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Acyclic Edge Coloring of Graphs with maximum degree 4

Manu Basavaraju∗ L. Sunil Chandran†

Abstract

An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. Theacyclic
chromatic indexof a graph is the minimum number k such that there is an acyclicedge coloring using k colors and is
denoted bya′(G). It was conjectured by Alon, Sudakov and Zaks that for any simple and finite graphG, a′(G) ≤ ∆+ 2,
where∆ = ∆(G) denotes the maximum degree ofG. We prove the conjecture for connected graphs with∆(G) ≤ 4, with
the additional restriction thatm ≤ 2n− 1, wheren is the number of vertices andm is the number of edges inG. Note that
for any graphG, m ≤ 2n, when∆(G) ≤ 4. It follows that for any graphG if ∆(G) ≤ 4, thena′(G) ≤ 7.

Keywords: Acyclic edge coloring, acyclic edge chromatic index

1 Introduction

All graphs considered in this paper are finite and simple. A properedge coloringof G = (V,E) is a mapc : E → S (where
S is the set of availablecolors ) with c(e) 6= c(f) for any adjacent edgese,f . The minimum number of colors needed to
properly color the edges ofG, is called the chromatic index ofG and is denoted byχ′(G). A proper edge coloring c is
called acyclic if there are no bichromatic cycles in the graph. In other words an edge coloring is acyclic if the union of any
two color classes induces a set of paths (i.e., linear forest) in G. Theacyclic edge chromatic number(also calledacyclic
chromatic index), denoted bya′(G), is the minimum number of colors required to acyclically edge colorG. The concept of
acyclic coloringof a graph was introduced by Grünbaum [11]. Theacyclic chromatic indexand its vertex analogue can be
used to bound other parameters likeoriented chromatic numberandstar chromatic numberof a graph, both of which have
many practical applications, for example, in wavelength routing in optical networks ( [4], [12] ). Let∆ = ∆(G) denote the
maximum degree of a vertex in graphG. By Vizing’s theorem, we have∆ ≤ χ′(G) ≤ ∆+ 1(see [8] for proof). Since any
acyclic edge coloring is also proper, we havea′(G) ≥ χ′(G) ≥ ∆.

It has been conjectured by Alon, Sudakov and Zaks [2] thata′(G) ≤ ∆ + 2 for anyG. Using probabilistic arguments
Alon, McDiarmid and Reed [1] proved thata′(G) ≤ 60∆. The best known result up to now for arbitrary graph, is by Molloy
and Reed [13] who showed thata′(G) ≤ 16∆. Muthu, Narayanan and Subramanian [14] proved thata′(G) ≤ 4.52∆ for
graphsG of girth at least 220 (Girth is the length of a shortest cycle in a graph).

Though the best known upper bound for general case is far fromthe conjectured∆+ 2, the conjecture has been shown
to be true for some special classes of graphs. Alon, Sudakov and Zaks [2] proved that there exists a constantk such that
a′(G) ≤ ∆ + 2 for any graphG whose girth is at leastk∆ log∆. They also proved thata′(G) ≤ ∆ + 2 for almost all
∆-regular graphs. This result was improved by Nešetřil andWormald [17] who showed that for a random∆-regular graph
a′(G) ≤ ∆ + 1. Muthu, Narayanan and Subramanian proved the conjecture for grid-like graphs [15] and outer planar
graphs [16]. In fact they gave a better bound of∆ + 1 for those classes of graphs. From Burnstein’s [7] result it follows
that the conjecture is true for subcubic graphs. Skulrattankulchai [18] gave a polynomial time algorithm to color a subcubic
graph using∆ + 2 = 5 colors. Recently Basavaraju and Chandran [5] proved that connected non-regular subcubic graph
can be acyclically edge colored using4 colors.

Determininga′(G) is a hard problem both from a theoretical and from an algorithmic point of view. Even for the simple
and highly structured class of complete graphs, the value ofa′(G) is still not determined exactly. It has also been shown by
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Alon and Zaks [3] that determining whethera′(G) ≤ 3 is NP-complete for an arbitrary graphG. The vertex version of this
problem has also been extensively studied ( see [11], [7], [6]). A generalization of the acyclic edge chromatic number has
been studied. Ther-acyclic edge chromatic numbera′r(G) is the minimum number of colors required to color the edges of
the graphG such that every cycleC of G has at least min{|C|,r} colors ( see [9], [10]).

Our Result:In this paper, we prove the following Theorem:

Theorem 1. LetG be a connected graph onn vertices,m ≤ 2n− 1 edges and maximum degree∆ ≤ 4, thena′(G) ≤ 6.
(Note that if∆(G) ≤ 4, thenm ≤ 2n always).

Note that if∆(G) < 4, it follows from Burnstein’s [7] result thata′(G) ≤ 5 and is tight.

Corollary 1. LetG be a graph with maximum degree∆ ≤ 4. Thena′(G) ≤ 7.

Proof. If ∆(G) ≤ 4, thenm ≤ 2n for each connected component. Ifm ≤ 2n − 1, by Theorem 1a′(G) ≤ 6 for each
connected component. Otherwise ifm = 2n, we can remove an edge from each connected component and color the
resulting graph with at most 6 colors. Now the removed edges of each component could be colored using a new color. Thus
a′(G) ≤ 7.

Remark: There exists graphs with∆(G) ≤ 4 that require at least 5 colors to be acyclically edge colored. For example,
any graph with∆(G) = 4 andm = 2n − 1 require 5 colors. But we do not know whether there exist any graph with
∆(G) ≤ 4 that needs 7 colors or even 6 colors to be acyclically edge colored. Thus we feel that the bound ofCorollary 1
andTheorem 1 can be improved. Our proof is constructive and yields an efficient polynomial time algorithm.

2 Preliminaries

Let G = (V,E) be a simple, finite and connected graph with maximum degree4. Letx ∈ V . ThenNG(x) will denote the
neighbours ofx in G. For an edgee ∈ E, G − e will denote the graph obtained by deletion of the edgee. Forx, y ∈ V ,
whene = (x, y) = xy, we may useG−{xy} instead ofG−e. Let c : E → {1, 2, . . . , k} be anacyclic edge coloringof G.
For an edgee ∈ E, c(e) will denote the color given toe with respect to the coloringc. Forx, y ∈ V , whene = (x, y) = xy
we may usec(x, y) instead ofc(e).

