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Abstract

A bipartition of the vertex set of a graph is called balanced if the sizes of the sets in the
bipartition differ by at most one. Bollobéds and Scott [3] conjectured that if G is a graph
with minimum degree at least 2 then V(@) admits a balanced bipartition Vi, V5 such that
for each i, G has at most |E(G)|/3 edges with both ends in V;. The minimum degree
condition is necessary, and a result of Bollobds and Scott [5] shows that this conjecture
holds for regular graphs G (i.e., when A(G) = 6(G)). We prove this conjecture for graphs
G with A(G) < I5(G); hence it holds for graphs G with 6(G) > 2|V (G)].
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1 Introduction

The Mazximum Bipartite Subgraph Problem is a classical partition problem which optimizes one
quantity: Given a graph G, find a partition of V(G) into Vi, Va that minimizes e(V;) 4 e(Va),
where e(V;) (i € {1,2}) denotes the number of edges of G with both ends in V;. A simple
calculation shows that every graph with m edges has a bipartite subgraph with at least m/2

1
kR
best possible as evidenced by the complete graphs Ka,+1. In [4] (also see [3]), Bollobds and
Scott extend Edwards’ bound to k-partitions of graphs by proving that the vertex set of any

graph with m edges can be partitioned into Vi,...,V} such that e(Vq,..., V) > %m +

edges. Edwards [6,7] improved this lower bound to % + %\ /2m + % — %, which is essentially

%1 /2m + % + O(k?), where e(Vi, ..., V}) denotes the number of edges of G that join vertices
from different sets.

Judicious partition problems ask for a partition of the vertex set of a graph into subsets
so that several quantities are optimized simultaneously. The Bottleneck Bipartition Problem,
introduced by Entringer (see [10]), is such an example: Given a graph G, find a partition
V1, Va of V(G) that minimizes max{e(V1),e(Va)}. Székely and Shahrokhi [10] showed that this
problem is NP-hard. Porter [8] proved that for any graph G with m edges there is a partition
V1,Va of V(G) such that max{e(V1),e(V2)} < m/4 + O(y/m), establishing a conjecture of
Erdés. (A matrix version of this Erdds conjecture was formulated by Entringer, and was
solved by Porter and Székely [9].)

The Bottleneck Bipartition Problem was also studied by Bollobas and Scott [1,2]; they
show in [2] that for any graph G with m edges there is a bipartition Vi, Vs of V(G) such that

e(Vi,V2) > 24+ 11/2m + 1 — % and max{e(V1),e(Va)} < 2+ 1, /2m + % — -, Xu and Yu [11]
extended this result to k-partitions (for £ > 3), answering a question of Bollobés and Scott [3]:
The vertex set of any graph with m edges can be partitioned into Vi, ..., V} such that e(V;) <

kﬂg—l—% (,/Qm—l— % — %) forie {1,2,...,k},and e(V4,..., V) > %m—l—ﬁ (,/2m+ % — %)

This paper concerns the Bottleneck Bipartiton Problem with an additional requirement
on the bipartitions. A k-partition Vi,...,Vj of V(G) is said to be balanced if —1 < |V;| —
|V;] <1 for 1 <i,j < k; the classical Min k-Section Problem asks for such a partition that
minimizes e(V,..., V). Bollobds and Scott [3] asked an analogous question for judicious
partitions: Given a graph G, find a balanced partition of V(G) into Vi, ..., V} that minimizes
max{e(V1),...,e(Vi)}. In particular, they made the following conjecture, where e(G) denotes
the number of edges in the graph G.

Conjecture 1.1 (Bollobds and Scott [3]) Let G be a graph with minimum degree at least 2.
Then V (G) admits a balanced partition Vi, Va such that e(V;) < e(G)/3 fori € {1,2}.

The complete graph K3 shows that the bound e(G)/3 is sharp. The star K, shows that
the requirement on minimum degree is necessary (otherwise, one cannot do better than e(G)/2
in general). Bollobds and Scott [5] proved the following result, which implies Conjecture 1.1
for regular graphs.

Theorem 1.2 (Bollobds and Scott [5]) Let d > 2 be an integer, and let G be a d-regular graph.
Then V(G) admits a balanced bipartition Vi, Vs such that

(1) e(V;) < 1951e(G) when d is odd,



(2) e(Vi)

(3) e(Vi) <
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ﬁ‘lle(G) when d is even and |V (G)| is even, and
_d_
d

e(G) + % when d is even and |V (G)| is odd.

