Technische Universität Ilmenau Institut für Mathematik

Preprint No. M 08/27

Cycle length parities and the chromatic number

Löwenstein, Christian; Rautenbach, Dieter; Schiermeyer, Ingo

2008

Impressum:

Hrsg.: Leiter des Instituts für Mathematik
Weimarer Straße 25
98693 Ilmenau
Tel.: +49 3677693621
Fax: +493677 693270
http://www.tu-ilmenau.de/ifm/

Cycle Length Parities and the Chromatic Number

Christian Löwenstein ${ }^{1}$, Dieter Rautenbach ${ }^{1}$ and Ingo Schiermeyer ${ }^{2}$
${ }^{1}$ Institut für Mathematik, TU Ilmenau, Postfach 100565, D-98684 Ilmenau, Germany, emails: christian.loewenstein@tu-ilmenau.de, dieter.rautenbach@tu-ilmenau.de
${ }^{2}$ Institut für Diskrete Mathematik und Algebra, Technische Universität Bergakademie Freiberg, 09596 Freiberg, Germany, email: schierme@math.tu-freiberg.de

Abstract

In 1966 Erdős and Hajnal proved that the chromatic number of graphs whose odd cycles have lengths at most l is at most $l+1$. Similarly, in 1992 Gyárfás proved that the chromatic number of graphs which have at most k odd cycle lengths is at most $2 k+2$ which was originally conjectured by Bollobás and Erdős.

Here we consider the influence of the parities of the cycle lengths modulo some odd prime on the chromatic number of graphs. As our main result we prove the following: Let p be an odd prime, $k \in \mathbb{N}$ and $I \subseteq\{0,1, \ldots, p-1\}$ with $|I| \leq p-1$. If G is a graph such that the set of cycle lengths of G contains at most k elements which are not in I modulo p, then $\chi(G) \leq\left(1+\frac{|I|}{p-|I|}\right) k+p(p-1)(r(2 p, 2 p)+1)+1$ where $r(p, q)$ denotes the ordinary Ramsey number.

Keywords. Graph; colouring; chromatic number; cycle

1 Introduction

We consider finite, simple and undirected graphs $G=(V, E)$ and denote by $\mathcal{L}(G)$ the set of cycle lengths of G. In this paper we continue the study of the influence of $\mathcal{L}(G)$ on the chromatic number $\chi(G)$ of G which was essentially initiated by Erdős and Hajnal in 1966.

Theorem 1 (Erdős and Hajnal [2]) If G is a graph and l is the maximum odd element in $\mathcal{L}(G)$, then $\chi(G) \leq l+1$.

Bollobás and Erdős [1] conjectured the following strengthening which was eventually proved by Gyárfás in 1992.

Theorem 2 (Gyárfás [3]) If G is a graph and $\mathcal{L}(G)$ contains k odd elements, then $\chi(G) \leq 2 k+2$.

In 2004 Mihok and Schiermeyer proved an analogous result for even cycle lengths.
Theorem 3 (Mihok and Schiermeyer [7]) If G is a graph and $\mathcal{L}(G)$ contains k even elements, then $\chi(G) \leq 2 k+3$.

The extremal graphs for all three results are complete graphs of suitable order. The result of Erdős and Hajnal has recently been refined by excluding large cliques [4]. Similarly, the result of Gyárfás has been strengthened for graphs G for which $\mathcal{L}(G)$ contains two specified odd elements $[5,6,9]$.

The starting point for our new results was the following observation which we made together with Frank Göring.

Observation 4 Let p be an odd prime and $k \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}$. If G is a graph such that $\mathcal{L}(G)$ contains at most k elements which are not divisible by p, then $\chi(G) \leq 2 k+3$.

Proof: We prove the result by induction on the order n of G. For $n \leq 2 k+3$ the result is trivial and we may assume that $n>2 k+3$.

If G has a vertex u of degree at most $2 k+2$, then we can extend a $(2 k+3)$-coloring of $G-u$ to G. Hence we may assume that the minimum degree δ of G satisfies $\delta \geq 2 k+3$.