To prove the main result, we plan to use induction on the number of edges. LetG = (V,E) be a graph onm edges
wherem ≥ 1. We will remove an edge fromG and get a graphG′ = (V,E′) on smaller number of edges. By induction
hypothesisG′ will have an acyclic edge coloringc : E′ → {1, 2, . . . , 6}. Throughout the paper we will consistently assume
that the edge we remove fromG to getG′ is xy = (x, y). ThenE′ = E −{xy}. Our intention will be to extend the acyclic
edge coloringc of G′ toG by assigning an appropriate color for the edgexy.

An (α,β)-maximal bichromatic path with respect to an acyclic edge coloringc of G′ is a path consisting of edges that are
colored using the colorsα andβ alternatingly. An (α,β,a,b)-maximal bichromatic path is an (α,β)-maximal bichromatic
path which starts at the vertexa with an edge coloredα and ends atb. We emphasize that the edge of the (α,β,a,b)-maximal
bichromatic path incident on vertexa is coloredα and the edge incident on vertexb can be colored eitherα or β. Thus the
notations (α,β,a,b) and (α,β,b,a) have different meanings. The following fact is obvious from the definition of acyclic edge
coloring:

Fact 1. Given a pair of colorsα andβ of an acyclic edge coloringc, there can be at most one maximal (α,β)-bichromatic
path containing a particular vertexv, with respect toc.

We denote the set of colors in the acyclic edge coloringc by C = {1, 2, . . . , 6}. For any vertexu ∈ V (G′), we define
Fu = {c(u, z)|z ∈ NG′(u)}. For an edgeab ∈ E′, we defineSab = Fb − {c(a, b)}. Note thatSab need not be the same as
Sba.

A color α is acandidatefor an edgee in G with respect to a coloring ofG − e if none of the adjacent edges ofe are
coloredα. A candidate colorα is valid for an edgee if assigning the colorα to e does not result in any bichromatic cycle
in G.

LetF = Fx ∪ Fy. Recall that the verticesx andy are non-adjacent inG′. Note that any colorβ ∈ C − F is a candidate
color for the edgexy in G with respect to the coloringc of G′. But β may not be valid. What may be the reason? It is
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clear that colorβ is notvalid if and only if there existsα 6= β such that a (α,β)-bichromatic cycle gets formed if we assign
color β to the edgexy. In other words, if and only if, inG′ there existed a (α,β,x,y) maximal bichromatic path withα
being the color given to the first and last edge of this path. Such paths play an important role in our proof. We call them
critical paths. It is formally defined below:

Critical Path: For an edgeab ∈ E an (α, β,a,b) maximal bichromatic path which starts out from a vertexa via an edge
coloredα and ends at vertexb via an edge coloredα is called an(α, β, ab) critical path.

Lemma 1. A candidate color for an edgee = uv, is valid if (Fu ∩ Fv)− {c(u, v)} = (Suv ∩ Svu) = ∅.

Proof. Any cycle containing the edgeuv will also contain an edge incident onu (other thanuv) as well as an edge incident
on v (other thanuv). Clearly these two edges are colored differently since(Suv ∩ Svu) = ∅. Thus the cycle will have at
least 3 colors and therefore any of the candidate color for the edgeuv is valid.

An obvious strategy to extend the coloringc of G′ to G would be to try to assign one of the candidate colors inC − F
to the edgexy. The condition that a candidate color is not valid for the edgexy is captured in the following fact.

Fact 2. The colorβ ∈ C−F is not avalid color for the edgexy if and only if∃α ∈ Fx∩Fy such that there is a(α, β, xy)
critical path inG′.

If none of the colors inC−F is valid for the edgexy, then we can group the colors inC−F into two categories namely
weak andstrong.

Weak Color: A color β ∈ C −F is calledweak if it forms only one critical path withx andy as end points. Equivalently,
there exists only oneα ∈ Fx ∩ Fy such that there is a(α, β, xy) critical path. A weak colorβ is said to beactively present
in a setSxa, if ∃k ∈ NG′(a), k 6= x such thatc(a, k) = β and(α, β, xy) critical path contains the edge(a, k). If a weak
colorβ ∈ Sxa is not actively present inSxa then it is said to bepassively presentin Sxa.
Strong Color:If the colorβ ∈ C − F is notweak, it is calledstrong.

If there are weak colors, it makes sense to try to break the critical path containing one of the weak colors, thus enabling
us to use that weak color for the edgexy. For this purpose we introduce the concept ofRecoloring.

Recolor: We definec′ = Recolor(c, e, γ) as the recoloring of the edgee with a candidate colorγ to get a modified coloring
c′ from c, i.e.,c′(e) = γ andc′(f) = c(f), for all other edgesf in G′. The recoloring is said to be proper, if the coloringc′

is proper. The recoloring is said to beacyclic (valid), if in coloring c′ there exists no bichromatic cycle.
Recall that our strategy is to extend the coloring ofG′ to G by assigning a valid color for the edgexy. When all the

candidate colors ofxy turn out to beinvalid, we try toslightly modify the coloringc of G′ in such a way that with respect
to the modified coloring, we have a valid color for edgexy. Recoloringof an edge in the critical path which contained a
weak color is one such strategy. Sometimes we resort to a slightly more sophisticated strategy to modify the coloring namely
color exchange defined below.

Color Exchange: Let u, i, j ∈ V (G′) andui, uj ∈ E(G′). We definec′ = ColorExchange(c, ui, uj) as the the
modification of the current coloringc by exchanging the colors of the edgesui anduj, i.e., c′(u, i) = c(u, i), c′(u, i) =
c(u, i) andc′(e) = c(e) for all other edgese in G′. The color exchange with respect to the edgesui anduj is said to be
proper if the coloring obtained after the exchange is proper. The color exchange with respect to the edgesui anduj is valid
if and only if the coloring obtained after the exchange is acyclic.

