graph G is a proper coloring of the edges of G

by positive integers such that the colors on the edges incident to any vertex are consecutive. The

notion was introduced by Asratian and Kamalian [2] (available in English as [3]), motivated by the

problem of constructing timetables without “gaps” for teachers and classes. Hansen [9] suggested

another scenario: a school wishes to schedule parent-teacher conferences in time slots so that every

person’s conferences occur in consecutive slots. A solution exists if and only if the bipartite graph

with vertices for the people and edges for the required meetings has an interval coloring.
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In the context of edge-colorings, and particularly edge-colorings of bipartite graphs, it is com-

mon to consider the general model in which multiple edges are allowed. In this paper, we adopt

the convention that “graph” allows multiple edges, and we will explicitly exclude multiple edges

when necessary (a simple graph is a graph without loops or multiple edges).

All regular bipartite graphs have interval colorings, since they have proper edge-colorings in

which all color classes are perfect matchings. Not every graph has an interval coloring, since

a graph G with an interval coloring must have a proper ∆(G)-edge-coloring [3]. Furthermore,

Sevastjanov [15] proved that determining whether a bipartite graph has an interval coloring is NP-

complete. Nevertheless, trees [9, 12], complete bipartite graphs [9, 12], “doubly convex” bipartite

graphs [12], grids [7], and simple outerplanar bipartite graphs [8, 4] all have interval colorings.

Giaro [6] showed that one can decide in polynomial time whether bipartite graphs with maximum

degree 4 have interval 4-colorings.

An (a, b)-biregular bigraph is a bipartite graph where the vertices in one part all have degree a

and the vertices in the other part all have degree b. Hansen [9] proved that (2, b)-biregular bigraphs

are interval colorable when b is even. This was extended to all b by Hanson, Loten, and Toft [11]

and independently by Kostochka [13]. Kamalian [12] showed that the complete bipartite graph

Kb,a has an interval coloring using t colors if and only if a + b − gcd(a, b) ≤ t ≤ a + b − 1, where

gcd denotes the greatest common divisor. Asratian and Casselgren [1] showed that recognizing

whether (3, 6)-biregular bigraphs have interval 6-colorings is NP-complete.

It is unknown whether all (3, 4)-biregular bigraphs have interval colorings. Hanson and Loten [10]

proved that no (a, b)-biregular bigraph has an interval coloring with fewer than a + b − gcd(a, b)

colors; thus (3, 4)-biregular bigraphs need at least 6 colors. An X, Y -bigraph is a bipartite graph

with partite sets X and Y . In our (3, 4)-biregular X, Y -bigraphs, the vertices of X will have de-

gree 3. Pyatkin [14] proved that if a (3, 4)-biregular bigraph has a 3-regular subgraph covering the

vertices of degree 4, then it has an interval 6-coloring.

Here we obtain another sufficient condition for the existence of an interval 6-coloring of a

(3, 4)-biregular X, Y -bigraph G: If G has a spanning subgraph whose components are paths with

endpoints in X and lengths in {2, 4, 6, 8} (we call this a proper path-factor of G), then G has an

interval 6-coloring. A longer proof of this was found earlier by Casselgren [5].

We present infinitely many (3, 4)-biregular bigraphs that have proper path-factors but do not

satisfy Pyatkin’s condition. On the other hand, (3, 4)-biregular bigraphs with multiple edges need

not have proper path-factors, even if they satisfy Pyatkin’s condition. For example, consider the

graph formed from three triple-edges by adding a claw; that is, the pairs xiyi have multiplicity

three for i ∈ {1, 2, 3}, and there is an additional vertex x0 with neighborhood {y1, y2, y3}. A

3-regular subgraph covers {y1, y2, y3}, but there is no proper path-factor. Therefore, neither our

result nor Pyatkin’s result implies the other.

