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Acyclic Edge Coloring of Graphs with maximum degree 4

Manu Basavaraju L. Sunil Chandrah

Abstract

An acyclic edge coloring of a graph is a proper edge coloring such tlesetare no bichromatic cycles. Theyclic
chromatic indexof a graph is the minimum number k such that there is an acedge coloring using k colors and is
denoted by’ (G). It was conjectured by Alon, Sudakov and Zaks that for anypinand finite grapl@, o' (G) < A + 2,
whereA = A(G) denotes the maximum degree@®f We prove the conjecture for connected graphs wifii’) < 4, with
the additional restriction that. < 2n — 1, wheren is the number of vertices and is the number of edges i&. Note that
for any graphG, m < 2n, whenA(G) < 4. It follows that for any graplt¥ if A(G) < 4, thena'(G) < 7.
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1 Introduction

All graphs considered in this paper are finite and simple. dppredge coloringdf G = (V, E) isamapc : E — S (where

S is the set of availableolors ) with ¢(e) # ¢(f) for any adjacent edgesf. The minimum number of colors needed to
properly color the edges @, is called the chromatic index @¥ and is denoted by’(G). A proper edge coloring c is
called acyclic if there are no bichromatic cycles in the grap other words an edge coloring is acyclic if the union of an
two color classes induces a set of paths (i.e., linear fpiies¥. Theacyclic edge chromatic numbéalso calledacyclic
chromatic inde) denoted by’ (G), is the minimum number of colors required to acyclically edglorG. The concept of
acyclic coloringof a graph was introduced by Griinbaum|[11]. Bogclic chromatic indexnd its vertex analogue can be
used to bound other parameters likéented chromatic numbemdstar chromatic numbeof a graph, both of which have
many practical applications, for example, in wavelengtitirg in optical networks ([4]/[12] ). LeA = A(G) denote the
maximum degree of a vertex in graph By Vizing’s theorem, we hava < y/(G) < A + 1(see[[8] for proof). Since any
acyclic edge coloring is also proper, we halg=) > ' (G) > A.

It has been conjectured by Alon, Sudakov and Zaks [2] ¢h@F) < A + 2 for anyG. Using probabilistic arguments
Alon, McDiarmid and Reed [1] proved that(G) < 60A. The best known result up to now for arbitrary graph, is by lelpl
and Reed [13] who showed th&t{G) < 16A. Muthu, Narayanan and Subramanian [14] proved éh@¥) < 4.52A for
graphs of girth at least 220Girth is the length of a shortest cycle in a graph).

Though the best known upper bound for general case is far themonjectured\ + 2, the conjecture has been shown
to be true for some special classes of graphs. Alon, SudakdwZaks [2] proved that there exists a constastuch that
a'(G) < A + 2 for any graphG whose girth is at leastAlog A. They also proved that'(G) < A + 2 for almost all
A-regular graphs. This result was improved by NeSetfil Wedmald [17] who showed that for a randafiregular graph
a'(G) < A+ 1. Muthu, Narayanan and Subramanian proved the conjecturgriid-like graphs[[15] and outer planar
graphs([18]. In fact they gave a better bound’of- 1 for those classes of graphs. From Burnstein's [7] resutilibivs
that the conjecture is true for subcubic graphs. Skulrittimai [18] gave a polynomial time algorithm to color a subic
graph usingA + 2 = 5 colors. Recently Basavaraju and Chandfén [5] proved thatected non-regular subcubic graph
can be acyclically edge colored usigolors.

Determininga’(G) is a hard problem both from a theoretical and from an algonittpoint of view. Even for the simple
and highly structured class of complete graphs, the valu&(6f) is still not determined exactly. It has also been shown by
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Alon and Zaks([3] that determining wheth€(G) < 3 is NP-complete for an arbitrary gragh The vertex version of this
problem has also been extensively studied (Isee [11],[[P]l, Bgeneralization of the acyclic edge chromatic numbesr ha
been studied. Theacyclic edge chromatic numbef.(G) is the minimum number of colors required to color the edges of
the graph such that every cycl€' of G has at least mifiC|,r} colors ( see [9],110]).

Our Result:In this paper, we prove the following Theorem:

Theorem 1. Let G be a connected graph onvertices,n < 2n — 1 edges and maximum degrée< 4, thend’(G) < 6.
(Note that ifA(G) < 4, thenm < 2n always.

Note that if A(G) < 4, it follows from Burnstein’s[[¥] result that’(G) < 5 and is tight.
Corollary 1. LetG be a graph with maximum degrée < 4. Thena'(G) < 7.

Proof. If A(G) < 4, thenm < 2n for each connected component.nif < 2n — 1, by Theorenila’(G) < 6 for each
connected component. Otherwisenif = 2n, we can remove an edge from each connected component andtivelo
resulting graph with at most 6 colors. Now the removed edfieach component could be colored using a new color. Thus
ad(G) <T. O

Remark: There exists graphs with(G) < 4 that require at least 5 colors to be acyclically edge colofeat example,
any graph withA(G) = 4 andm = 2n — 1 require 5 colors. But we do not know whether there exist amplywith
A(G) < 4 that needs 7 colors or even 6 colors to be acyclically edgeredl Thus we feel that the bound@brollary [l
andT heorem /[l can be improved. Our proof is constructive and yields awiefft polynomial time algorithm.

2 Preliminaries

Let G = (V, E) be a simple, finite and connected graph with maximum degréetz € V. ThenN¢(z) will denote the
neighbours ofr in G. For an edge € F, G — e will denote the graph obtained by deletion of the edg&orz,y € V,
whene = (z,y) = xy, we may us&s — {zy} instead ofG —e. Letc: E — {1,2,...,k} be anacyclic edge coloringf G.
For an edge € E, c(e) will denote the color given te with respect to the coloring Forz,y € V, whene = (z,y) = zy
we may use(x, y) instead of(e).