In our proof we use the strategy of color exchange many times and in different contexts. All these contexts are more or
less similar but differ in minor details. We would like to capture all these different contexts in a general framework. The
configuration defined below is an attempt to formalize this:

Configuration A Letu be a vertex andi, j ∈ NG′(u). LetN ′

G′(u)∪N ′′

G′(u) be a partition ofNG′(u)−{i, j}, i.e.,N ′

G′(u)∪
N ′′

G′(u) = NG′(u) − {i, j} andN ′

G′(u) ∩ N ′′

G′(u) = ∅. The 5-tuple(u, i, j,N ′

G′(u), N ′′

G′(u)) is in configuration A if
(u, i), (u, j) ∈ E′ and

1. c(u, i) /∈ Suj andc(u, j) /∈ Sui
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2. ∀z ∈ N ′

G′(u), c(u, z) /∈ Sui andc(u, z) /∈ Suj

Suppose(u, i, j,N ′

G′(u), N ′′

G′(u)) is in configuration A with respect to the coloringc. Let c′ be the coloring obtained
after the color exchange with respect to the edgesui anduj. Then note that condition 1 guarantees that the colorc(u, i) is a
candidate for edgeuj and the colorc(u, j) is a candidate for edgeui and thus the coloring obtained after the color exchange
is proper. Condition 2 inhibits the possibility of any(c(u, i), c(u, z)) or (c(u, j), c(u, z)) bichromatic cycles being formed
for anyz ∈ N ′

G′(u). Its obvious that there can not be any(c(u, j), c(u, i)) bichromatic cycles after exchange. Thus the
following fact is easy to verify:

Fact 3. Let the 5-tuple(u, i, j,N ′

G′(u), N ′′

G′(u)) be in configuration A. Thenc′ = ColorExchange(c, ui, uj) is not
valid if and only if∃h ∈ N ′′

G′(u) such that after the color exchange (i.e., inc′) there exists an(α, β) bichromatic cycle that
passes throughh for α ∈ {c′(u, i), c′(u, j)} andβ = c′(u, h).

In view ofFact 3, the followingFact is obvious:

Fact 4. Let the 5-tuple(u, i, j,N ′

G′(u), N ′′

G′(u)) be inconfiguration A. Then ifN ′′

G′(u) = ∅, the color exchangec′ =
ColorExchange(c, ui, uj) is valid.

Lemma 2. Letu, i, j, a, b ∈ V (G), ui, uj ∈ E′ andab ∈ E. Also let{α, β}∩{c(u, i), c(u, j)} 6= ∅ and{i, j}∩{a, b} = ∅.
Suppose there exists an (α,β,ab)-critical path that passes through vertexu, with respect to the coloringc of G′. Let
c′ = ColorExchange(c, ui, uj) be proper. Then with respect to the coloringc′, there will not be any (α,β,ab)-critical path
in G’.

Proof. Note that since we are assuming that the color exchange is proper,c(u, j) /∈ Sui. Thus{α, β} 6= {c(u, i), c(u, j)}
because any(c(u, i), c(u, j), ab) critical path through vertexu will have to involve the edgesui anduj. Sincei /∈ {a, b},
color c(u, j) ∈ Sui, a contradiction. Let P be the (α,β,ab)-critical path. Without loss of generality assume thatγ =
c(u, i) ∈ {α, β}. Since vertexu is contained in pathP , we claim that the edgeui belongs to the pathP . This is because
γ = c(u, i) ∈ Fu and hence pathP has to involve edge ui by the maximality of pathP . Let us assume without loss of
generality that pathP starts at vertexa and reaches vertexi before it reaches vertexu. With respect to the coloringc′, there
will not be any edge adjacent to vertexi that is coloredγ. So the (α,β) maximal bichromatic path that starts at vertexa,
should end at vertexi. Sincei 6= b, byFact 1 we infer that the (α,β,ab) critical path does not exist.

3 proof of Theorem 1

Proof. We prove the Theorem by induction on the number of edges. LetH = (VH , EH) be a connected graph ofn vertices
andm ≤ 2n − 1 edges and∆(H) ≤ 4. Let the Theorem be true for all connected graphsW such that∆(W ) ≤ 4 and
|E(W )| ≤ 2|V (W )| − 1, with at mostm− 1 edges. Without loss of generality we can assume thatH is 2-connected, since
if there are cut vertices inH , the acyclic edge coloring of the blocksB1, B2 . . . Bk of H can easily be extended toH (Note
that each block satisfies the property that∆(Bi) ≤ 4 and|E(Bi)| ≤ 2|V (Bi)| − 1). Thusδ(H) ≥ 2. Now sinceH has at
most2n− 1 edges, there is a vertexx of degree at most 3.

Let y ∈ NH(x). The degree ofy is at most 4. LetH ′ = H − {xy}, i.e.,H ′ = (VH′ , EH′ ), whereVH′ = VH and
EH′ = EH − {xy}. Thus inH ′, degree(x) ≤ 2 anddegree(y) ≤ 3. Note that sinceH is 2-connected,H ′ is connected

To avoid certain technicalities in the presentation of the proof, we construct the graphG′ from H ′ as below. If
degreeH′(x) = 2, degreeH′(y) = 3 and∀z ∈ NH′(x) ∪ NH′(y), degreeH′(z) = 4, then letG′ = H ′ andG = H .
Otherwise, we construct the graphG′ = (V ′, E′) from H ′ in the following manner. First add pendant vertices as neigh-
bours to the verticesx andy such thatdegreeG′(x) = 2 anddegreeG′(y) = 3. Next add pendant vertices as neighbours to
the newly added vertices and∀z ∈ NH′(x) ∪NH′(y) such that∀z ∈ NG′(x) ∪NG′(y), degreeG′(z) = 4. Note that since
H ′ was connected,G′ is also connected. LetG = G′ ∪ {xy}, i.e.,G = (V,E), whereV = V ′ andE = E′ + {xy}.

By induction hypothesis, graphH ′ is acyclically edge colorable using6 colors. Note that we can easily extend the
coloring of H ′ to G′ by coloring each of the newly added edges with the available colors satisfying the acyclic edge
coloring property. Letc0 : E′ → {1, 2, ....., 6} be a acyclic edge coloring ofG′. It is easy to see that if we extend the
acyclic edge coloring ofG′ toG by assigning an appropriate color to the edgexy, then this coloring also corresponds to the
acyclic edge coloring ofH , sinceH is a subgraph ofG.