=

Moreover, the extremal graphs for (1) are sKgyq1 for s > 1, those for (2) are 2sK g1 for s > 1,
and those for (3) are (2s + 1)Kgy41 for s > 0.

For a graph G, we use A(G) and 6(G) to denote the maximum and minimum degree of
G, respectively. So a graph G is regular iff A(G) — 6(G) = 0. The following result of Yan and
Xu [12] generalizes Theorem 1.2 to graphs G with A(G) — §(G) = 1.

Theorem 1.3 (Yan and Xu [12]) Let d > 2 be an integer, and let G be a graph with ny
vertices of degree d and ne = |V(G)| — ny vertices of degree d — 1. Then V(G) admits a
balanced bipartition Vi, Vo such that

(1) e(V;) <e(G)/4 —n1/8 when d is odd and |V (G)| is even,

(2) e(V;) <e(G)/4 —n1/8+ (d—1)/8 when d is odd and |V (G)| is odd,
(3) e(Vi) < e(G)/4 4 n2/8 when d is even and |V (G)]| is even,

(4) e(Vi) <e(G)/4 4+ n2/8+ d/8 when d is even and |V (G)| is odd.

The main goal of this paper is to provide further evidence to Conjecture 1.1, by proving
it for graphs G for which A(G) — §(G) is not too large.

Theorem 1.4 Let G be a graph, and assume that A(G) < %5(G). Then G admits a balanced
partition Vi, Va such that e(V;) < e(G)/3 fori e {1,2}.

Since A(G) < |V(G)| — 1, 6(G) > 5|V(G)|/7 implies A(G) < L§(G). So we have the
following immediate consequence of Theorem 1.4, which implies Conjecture 1.1 for graphs G
with 0(G) > 5|V (G)|/7.

Corollary 1.5 Let G be a graph with 6(G) > 5|V(G)|/7. Then V(G) admits a balanced
partition Vi, Va such that e(V;) < e(G)/3 fori e {1,2}.

Theorems 1.2, 1.3 and 1.4 suggest that the bound on e(V;) in Conjecture 1.1 decrease
from e(G)/3 to e(G)/4 as A(G) decreases from 15(G) to 6(G). Indeed, the next result shows
that this may be the case: The bound on max{e(V1),e(V2)} decreases from e(G)/2 to e(G)/4
as A(G) decreases from 3§(G) to 0(G). Note that (r+4)/(3r —4) takes on the values 3,7/5,1
when r = 2, 3,4, respectively.

Theorem 1.6 Let 2 < r < 4 be a real number, and let G be a graph. Suppose A(G) <

3TT,+445(G) when |V (G)| is even, and A(G) < 3 T+4 )— T4 when |V (G)| is odd. Then V(G)

oG
admits a balanced partition Vi, Va such that e( ) <e(G )/7‘ fori e {1,2}.

The rest of this paper is organized as follows. In Section 2, we prove several lemmas. In
Section 3 we prove Theorems 1.4 and 1.6. Section 4 contains remarks and further questions.



2 Lemmas

In this section, we prove three lemmas to be used in the proofs of Theorems 1.4 and 1.6. Let
G be a graph and let Vj, Vs be a partition of V(G). For j € {1,2} and i € {§(G),d(G) +
1,...,A(G)}, we let n;; denote the number of vertices in V; that have degree i in G. When
there is no possibility of confusion, we write 6 and A instead of §(G) and A(G).

Note that for § <i < A, 0 < A —i <A — 9. We have the following simple observations
for j € {1,2}:

A A—6
Observation (a). > nj; = > nja—i = |Vjl;
=5 i=0

A—§ A—§ A—§
Observation (b) Z inj,A—i = Z ATLJ’,A_Z' — Z (A — i)nj,A—i S (A — 5)|ij|
=0 =0 1=0

The first two lemmas express and estimate e(V;) in terms of n; ;.

Lemma 2.1 Let G be a graph, and let V1, Vs be a bipartition of V(G). Then,
‘ ) As A5
(i) e(G) =3 <A]V(G)\ — > inia—i— Y, mg,A_Z->.
i=1 i=1

A—6
(i1) e(V1) —e(Va) = 3 ; i(no,a—i —miai) — S(|Val = [VA).

