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d-Regular Graphs of Acyclic Chromatic Index at least d+2
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Abstract

An acyclic edge coloring of a graph is a proper edge coloring such tlesetare no bichromatic cycles. Theyclic
chromatic indexof a graph is the minimum number k such that there is an acedge coloring using k colors and is
denoted by’ (G). It was conjectured by Alon, Sudakov and Zaks (and earlieFiayncik) thata’(G) < A + 2, where
A = A(G) denotes the maximum degree of the graph. Alon et.al alseddfe question whether the complete graphs
of even order are the only regular graphs which reqiire- 2 colors to be acyclically edge colored. In this paper, using
a simple counting argument we observe not only that this igrme, but infact all d-regular graphs wigm vertices and
d > n, requires at leasf + 2 colors. We also show that (K,,,,,) > n + 2, whenn is odd using a more non-trivial
argument(Herdy,, ,, denotes the complete bipartite graph witkiertices on each side). This lower bound 65, ,, can be
shown to be tight for some families of complete bipartitepipand for small values of. We also infer that for every, n
such that! > 5, n > 2d + 3 anddn even, there exisi-regular graphs which require at least 2-colors to be acyclically
edge colored.

Keywords: Acyclic edge coloring, acyclic edge chromatic index, matgh perfect 1-factorization, complete bipartite
graphs.

All graphs considered in this paper are finite and simple. @ppredge coloringof G = (V,E) isamapc : E — C
(whereC is the set of availableolors) with c(e) # ¢(f) for any adjacent edgessf. The minimum number of colors needed
to properly color the edges @}, is called the chromatic index @f and is denoted by’(G). A proper edge coloring c is
called acyclic if there are no bichromatic cycles in the grap other words an edge coloring is acyclic if the union of an
two color classes induces a set of paths (i.e., linear fpieg¥. Theacyclic edge chromatic numbéalso calledacyclic
chromatic inde) denoted by’ (G), is the minimum number of colors required to acyclically edglorG. The concept
of acyclic coloringof a graph was introduced by Griinbaum [6]. let= A(G) denote the maximum degree of a vertex in
graphG. By Vizing's theorem, we havé < \/(G) < A + 1(seel[4] for proof). Since any acyclic edge coloring is also
proper, we have’(G) > x'(G) > A.

It has been conjectured by Alon, Sudakov and Zaks [2] #h@F) < A + 2 for any G. We were informed by Alon
that the same conjecture was raised earlier by Fiamcik [S[ndJprobabilistic arguments Alon, McDiarmid and Reled [1]
proved that'(G) < 60A. The best known result up to now for arbitrary graph, is by le\oand Reed 7] who showed that
a'(G) < 16A.

The complete graph on n vertices is denotediyy and the complete bipartite graph with n vertices on eachiside
denoted byk,, ,,. We denote the sides of the bi-partition lyand B. ThusV (K, ,) = AU B.

Our Result: Alon, Sudakov and Zaks [2] suggested a possibility that detegraphs of even order are the only regular
graphs which requiré + 2 colors to be acyclically edge colored. NeSetfil and Wdchj&] supported the statement by
showing that the acyclic edge chromatic number of a randoegdtar graph is asymptotically almost surely equal to1
(whend > 2). In this paper, we show that this is not true in general. Miecifically we prove the following Theorems :

Theorem 1. LetG be a d-regular graph witl2n vertices andl > n, thend’(G) > d + 2 = A(G) + 2.

Theorem 2. For anyd andn such thatdn is even andl > 5, n > 2d + 3, there exists a connectedregular graphs that
required + 2 colors to be acyclically edge colored.

