Balanced judicious bipartitions of graphs

Baogang Xu $^{a,*}, \quad$ Juan Yan a,b

^a School of Mathematics and Computer Science
 Nanjing Normal University, 122 Ninghai Road, Nanjing, 210097, China
 ^b College of Mathematics and System Sciences
 Xinjiang University, Urumqi, Xinjiang 830046, China

Xingxing Yu[†] School of Mathematics Georgia Institute of Technology Atlanta, GA 30332-0160, USA

Abstract

A bipartition of the vertex set of a graph is called *balanced* if the sizes of the sets in the bipartition differ by at most one. Bollobás and Scott [3] conjectured that if G is a graph with minimum degree at least 2 then V(G) admits a balanced bipartition V_1, V_2 such that for each i, G has at most |E(G)|/3 edges with both ends in V_i . The minimum degree condition is necessary, and a result of Bollobás and Scott [5] shows that this conjecture holds for regular graphs G (i.e., when $\Delta(G) = \delta(G)$). We prove this conjecture for graphs G with $\Delta(G) \leq \frac{7}{5}\delta(G)$; hence it holds for graphs G with $\delta(G) \geq \frac{5}{7}|V(G)|$.

Key words and phrases: Balanced partition, judicious partition, maximum degree, <u>AMS</u> 2000 Subject Classifications: 05 C25, 05 C75

AMS 2000 Subject Classifications: 05C35, 05C75

^{*}Partially supported by NSFC 10671095. Email: baogxu@njnu.edu.cn

[†]Partially supported by NSA and by NSFC Project 16028102. Email: yu@math.gatech.edu

1 Introduction

The Maximum Bipartite Subgraph Problem is a classical partition problem which optimizes one quantity: Given a graph G, find a partition of V(G) into V_1, V_2 that minimizes $e(V_1) + e(V_2)$, where $e(V_i)$ $(i \in \{1, 2\})$ denotes the number of edges of G with both ends in V_i . A simple calculation shows that every graph with m edges has a bipartite subgraph with at least m/2 edges. Edwards [6,7] improved this lower bound to $\frac{m}{2} + \frac{1}{4}\sqrt{2m + \frac{1}{4}} - \frac{1}{8}$, which is essentially best possible as evidenced by the complete graphs K_{2n+1} . In [4] (also see [3]), Bollobás and Scott extend Edwards' bound to k-partitions of graphs by proving that the vertex set of any graph with m edges can be partitioned into V_1, \ldots, V_k such that $e(V_1, \ldots, V_k) \geq \frac{k-1}{k}m + \frac{k-1}{2k}\sqrt{2m + \frac{1}{4}} + O(k^2)$, where $e(V_1, \ldots, V_k)$ denotes the number of edges of G that join vertices from different sets.

Judicious partition problems ask for a partition of the vertex set of a graph into subsets so that several quantities are optimized simultaneously. The Bottleneck Bipartition Problem, introduced by Entringer (see [10]), is such an example: Given a graph G, find a partition V_1, V_2 of V(G) that minimizes max $\{e(V_1), e(V_2)\}$. Székely and Shahrokhi [10] showed that this problem is NP-hard. Porter [8] proved that for any graph G with m edges there is a partition V_1, V_2 of V(G) such that max $\{e(V_1), e(V_2)\} \leq m/4 + O(\sqrt{m})$, establishing a conjecture of Erdös. (A matrix version of this Erdös conjecture was formulated by Entringer, and was solved by Porter and Székely [9].)

The Bottleneck Bipartition Problem was also studied by Bollobás and Scott [1,2]; they show in [2] that for any graph G with m edges there is a bipartition V_1, V_2 of V(G) such that $e(V_1, V_2) \geq \frac{m}{2} + \frac{1}{4}\sqrt{2m + \frac{1}{4}} - \frac{1}{8}$ and $\max\{e(V_1), e(V_2)\} \leq \frac{m}{4} + \frac{1}{8}\sqrt{2m + \frac{1}{4}} - \frac{1}{16}$. Xu and Yu [11] extended this result to k-partitions (for $k \geq 3$), answering a question of Bollobás and Scott [3]: The vertex set of any graph with m edges can be partitioned into V_1, \ldots, V_k such that $e(V_i) \leq \frac{m}{k^2} + \frac{k-1}{2k^2} \left(\sqrt{2m + \frac{1}{4}} - \frac{1}{2}\right)$ for $i \in \{1, 2, \ldots, k\}$, and $e(V_1, \ldots, V_k) \geq \frac{k-1}{k}m + \frac{1}{2k} \left(\sqrt{2m + \frac{1}{4}} - \frac{1}{2}\right)$.

This paper concerns the Bottleneck Bipartiton Problem with an additional requirement on the bipartitions. A k-partition V_1, \ldots, V_k of V(G) is said to be balanced if $-1 \leq |V_i| - |V_j| \leq 1$ for $1 \leq i, j \leq k$; the classical Min k-Section Problem asks for such a partition that minimizes $e(V_1, \ldots, V_k)$. Bollobás and Scott [3] asked an analogous question for judicious partitions: Given a graph G, find a balanced partition of V(G) into V_1, \ldots, V_k that minimizes $\max\{e(V_1), \ldots, e(V_k)\}$. In particular, they made the following conjecture, where e(G) denotes the number of edges in the graph G.

Conjecture 1.1 (Bollobás and Scott [3]) Let G be a graph with minimum degree at least 2. Then V(G) admits a balanced partition V_1, V_2 such that $e(V_i) \le e(G)/3$ for $i \in \{1, 2\}$.

The complete graph K_3 shows that the bound e(G)/3 is sharp. The star $K_{1,n}$ shows that the requirement on minimum degree is necessary (otherwise, one cannot do better than e(G)/2in general). Bollobás and Scott [5] proved the following result, which implies Conjecture 1.1 for regular graphs.

Theorem 1.2 (Bollobás and Scott [5]) Let $d \ge 2$ be an integer, and let G be a d-regular graph. Then V(G) admits a balanced bipartition V_1, V_2 such that

(1) $e(V_i) \leq \frac{1}{4} \frac{d-1}{d} e(G)$ when d is odd,

- (2) $e(V_i) \leq \frac{1}{4} \frac{d}{d+1} e(G)$ when d is even and |V(G)| is even, and
- (3) $e(V_i) \leq \frac{1}{4} \frac{d}{d+1} e(G) + \frac{d}{4}$ when d is even and |V(G)| is odd.

Moreover, the extremal graphs for (1) are sK_{d+1} for $s \ge 1$, those for (2) are $2sK_{d+1}$ for $s \ge 1$, and those for (3) are $(2s+1)K_{d+1}$ for $s \ge 0$.

For a graph G, we use $\Delta(G)$ and $\delta(G)$ to denote the maximum and minimum degree of G, respectively. So a graph G is regular iff $\Delta(G) - \delta(G) = 0$. The following result of Yan and Xu [12] generalizes Theorem 1.2 to graphs G with $\Delta(G) - \delta(G) = 1$.