Proof. By the Handshaking Lemma,

A
2e(G) = Z i(n1; + no,;)
=0
A A—-1
= Z A(nl,i +ng;) — (A —i)(n1,; + nay)
=0 =0
A—§
= A(W]+ |Va]) Z i(ni,a—;i +n2.a—;) (by Observation (a))
i=1
A—§ JANS)
= A[V(G)| - Z inL,A—;i — Z N2, A,
i=1 i=1

which proves (7). Since

2¢(V1) + e(Vi, Va) Zmu

and

2e(V2) + e(V1,Va) = me,
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e(Vi) —e(V2) =

i(n1; —na;)

Il
N =

> o

5
(A —d)(n1a—i —n2A—;)

(2

1
= 5 '
%

Therefore, (ii) follows from Observation (a). 1

-5 A—§ A—§
i(noga—i —nia—i) + A Z nia—i —A Z naA—i | -
=0 i=0

Il
o

Lemma 2.2 Let G be a graph, and let Vi,Va be a balanced bipartition of V(G) such that
e(V1, Vo) is mazimum among all balanced bipartitions of V(G). For v € V(G) let t, =
IN(v) N Vi| — |N(v) N Val, and let t := max{t, : v € Vi}. Then

A—§
(Z) G(Vl) S %’Vﬂ —% Z inl,A_i.

=1
A—§

(i) e(Ve) < SpHVal = 1 X ima.ani
1=

Proof. First, we estimate e(V;). Note that for v € Vi, t, = [N(v) N Vi| — [N(v) N Va| < t and

IN(v) N Vi| + |N(v) N Va| =d(v). So |[N(v)NnVi| < %, and hence

2e(Vi) = > [N(v)NW

veEV]
A+t (A—1)+t o+t
S nia+——m——nia-1+... + nis
2 ’ 2 ’ 2 ;
A—§
A+t 1
= T—i_\Vl] —3 ZZ_; iny a—; (by Observation (a)),

which implies (7).

Next we estimate e(V2). Let vy € Vi with t,, = t.

Suppose for the moment that there exists vy € V3 such that ¢, = |[N(v2) NVi| — |N(v2) N
Vo| <t =ty,. Define V] := (V3 \ {v1}) U{ve} and V3 := (Vo \ {v2}) U{v1}. Then V{,VJ is also
a balanced bipartition of V(G), and

e(VI,V3) > e(Vi,Va) + (IN(v1) N Vi| — [N (v1) N Va|) = ([N (v2) N V1| = [N (v2) N Val)
- e(v1,‘/2) +tv1 _tvz
e(Vl,Vz)—i-l,

v

which contradicts the maximality of e(Vi, Va).



Therefore, for all w € Vo, t,, = |[N(w )ﬁVl\—\N( )N Va| > t. Since [N(w)NVi|+|N(w)N
Va| = d(w), we have |N(w) N Va| < 2= Therefore,

A—t A—-1-—t d—t
N2A+ ——F——MN2A-1+ "+ —F—N25

2e( V- <
e(Vz) < 5 "2 5 : 5

- ﬂ\vr—fij' . (by Observation (a))
= 5 2| = 5 2 N2, A—i vy Observation (a)),

which implies (7). 1

The next lemma implies Theorems 1.4 and 1.6 for graphs of even order. The technique is
similar to that used in [5], by considering a balanced partition V7, V5 that maximizes e(V, V).

Lemma 2.3 Let 2 < r < 4 be a real number, and let G be a graph such that |V(G)| is even and
A(G) < #L5(G). Then V(G) admits a balanced bipartition Vi, Vo such that e(V;) < e(G)/r
forie {1,2}.

Proof. Let Vi, Vs be a balanced bipartition of V(G) such that e(V;, V) is maximum among
all balanced bipartitions of V(G). Then |Vi| = |Va| = [V(G)|/2. Without loss of generality,
we may assume that (V1) > e(Va). If (V1) < e(G)/r then the assertion of the lemma holds.
So we may assume that e(V7) > e(G)/r.

Let t, := |[N(v) N Vi| — [N(v) N V3| (for all v € V(G)) and define ¢ := max{t, : v € V1 }.
By Lemma 2.2(i) and the fact |Vi| = |V(G)|/2,

e(V1) < <¥> .

where A := A(G) and ¢ := 0(G). By Lemma 2.1(7) and the assumption e(V}) > e(G)/r,

B

A—6 A—0o A—§
1 , . A+t VG 1§~
o <A|V(G)| - ; iniA—i — ; mg,A_Z> < (T) 5 "1 ; ing A—.