Various difficulties disappear when multiple edges are forbidden. We have found no simple

(3, 4)-biregular bigraph that does not have a proper path-factor. We conjecture that every sim-
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ple (3, 4)-biregular bigraph has a proper path-factor. In Section 3 we present various sufficient

conditions for the existence of a proper path-factor in such a graph.

2 Interval 6-Colorings from Proper Path-Factors

In general, an H-factor of a graph is a spanning subgraph whose components lie in H. We are

interested in a particular family H. Let dH(v) denote the degree of a vertex v in a graph H .

Definition 1. A proper path-factor of a (3, 4)-biregular X, Y -bigraph G is a spanning subgraph of

G whose components are paths with endpoints in X and lengths in {2, 4, 6, 8}.

Henceforth let G be a (3, 4)-biregular X, Y -bigraph. Given a proper path-factor P of G, let

Q = G−E(P ). Observe that dQ(y) = 2 for all y ∈ Y . Furthermore, dQ(x) = 2 if x is an endpoint

of a component of P , and dQ(x) = 1 if x ∈ X and x is an internal vertex of a component of P .

Thus every component of Q is an even cycle or is a path with endpoints in X .

Definition 2. Given a proper path-factor P of G, the P -graph of G, denoted GP , is the graph

with vertices {x ∈ X : dP (x) = 2} having xi and xj adjacent when any condition below holds:

(a) xi and xj are vertices of degree 2 in one component of P with length 6, or

(b) xi and xj are vertices of degree 2 at distance 4 in one component of P with length 8, or

(c) xi and xj are vertices of degree 1 in one component of Q.

Lemma 3. If P is a proper path-factor of G, then GP is bipartite.

Proof. Every vertex of GP has exactly one incident edge of type (c). Some vertices have one more

neighbor, via an edge of type (a) or (b). Thus ∆(GP ) ≤ 2. Furthermore, the edges along any path

or cycle in GP alternate type (c) with type (a) or (b). Thus GP has no odd cycle. ✷

We say that a color appears “at” a vertex if it appears on an edge incident to that vertex.

Theorem 4. If G has a proper path-factor, then G has an interval 6-coloring.

Proof. Let P be a proper path-factor of G. Let c be a proper 2-coloring of V (GP ) with colors

A and B. We define a 6-coloring of E(G) that we will show is an interval coloring. Edges of P

receive colors from {1, 2, 5, 6}; edges of Q receive colors from {3, 4}.

First we color E(Q). Properly color cycles arbitrarily using colors 3 and 4. A component of Q

that is a path has both endpoints in GP , and they are adjacent in GP . Hence c(x) = A for one

endpoint x of the path, and c(x′) = B for the other endpoint x′. Alternate colors along the path,

starting with color 3 on the edge at x and ending with color 4 on the edge at x′. Colors 3 and 4

both now appear at every vertex of G having degree 2 in Q.

The edges of every component of P are colored by alternating 2 and 1 (starting with 2) from

one end, and alternating 5 and 6 (starting with 5) from the other end. We must specify which
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end is which and where to switch from using one pair of colors to using the other. The choice is

based on the colors that c assigns to the internal vertices of the path that lie in X , as illustrated

in Figure 1. Those vertices all have degree 1 in Q; they appear in V (GP ) and have colors under c.

X

Y

•

•

•

•

•
2 1(5) 2(6) 5

A(B)
•

•

•

•

•

•

•
2 1 2 5 6 5

A B

X

Y

•

•

•
2 5

•

•

•

•

•

•

•

•

•
2 1 2 565

A A(B) B

1(5) 2(6)

Figure 1: Coloring the edges of P

Let H be a component of P . If H ∼= P3, then we assign 2 and 5 to the edges arbitrarily. If

H ∼= P5 with middle vertex x, then it does not matter which end edge gets color 2 and which gets

color 5, but the middle edges get colors 1 and 2 if c(x) = A, 5 and 6 if c(x) = B. If H ∼= P7, then

the internal vertices are adjacent in GP and receive distinct colors under c; use 2, 1, 2 from the end

closest to the one colored A and 5, 6, 5 from the end closest to the one colored B. If H ∼= P9, then

the internal vertices at distance 4 on the path again are adjacent in GP , and the three edges from

each end are colored in the same way as for P7. The two central edges are colored like the middle

edges of P5, based on the color under c of the central vertex of the path.