*Computer Science and Automation department, Indian inestitf Science, Bangalore- 560012, Indignu@csa.iisc.ernet.in
T(The Corresponding Author). Computer Science and Automation department, Indian Uistibf Science, Bangalore- 560012, India.
sunil@csa.iisc.ernet.in

tDepartment of Mathematics, University of Kansas, 1460 dayBlvd., Rm Snow 405 Lawrence, KS 66045-7523. USAmmini@math.ku.edu


http://arxiv.org/abs/0804.4681v1

Theorem 3. o/(K,,,) > n+2=A+2,whennis odd.
Remarks:

1. Itis interesting to compare the statement of Theorem headsult of[8], namely that almost aliregular graphs for
a fixedd, require onlyd + 1 colors to be acyclically edge colored. From the introducti6 [8], it appears that the
authors expect their result for randafiregular graphs would extend to all d-regular graphs exfepk’,,, n even.
From Theorerill and Theoréih 2 it is clear that this is not triner@ exists a large number@fegular graphs which
required + 2 colors to be acyclically adge colored, evérs fixed.

2. The complete bipartite grapl,, 2 »+2 iS said to have a perfect 1-factorization if the edgesf . ,,+2 can be
decomposed inta+2 disjoint perfect matchings such that the union of any twdgmmatchings forms a hamiltonian
cycle. It is obvious from Lemm@ 1 thd,, - ,+» does not have perfect 1-factorization whers even. Whem is
odd, some families have been proved to have perfect 1-faatmn (seel[B] for further details). It is easy to see that
if K+2n42 has a perfect 1-factorization théf,» ,,+1 and therefords,, 1, ,,+1 has a acyclic edge coloring using
n + 2 colors. Therefore the statement of Theofdm 3 cannot be @atkto the case whenis even in general.

3. Clearly if K, 42,42 has a perfect 1-factorization, theh K, ,,) = n + 2. It is known that (see [3]), iz + 2 €
{p,2p — 1,p*}, wherep is an odd prime or when + 2 < 50 and odd, ther,, ;2 2 has a perfect 1-factorization.
Thus the lower bound in Theordrh 3 is tight for the above meetiovalues ofi + 2.

Proof of Theorem 1:

Proof. Observe that two different color classes cannot havedges each, since that will lead to a bichromatic cycle.
Therefore at most one color class can havedges while all other color classes can have at mostl edges. Thus the
number of edges in the union &f(G) + 1 = d + 1 color classes is at most+ d(n — 1) < dn, whend > n (Note that dn

is the total number of edges (). ThusG needs at least one more color. TRUEZ) > d + 2 = A(G) + 2. O

Remark: It is clear from the proof that if. + d(n — 1) + = < dn then even after removingedges from the given graph,
the resulting graph still would require+ 2 colors to be acyclically edge colored.
Proof of Theorem 2:

Proof. If dis odd, letG’ = K 1. Else ifd is even letG’ be the complement of a perfect matchingd# 2 vertices. Let
H be anyd-regular graph oV = n — n’ vertices. Now remove an edge, «') from G’ and an edgéb, ') from H. Now
connectz to b anda’ to &’ to create al-regular grapltz. ClearlyG requiresd + 2 colors to be acyclically edge colored since
otherwise it would mean th&’ — {(a,a’)} is d + 1 colorable, a contradiction in view of the Remark following&orem

1, ford > 5. O

Complete bipartite graphs offer a interesting case sineghhved = n. Observe that the above counting argument fails.
We deal with this case in the next section.

Complete Bipartite Graphs

Lemma 1. If nis even, therk,, ,, does not contain three disjoint perfect matchidds, M», M3 such thatV/; U M; forms
a hamiltonian cycle foi, j € {1,2,3} and: # j.

Proof. Observe that a perfect matching &f, ,, corresponds to a permutation ff, 2, ..., n}. Let perfect matching/;
corresponds to permutatian. Without loss of generality, we can assume thais the identity permutation by renumbering
the vertices of one side df, ,,.

Supposek, ,, contains three perfect matching$;, M,, M3 such thatM/; U M; forms a hamiltonian cycle foi, j
{1,2,3} andi # j.