Hence

AAIV(G)]

< r(A+)V(Q)| —2(r —2) Z iniai+4) ingas

IN

r(A+t)|V(G ]+4Zm2AZ (since 7 > 2)

< r(A+H)V(G)|+2(A —0)|V(G)| (by Observation (b) and the fact |Va| = Ve )|),

Therefore,
(2—-r)A+20

r

t> (1)



By Lemma 2.1(éi) and that fact |Vi| = |[V3],

A—-d

Z i(no A—i — N1,A—i)-

=1

e(Vi) —e(Va) =

l\DI}—t

So it follows from Lemma 2.2(i7) and that fact |Va| = |[V(G)|/2 that
A—§ A é
A—t\ V(@) 1
e(V1) < <T> 5 _Z; na2a—i+ 5 Z i(n2,a—i — n1,A—i)-
Then, by Lemma 2.1(7) and the assumption e(V}) > e(G)/r, we have

JA)
<A|V | — Z ’L?”Ll A—i Z Z.nQ’A_i)

—t\V
4

—it 5 Z i(n2,a—i — n1,a—)-

Thus

JAIV(Q)]
A-S -

< r(A=)V(G)|+2(r+2) Z ing a—; —4(r — 1) Z Ny A—i
i=1 =

IN

A—6
(A =t)|V(G)| + 2(r +2) Z ing A—; (since r > 2)
i=1

r(A=t)|V(G)|+ (r+2)(A—9)|V(G)| (by Observation (b) and since |Va| = &QG)')

_ <7~ (A_M#)—i-(r—i-%(A—&)) V(@) (by (1))
= (3rA —(r+4)8) |V(G)|.

IN

Therefore,
A r+4 (5
3r—4"7
a contradiction to the assumption that A < ’;,+445. |

3 Proof of Theorems 1.4 and 1.6

Proof of Theorem 1.4. By Lemma 2.3 (with = 3), we see that the assertion of Theorem 1.4
holds when |V(G)] is even. So we may assume that [V (G)]| is odd.

Let Vi, Va be a balanced bipartition of V(G) such that e(V7, V3) is maximum among all
balanced bipartitions of V(G). Without loss of generality, we may assume that e(V}) > e(V2).
If e(V1) < e(G)/3, the assertion of Theorem 1.4 holds. So we may assume e(V;) > e(G)/3.
This, in particular, implies that e(V1, V52) < 2¢(G)/3.



We claim that there exists vy € V; such that [N (vy) NVi| > |N(v1) N Va|. For, otherwise,
|N(v) N Vh| < |N(v) N Vs for all v € V4. Hence

2¢(Vi) = > [N(v)NV
veV]
< D IN(v) N VR
veV]
= e(vl7v2)
< 2e(G)/3.

This is a contradiction to the assumption that e(V;) > e(G)/3.

Since V1, Vs is a balanced bipartition of V(G), and since n := |V(G)| is odd, either
Vi = 252 or [Vi] = 2£L. Indeed,

vil="0 and =" @)

For, otherwise, V{ := V4 \ {v1}, V3 := Vo U {v1} is also a balanced bipartition of V(G), and
e(V],V3) = e(V1,Va) + [N(v1) N V1| — |[N(v1) N Va| > e(V1, V) + 1. But this contradicts the
maximality of e(Vi, Va).

Let t, := |[N(v) N Vi| — [N(v) N V5| (for all v € V(G)) and define ¢ := max{t, : v € V1 }.
By Lemma 2.1(7) and Lemma 2.2(i), and by the assumption that e(V;) > e(G)/3, we have

A=

JANS) JANS)
1 . . A+t n—1 1 .
g(An — ;:1 iny,A—i — ;:1 ing A—i) < < 5 ) < 5 ) ~3 ;:1 ing A—-