We check that the resulting 6-edge-coloring is an interval coloring. Each vertex of Y has colors

3 and 4 on its incident edges in Q and receives {2, 5} or {1, 2} or {5, 6} on its incident edges in P ,

forming an interval in each case. Each endpoint of a component of P has colors 3 and 4 from Q

and receives color 2 or 5 from P . Each internal vertex x of a component of P receives 3 from Q

and {1, 2} from P if c(x) = A, while it receives 4 from Q and {5, 6} from P if c(x) = B. ✷

This technique does not extend to arbitrary path and cycle factors. We switch from 1, 2-

alternation to 5, 6-alternation only once along a path in P and cannot switch back. Thus we need

that along any path of P , the internal vertices with color A under c all precede those with color B.

With longer paths, our technique offers no mechanism for achieving this; the graph GP can only

enforce that vertices receive different colors under c. Introducing more edges into GP to prevent

alternation of A and B along the path destroys the 2-colorability of GP .
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3 Constructions and Conditions for Proper Path-Factors

To apply the theorem, we seek proper path-factors of (3, 4)-biregular bigraphs. Here we will give

some sufficient conditions for existence of proper path-factors and provide some examples related

to Pyatkin’s condition.

We call a 3-regular subgraph of a (3, 4)-biregular bigraph that covers the vertices of degree

4 a full 3-regular subgraph. Pyatkin proved that a (3, 4)-biregular bigraph with a full 3-regular

subgraph has an interval 6-coloring. We begin with an example that satisfies our condition but

not Pyatkin’s condition. Let [n] = {1, . . . , n}.

Example 1. The X, Y -bigraph G defined by letting X and Y be the 3-sets and 2-sets in [6], with

adjacency defined by proper containment, has an interval 6-coloring. By Theorem 4, it suffices to

find a proper path-factor. In fact, G has a P7-factor as shown below.

124 → 12 → 123 → 23 → 235 → 35 → 345

135 → 13 → 134 → 34 → 346 → 46 → 456

146 → 14 → 145 → 45 → 245 → 25 → 256

125 → 15 → 156 → 56 → 356 → 36 → 236

136 → 16 → 126 → 26 → 246 → 24 → 234

Here |X| = 20 and |Y | = 15, with Y corresponding to the edge set of K6. The neighborhood of

a vertex in X corresponds to a triangle in K6. Hence five vertices can be deleted from G to leave

a full 3-regular subgraph if and only if K6 decomposes into five triangles. It does not, because the

vertices of K6 have odd degree. ✷

We next construct infinitely many examples that satisfy our condition but not Pyatkin’s, start-

ing with a graph smaller than that of Example 1.

Example 2. The smallest simple (3, 4)-biregular bigraph is K3,4; it satisfies Pyatkin’s condition.

The next smallest such graphs have eight vertices of degree 3 and six of degree 4. For example,

consider an X, Y -bigraph where Y = [6] and the neighborhoods of the vertices in X are eight

triples from [6], with each element used in four triples. The graph fails Pyatkin’s condition if and

only if the triple system does not have two disjoint triples.

Case analysis shows that it is not possible to avoid two disjoint triples without a repeated

triple. However, it is possible using a repeated triple, as in {123, 124, 235, 346, 346, 145, 156, 256}.

The resulting (3, 4)-biregular bigraph has a P7-factor as shown in bold in Figure 2. ✷

Using the next lemma, we can generate infinitely many examples that have P7-factors but have

no full 3-regular subgraphs. The number of vertices can be any nontrivial multiple of 7. Here

multiple edges are allowed.