Now we study the permutatio;n;le. SinceM; U M; induces a hamiltonian cycle i, ,,, it is easy to see that the
smallest > 1 such thair; '7;)*(1) = 1 equalsa. It follows that, in the cycle structure af 7, there exists exactly one
cycle and this cycle is of length. The sign of a permutation is defined asyn(x) = (—1)* , wherek is the number of
even cycles in the cycle structure of the permutatioRecalling that: is even, we have the following claim:

Claim 1. sign(r; 'm;) = —1fori,j € {1,2,3} andi # j.



Now with respect ter; '}, takingm; = m; (the identity permutation) and; = 7 (or 7r3), we infer thatsign(ms) = —1
andsign(ms) = —1. Now sign(my 'm3) = sign(m, )sign(n3) = (-1)(-1) = 1, a contradiction in view af'laim . O

Proof of Theorem 3:

Proof. SinceK,, ,, is aregular graphy’ (K, ,) > A+1 = n+ 1. Suppose:. + 1 colors are sufficient. This can be achieved
only in the following way: One color class containgdges and the remaining color classes containl edges each. Let
« be the color class that hasedges. Thus colak is present at every vertex on each sidl@nd B. Any other color is
missing at exactly one vertex on each side.

Observation 1. Let# # « be a color class. The subgraph induced by color clagsasd o contains2n — 1 edges and
since there are no bichromatic cycles, the subgraph indigachamiltonian path. We call this g, §) hamiltonian path.

Observation 2. Letf; andf- be color classes with — 1 edges each. The subgraph induced by color clagdsesd 0,
contains2n — 2 edges. Since there are no bichromatic cycles, the subgraitied consists of exactly two paths.

Note that there is a unique color missing at each vertex oh side of K, ,,. Letm(u) be the color missing at vertex
u. Fora; € Aandb; € B, letm(a1) = m(by) = B. Let the color of the edgéu;,b1) = ~. Clearlyy # « since
otherwise there cannot be(a, 3) hamiltonian path, a contradiction @bservation [l Foray; € A andb, € B, let
m(ag) = m(bs) = ~. Its clear thati; # a andb; # be. Consider the subgraph induced by the col®end~. In view of
Observation [2 it consists of exactly two paths. One of them is the singtgedd; , b1). The other path has lenggm — 3
and hasi; andb, as end points.

Now we construct d,,+1 ,+1 from the abovey,, ,, by adding a new vertex.,1 to sideA and a new vertex,,;, to
side B. Now foru € B color each edgéu,,+1, u) by the colorm(u) and forv € A color each edgéb,, .1, v) by the color
m(v). Assign the color to the edg€a,, 1, b,+1). Clearly the coloring thus obtained is a proper coloring.

Now we know that there existed(a, 3) hamiltonian path irf, ,, with a; andb; as end points. Recalling that(a,) =
m(b1) = B, we havecolor(an+1,b1) = color(b,+1,a1) = B. Itis easy to see that i, 11 ,,+1 this path along with the
edgesa1, bnt1), (bnt1,ant+1) and(a,11,b1) forms a(«, 5) hamiltonian cycle. In a similar way, fdiy, v) hamiltonian
path that existed i, ,,, we can see that iK1 11, we have a correspondirig, v) hamiltonian cycle.

Recall that there was @), ) bichromatic path starting froms, and ending ab, in K, ,,. Inthe K, 1 ,+1 We created,
we havec(as, ant1) =7, c(a1,bnt1) = 8, c(any1,b1) = B ande(a, 1, b2) = . Thus the abovés, ) bichromatic path
in K, », along with the edge&is, by,11), (bp+1,a1), (a1,b1), (b1, ant1), (ant1,d2) in that order. Thus we have 3 perfect
matchings induced by the color classess and~ whose pairwise union gives rise to hamiltonian cycle&in, ; ,+1, a
contradiction taLemma[dl sincen + 1 is even. O
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