Hence
3 A—0d 1 A—6
An < Z(A +t)(n—1)+ ZZ:; ing A—;i — 3 ; ing A—i
3 A—0d
< J@A+Hm-1)+ Z_; ina,A—i
< E(A +t)(n—1)+ (A — 5)%—1_1 (by Observation (b) and (2))
3n—1t (Bn—1A—-2(n+1)0
J— _I_ .
4 4
Hherefore An+1)5—(n—1A _ 2n+1)5—(n—1)A
n+ —(n— n+ —(n—
t .
~ 3(n—1) ~ 3n 3)
By (2) and Lemma 2.1(i4),
A—6
1 , A
e(Vl) — e(Vg) = 5 Z(”2,A—i — nLA_Z-) — 5

i=1



So by Lemma 2.2(i),

= A=s
A—-t\ (n+1 1 A
e(V1) < ( 1 >< 5 >—ZZZH2A1+ > ilnoa-i—niai) - 5

i=1 =1

A—§
A—t\n 1 3A +t
< <T>§—Zélln2Az+ E i(nga—i —niA—i) — 3
1=

Therefore, it follows from Lemma 2.1(:) and the assumption e(V;) > e(G)/3 that

1 A—§ A—0d 3A + ¢
g(An - ; M A—; Z Mo A -I— Z Mo A—j — ZZ_; N 1
By rearranging and combining terms, we have
A—0o A—0o
3n(A—t) 5 9A + 3t
An < ?—FZZ_;ZTLQA 1_2Z;Z”1A i — 1
A—0o
3n(A—t) 5 , 9A + 3t
< e -
= 4 B ZZ:; M2 A—i 1
< (8n ; 94 + 5 + 131( o) _ 3(n1— Lt (by (2) and Observation (b))
Bn—-9)A 5n+1)(A—=¢6) 3n+1) (2(n+1)d—(n—1)A
= TR 1 1 3n (by (3))
Bn—-9A 5(n+1)A-9) 2n+1)d—(n-—1DA 2n+1)6—(n—1)A
= + - -
4 4 4 4dn
AnA —10A  B5An+5A-76(n+1) 2(n+1)J—(n—1)A
= + -
4 4 in
_ MmA-T5(n+1) 2(n+1)0+4nA+A
B 4 dn
A —75(n+1)
< .
4
Thus, 5nA > 7(n 4 1)§ > 7nd. This implies A > 76/5, a contradiction. |

Proof of Theorem 1.6. By Lemma 2.3, the assertion of Theorem 1.6 holds when |V (G)] is even.
So we may assume that n := |V(G)] is odd.

Let V1, V5 be a balanced bipartition of V(G) such that e(Vi, V3) is maximum among all
balanced bipartitions of V(G). Assume, without loss of generality, that e(Vy) > e(Va). If
e(V1) < e(G)/r then the assertion of Theorem 1.6 holds. So we may assume that e(V;) >
e(G)/r.

Let t, := |[N(v) N V1| — [N (v) N V3| (for all v € V(G)), and define ¢ := max{t, : v € V1 }.
Since |Vi| = 251 or V4| = 2, we consider two cases.

Case 1. |Vi| = 2 and [Va| = 251,

We claim that ¢ < 0. For, if ¢ > 0, then there is v € Vj such that ¢, > 0. Now
V= Vi \ {v}, V5 := Vo U{v} is also a balanced bipartition of V(G), and a simple calculation
shows that e(V{,Vy) > e(Vi, V2), contradicting the maximality of e(Vy, Va).



By Lemma 2.2(i), we have

A—-§

A+t n+1 1 )
€(V1)§< 1 >< 5 >_Z;ZHI,A—Z‘-

Thus, by Lemma 2.1(¢) and the assumption e(Vy) > e(G)/r,

A—-6

A—§ A—§
1 . ) A+t n+1 1 )
o <An - ;_1 N1 A—; — ;_1 ZTL27A_1'> < < 1 ) < 5 ) 1 ;_1 i1, A—i-

Hence
JANS) JANS)
4An < r(A+t)(n+1)—2(r—2) Z ing A—i +4 Z Ny A—i
i=1 i=1

A—6
< r(A+t)(n+1)+4 Z ingA—; (since r > 2)
i=1
< r(A4+t)(n+1)+2(A—=06)(n—1) (by Observation (b)). (4)

By Lemma 2.2(ii), we have

JANS)
A—t n—1 1 )
e(Va) < < 1 > < 5 > ~ 1 ing A

By Lemma 2.1(ii),

e(Vl) — e(Vg) =

These two expressions imply

A—t n—1 1 1 A
< - ; .z ; 4=
e(Vy) < < 1 > < 5 >+ 1 E_l N2, A—i 5 E iniA—; + 2

Thus, by Lemma 2.1(i) and the assumption e(V;) > e(G)/r,

1 A—§ JANS) A — ¢ n—1 1 JANS) 1 A—§ A
% (An — ; M1 A—; — ; mgA_,-) < < 1 ) < 5 >+Z ; m2’A_i_§ ; an’A_H_E.

Hence,

A—-§ A—§
4An < r(A—=t)(n—1)+ (2r+4) Z ing a—i — (4r — 4) Z ing a—i +4rA
i=1

i=1

A—6
r(A—t)(n—1)+ (2r +4) Z ing a—i +4rA  (since r > 2)
i=1

r(A—=t)(n—1)+(r+2)(A—-0)(n—1)+4rA (by Observation (b)). (5)