Let $P: v_{1} v_{2} \ldots v_{l}$ be a longest path in G.
Let $x_{1}, x_{2}, \ldots, x_{2 k+3}$ be the first $2 k+3$ neighbours of x_{0} on P ordered according to increasing distance from x_{0} on P, i.e. if for $0 \leq i<j \leq 2 k+3$ the subpath $P(i, j)$ of P between x_{i} and x_{j} is of length $d(i, j)$, then

$$
1=d(0,1)<d(0,2)<\ldots<d(0,2 k+3) .
$$

Since $P(1, i)$ together with the two edges $x_{0} x_{1}$ and $x_{0} x_{i}$ forms a cycle of length $d(1, i)+2$, there are at least $(2 k+3)-1-k=k+2$ indices i with $2 \leq i \leq 2 k+3$ and

$$
d(1, i)+2 \equiv 0 \bmod p
$$

Let $i_{0}<i_{1}<\ldots<i_{k+1}$ be $k+2$ such indices. Now

$$
d\left(i_{0}, i_{j}\right)+2=\left(d\left(1, i_{j}\right)+2\right)-\left(d\left(1, i_{0}\right)+2\right)+2 \equiv 2 \bmod p
$$

and $P\left(i_{0}, i_{j}\right)$ together with the two edges $x_{0} x_{i_{0}}$ and $x_{0} x_{i_{j}}$ forms a cycle of length $d\left(i_{0}, i_{j}\right)+2$ for every $1 \leq j \leq k+1$.

Hence G contains $k+1$ cycles of different lengths not divisible by p which is a contradiction and the proof is complete.

In the next section we prove bounds for the chromatic number of graphs

- whose cycle lengths are either small or have a fixed parity modulo some odd prime p (Theorem 5),
- whose cycle lengths are either small or have a parity different from 2 modulo p (Proposition 6),
- whose cycle lengths are either small or have a parity modulo p belonging to some set of allowed parities (Corollary 8), and
- that have a bounded number of cycle lengths which do not have a parity modulo p belonging to some set of allowed parities (Theorem 7).

2 Results

We immediately proceed to our results.
Theorem 5 Let p be an odd prime, $k \in \mathbb{N}$ with $k \geq 3$ and $q \in\{0,1, \ldots, p-1\}$.
If G is a graph in which all cycles of length at least $k p$ have a length which is equivalent to q modulo p, then $\chi(G) \leq k p-\epsilon$ for $\epsilon= \begin{cases}0 & , \text { if } q=0 \\ 1 & \text {, if } q>0 .\end{cases}$
Proof: We prove the result by induction on the order $n=|V|$. As in the previous proof, we may assume that $n>k p-\epsilon$ and also that the minimum degree δ of G satisfies $\delta \geq k p-\epsilon$.

Let $P: v_{1} v_{2} \ldots v_{l}$ be a longest paths in G.
If $v_{i} \in N_{G}\left(v_{1}\right)$ and $i \geq 3$, then $v_{1} v_{2} \ldots v_{i} v_{1}$ is a cycle of length $\equiv i \bmod p$. Therefore, all neighbours v_{i} of v_{1} with $i \geq k p$ satisfy $i \equiv q \bmod p$, i.e.

$$
\left\{i \mid v_{i} \in N_{G}\left(v_{1}\right) \text { and } k p \leq i \leq l\right\} \subseteq\left(k+\mathbb{N}_{0}\right) p+q .
$$

Since $\delta \geq k p-\epsilon$, the vertex v_{1} has at least one neighbour v_{i} with $i \geq k p$ and

$$
t=\max \left\{i \in \mathbb{N}_{0} \mid v_{(k+i) p+q} \in N_{G}\left(v_{1}\right)\right\}
$$

is well-defined. Note that $q=0$ implies $t \geq 1$.
If $v_{i} \in N_{G}\left(v_{1}\right)$ for some $2 \leq i \leq t p+q+2$ with $i \not \equiv 2 \bmod p$, then $v_{1} v_{i} v_{i+1} \ldots v_{(k+t) p+q} v_{1}$ is a cycle of length $(k+t) p+q-i+2 \geq k p$ which is not equivalent to q modulo p. Hence

$$
\left\{i \mid v_{i} \in N_{G}\left(v_{1}\right) \text { and } 1 \leq i \leq t p+q+2\right\} \subseteq \mathbb{N}_{0} p+2
$$

If $t p+q+2<k p$, then

$$
\begin{aligned}
\delta \leq & \left|N_{G}\left(v_{1}\right)\right| \\
= & \left|N_{G}\left(v_{1}\right) \cap\left\{v_{i} \mid 1 \leq i \leq t p+q+2\right\}\right| \\
& +\left|N_{G}\left(v_{1}\right) \cap\left\{v_{i} \mid t p+q+3 \leq i \leq k p-1\right\}\right| \\
& +\left|N_{G}\left(v_{1}\right) \cap\left\{v_{i} \mid k p \leq i \leq l\right\}\right| \\
\leq & (t+1)+((k p-1)-(t p+q+3)+1)+(t+1) \\
= & k p-q-t(p-2)-1 \\
< & k p-\epsilon .
\end{aligned}
$$