To prove the main result, we plan to use induction on the nurabedges. LetG = (V, E) be a graph omn edges
wherem > 1. We will remove an edge fror¥ and get a grapli’ = (V, E’) on smaller number of edges. By induction
hypothesigy’ will have an acyclic edge coloring: £ — {1,2,...,6}. Throughoutthe paper we will consistently assume
that the edge we remove fro@ito getG’ is xy = (z,y). ThenE’ = E — {zy}. Our intention will be to extend the acyclic
edge coloring: of G’ to G by assigning an appropriate color for the edge

An (a,3)-maximal bichromatic path with respect to an acyclic edglering c of G’ is a path consisting of edges that are
colored using the colora and alternatingly. An §,8,a,b)-maximal bichromatic path is am(5)-maximal bichromatic
path which starts at the vertexwith an edge colored and ends ai. We emphasize that the edge of thed,a,b)-maximal
bichromatic path incident on vertexis coloreda and the edge incident on vertéxan be colored either or 5. Thus the
notations &,3,a,b) and ¢,3,b,a) have different meanings. The following fact is obviousirthe definition of acyclic edge
coloring:

Fact 1. Given a pair of colorsy and 3 of an acyclic edge coloring, there can be at most one maximal§)-bichromatic
path containing a particular vertex, with respect ta.

We denote the set of colors in the acyclic edge colodiby C' = {1,2,...,6}. For any vertexx € V(G’), we define
F, = {c(u, z)|z € Ng/(u)}. For an edged € E’, we defineS,, = F, — {c(a,b)}. Note thatS,; need not be the same as
Sha-

A color « is acandidatefor an edges in G with respect to a coloring off — e if none of the adjacent edges efire
coloreda. A candidate colory is valid for an edgee if assigning the colot to e does not result in any bichromatic cycle
inG.

Let ' = F, U F,,. Recall that the vertices andy are non-adjacent i6’. Note that any colof € C — F is a candidate
color for the edgery in G with respect to the coloring of G’. But 8 may not be valid. What may be the reason? It is



clear that colog is notvalid if and only if there existg £ 3 such that a¢,3)-bichromatic cycle gets formed if we assign
color 3 to the edgery. In other words, if and only if, irG’ there existed ad(,3,z,y) maximal bichromatic path witkx
being the color given to the first and last edge of this patlchSuaths play an important role in our proof. We call them
critical paths. 1tis formally defined below:

Critical Path: For an edgew € F an(«, 3,ab) maximal bichromatic path which starts out from a verdexia an edge
coloreda and ends at verteixvia an edge colored is called an(«, 3, ab) critical path.

Lemma 1. A candidate color for an edge= wwv, is valid if (£}, N F},) — {c(u,v)} = (Suw N Spu) = 0.

Proof. Any cycle containing the edgev will also contain an edge incident an(other tharnuv) as well as an edge incident
onv (other thanuv). Clearly these two edges are colored differently sif€g, N .S,,,) = 0. Thus the cycle will have at
least 3 colors and therefore any of the candidate color foetlgeuv is valid. O

An obvious strategy to extend the coloringf G’ to G would be to try to assign one of the candidate color§'in F'
to the edgery. The condition that a candidate color is not valid for theesglgis captured in the following fact.

Fact 2. The colorg € C — F is not avalid color for the edge:y if and only if3a. € F,, N F,, such that there is &, 58, xy)
critical path inG".

If none of the colors irC' — F' is valid for the edge:y, then we can group the colors@— F into two categories namely
weak andstrong.

Weak Color: A color 8 € C — F'is calledweak if it forms only one critical path with: andy as end points. Equivalently,
there exists only onea € F,, N F, such that there is &, 3, zy) critical path. A weak colop is said to beactively present
in a setS,,, if 3k € Ng/(a), k # z such that(a, k) = 5 and(a, 3, zy) critical path contains the edde, k). If a weak
color 5 € S,, is not actively present il§., then it is said to b@assively presenn S, .

Strong Color:If the colorg € C — F'is notweak, it is calledstrong.

If there are weak colors, it makes sense to try to break thiealrpath containing one of the weak colors, thus enabling
us to use that weak color for the edgg For this purpose we introduce the concepRetoloring.

Recolor: We define’ = Recolor(c, e, ) as the recoloring of the edgevith a candidate coloy to get a modified coloring
d frome,i.e.,c(e) = yandd' (f) = ¢(f), for all other edgeg in G’. The recoloring is said to be proper, if the coloritig
is proper. The recoloring is said to heyclic (valid), if in coloring ¢’ there exists no bichromatic cycle.

Recall that our strategy is to extend the coloring#fto G by assigning a valid color for the edge. When all the
candidate colors ofy turn out to benwvalid, we try toslightly modi fy the coloringe of G’ in such a way that with respect
to the modified coloring, we have a valid color for edge Recoloringof an edge in the critical path which contained a
weak color is one such strategy. Sometimes we resort tolatlglimore sophisticated strategy to modify the coloring egm
color exchange defined below.