Theorem 1.3 (Yan and Xu [12]) Let $d \ge 2$ be an integer, and let G be a graph with n_1 vertices of degree d and $n_2 := |V(G)| - n_1$ vertices of degree d - 1. Then V(G) admits a balanced bipartition V_1 , V_2 such that

- (1) $e(V_i) \leq e(G)/4 n_1/8$ when d is odd and |V(G)| is even,
- (2) $e(V_i) \le e(G)/4 n_1/8 + (d-1)/8$ when d is odd and |V(G)| is odd,
- (3) $e(V_i) \le e(G)/4 + n_2/8$ when d is even and |V(G)| is even,
- (4) $e(V_i) \le e(G)/4 + n_2/8 + d/8$ when d is even and |V(G)| is odd.

The main goal of this paper is to provide further evidence to Conjecture 1.1, by proving it for graphs G for which $\Delta(G) - \delta(G)$ is not too large.

Theorem 1.4 Let G be a graph, and assume that $\Delta(G) \leq \frac{7}{5}\delta(G)$. Then G admits a balanced partition V_1, V_2 such that $e(V_i) \leq e(G)/3$ for $i \in \{1, 2\}$.

Since $\Delta(G) \leq |V(G)| - 1$, $\delta(G) \geq 5|V(G)|/7$ implies $\Delta(G) \leq \frac{7}{5}\delta(G)$. So we have the following immediate consequence of Theorem 1.4, which implies Conjecture 1.1 for graphs G with $\delta(G) \geq 5|V(G)|/7$.

Corollary 1.5 Let G be a graph with $\delta(G) \geq 5|V(G)|/7$. Then V(G) admits a balanced partition V_1, V_2 such that $e(V_i) \leq e(G)/3$ for $i \in \{1, 2\}$.

Theorems 1.2, 1.3 and 1.4 suggest that the bound on $e(V_i)$ in Conjecture 1.1 decrease from e(G)/3 to e(G)/4 as $\Delta(G)$ decreases from $\frac{7}{5}\delta(G)$ to $\delta(G)$. Indeed, the next result shows that this may be the case: The bound on max $\{e(V_1), e(V_2)\}$ decreases from e(G)/2 to e(G)/4as $\Delta(G)$ decreases from $3\delta(G)$ to $\delta(G)$. Note that (r+4)/(3r-4) takes on the values 3, 7/5, 1 when r = 2, 3, 4, respectively.

Theorem 1.6 Let $2 \leq r \leq 4$ be a real number, and let G be a graph. Suppose $\Delta(G) \leq \frac{r+4}{3r-4}\delta(G)$ when |V(G)| is even, and $\Delta(G) \leq \frac{r+4}{3r-4}\delta(G) - \frac{4r}{3r-4}$ when |V(G)| is odd. Then V(G) admits a balanced partition V_1, V_2 such that $e(V_i) \leq e(G)/r$ for $i \in \{1, 2\}$.

The rest of this paper is organized as follows. In Section 2, we prove several lemmas. In Section 3 we prove Theorems 1.4 and 1.6. Section 4 contains remarks and further questions.

2 Lemmas

In this section, we prove three lemmas to be used in the proofs of Theorems 1.4 and 1.6. Let G be a graph and let V_1, V_2 be a partition of V(G). For $j \in \{1, 2\}$ and $i \in \{\delta(G), \delta(G) + 1, \ldots, \Delta(G)\}$, we let $n_{j,i}$ denote the number of vertices in V_j that have degree i in G. When there is no possibility of confusion, we write δ and Δ instead of $\delta(G)$ and $\Delta(G)$.

Note that for $\delta \leq i \leq \Delta$, $0 \leq \Delta - i \leq \Delta - \delta$. We have the following simple observations for $j \in \{1, 2\}$:

Observation (a).
$$\sum_{i=\delta}^{\Delta} n_{j,i} = \sum_{i=0}^{\Delta-\delta} n_{j,\Delta-i} = |V_j|;$$

Observation (b).
$$\sum_{i=0}^{\Delta-\delta} in_{j,\Delta-i} = \sum_{i=0}^{\Delta-\delta} \Delta n_{j,\Delta-i} - \sum_{i=0}^{\Delta-\delta} (\Delta-i)n_{j,\Delta-i} \le (\Delta-\delta)|V_j|.$$

The first two lemmas express and estimate $e(V_i)$ in terms of $n_{j,i}$.

Lemma 2.1 Let G be a graph, and let V_1, V_2 be a bipartition of V(G). Then,

(i)
$$e(G) = \frac{1}{2} \left(\Delta |V(G)| - \sum_{i=1}^{\Delta - \delta} i n_{1,\Delta - i} - \sum_{i=1}^{\Delta - \delta} i n_{2,\Delta - i} \right).$$

(ii) $e(V_1) - e(V_2) = \frac{1}{2} \sum_{i=1}^{\Delta - \delta} i (n_{2,\Delta - i} - n_{1,\Delta - i}) - \frac{\Delta}{2} (|V_2| - |V_1|).$

Proof. By the Handshaking Lemma,

$$2e(G) = \sum_{i=\delta}^{\Delta} i(n_{1,i} + n_{2,i})$$

= $\sum_{i=\delta}^{\Delta} \Delta(n_{1,i} + n_{2,i}) - \sum_{i=\delta}^{\Delta-1} (\Delta - i)(n_{1,i} + n_{2,i})$
= $\Delta(|V_1| + |V_2|) - \sum_{i=1}^{\Delta-\delta} i(n_{1,\Delta-i} + n_{2,\Delta-i})$ (by Observation (a))
= $\Delta|V(G)| - \sum_{i=1}^{\Delta-\delta} in_{1,\Delta-i} - \sum_{i=1}^{\Delta-\delta} in_{2,\Delta-i},$

which proves (i). Since

$$2e(V_1) + e(V_1, V_2) = \sum_{i=\delta}^{\Delta} in_{1,i}$$

and

$$2e(V_2) + e(V_1, V_2) = \sum_{i=\delta}^{\Delta} in_{2,i},$$

$$e(V_{1}) - e(V_{2}) = \frac{1}{2} \sum_{i=\delta}^{\Delta} i(n_{1,i} - n_{2,i})$$

= $\frac{1}{2} \sum_{i=0}^{\Delta-\delta} (\Delta - i)(n_{1,\Delta-i} - n_{2,\Delta-i})$
= $\frac{1}{2} \left(\sum_{i=0}^{\Delta-\delta} i(n_{2,\Delta-i} - n_{1,\Delta-i}) + \Delta \sum_{i=0}^{\Delta-\delta} n_{1,\Delta-i} - \Delta \sum_{i=0}^{\Delta-\delta} n_{2,\Delta-i} \right).$

Therefore, (ii) follows from Observation (a).

