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Abstract. In 1966 Erdős and Hajnal proved that the chromatic number of graphs whose
odd cycles have lengths at most l is at most l + 1. Similarly, in 1992 Gyárfás proved that
the chromatic number of graphs which have at most k odd cycle lengths is at most 2k + 2
which was originally conjectured by Bollobás and Erdős.

Here we consider the influence of the parities of the cycle lengths modulo some odd
prime on the chromatic number of graphs. As our main result we prove the following: Let
p be an odd prime, k ∈ N and I ⊆ {0, 1, . . . , p− 1} with |I| ≤ p− 1. If G is a graph such
that the set of cycle lengths of G contains at most k elements which are not in I modulo p,

then χ(G) ≤
(

1 + |I|
p−|I|

)
k + p(p− 1)(r(2p, 2p) + 1) + 1 where r(p, q) denotes the ordinary

Ramsey number.
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1 Introduction

We consider finite, simple and undirected graphs G = (V,E) and denote by L(G) the set
of cycle lengths of G. In this paper we continue the study of the influence of L(G) on the
chromatic number χ(G) of G which was essentially initiated by Erdős and Hajnal in 1966.

Theorem 1 (Erdős and Hajnal [2]) If G is a graph and l is the maximum odd element
in L(G), then χ(G) ≤ l + 1.

Bollobás and Erdős [1] conjectured the following strengthening which was eventually proved
by Gyárfás in 1992.

Theorem 2 (Gyárfás [3]) If G is a graph and L(G) contains k odd elements, then
χ(G) ≤ 2k + 2.

In 2004 Mihok and Schiermeyer proved an analogous result for even cycle lengths.

Theorem 3 (Mihok and Schiermeyer [7]) If G is a graph and L(G) contains k even
elements, then χ(G) ≤ 2k + 3.
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The extremal graphs for all three results are complete graphs of suitable order. The result
of Erdős and Hajnal has recently been refined by excluding large cliques [4]. Similarly, the
result of Gyárfás has been strengthened for graphs G for which L(G) contains two specified
odd elements [5, 6, 9].

The starting point for our new results was the following observation which we made
together with Frank Göring.

Observation 4 Let p be an odd prime and k ∈ N0 = N ∪ {0}. If G is a graph such that
L(G) contains at most k elements which are not divisible by p, then χ(G) ≤ 2k + 3.

Proof: We prove the result by induction on the order n of G. For n ≤ 2k + 3 the result is
trivial and we may assume that n > 2k + 3.

If G has a vertex u of degree at most 2k+ 2, then we can extend a (2k + 3)-coloring of
G− u to G. Hence we may assume that the minimum degree δ of G satisfies δ ≥ 2k + 3.

Let P : v1v2 . . . vl be a longest path in G.
Let x1, x2, . . . , x2k+3 be the first 2k + 3 neighbours of x0 on P ordered according to

increasing distance from x0 on P , i.e. if for 0 ≤ i < j ≤ 2k + 3 the subpath P (i, j) of P
between xi and xj is of length d(i, j), then

1 = d(0, 1) < d(0, 2) < . . . < d(0, 2k + 3).

Since P (1, i) together with the two edges x0x1 and x0xi forms a cycle of length d(1, i)+2,
there are at least (2k + 3)− 1− k = k + 2 indices i with 2 ≤ i ≤ 2k + 3 and

d(1, i) + 2 ≡ 0 mod p.

Let i0 < i1 < . . . < ik+1 be k + 2 such indices. Now

d(i0, ij) + 2 = (d(1, ij) + 2)− (d(1, i0) + 2) + 2 ≡ 2 mod p

and P (i0, ij) together with the two edges x0xi0 and x0xij forms a cycle of length d(i0, ij)+2
for every 1 ≤ j ≤ k + 1.