Color Exchange: Let u,i,j € V(G') andui,uj € E(G'). We definec = ColorExzchange(c,ui,uj) as the the
modification of the current coloringby exchanging the colors of the edgesanduj, i.e., ¢/ (u,i) = c(u, i), ¢ (u,i) =
c(u, 1) andd’'(e) = c(e) for all other edges in G’. The color exchange with respect to the edgéandu; is said to be
proper if the coloring obtained after the exchange is proplee color exchange with respect to the edgeandu; is valid
if and only if the coloring obtained after the exchange iscéicy

In our proof we use the strategy of color exchange many timdsradifferent contexts. All these contexts are more or
less similar but differ in minor details. We would like to ¢ape all these different contexts in a general frameworke Th
configuration defined below is an attempt to formalize this:

Configuration A Letu be avertexand j € N¢/(u). Let Nf, (u) UN/, (u) be a partition ofVer (u) — {1, j}, i.e.,NG (u)U
Nl (u) = Ner(u) — {i,7} and N, (u) N Nl (u) = 0. The 5-tuple(u, i, j, N (u), Nl (u)) is in con figuration A if
(u,1), (u,j) € E' and

1. c(u,i) ¢ Syj ande(u, j) ¢ Sui



2. Yz € Ny (u), c(u,z) ¢ Sy ande(u, z) ¢ Sy

Supposéu, i, j, N& (u), NZ (u)) is in con figuration A with respect to the coloring Letc’ be the coloring obtained
after the color exchange with respect to the edgeandwj. Then note that condition 1 guarantees that the adlori) is a
candidate for edge;j and the color(u, 7) is a candidate for edge and thus the coloring obtained after the color exchange
is proper. Condition 2 inhibits the possibility of atw(u, ), ¢(u, 2)) or (¢(u, §), ¢(u, 2)) bichromatic cycles being formed
foranyz € N{., (u). Its obvious that there can not be afyu, j), c(u, 7)) bichromatic cycles after exchange. Thus the
following fact is easy to verify:

Fact 3. Let the 5-tuple(u, i, j, N/, (u), Nl (u)) be incon figuration A. Thend’ = Color Exchange(c, ui, uj) is not
valid if and only if3h € N{, (u) such that after the color exchange (i.e.clhthere exists afa, 3) bichromatic cycle that
passes through for « € {¢/(u, ), (u, j)} and 8 = ¢ (u, h).

In view of Fact[3, the followingFact is obvious:

Fact 4. Let the 5-tuplg(u, i, j, N/ (u), N( (u)) be incon figuration A. Then if N/, (u) = 0, the color exchange’ =
Color Exchange(c, ui, uj) is valid.

Lemma?2. Letu,i,j,a,b € V(G), ui,uj € E' andab € E. Also let{«, 3} N{c(u, i), c(u,j)} # 0and{s, j}N{a,b} = 0.
Suppose there exists an,(,ab)-critical path that passes through vertex with respect to the coloring of G’. Let
¢’ = Color Exchange(c, ui, uj) be proper. Then with respect to the colorieigthere will not be anyd,3,ab)-critical path
inG'.

Proof. Note that since we are assuming that the color exchangepepréu, j) ¢ S.;. Thus{a, 8} # {c(u,%),c(u,j)}
because anye(u, i), c(u, §), ab) critical path through vertex will have to involve the edgesi anduj. Sincei ¢ {a, b},
color c¢(u, j) € Sy, a contradiction. Let P be thex(5,ab)-critical path. Without loss of generality assume that=
c(u,t) € {a, B}. Since vertex: is contained in pattP, we claim that the edgei belongs to the patt?. This is because
~v = ¢(u,i) € F, and hence patt has to involve edge ui by the maximality of path Let us assume without loss of
generality that patl® starts at vertex and reaches verteéxoefore it reaches vertex With respect to the coloring, there
will not be any edge adjacent to vertéthat is coloredy. So the §&,3) maximal bichromatic path that starts at vertgx
should end at vertex Sincei # b, by Fact [ we infer that thed;,3,ab) critical path does not exist. O

3 proof of Theorem 1

Proof. We prove the Theorem by induction on the number of edgesHLet (Vy, Ey) be a connected graph afvertices
andm < 2n — 1 edges and\(H) < 4. Let the Theorem be true for all connected graphisuch thatA(W) < 4 and
|[E(W)| < 2|V (W)| — 1, with at mostn — 1 edges. Without loss of generality we can assumehit 2-connected, since
if there are cut vertices i/, the acyclic edge coloring of the bloclks , B . . . By, of H can easily be extended té (Note
that each block satisfies the property thdtB;) < 4 and|E(B;)| < 2|V(B;)| — 1). Thus§(H) > 2. Now sinceH has at
most2n — 1 edges, there is a vertexof degree at most 3.

Lety € Ng(x). The degree of is at most 4. LetH’ = H — {xy}, i.e.H = (Vu, En/), whereVy, = Vg and
Ey = Ey — {zy}. ThusinH’, degree(z) < 2 anddegree(y) < 3. Note that sincé{ is 2-connected’ is connected

To avoid certain technicalities in the presentation of theoff we construct the grap&’ from H’ as below. If
degreep:(x) = 2, degreep/(y) = 3 andVz € Ny (z) U Ny (y),degreen:(z) = 4, then letG’ = H' andG = H.
Otherwise, we construct the graphh = (V’, E’) from H' in the following manner. First add pendant vertices as neigh
bours to the vertices andy such thatlegreeq () = 2 anddegreeq: (y) = 3. Next add pendant vertices as neighbours to
the newly added vertices aivd € Ny (z) U Ny (y) such thavz € Ng/(z) U Ng/(y), degreec: (z) = 4. Note that since
H' was connected?’ is also connected. L&t = G' U {2y}, i.e.,G = (V, E), whereV = V' andE = E' + {zy}.