Lemma 2.2 Let G be a graph, and let V_1, V_2 be a balanced bipartition of V(G) such that $e(V_1, V_2)$ is maximum among all balanced bipartitions of V(G). For $v \in V(G)$ let $t_v := |N(v) \cap V_1| - |N(v) \cap V_2|$, and let $t := \max\{t_v : v \in V_1\}$. Then

(i)
$$e(V_1) \leq \frac{\Delta + t}{4} |V_1| - \frac{1}{4} \sum_{i=1}^{\Delta - \delta} i n_{1,\Delta - i}.$$

(ii) $e(V_2) \leq \frac{\Delta - t}{4} |V_2| - \frac{1}{4} \sum_{i=1}^{\Delta - \delta} i n_{2,\Delta - i}.$

Proof. First, we estimate $e(V_1)$. Note that for $v \in V_1$, $t_v = |N(v) \cap V_1| - |N(v) \cap V_2| \le t$ and $|N(v) \cap V_1| + |N(v) \cap V_2| = d(v)$. So $|N(v) \cap V_1| \le \frac{d(v)+t}{2}$, and hence

$$2e(V_1) = \sum_{v \in V_1} |N(v) \cap V_1|$$

$$\leq \frac{\Delta + t}{2} n_{1,\Delta} + \frac{(\Delta - 1) + t}{2} n_{1,\Delta - 1} + \dots + \frac{\delta + t}{2} n_{1,\delta}$$

$$= \frac{\Delta + t}{2} |V_1| - \frac{1}{2} \sum_{i=1}^{\Delta - \delta} i n_{1,\Delta - i} \quad \text{(by Observation (a))},$$

which implies (i).

Next we estimate $e(V_2)$. Let $v_1 \in V_1$ with $t_{v_1} = t$.

Suppose for the moment that there exists $v_2 \in V_2$ such that $t_{v_2} = |N(v_2) \cap V_1| - |N(v_2) \cap V_2| < t = t_{v_1}$. Define $V'_1 := (V_1 \setminus \{v_1\}) \cup \{v_2\}$ and $V'_2 := (V_2 \setminus \{v_2\}) \cup \{v_1\}$. Then V'_1, V'_2 is also a balanced bipartition of V(G), and

$$\begin{aligned} e(V_1', V_2') &\geq e(V_1, V_2) + (|N(v_1) \cap V_1| - |N(v_1) \cap V_2|) - (|N(v_2) \cap V_1| - |N(v_2) \cap V_2|) \\ &= e(V_1, V_2) + t_{v_1} - t_{v_2} \\ &\geq e(V_1, V_2) + 1, \end{aligned}$$

which contradicts the maximality of $e(V_1, V_2)$.

Therefore, for all $w \in V_2$, $t_w = |N(w) \cap V_1| - |N(w) \cap V_2| \ge t$. Since $|N(w) \cap V_1| + |N(w) \cap V_2| = d(w)$, we have $|N(w) \cap V_2| \le \frac{d(w)-t}{2}$. Therefore,

$$2e(V_2) \leq \frac{\Delta - t}{2}n_{2,\Delta} + \frac{\Delta - 1 - t}{2}n_{2,\Delta-1} + \dots + \frac{\delta - t}{2}n_{2,\delta}$$
$$= \frac{\Delta - t}{2}|V_2| - \frac{1}{2}\sum_{i=1}^{\Delta - \delta}in_{2,\Delta-i} \quad \text{(by Observation (a))},$$

which implies (ii).

The next lemma implies Theorems 1.4 and 1.6 for graphs of even order. The technique is similar to that used in [5], by considering a balanced partition V_1, V_2 that maximizes $e(V_1, V_2)$.

Lemma 2.3 Let $2 \le r \le 4$ be a real number, and let G be a graph such that |V(G)| is even and $\Delta(G) \le \frac{r+4}{3r-4}\delta(G)$. Then V(G) admits a balanced bipartition V_1, V_2 such that $e(V_i) \le e(G)/r$ for $i \in \{1, 2\}$.

Proof. Let V_1, V_2 be a balanced bipartition of V(G) such that $e(V_1, V_2)$ is maximum among all balanced bipartitions of V(G). Then $|V_1| = |V_2| = |V(G)|/2$. Without loss of generality, we may assume that $e(V_1) \ge e(V_2)$. If $e(V_1) \le e(G)/r$ then the assertion of the lemma holds. So we may assume that $e(V_1) > e(G)/r$.

Let $t_v := |N(v) \cap V_1| - |N(v) \cap V_2|$ (for all $v \in V(G)$) and define $t := \max\{t_v : v \in V_1\}$. By Lemma 2.2(*i*) and the fact $|V_1| = |V(G)|/2$,

$$e(V_1) \le \left(\frac{\Delta+t}{4}\right) \frac{|V(G)|}{2} - \frac{1}{4} \sum_{i=1}^{\Delta-\delta} i n_{1,\Delta-i},$$

where $\Delta := \Delta(G)$ and $\delta := \delta(G)$. By Lemma 2.1(*i*) and the assumption $e(V_1) > e(G)/r$,

$$\frac{1}{2r} \left(\Delta |V(G)| - \sum_{i=1}^{\Delta - \delta} in_{1,\Delta - i} - \sum_{i=1}^{\Delta - \delta} in_{2,\Delta - i} \right) < \left(\frac{\Delta + t}{4} \right) \frac{|V(G)|}{2} - \frac{1}{4} \sum_{i=1}^{\Delta - \delta} in_{1,\Delta - i}.$$

Hence

$$\begin{aligned} &4\Delta |V(G)| \\ < \quad r(\Delta+t)|V(G)| - 2(r-2)\sum_{i=1}^{\Delta-\delta}in_{1,\Delta-i} + 4\sum_{i=1}^{\Delta-\delta}in_{2,\Delta-i} \\ \leq \quad r(\Delta+t)|V(G)| + 4\sum_{i=1}^{\Delta-\delta}in_{2,\Delta-i} \quad (\text{since } r \ge 2) \\ \leq \quad r(\Delta+t)|V(G)| + 2(\Delta-\delta)|V(G)| \quad (\text{by Observation (b) and the fact } |V_2| = \frac{|V(G)|}{2}). \end{aligned}$$

Therefore,

$$t > \frac{(2-r)\Delta + 2\delta}{r}.$$
(1)

By Lemma 2.1(*ii*) and that fact $|V_1| = |V_2|$,

$$e(V_1) - e(V_2) = \frac{1}{2} \sum_{i=1}^{\Delta - \delta} i(n_{2,\Delta - i} - n_{1,\Delta - i}).$$

So it follows from Lemma 2.2(*ii*) and that fact $|V_2| = |V(G)|/2$ that

$$e(V_1) \le \left(\frac{\Delta - t}{4}\right) \frac{|V(G)|}{2} - \frac{1}{4} \sum_{i=1}^{\Delta - \delta} i n_{2,\Delta - i} + \frac{1}{2} \sum_{i=1}^{\Delta - \delta} i (n_{2,\Delta - i} - n_{1,\Delta - i}).$$