Lemma 5. For i ∈ {1, 2}, let Gi be a 2-edge-connected (3, 4)-biregular bigraph having a P7-factor

Fi, and choose ei ∈ E(Gi)−E(Fi). Let G be the (3, 4)-biregular bigraph obtained from the disjoint
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•

•

•

•

•

•

•

1 2 3

123 124 235 346
•

•

•

•

•

•

•

4 5 6

346 145 156 256
X

Y

Figure 2: P7-factor in a bigraph with no full 3-regular subgraph

union of G1 and G2 by deleting e1 and e2 and replacing them with two other edges e′1 and e′2

joining their endpoints. If G1 has no full 3-regular subgraph, then G is a larger 2-edge-connected

(3, 4)-biregular bigraph having a P7-factor but no full 3-regular subgraph.

Proof. Since ei /∈ E(Fi), the subgraph F1∪F2 is a P7-factor of G. Since each Gi is 2-edge-connected,

G is connected. Also, a cycle through ei in Gi can detour through G3−i using e′1 and e′2. Thus G

is 2-edge-connected.

Suppose that G has a full 3-regular subgraph H . By considering vertex degrees, H must have

an even number of edges in {e′1, e
′

2}. If H uses neither, then H restricts to full 3-regular subgraphs

of G1 and G2. IfH uses both, then replacing e′1 and e′2 with e1 and e2 yields full 3-regular subgraphs

of G1 and G2. ✷

If G1 and G2 in Lemma 5 have no multiple edges, then neither does the resulting graph G.

Our next theorem gives a sufficient condition for existence of a proper path-factor in a (3, 4)-

biregular bigraph. First we note an easy lemma.

Lemma 6. Every (2, 4)-biregular bigraph H has a (1, 2)-biregular factor with every component

isomorphic to P3. (Indeed, H decomposes into two such factors.)

Proof. Each component of H is Eulerian and has an even number of edges. Taking the even-

indexed edges from an Eulerian circuit in each component takes half the edges from each vertex.

Thus it yields a spanning subgraph in which every vertex of one partite set has degree 1 and every

vertex of the other has degree 2. Hence each component of the subgraph is isomorphic to P3. ✷

Theorem 7. A (3, 4)-biregular bigraph G has a P7-factor (and hence an interval 6-coloring) if G

has a (2, 4)-biregular subgraph covering the set of vertices of degree 3.

Proof. Let G have bipartition X, Y , where |X| = 4k and |Y | = 3k. Let H be a (2, 4)-biregular

subgraph of G covering X ; we obtain H from G by deleting vertices u1, . . . , uk of Y that have

disjoint neighborhoods. Let Ŷ = {u1, . . . , uk} and Y ′ = Y − Ŷ , so H has bipartition X, Y ′.

By Lemma 6, H has a spanning subgraph F whose components are copies of P3 with endpoints

in X . Let T1, . . . , T2k be these paths. Index X so that V (Ti) = {x2i−1, yi, x2i} (we maintain the

flexibility to decide later which end is x2i−1 and which is x2i).
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Next we obtain from G−Y ′ a graph H ′ by combining the endpoints of each path Ti into a single

vertex x′

i. Since G − Y ′ is a (1, 4)-biregular X, Ŷ -bigraph, H ′ is a (2, 4)-biregular X ′, Ŷ -bigraph,

where X ′ = {x′

1, . . . , x
′

2k}. Note that multiple edges may arise in H ′.

For each of the k vertices of Ŷ , we construct a path of length 6 in G with endpoints in X . By

Lemma 6, H ′ has a spanning subgraph F ′ whose components are copies of P3 with endpoints in

X ′. For u ∈ Ŷ , let x′

i and x′

j be the neighbors of u in F ′. Thus in G the vertex u is adjacent

to one endpoint of Ti and one endpoint of Tj. We may complete the indexing of X so that

these neighbors of u are x2i ∈ V (Ti) and x2j−1 ∈ V (Tj). The path we associate with u is then

〈x2j−1, yi, x2i, u, x2j−1, yj, x2j〉, isomorphic to P7.