IN

IN

10



Since A < n — 1, 4(n + 1)rA < 4(n? — 1)r. Multiplying (4) by n — 1 and (5) by n + 1,
and combining the resulting inequalities, we have

8AN? < A2 —1)+2(A=8)(n—1)2+ (r+2)(A = 0)(n®> — 1)+ 4(n+ 1)rA
< 3rAn® +4n’A — 25 —4An(A — 6) — (3rA — ré) +4(n* — 1)r

(r+4)n
= 3rn?A +4n2A — (r + 4025 + 4rn? — 4n(A — 8) — (3rA — 6 + 4r)
< 3rn?A +4n?A — (r + 4)n?S + 4rn.

Therefore, A > §T+445 -

Case 2. |Vi| = 252 and |Va| = 2L,
By Lemma 2.1(22)

a contradiction.

37“ 4’

e

-6

i(noa—i — N1, A—i) —
1

A
5

DO =

e(Vl) — e(Vg) =

%

By Lemma 2.2(ii),
A 1)

) < <A4—t> <n—|—1> ——me )

These two expressions imply

Vi) < <A4—t> <n—|—1> me Z__me 2_%

Hence, by Lemma 2.1(7) and the assumption e(V}) > e(G)/r, we have

A=§ A=§ A—(S
1 ) ) A—t n+1 ) A
o (An - ;:1 NI AN—f — g Zn2,A—i) < < 1 ) < ) E Mo A—i— ;:1 m1,A—z‘—§-

1=1

So

A—§ A—0d
InA < r(A—t)(n+1)+2(r+2) ng,A_i—élr— Zzn1A2—4rA
i=1 i=1
A—6
< r(A-t)(n+1)+2(r+2) Z ing A—; —4rA  (since r > 2)
i=1
< r(A=t)(n+1)+ (r+2)(A—=0)(n+1)—4rA (by Observation (b)). (6)

By Lemma 2.2(37),

JANS)
A+t n—1 1 )
e(Vy) < ( 1 > < 5 > — 7 2 as

11



Therefore, by the assumption e(V7) > e(G)/r and by Lemma 2.1(7), we have

A—§ A—§ A—§
1 ) ) A+t n—1 1 )
o <An— E N A—; — E znzA_i) < < 1 > ( 5 > 1 E iN1,A—i-

i=1 i=1 i=1
So
A—6 A—0o
A < A+ —1)—=2(r—2)) diniai+4)  inga
i=1 i=1
A—6
< r(A4+t)(n—1)+4 Z ing A—; (since r > 2)
i=1
< r(A+t)(n—1)+2(A—9)(n+1) (by Observation (b)). (7)

Multiplying (7) by (n + 1) and (6) by (n — 1), and combining the resulting inequalities,
we get
8n?A < 2r(n? — DA +2(A =8)(n+ 1>+ (r+2)(A = 6)(n* — 1) —4(n — 1)rA
= (3rn®+4n* +4dn+r —4dnr)A — ((r+4)n® +4n — 1) 0.

Hence
((r+4)n® +4n —7) 5 < (3r — 4)n’A + (dn +r — 4rn)A,

and so, (r +4)n?6 < (3r — 4)n? A. This implies A > Z44, a contradiction. |

4 Further discussions

The proofs of Lemma 2.3 and Theorems 1.4 and 1.6 actually show that for any graph G with
A(G) < %5(G), any balanced bipartition Vi, Vo of V(G) with e(V1, Vo) maximum (among all
balanced bipartitions) must satisfy e(V;) < e(G)/3. (The maximality of the partition makes
it possible to derive the bound on e(V;), by allowing us to exchange some vertex of V; with
a vertex of V5.) Unfortunately, this is not always the case. For the graph G in Figure 1, the
bipartition Vi := {z1,...,27},Va := {y1,...,y7} of V(G) is the unique balanced bipartition
of V(G) for which e(V7,V3) is maximum. However, e(V;}) = 15 > 44/3 = e(G)/3. Since it is
not obvious why the partition V;, V5 is the unique maximum balanced bipartition of V(G), we
give a proof of this fact; which in a way indicates that when dealing with balanced bipartitions
for general graphs, it is necessary to exchange subsets (of V;) of size more than one.