Then, by Lemma 2.1(i) and the assumption $e(V_1) > e(G)/r$, we have

$$\frac{1}{2r} \left(\Delta |V(G)| - \sum_{i=1}^{\Delta - \delta} i n_{1,\Delta - i} - \sum_{i=1}^{\Delta - \delta} i n_{2,\Delta - i} \right) \\ < \frac{\Delta - t}{4} \frac{|V(G)|}{2} - \frac{1}{4} \sum_{i=1}^{\Delta - \delta} i n_{2,\Delta - i} + \frac{1}{2} \sum_{i=1}^{\Delta - \delta} i (n_{2,\Delta - i} - n_{1,\Delta - i}).$$

Thus

$$\begin{aligned} 4\Delta |V(G)| \\ < r(\Delta - t)|V(G)| + 2(r+2) \sum_{i=1}^{\Delta - \delta} in_{2,\Delta - i} - 4(r-1) \sum_{i=1}^{\Delta - \delta} in_{1,\Delta - i} \\ \leq r(\Delta - t)|V(G)| + 2(r+2) \sum_{i=1}^{\Delta - \delta} in_{2,\Delta - i} \quad (\text{since } r \ge 2) \\ \leq r(\Delta - t)|V(G)| + (r+2)(\Delta - \delta)|V(G)| \quad (\text{by Observation (b) and since } |V_2| = \frac{|V(G)|}{2}) \\ < \left(r\left(\Delta - \frac{(2 - r)\Delta + 2\delta}{r}\right) + (r+2)(\Delta - \delta)\right)|V(G)| \quad (\text{by (1)}) \\ = (3r\Delta - (r+4)\delta)|V(G)|. \end{aligned}$$

Therefore,

$$\Delta > \frac{r+4}{3r-4}\delta_{2}$$

a contradiction to the assumption that $\Delta \leq \frac{r+4}{3r-4}\delta$.

3 Proof of Theorems 1.4 and 1.6

Proof of Theorem 1.4. By Lemma 2.3 (with r = 3), we see that the assertion of Theorem 1.4 holds when |V(G)| is even. So we may assume that |V(G)| is odd.

Let V_1, V_2 be a balanced bipartition of V(G) such that $e(V_1, V_2)$ is maximum among all balanced bipartitions of V(G). Without loss of generality, we may assume that $e(V_1) \ge e(V_2)$. If $e(V_1) \le e(G)/3$, the assertion of Theorem 1.4 holds. So we may assume $e(V_1) > e(G)/3$. This, in particular, implies that $e(V_1, V_2) < 2e(G)/3$.

We claim that there exists $v_1 \in V_1$ such that $|N(v_1) \cap V_1| > |N(v_1) \cap V_2|$. For, otherwise, $|N(v) \cap V_1| \leq |N(v) \cap V_2|$ for all $v \in V_1$. Hence

$$2e(V_1) = \sum_{v \in V_1} |N(v) \cap V_1|$$

$$\leq \sum_{v \in V_1} |N(v) \cap V_2|$$

$$= e(V_1, V_2)$$

$$< 2e(G)/3.$$

This is a contradiction to the assumption that $e(V_1) > e(G)/3$.

Since V_1, V_2 is a balanced bipartition of V(G), and since n := |V(G)| is odd, either $|V_1| = \frac{n-1}{2}$ or $|V_1| = \frac{n+1}{2}$. Indeed,

$$|V_1| = \frac{n-1}{2}$$
 and $|V_2| = \frac{n+1}{2}$. (2)

For, otherwise, $V'_1 := V_1 \setminus \{v_1\}, V'_2 := V_2 \cup \{v_1\}$ is also a balanced bipartition of V(G), and $e(V'_1, V'_2) = e(V_1, V_2) + |N(v_1) \cap V_1| - |N(v_1) \cap V_2| \ge e(V_1, V_2) + 1$. But this contradicts the maximality of $e(V_1, V_2)$.

Let $t_v := |N(v) \cap V_1| - |N(v) \cap V_2|$ (for all $v \in V(G)$) and define $t := \max\{t_v : v \in V_1\}$. By Lemma 2.1(*i*) and Lemma 2.2(*i*), and by the assumption that $e(V_1) > e(G)/3$, we have

$$\frac{1}{3}(\Delta n - \sum_{i=1}^{\Delta-\delta} in_{1,\Delta-i} - \sum_{i=1}^{\Delta-\delta} in_{2,\Delta-i}) < \left(\frac{\Delta+t}{2}\right) \left(\frac{n-1}{2}\right) - \frac{1}{2} \sum_{i=1}^{\Delta-\delta} in_{1,\Delta-i}.$$

Hence

$$\begin{split} \Delta n &< \frac{3}{4} (\Delta + t)(n-1) + \sum_{i=1}^{\Delta - \delta} i n_{2,\Delta - i} - \frac{1}{2} \sum_{i=1}^{\Delta - \delta} i n_{1,\Delta - i} \\ &\leq \frac{3}{4} (\Delta + t)(n-1) + \sum_{i=1}^{\Delta - \delta} i n_{2,\Delta - i} \\ &\leq \frac{3}{4} (\Delta + t)(n-1) + (\Delta - \delta) \frac{n+1}{2} \quad (\text{by Observation (b) and (2)}) \\ &= \frac{3(n-1)t}{4} + \frac{(5n-1)\Delta - 2(n+1)\delta}{4}. \end{split}$$

Therefore

$$t > \frac{2(n+1)\delta - (n-1)\Delta}{3(n-1)} > \frac{2(n+1)\delta - (n-1)\Delta}{3n}.$$
(3)

By (2) and Lemma 2.1(ii),

$$e(V_1) - e(V_2) = \frac{1}{2} \sum_{i=1}^{\Delta - \delta} i(n_{2,\Delta - i} - n_{1,\Delta - i}) - \frac{\Delta}{2}.$$

So by Lemma 2.2(ii),

$$e(V_{1}) \leq \left(\frac{\Delta - t}{4}\right) \left(\frac{n+1}{2}\right) - \frac{1}{4} \sum_{i=1}^{\Delta - \delta} i n_{2,\Delta - i} + \frac{1}{2} \sum_{i=1}^{\Delta - \delta} i (n_{2,\Delta - i} - n_{1,\Delta - i}) - \frac{\Delta}{2}$$

$$\leq \left(\frac{\Delta - t}{4}\right) \frac{n}{2} - \frac{1}{4} \sum_{i=1}^{\Delta - \delta} i n_{2,\Delta - i} + \frac{1}{2} \sum_{i=1}^{\Delta - \delta} i (n_{2,\Delta - i} - n_{1,\Delta - i}) - \frac{3\Delta + t}{8}.$$