We check that these paths are pairwise disjoint. Each uses exactly one vertex of Ŷ . Since F ′

has exactly one edge incident to each vertex of X ′, for each i the vertices of Ti occur in exactly

one of the paths. Hence these paths form a P7-factor, and Theorem 4 applies. ✷

We now return to simple (3, 4)-biregular bigraphs. Although the examples constructed so far in

this section all have P7-factors, Casselgren [5] found a simple (3, 4)-biregular bigraph with no P7-

factor. We conjecture that every simple (3, 4)-biregular bigraph has the weaker property of having

a proper path-factor. It should also hold that Pyatkin’s condition guarantees the existence of a

proper path-factor in a simple (3, 4)-biregular bigraph, but this also seems difficult. We present a

condition that guarantees a proper path-factor when combined with Pyatkin’s condition.

Let G be a simple (3, 4)-biregular X, Y -bigraph having a full 3-regular subgraph H . Since

|X| = 4k and |Y | = 3k for some k, we may let X ′ = X ∩ V (H) and X0 = X − X ′, where

X0 = {x0
1, . . . , x

0
k}. Since H is 3-regular, H has a proper 3-edge coloring. Fix such a coloring c,

and let H ′ be the spanning subgraph of H whose edges are those with color 1 or 2 under c. Define

an auxiliary graph F with vertex set Y by putting yiyj ∈ E(F ) if H ′ has a yi, yj-path of length 2.

Note that F may have multiple edges and is 2-regular, since each vertex of Y has one incident edge

with each color under c. Since G is simple, the components of F are cycles of length at least 2.

Since G is (3, 4)-biregular, the neighborhoods of the vertices of X0 partition Y into triples; let

Ti = NG(x
0
i ) = {y1i , y

2
i , y

3
i }. Let T denote the family T1, . . . , Tk.

Definition 8. For families of disjoint triples, we define a transversal to be a set S having exactly

one element from each triple. For a family T defined on the vertices of a 2-regular graph F , an

independent transversal is a transversal S that is an independent set in F . A spread transversal is

a transversal S such that, given directions on the cycles of F , for every vertex v of F that does

not belong to S, there is a vertex of S among the next three vertices after v along the forward

direction of its cycle in F . Let F ∗ be the 4-regular graph obtained from F by adding triangles

whose vertex sets are the triples of T. A mixed transversal is a transversal that restricts on each

component of F ∗ to an independent transversal or a spread transversal.

Note that a spread transversal intersects each cycle of F .
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Theorem 9. Let G be a simple (3, 4)-biregular X, Y -bigraph having a full 3-regular subgraph H,

and let F and T be the 2-regular graph and triple system defined as above. If T has a mixed

transversal, then G has a proper path-factor.

Proof. Let c be a proper 3-edge-coloring of H , and let M be the perfect matching in color 1. The

ith triple in T is {y1i , y
2
i , y

3
i }; we may let y1i be the vertex of Ti in the mixed transversal Y1. Let

Y2 = {y21, . . . , y
2
k} and Y3 = {y31, . . . , y

3
k}. For x ∈ X ′ = X−X0, put x ∈ Xj if the other endpoint of

the edge of M at x lies in Yj, and write x as xj
i if that neighboring vertex is yji . Since each vertex

of Y has one neighbor via M , we have labeled X so that X ′ = {xj
i : 1 ≤ i ≤ k and 1 ≤ j ≤ 3}.

We construct a proper path-factor of G, dealing separately with each component C of F ∗. From

C we generate paths in G that together cover V (C), the neighbors of V (C) via M , and the vertices

of X0 whose neighborhoods lie in V (C). The construction depends on whether the restriction of

T to C has an independent transversal or a spread transversal. For simplicity of notation, we

describe the construction in the case that F ∗ is connected. In the general case, V (C) is the union

of Ti for i in some subset of {1, . . . , k}, and the construction in Case 1 or Case 2 covers all vertices

in Ti ∪ {x0
i , x

1
i , x

2
i , x

3
i } for each such index i.