Hence G contains k + 1 cycles of different lengths not divisible by p which is a contra-
diction and the proof is complete. 2

In the next section we prove bounds for the chromatic number of graphs

• whose cycle lengths are either small or have a fixed parity modulo some odd prime p
(Theorem 5),

• whose cycle lengths are either small or have a parity different from 2 modulo p
(Proposition 6),

• whose cycle lengths are either small or have a parity modulo p belonging to some set
of allowed parities (Corollary 8), and

• that have a bounded number of cycle lengths which do not have a parity modulo p
belonging to some set of allowed parities (Theorem 7).
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2 Results

We immediately proceed to our results.

Theorem 5 Let p be an odd prime, k ∈ N with k ≥ 3 and q ∈ {0, 1, . . . , p− 1}.
If G is a graph in which all cycles of length at least kp have a length which is equivalent

to q modulo p, then χ(G) ≤ kp− ε for ε =

{
0 , if q = 0
1 , if q > 0.

Proof: We prove the result by induction on the order n = |V |. As in the previous proof, we
may assume that n > kp− ε and also that the minimum degree δ of G satisfies δ ≥ kp− ε.

Let P : v1v2 . . . vl be a longest paths in G.
If vi ∈ NG(v1) and i ≥ 3, then v1v2 . . . viv1 is a cycle of length ≡ i mod p. Therefore,

all neighbours vi of v1 with i ≥ kp satisfy i ≡ q mod p, i.e.

{i | vi ∈ NG(v1) and kp ≤ i ≤ l} ⊆ (k + N0) p+ q.

Since δ ≥ kp− ε, the vertex v1 has at least one neighbour vi with i ≥ kp and

t = max{i ∈ N0 | v(k+i)p+q ∈ NG(v1)}

is well-defined. Note that q = 0 implies t ≥ 1.
If vi ∈ NG(v1) for some 2 ≤ i ≤ tp+q+2 with i 6≡ 2 mod p, then v1vivi+1 . . . v(k+t)p+qv1

is a cycle of length (k + t)p+ q− i+ 2 ≥ kp which is not equivalent to q modulo p. Hence

{i | vi ∈ NG(v1) and 1 ≤ i ≤ tp+ q + 2} ⊆ N0p+ 2.

If tp+ q + 2 < kp, then

δ ≤ |NG(v1)|
= |NG(v1) ∩ {vi | 1 ≤ i ≤ tp+ q + 2}|

+|NG(v1) ∩ {vi | tp+ q + 3 ≤ i ≤ kp− 1}|
+|NG(v1) ∩ {vi | kp ≤ i ≤ l}|

≤ (t+ 1) + ((kp− 1)− (tp+ q + 3) + 1) + (t+ 1)

= kp− q − t(p− 2)− 1

< kp− ε.

Hence, we may assume that tp+ q + 2 ≥ kp.
If q 6= 2, then

δ ≤ |NG(v1)|
= |NG(v1) ∩ {vi | 1 ≤ i ≤ kp− 1}|

+|NG(v1) ∩ {vi | kp ≤ i ≤ tp+ q + 2}|
+|NG(v1) ∩ {vi | tp+ q + 3 ≤ i ≤ l}|

≤ k + 0 + k

≤ 2k

< kp− ε.
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Hence, we may assume that q = 2 which implies

{i | vi ∈ NG(v1) and 1 ≤ i ≤ l} ⊆ N0p+ 2.

We assume that P is chosen such that

j = min{i ∈ N | vip+2 ∈ NG(v1)}

is minimum possible. Since vjp+1vjp . . . v1vjp+2vjp+3 . . . vl is a longest path, this implies that

{i | vi ∈ NG(vjp+1) and 1 ≤ i ≤ l} ⊆ {jp} ∪ (j + N0) p+ 2

Let
s = min{i | i ≥ jp+ 3, vi ∈ NG(v1) ∪NG(vjp+1)}.

Let x ∈ {1, jp+ 1} be such that vs ∈ NG(vx) and let {y} = {1, jp+ 1} \ {x}. Let

t = max{i | i ≥ jp+ 3, vi ∈ NG(vy)}.