Therefore, it follows from Lemma 2.1(i) and the assumption $e(V_1) > e(G)/3$ that

$$\frac{1}{3}(\Delta n - \sum_{i=1}^{\Delta - \delta} in_{1,\Delta - i} - \sum_{i=1}^{\Delta - \delta} in_{2,\Delta - i}) < \frac{(\Delta - t)n}{4} + \frac{1}{2}\sum_{i=1}^{\Delta - \delta} in_{2,\Delta - i} - \sum_{i=1}^{\Delta - \delta} in_{1,\Delta - i} - \frac{3\Delta + t}{4}.$$

By rearranging and combining terms, we have

$$\begin{split} \Delta n &< \frac{3n(\Delta-t)}{4} + \frac{5}{2} \sum_{i=1}^{\Delta-\delta} in_{2,\Delta-i} - 2 \sum_{i=1}^{\Delta-\delta} in_{1,\Delta-i} - \frac{9\Delta+3t}{4} \\ &\leq \frac{3n(\Delta-t)}{4} + \frac{5}{2} \sum_{i=1}^{\Delta-\delta} in_{2,\Delta-i} - \frac{9\Delta+3t}{4} \\ &\leq \frac{(3n-9)\Delta}{4} + \frac{5(n+1)(\Delta-\delta)}{4} - \frac{3(n+1)t}{4} \quad (by \ (2) \ and \ Observation \ (b)) \\ &< \frac{(3n-9)\Delta}{4} + \frac{5(n+1)(\Delta-\delta)}{4} - \frac{3(n+1)}{4} \left(\frac{2(n+1)\delta-(n-1)\Delta}{3n}\right) \quad (by \ (3)) \\ &= \frac{(3n-9)\Delta}{4} + \frac{5(n+1)(\Delta-\delta)}{4} - \frac{2(n+1)\delta-(n-1)\Delta}{4} - \frac{2(n+1)\delta-(n-1)\Delta}{4n} \\ &= \frac{4n\Delta-10\Delta}{4} + \frac{5\Delta n+5\Delta-7\delta(n+1)}{4} - \frac{2(n+1)\delta-(n-1)\Delta}{4n} \\ &= \frac{9n\Delta-7\delta(n+1)}{4} - \frac{2(n+1)\delta+4n\Delta+\Delta}{4n} \\ &< \frac{9n\Delta-7\delta(n+1)}{4}. \end{split}$$

Thus, $5n\Delta > 7(n+1)\delta > 7n\delta$. This implies $\Delta > 7\delta/5$, a contradiction.

Proof of Theorem 1.6. By Lemma 2.3, the assertion of Theorem 1.6 holds when |V(G)| is even. So we may assume that n := |V(G)| is odd.

Let V_1, V_2 be a balanced bipartition of V(G) such that $e(V_1, V_2)$ is maximum among all balanced bipartitions of V(G). Assume, without loss of generality, that $e(V_1) \geq e(V_2)$. If $e(V_1) \leq e(G)/r$ then the assertion of Theorem 1.6 holds. So we may assume that $e(V_1) > e(V_1)$ e(G)/r.

Let $t_v := |N(v) \cap V_1| - |N(v) \cap V_2|$ (for all $v \in V(G)$), and define $t := \max\{t_v : v \in V_1\}$. Since $|V_1| = \frac{n-1}{2}$ or $|V_1| = \frac{n+1}{2}$, we consider two cases.

Case 1. $|V_1| = \frac{n+1}{2}$ and $|V_2| = \frac{n-1}{2}$. We claim that $t \leq 0$. For, if t > 0, then there is $v \in V_1$ such that $t_v > 0$. Now $V'_1 := V_1 \setminus \{v\}, V'_2 := V_2 \cup \{v\}$ is also a balanced bipartition of V(G), and a simple calculation shows that $e(V'_1, V'_2) > e(V_1, V_2)$, contradicting the maximality of $e(V_1, V_2)$.

By Lemma 2.2(i), we have

$$e(V_1) \leq \left(\frac{\Delta+t}{4}\right) \left(\frac{n+1}{2}\right) - \frac{1}{4} \sum_{i=1}^{\Delta-\delta} i n_{1,\Delta-i}.$$

Thus, by Lemma 2.1(*i*) and the assumption $e(V_1) > e(G)/r$,

$$\frac{1}{2r}\left(\Delta n - \sum_{i=1}^{\Delta-\delta} in_{1,\Delta-i} - \sum_{i=1}^{\Delta-\delta} in_{2,\Delta-i}\right) < \left(\frac{\Delta+t}{4}\right)\left(\frac{n+1}{2}\right) - \frac{1}{4}\sum_{i=1}^{\Delta-\delta} in_{1,\Delta-i}.$$

Hence

$$4\Delta n < r(\Delta+t)(n+1) - 2(r-2) \sum_{i=1}^{\Delta-\delta} in_{1,\Delta-i} + 4 \sum_{i=1}^{\Delta-\delta} in_{2,\Delta-i}$$

$$\leq r(\Delta+t)(n+1) + 4 \sum_{i=1}^{\Delta-\delta} in_{2,\Delta-i} \quad \text{(since } r \ge 2)$$

$$\leq r(\Delta+t)(n+1) + 2(\Delta-\delta)(n-1) \quad \text{(by Observation (b))}. \tag{4}$$

By Lemma 2.2(ii), we have

$$e(V_2) \le \left(\frac{\Delta - t}{4}\right) \left(\frac{n - 1}{2}\right) - \frac{1}{4} \sum_{i=1}^{\Delta - \delta} i n_{2,\Delta - i}.$$

By Lemma 2.1(ii),

$$e(V_1) - e(V_2) = \frac{1}{2} \sum_{i=1}^{\Delta - \delta} i(n_{2,\Delta - i} - n_{1,\Delta - i}) + \frac{\Delta}{2}$$

These two expressions imply

$$e(V_1) \le \left(\frac{\Delta - t}{4}\right) \left(\frac{n-1}{2}\right) + \frac{1}{4} \sum_{i=1}^{\Delta - \delta} in_{2,\Delta - i} - \frac{1}{2} \sum_{i=1}^{\Delta - \delta} in_{1,\Delta - i} + \frac{\Delta}{2}.$$

Thus, by Lemma 2.1(*i*) and the assumption $e(V_1) > e(G)/r$,

$$\frac{1}{2r}\left(\Delta n - \sum_{i=1}^{\Delta-\delta} in_{1,\Delta-i} - \sum_{i=1}^{\Delta-\delta} in_{2,\Delta-i}\right) < \left(\frac{\Delta-t}{4}\right)\left(\frac{n-1}{2}\right) + \frac{1}{4}\sum_{i=1}^{\Delta-\delta} in_{2,\Delta-i} - \frac{1}{2}\sum_{i=1}^{\Delta-\delta} in_{1,\Delta-i} + \frac{\Delta-\delta}{2}$$