Hence, we may assume that $t p+q+2 \geq k p$.
If $q \neq 2$, then

$$
\begin{aligned}
\delta \leq & \left|N_{G}\left(v_{1}\right)\right| \\
= & \left|N_{G}\left(v_{1}\right) \cap\left\{v_{i} \mid 1 \leq i \leq k p-1\right\}\right| \\
& +\left|N_{G}\left(v_{1}\right) \cap\left\{v_{i} \mid k p \leq i \leq t p+q+2\right\}\right| \\
& +\left|N_{G}\left(v_{1}\right) \cap\left\{v_{i} \mid t p+q+3 \leq i \leq l\right\}\right| \\
\leq & k+0+k \\
\leq & 2 k \\
< & k p-\epsilon .
\end{aligned}
$$

Hence, we may assume that $q=2$ which implies

$$
\left\{i \mid v_{i} \in N_{G}\left(v_{1}\right) \text { and } 1 \leq i \leq l\right\} \subseteq \mathbb{N}_{0} p+2
$$

We assume that P is chosen such that

$$
j=\min \left\{i \in \mathbb{N} \mid v_{i p+2} \in N_{G}\left(v_{1}\right)\right\}
$$

is minimum possible. Since $v_{j p+1} v_{j p} \ldots v_{1} v_{j p+2} v_{j p+3} \ldots v_{l}$ is a longest path, this implies that

$$
\left\{i \mid v_{i} \in N_{G}\left(v_{j p+1}\right) \text { and } 1 \leq i \leq l\right\} \subseteq\{j p\} \cup\left(j+\mathbb{N}_{0}\right) p+2
$$

Let

$$
s=\min \left\{i \mid i \geq j p+3, v_{i} \in N_{G}\left(v_{1}\right) \cup N_{G}\left(v_{j p+1}\right)\right\} .
$$

Let $x \in\{1, j p+1\}$ be such that $v_{s} \in N_{G}\left(v_{x}\right)$ and let $\{y\}=\{1, j p+1\} \backslash\{x\}$. Let

$$
t=\max \left\{i \mid i \geq j p+3, v_{i} \in N_{G}\left(v_{y}\right)\right\} .
$$

Since $\left|\left\{i \mid i \geq j p+3, v_{i} \in N_{G}\left(v_{y}\right)\right\}\right| \geq \delta-2 \geq k p-3$, we have $t-s \geq(k p-3) p \geq k p$ and $v_{x} \ldots v_{y} v_{t} \ldots v_{s} v_{x}$ is a cycle of length more than $k p$ which is equivalent 4 modulo p. This contradiction completes the proof.

Proposition 6 Let p be an odd prime and $k \in \mathbb{N}$ with $k \geq 3$.
If G is a graph in which all cycles of length at least $k p$ have a length which is not equivalent to 2 modulo p, then $\chi(G) \leq k p+1$.

Proof: We proceed as in the proof of Theorem 5. Therefore, we may assume that the minimum degree δ of G satisfies $\delta \geq k p+1$ and consider a longest paths $P: v_{1} v_{2} \ldots v_{l}$ in G.

By the pigeon hole principle, there is some $q \in\{0,1, \ldots, p-1\}$ such that the set

$$
I=\left\{i \mid 1 \leq i \leq l, v_{i} \in N_{G}\left(v_{1}\right), i \equiv q \bmod p\right\}
$$

has at least $k+1$ elements. If $s=\min I$ and $t=\max I$, then $v_{1} v_{s} v_{s+1} \ldots v_{t} v_{1}$ is a cycle of length at least $k p$ which is equivalent to 2 modulo p. This contradiction completes the proof.

Theorem 5 and Proposition 6 are best-possible in view of complete graphs of suitable order.
Theorem 7 Let p be an odd prime, $k \in \mathbb{N}$ and $I \subseteq\{0,1, \ldots, p-1\}$ with $|I| \leq p-1$. If G is a graph such that $\mathcal{L}(G)$ contains at most k elements which are not in I modulo p, then

$$
\chi(G) \leq\left(1+\frac{|I|}{p-|I|}\right) k+p(p-1)(r(2 p, 2 p)+1)+1
$$

where $r(p, q)$ denotes the ordinary Ramsey number.

Proof: Let

$$
\begin{aligned}
f_{0}(p) & =p(p-1)(r(2 p, 2 p)+1)+1, \\
f_{1}(p) & =p(p-1)(r(2 p, 2 p)-1)+1, \\
f_{2}(p) & =(p-1)(r(2 p, 2 p)-1)+1, \\
f_{3}(p) & =r(2 p, 2 p), \text { and } \\
f_{4}(p) & =2 p .
\end{aligned}
$$

We prove the result by induction on the order n of G.
As in the previous proofs, we may assume that $n>\left(1+\frac{|I|}{p-|I|}\right) k+f_{0}(p)$ and also that the minimum degree δ of G satisfies $\delta \geq\left(1+\frac{|I|}{p-|I|}\right) k+f_{0}(p)$.