Since |{i | i ≥ jp+ 3, vi ∈ NG(vy)}| ≥ δ − 2 ≥ kp− 3, we have t− s ≥ (kp− 3)p ≥ kp and
vx . . . vyvt . . . vsvx is a cycle of length more than kp which is equivalent 4 modulo p. This
contradiction completes the proof. 2

Proposition 6 Let p be an odd prime and k ∈ N with k ≥ 3.
If G is a graph in which all cycles of length at least kp have a length which is not

equivalent to 2 modulo p, then χ(G) ≤ kp+ 1.

Proof: We proceed as in the proof of Theorem 5. Therefore, we may assume that the
minimum degree δ of G satisfies δ ≥ kp + 1 and consider a longest paths P : v1v2 . . . vl in
G.

By the pigeon hole principle, there is some q ∈ {0, 1, . . . , p− 1} such that the set

I = {i | 1 ≤ i ≤ l, vi ∈ NG(v1), i ≡ q mod p}

has at least k + 1 elements. If s = min I and t = max I, then v1vsvs+1 . . . vtv1 is a cycle
of length at least kp which is equivalent to 2 modulo p. This contradiction completes the
proof. 2

Theorem 5 and Proposition 6 are best-possible in view of complete graphs of suitable order.

Theorem 7 Let p be an odd prime, k ∈ N and I ⊆ {0, 1, . . . , p− 1} with |I| ≤ p− 1. If G
is a graph such that L(G) contains at most k elements which are not in I modulo p, then

χ(G) ≤
(

1 +
|I|

p− |I|

)
k + p(p− 1)(r(2p, 2p) + 1) + 1

where r(p, q) denotes the ordinary Ramsey number.
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Proof: Let

f0(p) = p(p− 1)(r(2p, 2p) + 1) + 1,

f1(p) = p(p− 1)(r(2p, 2p)− 1) + 1,

f2(p) = (p− 1)(r(2p, 2p)− 1) + 1,

f3(p) = r(2p, 2p), and

f4(p) = 2p.

We prove the result by induction on the order n of G.

As in the previous proofs, we may assume that n >
(

1 + |I|
p−|I|

)
k + f0(p) and also that

the minimum degree δ of G satisfies δ ≥
(

1 + |I|
p−|I|

)
k + f0(p).

Let P : v1v2 . . . vl be a longest path in G.
To simplify our terminology, we extend the order and parity of the indices to the vertices

on P . (For example, for 1 ≤ i < j ≤ l we say that vi is smaller than vj and write vi < vj.
Similarly, we say that vi is equivalent to some q modulo p if i is equivalent to q modulo p).

Let N1 denote the set of the f1(p) smallest neighbours of v1 on P .
We assume that P is chosen such that maxN1 is smallest possible.
By the pigeon hole principle, there is a set N2 ⊆ N1 with |N2| = f2(p) such that all

elements of N2 are equivalent modulo p.
Let vi ∈ N2.
The path vi−1vi−2 . . . v1vivi+1 . . . vl is a longest path in G. Hence the vertex vi−1 has

all its neighbours on P . Furthermore, the choice of P implies that vi−1 has at most f1(p)
neighbours which are smaller or equal to maxN1.

Therefore, if M1(vi) denotes the set of neighbours of vi−1 (note the little index shift)
which are larger than maxN1, then

|M1(vi)| ≥
(

1 +
|I|

p− |I|

)
k + f0(p)− f1(p) =

(
1 +

|I|
p− |I|

)
k + 2p(p− 1).

By the hypothesis, there are at most k neighbours vj ∈ M1(vi) for which the cycle
vi−1vi . . . vjvi−1 has a length j − i + 2 which is not in I modulo p. This implies that, if
M2(vi) denotes the set of all vj ∈M1(vi) for which j − i+ 2 is in I modulo p, then

|M2(vi)| ≥
(

1 +
|I|

p− |I|

)
k + 2p(p− 1)− k =

|I|
p− |I|

k + 2p(p− 1).