Hence,

$$4\Delta n < r(\Delta - t)(n - 1) + (2r + 4) \sum_{i=1}^{\Delta - \delta} in_{2,\Delta - i} - (4r - 4) \sum_{i=1}^{\Delta - \delta} in_{1,\Delta - i} + 4r\Delta$$

$$\leq r(\Delta - t)(n - 1) + (2r + 4) \sum_{i=1}^{\Delta - \delta} in_{2,\Delta - i} + 4r\Delta \quad \text{(since } r \ge 2)$$

$$\leq r(\Delta - t)(n - 1) + (r + 2)(\Delta - \delta)(n - 1) + 4r\Delta \quad \text{(by Observation (b))}. \quad (5)$$

Since $\Delta \leq n-1$, $4(n+1)r\Delta \leq 4(n^2-1)r$. Multiplying (4) by n-1 and (5) by n+1, and combining the resulting inequalities, we have

$$\begin{split} 8\Delta n^2 &< 2r\Delta (n^2-1) + 2(\Delta-\delta)(n-1)^2 + (r+2)(\Delta-\delta)(n^2-1) + 4(n+1)r\Delta \\ &\leq 3r\Delta n^2 + 4n^2\Delta - (r+4)n^2\delta - 4n(\Delta-\delta) - (3r\Delta-r\delta) + 4(n^2-1)r \\ &= 3rn^2\Delta + 4n^2\Delta - (r+4)n^2\delta + 4rn^2 - 4n(\Delta-\delta) - (3r\Delta-r\delta+4r) \\ &\leq 3rn^2\Delta + 4n^2\Delta - (r+4)n^2\delta + 4rn^2. \end{split}$$

Therefore, $\Delta > \frac{r+4}{3r-4}\delta - \frac{4r}{3r-4}$, a contradiction.

Case 2. $|V_1| = \frac{n-1}{2}$ and $|V_2| = \frac{n+1}{2}$. By Lemma 2.1(*ii*),

$$e(V_1) - e(V_2) = \frac{1}{2} \sum_{i=1}^{\Delta - \delta} i(n_{2,\Delta - i} - n_{1,\Delta - i}) - \frac{\Delta}{2}$$

By Lemma 2.2(ii),

$$e(V_2) \le \left(\frac{\Delta - t}{4}\right) \left(\frac{n+1}{2}\right) - \frac{1}{4} \sum_{i=1}^{\Delta - \delta} i n_{2,\Delta - i}.$$

These two expressions imply

$$e(V_1) \le \left(\frac{\Delta - t}{4}\right) \left(\frac{n+1}{2}\right) + \frac{1}{4} \sum_{i=1}^{\Delta - \delta} in_{2,\Delta - i} - \frac{1}{2} \sum_{i=1}^{\Delta - \delta} in_{1,\Delta - i} - \frac{\Delta}{2}$$

Hence, by Lemma 2.1(i) and the assumption $e(V_1) > e(G)/r$, we have

$$\frac{1}{2r} \left(\Delta n - \sum_{i=1}^{\Delta - \delta} i n_{1,\Delta - i} - \sum_{i=1}^{\Delta - \delta} i n_{2,\Delta - i} \right) < \left(\frac{\Delta - t}{4} \right) \left(\frac{n+1}{2} \right) + \frac{1}{4} \sum_{i=1}^{\Delta - \delta} i n_{2,\Delta - i} - \frac{1}{2} \sum_{i=1}^{\Delta - \delta} i n_{1,\Delta - i} - \frac{\Delta}{2}$$

 \mathbf{So}

$$4n\Delta < r(\Delta - t)(n+1) + 2(r+2) \sum_{i=1}^{\Delta - \delta} in_{2,\Delta - i} - (4r-4) \sum_{i=1}^{\Delta - \delta} in_{1,\Delta - i} - 4r\Delta$$

$$\leq r(\Delta - t)(n+1) + 2(r+2) \sum_{i=1}^{\Delta - \delta} in_{2,\Delta - i} - 4r\Delta \quad \text{(since } r \ge 2\text{)}$$

$$\leq r(\Delta - t)(n+1) + (r+2)(\Delta - \delta)(n+1) - 4r\Delta \quad \text{(by Observation (b))}.$$
(6)

By Lemma 2.2(i),

$$e(V_1) \le \left(\frac{\Delta+t}{4}\right) \left(\frac{n-1}{2}\right) - \frac{1}{4} \sum_{i=1}^{\Delta-\delta} i n_{1,\Delta-i}.$$

Therefore, by the assumption $e(V_1) > e(G)/r$ and by Lemma 2.1(i), we have

$$\frac{1}{2r}\left(\Delta n - \sum_{i=1}^{\Delta-\delta} in_{1,\Delta-i} - \sum_{i=1}^{\Delta-\delta} in_{2,\Delta-i}\right) < \left(\frac{\Delta+t}{4}\right)\left(\frac{n-1}{2}\right) - \frac{1}{4}\sum_{i=1}^{\Delta-\delta} in_{1,\Delta-i}.$$

So

$$4n\Delta < r(\Delta+t)(n-1) - 2(r-2)\sum_{i=1}^{\Delta-\delta} in_{1,\Delta-i} + 4\sum_{i=1}^{\Delta-\delta} in_{2,\Delta-i}$$

$$\leq r(\Delta+t)(n-1) + 4\sum_{i=1}^{\Delta-\delta} in_{2,\Delta-i} \quad \text{(since } r \ge 2)$$

$$\leq r(\Delta+t)(n-1) + 2(\Delta-\delta)(n+1) \quad \text{(by Observation (b))}.$$
(7)

Multiplying (7) by (n + 1) and (6) by (n - 1), and combining the resulting inequalities, we get

$$8n^{2}\Delta < 2r(n^{2}-1)\Delta + 2(\Delta-\delta)(n+1)^{2} + (r+2)(\Delta-\delta)(n^{2}-1) - 4(n-1)r\Delta$$

= $(3rn^{2}+4n^{2}+4n+r-4nr)\Delta - ((r+4)n^{2}+4n-r)\delta.$

Hence

$$((r+4)n^2+4n-r)\delta < (3r-4)n^2\Delta + (4n+r-4rn)\Delta,$$

and so, $(r+4)n^2\delta < (3r-4)n^2\Delta$. This implies $\Delta > \frac{r+4}{3r-4}\delta$, a contradiction.

4 Further discussions

The proofs of Lemma 2.3 and Theorems 1.4 and 1.6 actually show that for any graph G with $\Delta(G) \leq \frac{7}{5}\delta(G)$, any balanced bipartition V_1, V_2 of V(G) with $e(V_1, V_2)$ maximum (among all balanced bipartitions) must satisfy $e(V_i) \leq e(G)/3$. (The maximality of the partition makes it possible to derive the bound on $e(V_i)$, by allowing us to exchange some vertex of V_1 with a vertex of V_2 .) Unfortunately, this is not always the case. For the graph G in Figure 1, the bipartition $V_1 := \{x_1, \ldots, x_7\}, V_2 := \{y_1, \ldots, y_7\}$ of V(G) is the unique balanced bipartition of V(G) for which $e(V_1, V_2)$ is maximum. However, $e(V_1) = 15 > 44/3 = e(G)/3$. Since it is not obvious why the partition V_1, V_2 is the unique maximum balanced bipartition of V(G), we give a proof of this fact; which in a way indicates that when dealing with balanced bipartitions for general graphs, it is necessary to exchange subsets (of V_i) of size more than one.