Let $P: v_{1} v_{2} \ldots v_{l}$ be a longest path in G.
To simplify our terminology, we extend the order and parity of the indices to the vertices on P. (For example, for $1 \leq i<j \leq l$ we say that v_{i} is smaller than v_{j} and write $v_{i}<v_{j}$. Similarly, we say that v_{i} is equivalent to some q modulo p if i is equivalent to q modulo p).

Let N^{1} denote the set of the $f_{1}(p)$ smallest neighbours of v_{1} on P.
We assume that P is chosen such that $\max N^{1}$ is smallest possible.
By the pigeon hole principle, there is a set $N^{2} \subseteq N^{1}$ with $\left|N^{2}\right|=f_{2}(p)$ such that all elements of N^{2} are equivalent modulo p.

Let $v_{i} \in N^{2}$.
The path $v_{i-1} v_{i-2} \ldots v_{1} v_{i} v_{i+1} \ldots v_{l}$ is a longest path in G. Hence the vertex v_{i-1} has all its neighbours on P. Furthermore, the choice of P implies that v_{i-1} has at most $f_{1}(p)$ neighbours which are smaller or equal to $\max N^{1}$.

Therefore, if $M^{1}\left(v_{i}\right)$ denotes the set of neighbours of v_{i-1} (note the little index shift) which are larger than $\max N^{1}$, then

$$
\left|M^{1}\left(v_{i}\right)\right| \geq\left(1+\frac{|I|}{p-|I|}\right) k+f_{0}(p)-f_{1}(p)=\left(1+\frac{|I|}{p-|I|}\right) k+2 p(p-1) .
$$

By the hypothesis, there are at most k neighbours $v_{j} \in M^{1}\left(v_{i}\right)$ for which the cycle $v_{i-1} v_{i} \ldots v_{j} v_{i-1}$ has a length $j-i+2$ which is not in I modulo p. This implies that, if $M^{2}\left(v_{i}\right)$ denotes the set of all $v_{j} \in M^{1}\left(v_{i}\right)$ for which $j-i+2$ is in I modulo p, then

$$
\left|M^{2}\left(v_{i}\right)\right| \geq\left(1+\frac{|I|}{p-|I|}\right) k+2 p(p-1)-k=\frac{|I|}{p-|I|} k+2 p(p-1) .
$$

By the pigeon hole principle, there is a set $M^{3}\left(v_{i}\right) \subseteq M^{2}\left(v_{i}\right)$ with

$$
\left|M^{3}\left(v_{i}\right)\right| \geq \frac{k}{p-|I|}+2 p
$$

such that all vertices in $M^{3}\left(v_{i}\right)$ are equivalent modulo p.

Again by the pigeon hole principle, there is a subset $N^{3} \subseteq N^{2}$ with $\left|N^{3}\right|=f_{3}(p)$ such that all vertices in

$$
\bigcup_{v_{i} \in N^{3}} M^{3}\left(v_{i}\right)
$$

are equivalent modulo p.
By the Ramsey theorem, there is a subset $N^{4} \subseteq N^{3}$ with $f_{4}(p)$ elements

$$
N^{4}=\left\{v_{j^{1}}<v_{j^{2}}<\ldots<v_{j_{4}(p)}\right\}
$$

such that, if

$$
M^{3}\left(v_{j^{i}}\right)=\left\{v_{j_{1}^{i}}<v_{j_{2}^{i}}<\ldots\right\}
$$

for $1 \leq i \leq f_{4}(p)$, then either

$$
j_{1}^{1}<j_{1}^{2}<\ldots<j_{1}^{f_{4}(p)}
$$

or

$$
j_{1}^{1} \geq j_{1}^{2} \geq \ldots \geq j_{1}^{f_{4}(p)}
$$

First, we assume that

$$
j_{1}^{1}<j_{1}^{2}<\ldots<j_{1}^{f_{4}(p)}
$$

holds (cf. Figure 1).