Our intention will be to extend the acyclic edge coloringc0 of G′ to G = G′ + {xy} by assigning an appropriate color
for the edgexy. We denote the set of colors ofc0 byC = {1, 2, 3, 4, 5, 6}.
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Let NG′(x) = {a, b} andNG′(y) = {a′, b′, d′}. Note thatNG′(x) ∩ NG′(y) need not be empty. Also recall that
degreeG′(a) = degreeG′(b) = 4. LetNG′(a) = {x, k1, k2, k3} andNG′(b) = {x, l1, l2, l3}.

case 1:Fx ∩ Fy = ∅

Since|F | = 5, |C − F | = 1. Clearly thecandidate color inC − F is valid for the edgexy.

case 2:|Fx ∩ Fy| = 2

Assumption 1. Without loss of generality letFx = {1, 2} andFy = {1, 2, 3}. ThusF = {1, 2, 3}.

By Assumption 1,C − F = {4, 5, 6}. If none of the candidate colors arevalid, then byFact 2, the following Claim
is easy to see:

Claim 1. With respect to the coloringc0, ∀β ∈ C − F, ∃α ∈ Fx ∩ Fy such that there is a(α, β, xy) critical path.

case 2.1:(Sxa ∪ Sxb) ∩ F = ∅

SinceF = {1, 2, 3}, Sxa = Sxb = {4, 5, 6}.

Claim 2. With respect to the coloringc0, all the colors ofC − F are weak.

Proof. Suppose not. Then there is a strong color inC − F . Without loss of generality let4 be a strong color. Let
c0(x, a) = c0(y, a

′) = 1 andc0(x, b) = c0(y, b
′) = 2. Now it is easy to check that the 5-tuple(x, a, b, ∅, ∅) satisfies

configuration A. Let

c′
0
= ColorExchange(c0, xa, xb)

By Fact 4 the color exchange with respect to the edgesxa andxb is valid. Thus the coloringc′
0

is acyclic.
Since color 4 was strong in coloringc0, there was a(1, 4, xy) critical path as well as a(2, 4, xy) critical path before

color exchange (i.e., with respect to the coloringc0). Thus byLemma 2, (1, 4, xy) critical path and(2, 4, xy) critical
path will not exist after thecolor exchange (i.e., with respect to the coloringc′

0
). Thus byFact 2, color 4 is valid for edge

xy.

By Claim 2, all the colors ofC − F are weak. Each weak color should be actively present in exactly one ofSxa or
Sxb. Since there are 3 weak colors, we can infer that eitherSxa or Sxb is such that at least 2 of the weak colors are actively
present in it.

Assumption 2. Without loss of generality assume that colors4 and5 are actively present in Sxa. Let c(a, k1) = 4 and
c(a, k2) = 5.

FromAssumption 2, it follows that sincec(x, a) = 1, there exist(1, 4, xy) and(1, 5, xy) critical paths. The following
claim is obvious.

Claim 3. With respect to the coloringc0, 1 ∈ Sak1
and1 ∈ Sak2

.

It is easy to verify that the 5-tuple(x, a, b, ∅, ∅) satisfies configurationA with respect to the coloringc0.

c1 = ColorExchange(c0, xa, xb)

By Fact 4 the color exchange with respect to the edgesxa andxb is valid. Thus the coloringc1 is acyclic.
But there were(1, 4, xy) and(1, 5, xy) critical pathsbeforecolor exchange (i.e., with respect to the coloringc0). By

Lemma 2, both(1, 4, xy) and(1, 5, xy) critical pathsdoes not exist after thecolor exchange (i.e., with respect to the
coloringc1).

Thus even with respect to the coloringc1, if both the colors4 and5 are notvalid for the edgexy, byFact 2, there has
to be(2, 4, xy) and(2, 5, xy) critical paths. Thus2 ∈ Sak1

and2 ∈ Sak2
. Thus we canClaim the following:
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Claim 4. With respect to the coloringc1, {1, 2} ⊂ Sak1
and{1, 2} ⊂ Sak2

. Moreover there will not be any(1, 4, xy) and
(1, 5, xy) critical paths.

Now since the colors 4 and 5 are weak, we try to break the(2, 4, xy) and(2, 5, xy) critical pathsby recoloring the edge
xa.

c2 = Recolor(c1, xa, 3)

Note that color 3 is a candidate for the edgexa sinceSxa = {4, 5, 6} andc(x, b) = 1. And also sinceSxa ∩Sax = ∅, by
Lemma 1 color 3 isvalid for the edgexa.

Note that with respect to the coloringc2, Fx ∩ Fy = {1, 3}. In view of Claim 4, there will not be any(1, 4, xy) and
(1, 5, xy) critical pathswith respect to the coloringc2 also. If both the colors4 and5 are notvalid for the edgexy still,
then byFact 2, there has to be(3, 4, xy) and(3, 5, xy) critical pathsimplying 3 ∈ Sak1

and3 ∈ Sak2
. Thus combined

with Claim 4, we infer the following:

Claim 5. With respect to the coloringc2, we haveSak1
= Sak2

= {1, 2, 3}. Moreover there will not be any(1, 4, xy) and
(1, 5, xy) critical paths.

Now the 5-tuple(a, k1, k2, {k3}, {x}) satisfies configurationA.

c3 = ColorExchange(c2, ak1, ak2)

By fact 3 if there is any bichromatic cycle (recalling thatc3(a, x) = 3), it has to be either a(5, 3) or (6, 3) bichromatic
cycle that passes through vertexa and hence vertexx. But any cycle that passes through vertexx should contain edgexb
also. Sincec3(x, b) = 1, this is a contradiction and we infer thatc3 is acyclic.

There was a(3, 4, xy) critical path as well as a(3, 5, xy) critical path beforecolor exchange (i.e., with respect to the
coloringc2). Thus byLemma 2, both these critical paths does not exist after the color exchange (i.e., with respect to the
coloringc3) (Note thatk1, k2 /∈ {x, y} sincec(a, k1) = 4 andc(a, k2) = 5 /∈ Fx or Fy. Therefore we can applyLemma
2)

To summarize,c3(x, a) = 3, c3(x, b) = 1 and thusFx ∩ Fy = {1, 3}. With respect to the coloringc3, there exist no
(3, 4, xy) and(3, 5, xy) critical paths. Recall that by Claim 5, there won’t be any(1, 4, xy) and(1, 5, xy) critical paths
with respect to the coloringc2. It is easy to see that even with respect to the coloringc3, there won’t be any(1, 4, xy) and
(1, 5, xy) critical paths.