Note that G has a "reflection" symmetry in the line through the edge x_4y_4 . Also note that $e(V_2) = 0$, $e(V_1) = 15$, and $e(V_1, V_2) = 29$.

Let V'_1, V'_2 be an arbitrary balanced bipartition of V(G) different from V_1, V_2 . Then there exist $S_i \subseteq V_i$, i = 1, 2, with $0 \neq |S_1| = |S_2| \leq 3$ such that $V'_i = (V_i \setminus S_i) \cup S_{3-i}$. We now proceed to show that $e(V'_1, V'_2) < e(V_1, V_2)$. Observe that

$$e(V'_1, V'_2) = e((V_1 \setminus S_1) \cup S_2, (V_2 \setminus S_2) \cup S_1) = e(V_1, V_2) - e(S_1, V_2 \setminus S_2) - e(S_2, V_1 \setminus S_1) + e(S_1, V_1 \setminus S_1).$$

Figure 1: A graph with a unique maximum balanced bipartition.

So it suffices to show that

$$e(S_1, V_1 \setminus S_1) - e(S_1, V_2 \setminus S_2) < e(S_2, V_1 \setminus S_1).$$

Let $t_j := |N(x_j) \cap V_1| - |N(x_j) \cap V_2|$ for $1 \le j \le 7$, and let $t(S_1) := \sum_{x_j \in S_1} t_j$. Then

$$e(S_{1}, V_{1} \setminus S_{1}) - e(S_{1}, V_{2} \setminus S_{2})$$

$$= \left(\sum_{x_{j} \in S_{1}} |N(x_{j}) \cap V_{1}|\right) - 2e(S_{1}) - \left(\left(\sum_{x_{j} \in S_{1}} |N(x_{j}) \cap V_{2}|\right) - e(S_{1}, S_{2})\right)$$

$$= \left(\sum_{x_{j} \in S_{1}} t_{j}\right) - 2e(S_{1}) + e(S_{1}, S_{2})$$

$$= t(S_{1}) - 2e(S_{1}) + e(S_{1}, S_{2}).$$

Thus, it suffices to show that

$$t(S_1) - 2e(S_1) + e(S_1, S_2) < e(S_2, V_1 \setminus S_1).$$

We now list a few useful observations about the graph G:

(1) $t_j = 0$ for $j \in \{2, 3, 5, 6\}$, $t_1 = t_7 = 1$, and $t_4 = -1$; (2) $-1 \le t(S_1) \le 2$; (3) $t(S_1) = 2$ iff $\{x_1, x_7\} \subseteq S_1$ and $x_4 \notin S_1$; (4) $t(S_1) = -1$ iff $x_4 \in S_1$ and $\{x_1, x_7\} \cap S_1 = \emptyset$; (5) $e(S_2, V_1 \setminus S_1) \ge 4|S_2| - e(S_2, S_1)$. If $|S_1| = |S_2| = 1$, then $e(S_1, S_2) \le 1$, $e(S_1) = 0$, and $t(S_1) \le 1$ (by (1)). Hence $t(S_1) - 2e(S_1) + e(S_1, S_2) \le 1 - 0 + 1 < 4 - 1 \le e(S_2, V_1 \setminus S_1)$ (by (5)). So we may assume $|S_1| = |S_2| \in \{2, 3\}$.

Case 1. $|S_1| = |S_2| = 2$.

Then $e(S_1, S_2) \le 4$ and $e(S_1) \le 1$.

Suppose $e(S_1) = 1$. Then $S_1 \not\supseteq \{x_1, x_7\}$ (since $x_1x_7 \notin E(G)$). It follows from (2) and (3) that $t(S_1) \leq 1$. Hence $t(S_1) - 2e(S_1) + e(S_1, S_2) \leq 1 - 2 + 4 < e(S_2, V_1 \setminus S_1)$ (by (5)).

Now assume $e(S_1) = 0$. Then $x_4 \notin S_1$ since x_4 is adjacent to all vertices (including those in $S_1 \setminus \{x_1\}$; thus $t(S_1) \neq -1$ (by (4)).

If $t(S_1) = 2$, then $S_1 = \{x_1, x_7\}$ (by (3)). Since x_1 and x_7 have no common neighbor in S_2 , $e(S_1, S_2) \le 2$. Therefore $t(S_1) - 2e(S_1) + e(S_1, S_2) \le 2 - 0 + 2 < e(S_2, V_1 \setminus S_1)$ (by (5)).

Assume $t(S_1) = 1$. By (1), $x_4 \notin S_1$, $S_1 \cap \{x_1, x_7\} \neq \emptyset$ and $\{x_2, x_3, x_5, x_6\} \cap S_1 \neq \emptyset$. By symmetry, we may assume that $x_1 \in S_1$. Since $e(S_1) = 0$, $S_1 = \{x_1, x_5\}$ or $S_1 = \{x_1, x_6\}$. Hence $e(S_1, S_2) \leq 2$, and so $t(S_1) - 2e(S_1) + e(S_1, S_2) \leq 1 - 0 + 2 < e(S_2, V_1 \setminus S_1)$ (by (5)).

So we may assume $t(S_1) = 0$. Since $e(S_1) = 0$ and $x_4 \notin S_1$ and by (1), we have $S_1 = \{x_2, x_6\}$. So $e(S_1, S_2) \leq 3$ (since $|N(x_2) \cap N(x_6) \cap V_2| = 1$), and hence $t(S_1) - 2e(S_1) + e(S_1, S_2) \leq 0 - 0 + 3 < e(S_2, V_1 \setminus S_1)$ (by (5)).

Case 2. $|S_1| = |S_2| = 3.$

Then $e(S_1, S_2) \leq 9$ and $e(S_1) \leq 3$. Also note that $e(S_1) \geq 1$.

First assume $e(S_1) = 3$. Then, $\{x_1, x_7\} \not\subseteq S_1$, and hence $t(S_1) \leq 1$ by (2) and (3). If $t(S_1) = -1$, then $t(S_1) - 2e(S_1) + e(S_1, S_2) \leq -1 - 6 + 9 < e(S_2, V_1 \setminus S_1)$ (by (5)). So we assume $t(S_1) \geq 0$. It suffices to show $e(S_1, S_2) \leq 8$, since in that case $t(S_1) - 2e(S_1) + e(S_1, S_2) \leq 1 - 6 + 8 < e(S_2, V_1 \setminus S_1)$ (by (5)). This is clear if $\{x_1, x_7\} \cap S_1 \neq \emptyset$, since x_1 and x_7 each have just two neighbors in V_2 . So we may assume $\{x_1, x_7\} \cap S_1 = \emptyset$. Then $t(S_1) = 0$, and $S_1 \subseteq \{x_2, x_3, x_5, x_6\}$. Since $e(S_1) = 3$ and $x_2 x_6 \notin E(G)$, we may assume by symmetry that $S_1 = \{x_2, x_3, x_5\}$. Then $e(S_1, S_2) \leq 8$, since $|N(x_2) \cap N(x_5) \cap V_2| = 2$.