Note that GG has a “reflection” symmetry in the line through the edge x4y4. Also note
that e(V2) =0, e(V7) = 15, and e(Vq, V2) = 29.

Let V{, V] be an arbitrary balanced bipartition of V(G) different from V3, V5. Then there
exist S; C Vi, ¢ = 1,2, with 0 # [S1] = [S2] < 3 such that V/ = (V; \ S;) U S3_;. We now
proceed to show that e(V{,Vy) < e(Vi, V). Observe that

e(V1,V3)
= 6((V1\51)U52,(V2\52)U51)
= e(Vl,Vg)—e(Sl,VQ\SQ)—e(Sg,Vl\Sl)—i-e(Sl,Vl\Sl).

12



Figure 1: A graph with a unique maximum balanced bipartition.

So it suffices to show that
6(51, Vi \Sl) — 6(51, Vs \ Sg) < 6(52, Vi \ 51)

Let tj := |N(z;) N Vi| = [N(z;) N V3| for 1 < j <7, and let ¢(S) := ijesl tj. Then

e(S1,Vi\ S1) —e(S1, V2 \ S2)

= (Z N(:Ej)ﬂVl) —2¢(S)) — (( > N(xj)m&) 6(51,52))
x; €51 ;€51

(
Yt | = 2e(S1) +e(S1, 5)
Z‘jES1
= t(Sl) — 26(51) + 6(51, 52).
Thus, it suffices to show that
t(S1) — 2e(S1) + e(S1,52) < e(S2, Vi \ S1).

We now list a few useful observations about the graph G:

(1) t; =0for j € {2,3,5,6}, t1 =ty =1, and t4 = —1;
(2) =1 <t(S1) <2

(3) t(Sy) =2 iff {x1,27} CS; and x4 ¢ Sy;

(4) (S1) = —1iff z4 € Sy and {zy, 27} NSy = 0;

(5) e(S2, V1 \ S1) > 4[S2| — e(S2, 51).
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If [S1| = |S2| = 1, then e(S1,52) < 1, e(S1) = 0, and ¢(S;) < 1 (by (1)). Hence
t(S1) —2e(S1) +e(S1,52) <1—-0+1<4—1<e(S2,V1\S57) (by (5)). So we may assume
151] = 152 € {2,3}.

Case 1. |S1] = |S2| = 2.

Then e(S7,5) <4 and e(S7) < 1.

Suppose e(S1) = 1. Then Sy 2 {x1, 27} (since x127 ¢ E(G)). It follows from (2) and (3)
that t(S1) < 1. Hence t(S1) — 2e(S1) + €(S1,52) <1—2+4 < e(S3, V1 \ S1) (by (5)).

Now assume e(S7) = 0. Then x4 ¢ S since x4 is adjacent to all vertices (including those
in Sy \ {z1}; thus t(S1) # —1 (by (4)).

If t(S1) = 2, then S; = {x1, 27} (by (3)). Since x; and x7 have no common neighbor in
S, €(S1,52) < 2. Therefore t(S1) — 2¢e(S1) + €(S1,52) <2—-0+2 < e(S2, V1 \ S1) (by (5)).

Assume t(S1) = 1. By (1), 24 ¢ S1, S1 N{x1,27} # 0 and {9, x3, 25,26} N S1 # 0. By
symmetry, we may assume that x1 € Sj. Since e(S1) = 0, S; = {z1,25} or S1 = {1, 76}
Hence e(S1,.52) < 2, and so t(S1) — 2e(S1) + e(51,52) <1 —-0+2 < e(S2, V1 \ S1) (by (5)).

So we may assume t(S7) = 0. Since e(S1) = 0 and z4 ¢ S and by (1), we have S; =
{ze,z6}. So e(Sy,S52) < 3 (since |N(xz2) N N(xg) N V| = 1), and hence t(S7) — 2e(S1) +
e(51,52) <0—0+3 < e(S2, Vi \S1) (by (5)).

Case 2. |S1| = |S2| = 3.

Then e(S1,52) <9 and e(S1) < 3. Also note that e(S1) > 1.