Thus byFact 2, color 4 and 5 are valid for edgexy.

case 2.2:(Sxa ∪ Sxb) ∩ F 6= ∅

Assumption 3. Without loss of generality letSxa∩F 6= ∅. It follows that one of{4, 5, 6} is missing inSxa since|Sxa| = 3.
Without loss of generality let it be color 5. Also letc0(x, a) = c0(y, a

′) = 1 andc0(x, b) = c0(y, b
′) = 2 andc0(y, d′) = 3.

Claim 6. With respect to the coloringc0, there exists a(2, 5, xy) critical path. Thus5 ∈ Sxb.

Proof. Since color 5 is not valid for the edgexy, byClaim 1 there has to be a(1, 5, xy) critical path or a(2, 5, xy) critical
path. But byAssumption 3, color 5 /∈ Sxa and hence there can not be a(1, 5, xy) critical path. Thus there exists a
(2, 5, xy) critical path.

Claim 7. With respect to the coloringc0, all the colors ofC − F are weak.

Proof. Suppose not. Then there is at least one strong color inC − F . Without loss of generality let 4 be a strong color.
Thus we have4 ∈ Sxb. Combined withClaim 6, we have:

{4, 5} ⊂ Sxb. (1)

Now let

c′
0
= Recolor(c0, xa, 5)
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Note that color5 is a candidate for the edgexa sincec0(x, b) = 2 and5 /∈ Sxa (byAssumption 3). Now we claim that
assigning color 5 to the edgexa can not result in any bichromatic cycle. To see this first notethat since any cycle containing
the edgexa should also contain the edgexb, but c0(x, b) = 2 and therefore if a bichromatic cycle gets formed it must be
a (2, 5) bichromatic cycle, implying that there is a(2, 5, xa) critical path. But there is already a(2, 5, xy) critical path (by
Claim 6) and byFact 1 there can not be a(2, 5, xa) critical path, a contradiction. Thus coloringc′

0
is acyclic.

Note that with respect to the coloringc′
0
, color 6 remains to be a candidate color for the edgexy. Also note that

Fx ∩Fy = {2}. If the candidate color6 is not valid for the edgexy, then byFact 2 there has to be a(2, 6, xy) critical path
and thus6 ∈ Sxb. Thus combined with(1), we have:

Sxb = {4, 5, 6} (2)

With respect to the coloringc0, color 4 was strong (assumption) and thus there existed a(1, 4, xy) critical path. After
recoloring the edgexa with color 5 (i.e., with respect to the coloringc1), the (1, 4, xy) critical path gets curtailed to a
(1, 4, y, a) maximal bichromatic path without containing the vertexx. Moreover note that(1, 4, y, a) maximal bichromatic
path does not contain the vertexb, since ifb is in this path, then it is an internal vertex and thus both colors1, 4 ∈ Fb, a
contradiction (1 /∈ Fb). Thus we have,

With respect to the coloringc′
0
, a (1, 4, y, a) maximal bichromatic path exists, (3)

but this path does not contain the verticesx or b.

Now with respect to the coloringc′
0
, Fx ∩ Fy = {2}. Let

c′′
0
= Recolor(c′

0
, xb, 1)

Note that color 1 is a candidate color for the edgexb sincec′
0
(x, a) = 5 and1 /∈ Sxb = {4, 5, 6}. Color 1 isvalid for

the edgexb because any bichromatic cycle containing edgexb should also contain edgexa and since color1 /∈ Sxa (Recall
thatc0(x, a) = 1. Thus1 /∈ Sxa with respect to the coloringc0. Therefore1 /∈ Sxa with respect to the coloringc′

0
also.),

such a(1, 5) bichromatic cycle can not be formed. Thusc′′
0

is acyclic.
Thus with respect to coloringc′′

0
, Fx ∩Fy = {1}. Now by(3), with respect to the coloringc′

0
, there existed a(1, 4, y, a)

maximal bichromatic path that does not contain vertexb or x. Thus noting thatc′′
0

is obtained just by changing the color of
the edgexb to 1, byFact 1 we infer thatc′′

0
can not contain(1, 4, xy) critical path.

Thus byFact 2 color 4 is valid for the edgexy.

Claim 8. In view ofAssumption 3, with respect to the coloringc0, eachα ∈ {4, 5, 6} is actively present in Sxb

Proof. Suppose not. ByClaim 6, we know that color 5 isactively present in Sxb. Without loss of generality let color 6
be notactively present in Sxb. Therefore color 6 isactively present in Sxa. Now let

c′
0
= Recolor(c0, xa, 5)

Note that color5 is a candidate since5 /∈ {Sxa (by Assumption 3) andc0(x, b) = 2. Now we claim that assigning
color 5 to the edgexa can not result in any bichromatic cycle. To see this first notethat since any cycle containing the edge
xa should also contain the edgexb, but c0(x, b) = 2 and therefore if a bichromatic cycle gets formed it must be a(2, 5)
bichromatic cycle, implying that there is a(2, 5, xa) critical path with respect to the coloringc0. But in c0 there is already a
(2, 5, xy) critical path (by Claim 1) and byFact 1 there can not be a(2, 5, xa) critical path, a contradiction. Thus coloring
c′
0

is acyclic.
Now Fx ∩ Fy = {2}. But in c0, there did not exist a(2, 6, xy) critical path since by assumption color 6 is actively

present inSxb. Thus noting thatc′
0

is obtained just by changing the color of the edgexa to 5, we infer thatc′
0

can not
contain(2, 6, xy) critical path.

Thus byFact 2 color 6 is valid for the edgexy.