By induction hypothesis, grapH’ is acyclically edge colorable usingcolors. Note that we can easily extend the
coloring of H' to G’ by coloring each of the newly added edges with the availablers satisfying the acyclic edge
coloring property. Let, : B/ — {1,2,.....,6} be a acyclic edge coloring @¥. It is easy to see that if we extend the
acyclic edge coloring of’ to G by assigning an appropriate color to the edgethen this coloring also corresponds to the
acyclic edge coloring off, sinceH is a subgraph ofs.

Our intention will be to extend the acyclic edge colorigf G’ to G = G’ + {xy} by assigning an appropriate color
for the edgery. We denote the set of colors af by C = {1,2,3,4,5,6}.



Let Ng/(z) = {a,b} and Ng:(y) = {da’,b’,d'}. Note thatNg (z) N Ng/(y) need not be empty. Also recall that
degreeg(a) = degreeg:(b) = 4. Let Ngv(a) = {x, k1, k2, ks} andNg: (b) = {x,l1,12,13}.

case L:F, N F, =
Since|F| =5, |C — F| = 1. Clearly thecandidate color in C — F'is valid for the edgey.

case 2:|F, N F,| =2
Assumption 1. Without loss of generality Ief, = {1,2} andF, = {1,2,3}. ThusF = {1, 2, 3}.

By Assumption[d, C — F = {4,5,6}. If none of the candidate colors aselid, then byFact 2, the following Claim
is easy to see:

Claim 1. With respect to the coloring,, V5 € C — F, 3o € F, N F,, such that there is &, 5, zy) critical path.

case 2.1(S,, U S,)NF =10
SinceF = {1,2,3}, Sza = Sup = {4,5,6}.
Claim 2. With respect to the coloring,, all the colors ofC' — F are weak.

Proof. Suppose not. Then there is a strong coloiln- F. Without loss of generality let be a strong color. Let
co(z,a) = coy,a’) = 1 andco(z,b) = co(y,b’) = 2. Now it is easy to check that the 5-tuple, a, b, 0, ) satisfies
configuration A. Let

¢y = Color Exchange(co, xa, xb)

By Fact[the color exchange with respect to the edgeandzb is valid. Thus the coloring;, is acyclic.

Since color 4 was strong in coloring, there was d1, 4, xy) critical path as well as &, 4, zy) critical path before
color exchange (i.e., with respect to the coloring,). Thus byLemma2, (1,4, xy) critical path and 2, 4, zy) critical
path will not exist after theolor exchange (i.e., with respect to the coloring). Thus byFact 2, color 4 is valid for edge
Y. O

By Claim[2, all the colors ofC' — F are weak. Each weak color should be actively present in xane of S, or
Szp. Since there are 3 weak colors, we can infer that eifhgror S,;, is such that at least 2 of the weak colors are actively
presentin it.

Assumption 2. Without loss of generality assume that coldrand5 are actively present in S,,. Lete(a, k1) = 4 and
c(a,ka) = 5.

From Assumption 2, it follows that since:(x, a) = 1, there exis{(1, 4, zy) and(1, 5, zy) critical paths The following
claim is obvious.
Claim 3. With respect to the coloring,, 1 € S,x, andl € S,y .

Itis easy to verify that the 5-tuple:, a, b, 0, ) satisfies configuratiod with respect to the coloring.

¢1 = Color Exchange(co, xa, xb)

By Fact[the color exchange with respect to the edgesndzb is valid. Thus the coloring; is acyclic.

But there werd 1, 4, zy) and(1, 5, xy) critical pathsbeforecolor exchange (i.e., with respect to the coloring). By
Lemma 2, both(1,4,2y) and (1,5, zy) critical pathsdoes not exist after thevlor exchange (i.e., with respect to the
coloringe;).

Thus even with respect to the coloring if both the colorst and5 are notvalid for the edgery, by Fact 2, there has
to be(2,4, zy) and(2, 5, zy) critical paths Thus2 € S,1, and2 € Sqx,. Thus we carClaim the following:



Claim 4. With respect to the coloring;, {1,2} C Sk, and{1,2} C Sux,. Moreover there will not be an§i, 4, zy) and
(1,5, xy) critical paths

Now since the colors 4 and 5 are weak, we try to break2hé, xy) and(2, 5, zy) critical pathsby recoloring the edge
xra.

ca = Recolor(cy, za,3)

Note that color 3 is a candidate for the edgesinceS,., = {4,5,6} andc(z,b) = 1. And also sinces,., N S, = 0, by
Lemmald color 3 isvalid for the edgera.

Note that with respect to the coloring, F, N F, = {1,3}. In view of Claim[4, there will not be any1, 4, zy) and
(1,5, xy) critical pathswith respect to the coloring; also. If both the colord and5 are notvalid for the edgery still,
then by Fact 2, there has to bé3, 4, zy) and (3, 5, zy) critical pathsimplying 3 € S,x, and3 € S,,. Thus combined
with Claim @, we infer the following:

Claim 5. With respect to the coloring:, we haveS,;, = Sa.r, = {1, 2,3}. Moreover there will not be ani, 4, xy) and
(1,5, zy) critical paths

Now the 5-tuple(a, k1, k2, {k3}, {z}) satisfies configuratiod.

cs = Color Exchange(cq, aky, aks)

By fact(3 if there is any bichromatic cycle (recalling thgfa, ) = 3), it has to be either &5, 3) or (6, 3) bichromatic
cycle that passes through veriexand hence vertex. But any cycle that passes through verieghould contain edgeb
also. Since:;(z,b) = 1, this is a contradiction and we infer thatis acyclic.