First assume e(S7) = 3. Then, {z1,27} € S1, and hence t(S1) < 1 by (2) and (3). If
t(S1) = —1, then t(S1) —2¢(S1) +e(S1,52) < —1—-6+9 < e(S2, V1 \S1) (by (5)). So we assume
t(S1) > 0. It suffices to show e(S7,S2) < 8, since in that case ¢(S7) — 2¢e(S7) + (51, 52) <
1—-6+8 < e(S2,V41\S1) (by (5)). This is clear if {x1,27} NSy # (0, since x7 and x7 each
have just two neighbors in V5. So we may assume {z1,2z7} NSy = (). Then #(S7) = 0, and
S1 C {x9,x3,x5,26}. Since e(S1) = 3 and zoxg ¢ E(G), we may assume by symmetry that
S1 = {z9,x3,25}. Then (51, S2) < 8, since |[N(z2) N N(z5) N Va| = 2.

Now assume e(S7) = 2. Then #(S7) < 1; otherwise by (2) and (3), {z1,27} € S; and
x4 ¢ S1, and we would have e(S7) < 1. So it suffices to show that e(S7,S2) < 7, in which case
t(S1)—2e(S1)+e(S1,52) < 1—4+7 < e(S2,V1\S1) (by (5)). If t(S1) = —1 then by (4) and since
e(S1) = 2, we have Sy = {z2, 24,26}, and so e(S1,S2) < 7 (since |N(z2) N N(zg) N Va| = 1).
Suppose t(S1) = 1. Then by (1), {z1,27}NS] # (). So by symmetry assume x1 € S1. If x4 € S,
again by (1), S1 = {21, x4, z7}, and so e(S1, S2) < 7 (since |N(x1)NN (x7)NVa2| = 0). So assume
x4 ¢ S1. Then z7 ¢ Sq, and so, S1 = {x1,x2, x5} or S1 = {x1, 23,25} or S1 = {z1,23,26}. In
these cases we have e(S7, S2) < 7 (since [N (z1) NN (x5)NVa| = |[N(z1) NN (x6)NVa| = 0). Now
suppose t(S1) = 0. If z4 € S, then by (1) and since e(S1) = 2, exactly one of {z1, 27}, say =1
(by symmetry), is in S7; thus S; = {x1, 24,25} or S1 = {z1, 24,26}, and hence e(S1,5;) < 7
(since |N(z1) N N(z5) N Va| = |N(z1) N N(z6) N V| = 0). So z4 ¢ Si. Then since ¢(S1) = 0
and by (1), {1,727} N'S; = 0. Hence, since e(S1) = 2, S1 = {x9,x3, 26} or S1 = {wg, x5, 2},
and we have e(S7,S2) < 7 again (since |[N(z2) N N(zg) N Va| = 1).

Finally assume e(S1) = 1. Then z4 ¢ S, and so ¢(S1) # —1 (by (4)). Moreover, t(S1) # 0
as otherwise S1 C {x9, x3, 5,26} which implies e(S1) > 2. So 1 < #(S1) < 2. If t(S1) = 2 then
by (1), S1 = {x1, 27, 2}, with k € {2,3,5,6}; in these cases we can check that e(Sy,S2) < 5,
and so t(S1) — 2e(S1) + e(S1,5) < 2—-2+5 < e(S2, V1 \ S1) (by (5)). If t(S1) = 1 then
by (1), exactly one of {x1,x7}, say z1 (by symmetry), belongs to S;. Since e(S1) =1, S1 =
{1,229, 26}, and so e(S1,52) < 6. Hence t(S7) —2e(S1) +€(S1,52) <1—-246 < e(S2, V1 \ S1)
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(by (5)).

Therefore, we have shown that V7, V5 is the unique balanced bipartition of V(G) such that
e(V1,V3) is maximal among all such partitions. So the constant ¢ in the following question
satisfies 7/5 < ¢ < 13/4.

Problem 4.1 What is the largest constant ¢ such that for any graph G with A(G) < ¢§(G),
if Vi, Va is a balanced bipartition of V(G) with e(Vi,Va) mazimum then max{e(V1),e(V2)} <
e(@)/37?

We conclude this paper with the following question of Bollobas and Scott.

Problem 4.2 (Bollobds and Scott [3]) What is the smallest constant c(d) such that every graph
G with 6(G) > d has a balanced bipartition Vi,V such that max{e(V1),e(Va)} < ¢(d)e(G)?
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