Recall thatc0(x, b) = c0(y, b
′) = 2. In view ofClaim 8, with respect to the coloringc0, we have:

Sxb = Syb′ = {4, 5, 6} (4)
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Let

c1 = Recolor(c0, xb, 3)

Note that color 3 is a candidate for edgexb since3 /∈ {Sxb = {4, 5, 6} (by Claim 8) andc0(x, a) = 1. Moreover since
Sxb ∩ Sbx = ∅, byLemma 1 color 3 is alsovalid. Thus the coloringc1 is acyclic.

With respect to the coloringc1, Fx ∩ Fy = {1, 3}. In view of Claim 7 andClaim 8, ∀α ∈ {4, 5, 6}, α is not
actively present in Sxa and thus(1, α, xy) critical path does not exist with respect to the coloringc0. It is true with respect
to the coloringc1 also. Hence if none of the colors from{4, 5, 6} is valid for the edgexy with respect to the coloring
c1, then byFact 2 there has to be(3, 4, xy), (3, 5, xy) and (3, 6, xy) critical paths. Recalling that byAssumption 3
c(y, d′) = 3, we infer thatSyd′ = {4, 5, 6}.

Thus with respect to the coloringc1, we have:

Syb′ = Syd′ = {4, 5, 6} (5)

The 5-tuple(y, b′, d′, {a′}, ∅) is configurationA. Now let

c2 = ColorExchange(c1, yb
′, yd′)

By Fact 4 the color exchange with respect to the edgesyb′ andyd′ is valid. Thus the coloringc1 is acyclic.
For α ∈ {4, 5, 6} there was a(3, α, xy) critical path beforecolor exchange (with respect to coloringc1). Thus by

lemma 2, these critical paths does not exist after thecolor exchange (with respect to coloringc2). Also recall that there
was no(1, α, xy) critical path with respect to the coloringc1. Noting that thecolor exchange involved only the colors2
and3 there is no chance of any(1, α, xy) critical path to get formed with respect to the coloringc2.

Thus byfact 2, colorα is valid for edgexy.

case 3:|Fx ∩ Fy| = 1

Assumption 4. Without loss of generality letFx = {1, 2} andFy = {1, 3, 4}. ThusF = {1, 2, 3, 4}. ThenC−F = {5, 6}.
Let c0(x, a) = c0(y, a

′) = 1, c0(x, b) = 2, c0(y, b′) = 3 andc0(y, d′) = 4.

If none of the colors fromC − F arevalid, then byFact 2, there exist(1, 5, xy) and(1, 6, xy) critical paths. We
capture this in the followingclaim:

Claim 9. With respect to coloringc0, there exist(1, 5, xy) and(1, 6, xy) critical paths. Thus{5, 6} ⊂ Sxa and{5, 6} ⊂
Sya′ .

Claim 10. With respect to coloringc0, {3, 4} ⊂ Sxb.

Proof. Suppose not. Then at least one of3, 4 is missing inSxb. Without loss of generality let4 /∈ Sxb. Recalling that
c0(x, a) = 1, it follows that color4 is a candidate color for the edgexb. We claim that there exists a(1, 4, xb) critical path
with respect to the coloringc0. Suppose not. Then let

c′
0
= Recolor(c0, xb, 4)

Clearly c′
0

is acyclic since any bichromatic cycle being formed should involve the edgexa as well. Butc′
0
(x, a) = 1

and hence a(1, 4) bichromatic cycle has to be formed, implying that there is a(1, 4, xb) critical path, a contradiction to our
assumption.

With respect to the coloringc′
0
, |(Fx ∩ Fy) = {1, 4}| = 2, and bycase 2 we will be able to find a valid color for the

edge xy.
Thus we can infer that there exists a(1, 4, xb) critical path with respect to the coloringc0. For a(1, 4, xb) critical path to

exist clearly we should have4 ∈ Sxa, sincec0(x, a) = 1. Combined withClaim 9, we get:

Sxa = {4, 5, 6} (6)

Moreover we have1 ∈ Sxb with respect toc0 since there is a(1, 4, xb) critical path. Now let the other two colors inSxb

be{α, β}. Thenγ ∈ ({3, 5, 6} − {α, β}) is a candidate color for the edgexb. Let

8



c′′
0
= Recolor(c0, xb, γ)

We claim thatc′′
0

is acyclic. Otherwise if any bichromatic cycle gets formed with respect to the coloringc′′
0
, then it should

be a(γ, 1) bichromatic cycle since any cycle that contains edgexb should contain edgexa also andc′′
0
(x, a) = 1, implying

that there exists a(1, γ, xb) critical path with respect to the coloringc0. If γ = 3, such a critical path can not exist since
3 /∈ Sxa (by (6)). On the other hand ifγ ∈ {5, 6}, by Fact 1, (1, γ, xb) critical path can not exist with respect to the
coloringc0 since there is already a(1, γ, xy) critical path (byClaim 9). Thus we infer thatc′′

0
is acyclic.

With respect to coloringc′′
0
, if γ = 3, |(Fx ∩ Fy) = {1, 3}| = 2, and bycase 2 we will be able to find a valid color for

the edgexy.
With respect to coloringc′′

0
, if γ ∈ {5, 6} we have(Fx ∩ Fy) = {1} and2 ∈ C − F . Thus color 2 is a candidate color

for the edgexy. Moreover sinceSxa = {4, 5, 6} (by (6)), there can not be a(1, 2, xy) critical path and hence byFact 2,
color 2 is valid for the edgexy.

Claim 11. With respect to the coloringc0, Sxb = {3, 4, 1}.

Proof. Suppose not. Then in view of Claim 10, we can infer that color1 /∈ Sxb. Recall that by Claim 9,{5, 6} ⊂ Sxa. Let
the remaining color inSxa beα. Letβ ∈ {3, 4} − {α}. Now let

c′
0
= Recolor(c0, xb, 1)

and

c′′
0
= Recolor(c′

0
, xa, β)

Note thatc′′
0

is proper since1 /∈ Sxb (by Assumption) andβ /∈ Sxa, by the definition ofβ. The coloringc′′
0

is acyclic
since any cycle containing the edgexa should also contain the edgexb (and vise versa), butc′′

0
(x, b) = 1 and therefore if a

bichromatic cycle gets formed it must be a(1, β) bichromatic cycle, implying that1 ∈ Sxa. But this is a contradiction since
1 /∈ Sxa with respect toc0 asc0(x, a) = 1 and therefore1 /∈ Sxa with respect toc′′

0
also.