There was &3, 4, zy) critical path as well as &, 5, xy) critical path beforecolor exchange (i.e., with respect to the
coloringcy). Thus byLemma[2, both these critical paths does not exist after the colohamge (i.e., with respect to the
coloringes) (Note thatk:, ks ¢ {z,y} sincec(a, k1) = 4 andc(a, k2) = 5 ¢ F, or F,. Therefore we can applyemma

To summarizegs(z,a) = 3, c3(z,b) = 1 and thusF, N F,, = {1, 3}. With respect to the coloring;, there exist no
(3,4, zy) and (3,5, zy) critical paths. Recall that by Claifd 5, there won't be diy4, zy) and(1, 5, zy) critical paths
with respect to the coloring.. It is easy to see that even with respect to the colotinghere won't be any1, 4, zy) and
(1,5, xy) critical paths.

Thus byFact[2, color 4 and 5 are valid for edgsy.

case 2.2(S,, U S,) N F #£0

Assumption 3. Without loss of generality lef,., N F' # (. It follows that one of4, 5, 6} is missing inS,., since|S..| = 3.
Without loss of generality let it be color 5. Also tg{(x, a) = ¢o(y,a’) = 1 andeg(x,b) = ¢o(y,b’) = 2 andey(y,d’) = 3.

Claim 6. With respect to the coloring,, there exists 42, 5, xy) critical path. Thusb € Sy.

Proof. Since color 5 is not valid for the edgey, by Claim[d there has to be @, 5, zy) critical path or &2, 5, zy) critical
path. But byAssumption [3, color5 ¢ S., and hence there can not bgB 5, zy) critical path. Thus there exists a
(2,5, xy) critical path. O

Claim 7. With respect to the coloring,, all the colors ofC' — F are weak.

Proof. Suppose not. Then there is at least one strong col6f in F'. Without loss of generality let 4 be a strong color.
Thus we have ¢ S,;. Combined withClaim[g, we have:

{4,5} C Su». (1)

Now let

¢y = Recolor(co, za,5)



Note that colob is a candidate for the edge sincecy(z,b) = 2 and5 ¢ S, (by Assumption[3). Now we claim that
assigning color 5 to the edge can not result in any bichromatic cycle. To see this first tlwdé since any cycle containing
the edgera should also contain the edg#, butcy(x,b) = 2 and therefore if a bichromatic cycle gets formed it must be
a(2,5) bichromatic cycle, implying that there is(8, 5, za) critical path. But there is already(&, 5, zy) critical path (by
Claim[B) and byFact[I there can not be @, 5, za) critical path, a contradiction. Thus colorirfis acyclic.

Note that with respect to the coloring, color 6 remains to be a candidate color for the edge Also note that
F, N F, = {2}. If the candidate colof is not valid for the edgey, then byFact[2 there has to be @, 6, zy) critical path
and thuss € S,;. Thus combined witl{I)), we have:

Smb = {43 57 6} (2)

With respect to the coloring, color 4 was strong (assumption) and thus there existdd4 zy) critical path. After
recoloring the edgea with color 5 (i.e., with respect to the coloring;), the (1,4, zy) critical path gets curtailed to a
(1,4, y, a) maximal bichromatic path without containing the vertexMoreover note thatl, 4, y, ) maximal bichromatic
path does not contain the vertéxsince ifb is in this path, then it is an internal vertex and thus botlol, 4 € Fj, a
contradiction { ¢ F3). Thus we have,

With respect to the coloring), a (1, 4, y, ) maximal bichromatic path exists, 3)
but this path does not contain the verticesr b.

Now with respect to the coloring), F;, N F,, = {2}. Let

¢y = Recolor(cy, b, 1)

Note that color 1 is a candidate color for the edgesincec|(z,a) = 5 andl ¢ Sy, = {4,5,6}. Color 1 isvalid for
the edgerb because any bichromatic cycle containing edfehould also contain edge: and since colot ¢ S, (Recall
thatco(z,a) = 1. Thusl ¢ S,, with respect to the coloring,. Thereforel ¢ S, with respect to the coloring, also.),
such a(1, 5) bichromatic cycle can not be formed. Thejsis acyclic.

Thus with respect to coloringj, F,, N F,, = {1}. Now by (3), with respect to the coloring,, there existed &1, 4, y, a)
maximal bichromatic path that does not contain vebtex x. Thus noting that{ is obtained just by changing the color of
the edgerb to 1, by Fact[l we infer that{f can not contairil, 4, zy) critical path.

Thus byFact[2 color 4 is valid for the edgey. O

Claim 8. In view of Assumption[3, with respect to the coloring,, eacha € {4, 5, 6} is actively present in Sy

Proof. Suppose not. By’laim [6, we know that color 5 iactively present in S.;,. Without loss of generality let color 6
be notactively present in S,p,. Therefore color 6 iactively present in S,,. Now let

¢y = Recolor(co, za,5)

Note that colof5 is a candidate sinceg ¢ {5, (by Assumption[3) andcy(z,b) = 2. Now we claim that assigning
color 5 to the edgea can not result in any bichromatic cycle. To see this first tioé since any cycle containing the edge
xa should also contain the edgé, butcy(z,b) = 2 and therefore if a bichromatic cycle gets formed it must e, &)
bichromatic cycle, implying that there i5(3, 5, za) critical path with respect to the colorirg. But in ¢, there is already a
(2,5, zy) critical path (by Clainil) and by act [ there can not be @, 5, za) critical path, a contradiction. Thus coloring
¢ Is acyclic.

Now F, N F, = {2}. Butin ¢, there did not exist &2, 6, zy) critical path since by assumption color 6 is actively
present inS,,. Thus noting thaty, is obtained just by changing the color of the edgeto 5, we infer thatc, can not
contain(2, 6, zy) critical path.