Now assume $e(S_1) = 2$. Then $t(S_1) \leq 1$; otherwise by (2) and (3), $\{x_1, x_7\} \subseteq S_1$ and $x_4 \notin S_1$, and we would have $e(S_1) \leq 1$. So it suffices to show that $e(S_1, S_2) \leq 7$, in which case $t(S_1) - 2e(S_1) + e(S_1, S_2) \leq 1 - 4 + 7 < e(S_2, V_1 \setminus S_1)$ (by (5)). If $t(S_1) = -1$ then by (4) and since $e(S_1) = 2$, we have $S_1 = \{x_2, x_4, x_6\}$, and so $e(S_1, S_2) \leq 7$ (since $|N(x_2) \cap N(x_6) \cap V_2| = 1$). Suppose $t(S_1) = 1$. Then by (1), $\{x_1, x_7\} \cap S_1 \neq \emptyset$. So by symmetry assume $x_1 \in S_1$. If $x_4 \in S_1$, again by (1), $S_1 = \{x_1, x_4, x_7\}$, and so $e(S_1, S_2) \leq 7$ (since $|N(x_1) \cap N(x_7) \cap V_2| = 0$). So assume $x_4 \notin S_1$. Then $x_7 \notin S_1$, and so, $S_1 = \{x_1, x_2, x_5\}$ or $S_1 = \{x_1, x_3, x_5\}$ or $S_1 = \{x_1, x_3, x_6\}$. In these cases we have $e(S_1, S_2) \leq 7$ (since $|N(x_1) \cap N(x_5) \cap V_2| = 1$). Now suppose $t(S_1) = 0$. If $x_4 \in S_1$, then by (1) and since $e(S_1) = 2$, exactly one of $\{x_1, x_7\}$, say x_1 (by symmetry), is in S_1 ; thus $S_1 = \{x_1, x_4, x_5\}$ or $S_1 = \{x_1, x_4, x_6\}$, and hence $e(S_1, S_2) \leq 7$ (since $|N(x_1) \cap N(x_5) \cap V_2| = |N(x_1) \cap N(x_5) \cap V_2| = 0$). So $x_4 \notin S_1$. Then since $t(S_1) = 0$ and by (1), $\{x_1, x_7\} \cap S_1 = \emptyset$. Hence, since $e(S_1) = 2$, $S_1 = \{x_2, x_3, x_6\}$ or $S_1 = \{x_6, x_5, x_2\}$, and we have $e(S_1, S_2) \leq 7$ again (since $|N(x_2) \cap N(x_6) \cap V_2| = 1$).

Finally assume $e(S_1) = 1$. Then $x_4 \notin S_1$, and so $t(S_1) \neq -1$ (by (4)). Moreover, $t(S_1) \neq 0$ as otherwise $S_1 \subseteq \{x_2, x_3, x_5, x_6\}$ which implies $e(S_1) \geq 2$. So $1 \leq t(S_1) \leq 2$. If $t(S_1) = 2$ then by (1), $S_1 = \{x_1, x_7, x_k\}$, with $k \in \{2, 3, 5, 6\}$; in these cases we can check that $e(S_1, S_2) \leq 5$, and so $t(S_1) - 2e(S_1) + e(S_1, S_2) \leq 2 - 2 + 5 < e(S_2, V_1 \setminus S_1)$ (by (5)). If $t(S_1) = 1$ then by (1), exactly one of $\{x_1, x_7\}$, say x_1 (by symmetry), belongs to S_1 . Since $e(S_1) = 1$, $S_1 = \{x_1, x_2, x_6\}$, and so $e(S_1, S_2) \leq 6$. Hence $t(S_1) - 2e(S_1) + e(S_1, S_2) \leq 1 - 2 + 6 < e(S_2, V_1 \setminus S_1)$ (by (5)).

Therefore, we have shown that V_1, V_2 is the unique balanced bipartition of V(G) such that $e(V_1, V_2)$ is maximal among all such partitions. So the constant c in the following question satisfies $7/5 \le c < 13/4$.

Problem 4.1 What is the largest constant c such that for any graph G with $\Delta(G) \leq c\delta(G)$, if V_1, V_2 is a balanced bipartition of V(G) with $e(V_1, V_2)$ maximum then $\max\{e(V_1), e(V_2)\} \leq e(G)/3$?

We conclude this paper with the following question of Bollobás and Scott.

Problem 4.2 (Bollobás and Scott [3]) What is the smallest constant c(d) such that every graph G with $\delta(G) \ge d$ has a balanced bipartition V_1, V_2 such that $\max\{e(V_1), e(V_2)\} \le c(d)e(G)$?

ACKNOWLEDGMENT. We thank an anonymous referee for pointing us to reference [9].

References

- B. Bollobás and A. D. Scott, Judicious partitions of graph, *Period. Math. Hungar* 26 (1993) 125–137.
- [2] B. Bollobás and A. D. Scott, Exact bounds for judicious partitions of graphs, *Combina-torica* 19 (1999) 473–486.
- [3] B. Bollobás and A. D. Scott, Problems and results on judicious partitions, *Random Struct.* Alg. 21 (2002) 414–430.
- [4] B. Bollobás and A. D. Scott, Better bounds for Max Cut, in Contemporary Comb, Bolyai Soc Math Stud 10, János Bolyai Math Soc, Budapest, 2002, pp. 185–246.
- [5] B. Bollobás and A. D. Scott, Judicious partitions of bounded-degree graphs, J Graph Theory 46 (2004) 131–143.
- [6] C. S. Edwards, Some extremal properties of bipartite graphs, Canadian J. math. 25 (1973) 475–485.
- [7] C. S. Edwards, An improved lower bound for the number of edges in a largest bipartite subgraph, in *Proc. 2nd Czechoslovak Symposium on Graph Theory*, Prague (1975) 167– 181.
- [8] T. D. Porter, On a bottleneck bipartition conjecture of Erdös, Combinatorica 12 (1992) 317–321.
- [9] T. D. Porter and L. A. Székely, On a matrix discrepancy problem, Congressus Numerantium 73 (1990) 239–248.
- [10] F. Shahrokhi and L. A. Székely, The complexity of the bottleneck graph bipartition problem, J. Combin. Math. Combin. Comp. 15 (1994) 221–226.
- [11] B. Xu and X. Yu, Judicious k-partitions of graphs, manuscript submitted.
- [12] J. Yan and B. Xu, Balanced judicious partitions of (k, k-1)-biregular graphs, manuscript submitted.