By the pigeon hole principle, there is a set M3(vi) ⊆M2(vi) with

|M3(vi)| ≥
k

p− |I|
+ 2p

such that all vertices in M3(vi) are equivalent modulo p.
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Again by the pigeon hole principle, there is a subset N3 ⊆ N2 with |N3| = f3(p) such
that all vertices in ⋃

vi∈N3

M3(vi)

are equivalent modulo p.
By the Ramsey theorem, there is a subset N4 ⊆ N3 with f4(p) elements

N4 =
{
vj1 < vj2 < . . . < vjf4(p)

}
such that, if

M3(vji) =
{
vji

1
< vji

2
< . . .

}
for 1 ≤ i ≤ f4(p), then either

j1
1 < j2

1 < . . . < j
f4(p)
1

or
j1
1 ≥ j2

1 ≥ . . . ≥ j
f4(p)
1 .

First, we assume that
j1
1 < j2

1 < . . . < j
f4(p)
1

holds (cf. Figure 1).

r r r r rr r r r
j1 j2 j31 jf4(p)

r r r r
j1
1 j2

1 j3
1 j

f4(p)
1

Figure 1

For 0 ≤ r ≤ p− 1 and 1 ≤ s ≤ k
p−|I| + 2p let C(r, s) denote the cycle (cf. Figures 2 and

3)

C(r, s) : v1vj1vj1−1vj1
1
vj1

1+1 . . .

vj2
1
vj2−1vj2 . . . vj3−1vj3

1
vj3

1+1 . . .

vj4
1
vj4−1vj4 . . . vj5−1vj5

1
vj5

1+1 . . .

. . .

vj2r
1
vj2r−1vj2r . . . vj2r+1−1vj2r+1

1
vj2r+1

1 +1 . . .

v
j
f4(p)
1

v
j
f4(p)
1 +1

. . . v
j
f4(p)
s

vjf4(p)−1vjf4(p)v1.

6



r r rr r
j11 jf4(p)

r r r
j1
1 j

f4(p)
1 j

f4(p)
s

Figure 2 C(0, s)

r r r r rr r r r
j1 j2 j31 jf4(p)

r r r r r
j1
1 j2

1 j3
1 j

f4(p)
1 j

f4(p)
s

Figure 3 C(1, s)

For 0 ≤ r ≤ p − 2 and 1 ≤ s1, s2 ≤ k
p−|I| + 2p the lengths of the two cycles C(r, s1)

and C(r + 1, s2) differ exactly by 2 modulo p. Furthermore, for 0 ≤ r ≤ p − 1 and
1 ≤ s1 < s2 ≤ k

p−|I| + 2p the cycle C(r, s2) is longer than the cycle C(r, s1).
This implies the existence of

(p− |I|)
(

k

p− |I|
+ 2p

)
> k

cycles of different lengths not in I modulo p, which is a contradiction.
In the second case

j1
1 ≥ j2

1 ≥ . . . ≥ j
f4(p)
1

a very similar construction also leads to a contradicton. In order to ensure the appropriate
vertices to be different one can discard the smallest (2p−i) elements from every set M3(vji)
for all 1 ≤ i ≤ 2p. This completes the proof. 2

Corollary 8 Let p be an odd prime, k ∈ N and I ⊆ {0, 1, . . . , p− 1} with |I| ≤ p− 1.
If G is a graph in which all cycles of length at least kp have a length which is in I

modulo p, then
χ(G) ≤ kp+ p(p− 1)(r(2p, 2p) + 1) + 1.

Proof: The result follows immediately from Theorem 7, because the hypothesis implies
that L(G) contains at most k(p− |I|) many cycle lengths which are not in I modulo p. 2

While the complete graphs show that the term “
(

1 + |I|
p−|I|

)
” in Theorem 7 and the term

“kp” in Corollary 8 are best possible, the additive term depending only on p can clearly
be improved. In fact, it is conceivable that it could be replaced by a constant.

Acknowledgement: We thank Frank Göring for fruitful discussions and valuable com-
ments.
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[2] P. Erdős and A. Hajnal, On chromatic number of graphs and setsystems, Acta Math.
Acad. Sci. Hung. 17 (1966), 61-99.
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