Thus byFact[2 color 6 is valid for the edgey. O

Recall thate (z,b) = co(y, b’) = 2. In view of Claim[8, with respect to the coloring,, we have:

Smb = Syb’ = {41 57 6} (4)



Let

¢1 = Recolor(cg, xb, 3)

Note that color 3 is a candidate for edglesince3 ¢ {S,, = {4, 5,6} (by Claim[8) and:,(z,a) = 1. Moreover since
Szb N Spe = 0, by Lemmalll color 3 is alsaalid. Thus the coloring; is acyclic.

With respect to the coloring,, F, N F, = {1,3}. In view of Claim [ andClaim [8, Vo € {4,5,6}, « is not
actively present in Sy, and thug1, a, zy) critical path does not exist with respect to the coloripglt is true with respect
to the coloringe; also. Hence if none of the colors frofd, 5,6} is valid for the edgery with respect to the coloring
c1, then by Fact [2 there has to bé3, 4, zy), (3,5, zy) and (3,6, zy) critical paths Recalling that byAssumption 3
c(y,d’) = 3, we infer thatS,4 = {4, 5, 6}.

Thus with respect to the coloring, we have:

Syb/ = Syd/ = {47 55 6} (5)
The 5-tuple(y, v/, d’, {a’}, 0) is configurationA. Now let

co = ColorExchange(cy,yb’, yd')

By Factdthe color exchange with respect to the edgiésandyd’ is valid. Thus the coloring; is acyclic.

Fora € {4,5,6} there was &3, o, xy) critical path beforecolor exchange (with respect to coloring;). Thus by
lemmal[2, these critical paths does not exist after ¢hior exchange (with respect to colorings). Also recall that there
was no(1, a, zy) critical path with respect to the coloring. Noting that thecolor exzchange involved only the colorg
and3 there is no chance of arfy, «, zy) critical path to get formed with respect to the coloring

Thus by fact 2, colora is valid for edgery.

case 3| F,NF,| =1

Assumption 4. Without loss of generality 6, = {1,2} andF, = {1, 3,4}. ThusF' = {1,2,3,4}. ThenC—F = {5,6}.
Letco(z,a) = co(y,a’) =1, co(z,b) = 2, co(y,b’) = 3andcy(y,d’) = 4.

If none of the colors fronC — F' arewalid, then byFact 2, there exis{(1,5, zy) and (1,6, zy) critical paths. We
capture this in the followinglaim:

Claim 9. With respect to coloringy, there exis{(1, 5, zy) and (1, 6, zy) critical paths. Thus{5,6} C S,, and{5,6} C
Syar-

Claim 10. With respect to coloringg, {3,4} C Szs.

Proof. Suppose not. Then at least one3pf4 is missing inS,;. Without loss of generality let ¢ S,;. Recalling that
co(z,a) = 1, it follows that color4 is a candidate color for the edgé. We claim that there exists(, 4, «b) critical path
with respect to the coloring,. Suppose not. Then let

¢y = Recolor(co, xb, 4)

Clearly ¢ is acyclic since any bichromatic cycle being formed shooldlve the edge:a as well. Butcj(z,a) = 1
and hence 41, 4) bichromatic cycle has to be formed, implying that there (3 .al, 2b) critical path, a contradiction to our
assumption.

With respect to the coloring,, |(F N F,) = {1,4}| = 2, and bycase 2 we will be able to find a valid color for the
edge xy.

Thus we can infer that there exist§la4, «b) critical path with respect to the coloring. For a(1, 4, zb) critical path to
exist clearly we should havee S,,, sincecy(z,a) = 1. Combined withClaim[9, we get:

Sza = {47556} (6)

Moreover we have < S,,;, with respect tay since there is &1, 4, xb) critical path. Now let the other two colors 8.,
be{a,8}. Theny € ({3,5,6} — {a, 8}) is a candidate color for the edgé. Let



¢y = Recolor(co, b, )

We claim thaty is acyclic. Otherwise if any bichromatic cycle gets formdthwespect to the coloringj;, then it should
be a(v, 1) bichromatic cycle since any cycle that contains ediyehould contain edgea also and-|(z,a) = 1, implying
that there exists &1, ~, zb) critical path with respect to the coloring. If v = 3, such a critical path can not exist since
3 ¢ S, (by (). On the other hand ify € {5,6}, by Fact[, (1,~, zb) critical path can not exist with respect to the
coloringcy since there is already(@, v, zy) critical path (byClaim[9). Thus we infer that{ is acyclic.

With respect to coloringy, if v = 3, |(F» N Fy) = {1, 3}| = 2, and bycase 2 we will be able to find a valid color for
the edgery.

With respect to coloringy, if v € {5,6} we have(F, N F,)) = {1} and2 € C — F. Thus color 2 is a candidate color
for the edgery. Moreover since5,, = {4,5,6} (by (6)), there can not be @, 2, zy) critical path and hence b¥act [2,
color 2 is valid for the edgey. O

Claim 11. With respect to the coloringy, Sy, = {3,4,1}.

Proof. Suppose not. Then in view of Claim]10, we can infer that cdlgr S,,;,. Recall that by Clairil9{5,6} C S,,. Let
the remaining color irb,, bea. Let5 € {3,4} — {a}. Now let

¢y = Recolor(co, xb, 1)

and

¢y = Recolor(cy, xa, B)

Note thatcj is proper sincd ¢ Sy, (by Assumption) andj ¢ S,,, by the definition of3. The coloringe] is acyclic
since any cycle containing the edge should also contain the edgé (and vise versa), buf/ (z,b) = 1 and therefore if a
bichromatic cycle gets formed it must b¢la 3) bichromatic cycle, implying that € S,,. But this is a contradiction since
1 ¢ S,, with respect ta:g ascy(z, a) = 1 and thereford ¢ S,, with respect ta:jj also.