Now sinceβ ∈ {3, 4}, we have|(Fx ∩ Fy) = {1, β}| = 2 and thus the situation reduces tocase 2, thereby enabling us
to find a valid color for the edgexy.

Claim 12. There is a(1, 2, xy) critical path . Thus in combination withClaim 9 Sxa = {5, 6, 2} , Sya′ = {5, 6, 2} with
respect to the coloringc0.

Proof. Suppose not. Let

c′
0
= Recolor(c0, xb, 5)

Note that color 5 is a candidate color for the edgexb since, byClaim 11, Sxb = {3, 4, 1} andc0(x, a) = 1. It is
also valid since if there is a bichromatic cycle, then it should contain the edgesxa andxb and hence it has to be a(1, 5)
bichromatic cycle, implying that there exists a(1, 5, xb) critical path with respect to the coloringc0. But there can not be a
(1, 5, xb) critical path (byFact 1) as there is already a(1, 5, xy) critical path (byClaim 9). Thus the coloringc′

0
is acyclic.

Now with respect to the coloringc′
0
, Fx ∩ Fy = {1}. Color 2 is a candidate color for the edgexy since2 /∈ (Fx ∪ Fy =

{1, 3, 4, 5}). Since there is no(1, 2, xy) critical path (by assumption), byFact 2, color 2 is valid for the edgexy.

Recall thatNG′(a) = {x, k1, k2, k3} andNG′(b) = {x, l1, l2, l3}. Also recall that by Assumption 4,c0(x, a) =
c0(y, a

′) = 1,c0(x, b) = 2,c0(y, b′) = 3 andc0(y, d′) = 4. By Claim 11 and Claim 12,Sxa = {5, 6, 2} andSxb = {3, 4, 1}.
We make the followingAssumption:

Assumption 5. Without loss of generality letc0(a, k1) = 5, c0(a, k2) = 6, c0(a, k3) = 2, c0(b, l1) = 3, c0(b, l2) = 4 and
c0(b, l3) = 1.

The main intention of the next twoClaims is to establish thatSbl1 = Sbl2 = {2, 5, 6}.

Claim 13. With respect to the coloringc0, there exist(2, 3, xa) and(2, 4, xa) critical paths. Thus2 ∈ Sbl1 , 2 ∈ Sbl2 .
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Proof. Suppose not. Then without loss of generality let there be no(2, 3, xa) critical path. Let

c′
0
= Recolor(c0, xa, 3)

Note that color 3 is a candidate color for edgexa since3 /∈ (Sxa = {2, 5, 6}) (by Claim 12) andc0(x, b) = 2. It is also
valid since if there is any bichromatic cycle containing edgexa, then it should also contain edgexb and sincec0(x, b) = 2,
it has to be a(2, 3) bichromatic cycle, implying that there is a(2, 3, xa) critical path, a contradiction to our assumption.
Thus the coloringc′

0
is acyclic.

With respect to the coloringc′
0
, c′

0
(y, b′) = 3 and(Fx ∩ Fy) = {3}. Now if one of the colors 5 and 6 are valid for the

edgexy, we are done. Otherwise byFact 2, there are(3, 5, xy) and(3, 6, xy) critical paths. Thus

{5, 6} ⊂ Syb′ (7)

Let,

c′′
0
= Recolor(c′

0
, xb, 5)

First note that color 5 is a candidate for the edgexb since5 /∈ (Sxb = {3, 4, 1}) (by Claim 11) andc′
0
(x, a) = 3 . It

is also valid since if there is any bichromatic cycle containing the edgexb then it should also contain edgexa and since
c′
0
(x, a) = 3, it has to be a(3, 5) bichromatic cycle,implying that there exists a(3, 5, xb) critical path. But there can not be

a (3, 5, xb) critical path (byFact 1) as there is already a(3, 5, xy) critical path. Thus the coloringc′′
0

acyclic.
Now with respect to the coloringc′′

0
, (Fx ∩ Fy) = {3} and2 /∈ (Fx ∪ Fy) = {1, 3, 4, 5}. Color 2 is acandidate for the

edgexy. If it is valid then we are done. Otherwise byFact 2, there exists a(3, 2, xy) critical path.
Thus2 ∈ Syb′ and in combination with(7), we get,

Syb′ = {2, 5, 6} (8)

Recall thatSya′ = {2, 5, 6} byClaim 12 with respect to the coloringc0. It is easy to see thatSya′ = {2, 5, 6} even with
respect to the coloringc2. Now in view of Assumption 4, we have the 5-tuple(y, a′, b′, {d′}, ∅) in Configuration A. Let,

c′′′
0

= ColorExchange(c′′
0
, ya′, yb′)

By Fact 4, the color exchange with respect to the edgesya′ andyb′ is valid. Thus the coloringc′′′
0

is acyclic.
There was a(3, 6, xy) critical path beforecolor exchange (i.e., with respect to the coloringc′′

0
) since otherwise color 6

would have been valid for the edgexy with respect to the coloringc′′
0
. Thus byLemma 2 no(3, 6, xy) critical path exists

after thecolor exchange (i.e., with respect to the coloringc′′′
0

). Thus byFact 2, color6 is valid for edgexy.

Claim 14. With respect to the coloringc′′
0
, ∀α ∈ {3, 4} and∀β ∈ {5, 6}, there exist(α, β, b, a) maximal bichromatic path

which ends at vertexa with an edge coloredβ. ThusSbl1 = {2, 5, 6} andSbl2 = {2, 5, 6}.

Proof. Suppose not. Then∃α ∈ {3, 4} and∃β ∈ {5, 6} such that there is no(α, β, b, a) maximal bichromatic path which
ends at vertexa with an edge coloredβ. Without loss of generality letα = 3 andβ = 5. Now let,

c′
0
= Recolor(c0, xa, 3)

and

c′′
0
= Recolor(c′

0
, xb, 5)

Note thatc′′
0

is a proper coloring ( since (3 /∈ Sxa = {2, 5, 6} and c′′
0
(x, b) = 5) and (5 /∈ Sxb = {3, 4, 1} and

c′′
0
(x, b) = 3 )). Now to see thatc′′

0
is acyclic, note that if there is a bichromatic cycle with respect to the coloringc′′

0
, then it

should contain both the edgesxa andxb, thus forming(3, 5) bichromatic cycle, implying that there should be a(3, 5, a, b)
maximal bichromatic path which ends at vertexa with an edge colored3 with respect to the coloringc0, a contradiction to
our assumption.