Case 1: Y1 is an independent transversal. We specify k paths of lengths 4, 6, or 8, each

containing one vertex of X0. Consider the paths 〈x2
i , y

2
i , x

0
i , y

3
i , x

3
i 〉 for 1 ≤ i ≤ k. These paths are

disjoint and cover V (G)−(X1∪Y1). The 2k endpoints of these paths form X2∪X3. Each vertex y1i

of Y1 has one incident edge y
1
i x having color 2 under c. Since Y1 is an independent transversal, this

neighbor x lies in X2 ∪X3, not in X1. Extend the original path of length 4 ending at x by adding

xy1i and y1i x
1
i . Altogether there are k such extensions to absorb Y1∪X1. Each of the original paths

extends by zero or two edges at each end, so we have the factor using paths of the desired lengths.

Case 2: Y1 is a spread transversal. Again each path contains one vertex of X0, but now we

may also use length 2. Specify an orientation of each cycle in F , and delete the incoming edge

to each vertex of Y1. Since Y1 is a spread transversal, each cycle is cut, and what remains of F

consists of k disjoint paths P1, . . . , Pk, starting at y11, . . . , y
1
k, respectively, each with length at most

3. By the definition of G, each edge in Pi expands to a path of length 2 in G having edges of colors

1 and 2 under c, yielding paths of even length (at most 6) ending in Y2 ∪ Y3. If some Pi ends at

y ∈ Y2 ∪ Y3, then the neighbor of y in M is not covered by any of these paths. Thus extending

each path Pi by adding x0
i y

1
i at the beginning and the edge yx of M at the end yields k disjoint

paths of lengths in {2, 4, 6, 8} that cover V (G). ✷

This method for finding proper factors is robust, since any proper 3-edge-coloring of H and

any indexing of its colors can be used. Care is needed, since there exist 2-regular graphs F and

triple systems T where no mixed transversal exists, as shown in our final example.

Example 3. First we construct F1 with no independent transversal. Let k1 be a multiple of 6,

and let F1 consist of k1/2 cycles of length 4 and k1/3 cycles of length 3. Name the 4-cycles as

8



[y12i−1, y
1
2i, y

2
2i−1, y

2
2i] for 1 ≤ i ≤ k1/2. Name the 3-cycles as [y36i−3, y

3
6i−1, y

3
6i+1] and [y36i−4, y

3
6i−2, y

3
6i]

for 1 ≤ i ≤ k1/6 (with yk1+1 = y1). An independent partial transversal has at most one vertex in

each cycle, and hence the largest independent partial transversal has at most k1/2+k1/3 elements.

Next we construct F2 with no spread transversal; for clarity, we use vertices zji instead of yji .

Let k2 be a multiple of 2, and let F2 consist of 3k2/2 cycles of length 2. Name the 2-cycles as

[z1i , z
2
i+1] for 1 ≤ i ≤ k2 (where zk+1 = z1) and [z32i−1, z

3
2i] for 1 ≤ i ≤ k2/2. A transversal has only

k2 elements, but a spread transversal must have an element in each of the 3k2/2 cycles.

Both F ∗

1 and F ∗

2 are connected graphs. To construct an example with no mixed transversal,

we start with disjoint copies of F1 and F2, with k1 = 12 and k2 = 8. Exchange vertex y11 in F1 for

z11 in F2. This creates a new graph F such that F ∗ is connected; hence a mixed transversal must

be an independent transversal or a spread transversal. A transversal can cover at most 11 of the

2-cycles from F2 and thus cannot be spread. On the other hand, at most 11 vertices of F1 can be

chosen for an independent transversal, since at most one vertex from each 3-cycle and 4-cycle can

be selected. We conclude that there is no mixed transversal. ✷
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