Now sinces € {3,4}, we havel(F, N F,) = {1, }| = 2 and thus the situation reducesdese 2, thereby enabling us
to find a valid color for the edgey. O

Claim 12. There is a(1, 2, zy) critical path . Thus in combination witt'laim @ S, = {5,6,2} , Sy = {5, 6, 2} with
respect to the coloring.

Proof. Suppose not. Let

¢y = Recolor(cg, xb,5)

Note that color 5 is a candidate color for the edgdesince, byClaim [11, S, = {3,4,1} andco(z,a) = 1. Itis
also valid since if there is a bichromatic cycle, then it ddaontain the edgesa andxb and hence it has to be(a, 5)
bichromatic cycle, implying that there exist§1a 5, 2b) critical path with respect to the colorirg. But there can not be a
(1,5, zb) critical path (byFact[I) as there is already(@, 5, xy) critical path (byClaim[9). Thus the coloring; is acyclic.

Now with respect to the coloring), £, N F,, = {1}. Color 2 is a candidate color for the edggsince2 ¢ (F, U F, =
{1,3,4,5}). Since there is n@l, 2, zy) critical path (by assumption), b¥act[2, color 2 is valid for the edgey. O

Recall thatNg:(a) = {x,k1,k2,k3} and Ng:(b) = {=,11,12,l3}. Also recall that by Assumptionl 4;o(x,a) =
co(y,a’) = 1,eo(z,b) = 2,c0(y, b') = 3andey(y,d’) = 4. By Claim[11 and Clairi 125, = {5, 6,2} andS,, = {3,4,1}.
We make the followingd ssumption:

Assumption 5. Without loss of generality lefy(a, k1) = 5, co(a, k2) = 6, co(a, k3) = 2, co(b,11) = 3, ¢o(b,12) = 4 and
Co(b, l3) =1.

The main intention of the next tw@'laims is to establish thaby,;, = Si, = {2,5,6}.
Claim 13. With respect to the coloring,, there exis(2, 3, za) and(2, 4, za) critical paths. Thu® € Sy, 2 € Sp,.



Proof. Suppose not. Then without loss of generality let there b&n®, za) critical path. Let

¢y = Recolor(co, za, 3)

Note that color 3 is a candidate color for edgesince3 ¢ (S.. = {2,5,6}) (by Claim[12) and:(z,b) = 2. ltis also
valid since if there is any bichromatic cycle containing edg, then it should also contain edgé and since;(x,b) = 2,
it has to be &2, 3) bichromatic cycle, implying that there is(@, 3, za) critical path, a contradiction to our assumption.
Thus the coloring, is acyclic.

With respect to the coloring, ¢ (y,b") = 3 and(F, N F,) = {3}. Now if one of the colors 5 and 6 are valid for the
edgery, we are done. Otherwise Wjact 2, there aré3, 5, xy) and(3, 6, zy) critical paths. Thus

{51 6} - Syb’ (7)
Let,

¢y = Recolor(cy, b, 5)

First note that color 5 is a candidate for the edgesince5 ¢ (S, = {3,4,1}) (by Claim[11) andc|(x,a) = 3. It
is also valid since if there is any bichromatic cycle contagrthe edgerd then it should also contain edge and since
cy(z,a) = 3, it has to be 43, 5) bichromatic cycle,implying that there exist§3 5, xb) critical path. But there can not be
a(3,5,xb) critical path (byFact[d) as there is already(@, 5, zy) critical path. Thus the coloring| acyclic.

Now with respect to the coloringj, (F,, N F,)) = {3} and2 ¢ (F, U F,)) = {1, 3,4, 5}. Color 2 is acandidate for the
edgexy. Ifitis valid then we are done. Otherwise Byict [2, there exists &3, 2, zy) critical path.

Thus2 € S, and in combination with{7)), we get,

Sy =12,5,6} (8)

Recall thatS,, = {2, 5,6} by Claim[12 with respect to the coloring. Itis easy to see that,,, = {2,5,6} evenwith
respect to the coloring. Now in view of Assumptio4, we have the 5-tuggte o’, ¥, {d’}, 0) in Con figuration A. Let,
¢y = Color Exchange(cy, ya', yb')
By Factd, the color exchange with respect to the edgésandyl’ is valid. Thus the coloringy’ is acyclic.
There was &3, 6, zy) critical path beforeolor exchange (i.e., with respect to the coloring) since otherwise color 6
would have been valid for the edgeg with respect to the coloringj. Thus byLemmal2no (3,6, zy) critical path exists
after thecolor exchange (i.e., with respect to the coloring’). Thus byFact 2, color6 is valid for edgery. O

Claim 14. With respect to the coloring, Va € {3,4} andVg € {5, 6}, there exis(«, 3, b, a) maximal bichromatic path
which ends at vertex with an edge colored. ThusSy;, = {2,5,6} and Sy, = {2,5,6}.

Proof. Suppose not. Thefin € {3,4} and38 € {5, 6} such that there is nav, 3, b, a) maximal bichromatic path which
ends at vertex with an edge colored. Without loss of generality lek = 3 ands = 5. Now let,

¢ = Recolor(cy, xa, 3)

and

¢y = Recolor(cy, b, 5)

Note thatc{ is a proper coloring ( since3(¢ S., = {2,5,6} andcj(x,b) = 5)and 6 ¢ S, = {3,4,1} and
¢y (z,b) = 3)). Now to see that( is acyclic, note that if there is a bichromatic cycle withprest to the coloringy, then it
should contain both the edges andxb, thus forming(3, 5) bichromatic cycle, implying that there should bé3a5, a, b)
maximal bichromatic path which ends at vertewith an edge colored with respect to the coloring,, a contradiction to
our assumption.