Note that with respect to the coloringc′′
0
, F = {1, 3, 4, 5} and thus color 2 is a candidate color for the edgexy. By

Claim 13 there was a(2, 3, xa) critical path with respect to the coloringc0. From this it is easy to see that with respect to
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the coloringc′′
0
, there is a(3, 2, xb) critical path. Thus byFact 1 there can not be a(3, 2, xy) critical path with respect to

the coloringc′′
0
. Hence color 2 is valid for the edgexy.

Thus∀α ∈ {3, 4} and∀β ∈ {5, 6}, there exist(α, β, b, a) maximal bichromatic path which ends at vertexa with an
edge coloredβ. Thus recalling thatc0(b, l1) = 3 andc0(b, l2) = 4 with respect to the coloringc0, we have,

{5, 6} ⊂ Sbl1 (9)

{5, 6} ⊂ Sbl2 (10)

By Claim 13,2 ∈ Sbl1 and2 ∈ Sbl2 . Thus we have,

Sbl1 = Sbl2 = {2, 5, 6} (11)

Now let,

c1 = Recolor(c0, xb, 5)

Recalling Claim 11,sxb = {3, 4, 1} andc0(x, a) = 1, color 5 is a candidate for the edgexb. Moreover color 5 is
also valid since if there is any bichromatic cycle containing the edgexb then it should also contain edgexa and since
c0(x, a) = 1, it has to be a(1, 5) bichromatic cycle,implying that there exists a(1, 5, xb) critical path with respect to the
coloringc0. But there can not be a(1, 5, xb) critical path (byFact 1) as there is already a(1, 5, xy) critical path (byClaim
9). Thus the coloringc1 is acyclic.

Recall that byClaim 14, with respect to the coloringc0, there was a(3, 5, b, a) maximal bichromatic path that ends at
vertexa with an edge colored5. After the recoloring of edgexb with color5 (i.e., with respect to the coloringc1),it is easy
to see that this(3, 5, b, a) maximal bichromatic path gets extended to a(3, 5, xa) critical path. Thus we have,

With respect to the coloringc1, there exists a(3, 5, xa) critical path. (12)

Recall that byClaim 13, with respect to the coloringc0, there existed a(2, 3, xa) critical path. After recoloring the
edgexb with color5 (i.e., with respect to the coloringc1), the(2, 3, xa) critical path gets curtailed to a(2, 3, a, b) maximal
bichromatic path that ends at vertexb with an edge colored3. Note that(2, 3, a, b) maximal bichromatic path does not
contain the vertexy, since ify is in this path, then it is an internal vertex and thus both colors2, 3 ∈ Fy, a contradiction
(2 /∈ Fb). Thus noting thatc1(b, l1) = 3, we have,

With respect to the coloringc1, there exists a(2, 3, a, b) maximal bichromatic path that ends at vertexb (13)

with an edge colored 3. This path contains the edgebl1 but does not contain vertexy.

In view ofClaim 14, we haveSbl1 = Sbl2 = {2, 5, 6}. The 5-tuple(b, l1, l2, {l3}, {x}) is in configuration A. Let,

c2 = ColorExchange(c1, bl1, bl2)

By Fact 3 if there is any bichromatic cycle, recalling thatc2(x, b) = 5, there has to be either(3, 5) or (4, 5) bichromatic
cycle that passes through vertexx. But any cycle that passes through vertexx should contain edgexa also. Sincec2(x, a) =
1, this is a contradiction and we infer thatc2 is acyclic.

Note that by(13) there existed(2, 3, a, b) maximal bichromatic path containing the edgebl1 with respect to the coloring
c1. Since the color of edgebl1 is changed inc2, this path gets curtailed to a(2, 3, a, l1) maximal bichromatic path which
now ends at the vertexl1 since3 /∈ Fl1 with respect to the coloringc2. Note that it still does not contain vertexy. Thus we
have,

With respect to the coloringc2, there exists a(2, 3, a, l1) maximal bichromatic path which does not contain vertexy.
(14)
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But beforecolor exchange (i.e., with respect to the coloringc1) by (12) there was a(3, 5, xa) critical path. Clearly this
path passes through the vertexb. Thus byLemma 2, the(3, 5, xa) critical path, does not exist after the color exchange
(with respect to the coloringc2) (It easy to see thatl1, l2 /∈ {x, a} since1 /∈ Fl1 , Fl2 but1 ∈ Fx, Fa. ThereforeLemma 2
can be applied). Thus we have,

With respect to the coloringc2, there does not exists any(3, 5, xa) critical path. (15)

Now let

c3 = Recolor(c2, xa, 3)

By Claim 12, sxa = {2, 5, 6} with respect to the coloringc0 andsxa = {2, 5, 6} even with respect to the coloring
c2. Thus color 3 is candidate for edgexa since3 /∈ Sxa andc2(x, b) = 5. Coloringc3 is also acyclic since if there is
any bichromatic cycle containing edgexa then it should also contain edgexb. But c3(x, b) = 5 andc3(x, a) = 3. Thus
it has to be a(3, 5) bichromatic cycle, implying that there exists a(3, 5, xa) critical path with respect to the coloringc2, a
contradiction (by(15)).

Note that by(14) there existed(2, 3, a, l1) maximal bichromatic path with respect to the coloringc2. Since the color of
edgexa is changed inc3 to color 3, it is easy to see that this path gets extended to a(3, 2, x, l1) maximal bichromatic path
which now starts at the vertexx since2 /∈ Fx with respect to the coloringc3. Note that it still does not contain vertexy.

Now with respect to the coloringc3, F = {1, 3, 4, 5} andFx ∩ Fy = {3}. Thus color 2 is a candidate for the edgexy.
Since(2, 3, x, l1) maximal bichromatic path contains vertexx and does not contain vertexy, by Fact 1 there can not be
(2, 3, xy) critical path. Thus byFact 2 color 2 is valid for the edgexy.
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