Figure 1
For $0 \leq r \leq p-1$ and $1 \leq s \leq \frac{k}{p-|I|}+2 p$ let $C(r, s)$ denote the cycle (cf. Figures 2 and 3)

$$
\begin{aligned}
C(r, s): & v_{1} v_{j^{1}} v_{j^{1}-1} v_{j_{1}^{1}} v_{j_{1}^{1}+1} \cdots \\
& v_{j_{1}^{2}} v_{j^{2}-1} v_{j^{2}} \ldots v_{j^{3}-1} v_{j_{1}^{3}} v_{j_{1}^{3}+1} \ldots \\
& v_{j_{1}^{4}} v_{j^{4}-1} v_{j^{4}} \ldots v_{j^{5}-1} v_{j_{1}^{5}} v_{j_{1}^{5}+1} \ldots \\
& \ldots \\
& v_{j_{1}^{2 r}} v_{j^{2 r}-1} v_{j^{2 r}} \ldots v_{j^{2 r+1}-1} v_{j_{1}^{2 r+1}} v_{j_{1}^{2 r+1}+1} \cdots \\
& v_{j_{1}^{f_{4}(p)}} v_{j_{1}^{f_{4}(p)}+1} \ldots v_{j_{s}^{f_{4}(p)}} v_{j^{f_{4}(p)}-1} v_{j^{f_{4}(p)}} v_{1} .
\end{aligned}
$$

Figure $2 C(0, s)$

Figure $3 C(1, s)$
For $0 \leq r \leq p-2$ and $1 \leq s_{1}, s_{2} \leq \frac{k}{p-|I|}+2 p$ the lengths of the two cycles $C\left(r, s_{1}\right)$ and $C\left(r+1, s_{2}\right)$ differ exactly by 2 modulo p. Furthermore, for $0 \leq r \leq p-1$ and $1 \leq s_{1}<s_{2} \leq \frac{k}{p-|I|}+2 p$ the cycle $C\left(r, s_{2}\right)$ is longer than the cycle $C\left(r, s_{1}\right)$.

This implies the existence of

$$
(p-|I|)\left(\frac{k}{p-|I|}+2 p\right)>k
$$

cycles of different lengths not in I modulo p, which is a contradiction.
In the second case

$$
j_{1}^{1} \geq j_{1}^{2} \geq \ldots \geq j_{1}^{f_{4}(p)}
$$

a very similar construction also leads to a contradicton. In order to ensure the appropriate vertices to be different one can discard the smallest ($2 p-i$) elements from every set $M^{3}\left(v_{j^{i}}\right)$ for all $1 \leq i \leq 2 p$. This completes the proof.
Corollary 8 Let p be an odd prime, $k \in \mathbb{N}$ and $I \subseteq\{0,1, \ldots, p-1\}$ with $|I| \leq p-1$.
If G is a graph in which all cycles of length at least $k p$ have a length which is in I modulo p, then

$$
\chi(G) \leq k p+p(p-1)(r(2 p, 2 p)+1)+1
$$

Proof: The result follows immediately from Theorem 7, because the hypothesis implies that $\mathcal{L}(G)$ contains at most $k(p-|I|)$ many cycle lengths which are not in I modulo p.

While the complete graphs show that the term " $\left(1+\frac{|I|}{p-|I|}\right)$ " in Theorem 7 and the term " $k p$ " in Corollary 8 are best possible, the additive term depending only on p can clearly be improved. In fact, it is conceivable that it could be replaced by a constant.

Acknowledgement: We thank Frank Göring for fruitful discussions and valuable comments.

References

[1] P. Erdős, Some of my favourite unsolved problems, in: A. Baker, B. Bollobás, A. Hajnal (Eds.), A Tribute to Paul Erdős, Cambridge University Press, Cambridge, 1990, pp. 467-468.
[2] P. Erdős and A. Hajnal, On chromatic number of graphs and setsystems, Acta Math. Acad. Sci. Hung. 17 (1966), 61-99.
[3] A. Gyárfás, Graphs with k odd cycle lengths, Discrete Math. 103 (1992), 41-48.
[4] S. Kenkre and S. Vishwanathan, A bound on the chromatic number using the longest odd cycle length, J. Graph Theory 54 (2007), 267-276.
[5] S. Matos Camacho, Colourings of graphs with prescribed cycle lengths, Diploma Thesis, TU Bergakademie Freiberg, 2006.
[6] S. Matos Camacho and I. Schiermeyer, Colourings of graphs with two consecutive odd cycle lengths, to appear in Discrete Math.
[7] P. Mihok and I. Schiermeyer, Cycle lengths and chromatic number of graphs Discrete Math. 286 (2004), 147-149.
[8] B. Randerath and I. Schiermeyer, Vertex Colouring and Forbidden Subgraphs A Survey, Graphs Combin. 20 (2004), 1-40.
[9] S.S. Wang, Colouring graphs with only "small" odd cycles, Preprint, Mills College, 1996.