Note that with respect to the coloring, F' = {1,3,4,5} and thus color 2 is a candidate color for the edge By
Claim[13 there was &2, 3, za) critical path with respect to the coloring. From this it is easy to see that with respect to
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the coloringc(, there is &3, 2, zb) critical path. Thus by act [ there can not be €, 2, zy) critical path with respect to
the coloringef. Hence color 2 is valid for the edgey.

ThusVa € {3,4} andVj3 € {5,6}, there exist«, 3, b, a) maximal bichromatic path which ends at vertewith an
edge colored. Thus recalling thaty(b,l1) = 3 andcy (b, l2) = 4 with respect to the coloring,, we have,

{5, 6} C Sbl1 (9)
{5, 6} C Sbl2 (10)

By Claim[13,2 € Sy, and2 € Sy;,. Thus we have,

O

Now let,

¢1 = Recolor(cg, xb, 5)

Recalling Claimdll,s,;, = {3,4,1} andc¢y(z,a) = 1, color 5 is a candidate for the edgé. Moreover color 5 is
also valid since if there is any bichromatic cycle containthe edgerd then it should also contain edge and since
co(z,a) = 1, it has to be g1, 5) bichromatic cycle,implying that there exist§ B 5, xb) critical path with respect to the
coloringcy. But there can not be(d, 5, xb) critical path (byFact[d) as there is already(@, 5, xy) critical path (byClaim
Q). Thus the coloring; is acyclic.

Recall that byClaim [14, with respect to the coloring,, there was &3, 5, b, a) maximal bichromatic path that ends at
vertexa with an edge colored. After the recoloring of edgeb with color5 (i.e., with respect to the coloring),it is easy
to see that thig3, 5, b, «) maximal bichromatic path gets extended 885, xa) critical path. Thus we have,

With respect to the coloring,, there exists 43, 5, za) critical path. (12)

Recall that byClaim [13, with respect to the coloring), there existed @2, 3, za) critical path. After recoloring the
edgexb with color5 (i.e., with respect to the coloring), the(2, 3, za) critical path gets curtailed to@, 3, a, b) maximal
bichromatic path that ends at vertexvith an edge colored. Note that(2, 3, a,b) maximal bichromatic path does not
contain the vertey, since ify is in this path, then it is an internal vertex and thus botloEi, 3 € F,, a contradiction
(2 ¢ Fp). Thus noting that; (b, ;) = 3, we have,

With respect to the coloring;, there exists &2, 3, a, b) maximal bichromatic path that ends at vertex (13)
with an edge colored 3. This path contains the etfgdut does not contain vertex

In view of Claim[14, we haveSy;, = Su, = {2,5,6}. The 5-tuple(b, i1, 12, {l3}, {z}) is in con figuration A. Let,

co = Color Exchange(cy, bly, bla)

By Fact[3if there is any bichromatic cycle, recalling thafz, b) = 5, there has to be eith¢€8, 5) or (4, 5) bichromatic
cycle that passes through vertexBut any cycle that passes through verteshould contain edges also. Sinces(z,a) =
1, this is a contradiction and we infer thatis acyclic.

Note that by(13) there existed2, 3, a, b)) maximal bichromatic path containing the edggwith respect to the coloring
c¢1. Since the color of edgll; is changed ireq, this path gets curtailed to@, 3, a, l;) maximal bichromatic path which
now ends at the vertdx since3 ¢ F;, with respect to the coloring,. Note that it still does not contain vertgx Thus we
have,

With respect to the coloring, there exists 42, 3, a, l;) maximal bichromatic path which does not contain vegex
(14)
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But beforecolor exchange (i.e., with respect to the coloring) by (12) there was &3, 5, za) critical path. Clearly this
path passes through the vertexThus by Lemma 2, the (3,5, za) critical path, does not exist after the color exchange
(with respect to the coloring,) (It easy to see thdi, i; ¢ {z,a} sincel ¢ F,, F, butl € F,, F,. ThereforeLemmal2
can be applied). Thus we have,

With respect to the coloring:, there does not exists aiy, 5, za) critical path. (15)

Now let

¢s = Recolor(cq, xa,3)

By Claim [13, s.. = {2,5,6} with respect to the coloring, ands,, = {2,5,6} even with respect to the coloring
¢o. Thus color 3 is candidate for edge since3 ¢ S,, andcs(z,b) = 5. Coloringes is also acyclic since if there is
any bichromatic cycle containing edge then it should also contain edgé. Butcs(x,b) = 5 andcsz(z,a) = 3. Thus
it has to be g3, 5) bichromatic cycle, implying that there exists® 5, za) critical path with respect to the coloring, a
contradiction (by(15)).

Note that by(14) there existed2, 3, a, ;) maximal bichromatic path with respect to the coloring Since the color of
edgeza is changed inz3 to color 3, it is easy to see that this path gets extended 2022z, {;) maximal bichromatic path
which now starts at the vertexsince2 ¢ F, with respect to the colorings;. Note that it still does not contain vertgx

Now with respect to the coloring;, F' = {1,3,4,5} andF, N F,, = {3}. Thus color 2 is a candidate for the edge
Since(2, 3, z,1;) maximal bichromatic path contains vertexand does not contain vertex by Fact [I there can not be
(2,3, zy) critical path. Thus byFact[2 color 2 is valid for the edgey.

O
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