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Abstract

Given a graph G = (V,E), let P be a partition of V . We say that P
is dominating if, for each part P of P, the set V \ P is a dominating set
in G (equivalently, if every vertex has a neighbour of a different colour from
its own). We say that P is acyclic if for any parts P, P ′ of P, the bipartite
subgraph G[P, P ′] consisting of the edges between P and P ′ in P contains
no cycles. The acyclic dominating number ad(G) of G is the least number
of parts in any partition of V that is both acyclic and dominating; and we
shall denote by ad(d) the maximum over all graphs G of maximum degree at
most d of ad(G). In this paper, we prove that ad(3) = 2, which establishes
a conjecture of Boiron, Sopena and Vignal [4]. For general d, we prove the
upper bound ad(d) = O(d ln d) and a lower bound of ad(d) = Ω(d).

1 Introduction

Given a graph G = (V, E), let P be a partition (or colouring) of V . We say that
P is dominating if, for each part P of P , the set V \ P is a dominating set in G
(equivalently, if every vertex has a neighbour of a different colour from its own).
We say that P is acyclic if for any parts P, P ′ of P , the bipartite subgraph G[P, P ′]
consisting of the edges between P and P ′ in P contains no cycles. The acyclic
dominating number ad(G) of G is the least number of parts in any partition of V
that is both acyclic and dominating.

By the definition of a dominating partition, the parameter ad(·) is only well-
defined on graphs with no isolated vertices, and we hereafter assume this to be true
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for any graph under consideration, unless specified otherwise. Note that ad(G) ≥ 2
for any graph G, since any dominating partition has at least two parts.

The quantity ad(G) is closely related to the acyclic t-improper chromatic num-
ber χt

a(G) of the graph G. In this graph colouring variant, first introduced by Boiron
et al. [4, 5] and further investigated in Addario et al. [1] one seeks to colour G with
the minimum number of colours subject to the constraints that each colour class has
maximum degree at most t and that the colouring is acyclic in the sense described
above. Clearly, the acyclic 0-improper chromatic number is just the acyclic (proper)
chromatic number χa(G) — the subject of many works: inter alia, [2, 3, 6, 8]. Ob-
serve that ad(G) ≤ χa(G) for any graph G, as any acyclic colouring is also an acyclic
dominating parition.

It is easily seen that if G is a regular graph of degree ∆(G) then ad(G) is precisely

the acyclic (∆(G)−1)-improper chromatic number χ
∆(G)−1
a (G) of G. If G is a graph

of maximum degree ∆(G), then ad(G) is at least χ
∆(G)−1
a (G); however, these two

quantities do not necessarily coincide as the latter allows partitions in which vertices
of degree strictly less than the maximum degree may receive the same colour as all
of their neighbours.

Given a positive integer d, we let ad(d) be the maximum possible value of ad(G)
over all graphs with maximum degree at most d. In this paper, we tackle the case
d = 3. In Boiron et al. [4] it was conjectured that for any graph G of maximum
degree at most three, the acyclic 2-improper chromatic number of G is at most two.
We prove this conjecture by showing the following.

Theorem 1. ad(3) = 2.

In other words, any graph G of maximum degree three may be partitioned into two
dominating sets D1, D2 such that G[D1, D2] is a forest. The latter formulation of
Theorem 1 suggests another question: given a graph G = (V, E), does there always
exist an integer k and a partition of V into dominating sets V1, . . . , Vk such that for
distinct i, j ∈ {1, . . . , k}, G[Vi, Vj] is a forest? It turns out that such a partition does
not necessarily exist, as the following example shows.

Let G have vertex set V =
⋃5

i=1{vi, wi, xi}, and for each i ∈ {1, . . . , 5} let vi be
joined to each of wi, xi, wi+1, xi+1 (where the subscripts are interpreted modulo 5).
Given any 2-colouring of V , there must be i ∈ {1, . . . , 5} such that vi and vi+1 receive
the same colour. In this case, for the colouring to be dominating it must be the case
that both wi+1 and xi+1 receive the opposite colour from vi; but then viwi+1vi+1xi+1

forms an alternating cycle. In any colouring with four or more colours, some colour
class is not a dominating set as G contains vertices of degree two. Finally, it is fairly
straightforward to check that in any acyclic 3-colouring there is some colour class
which is not a dominating set; we omit the details. We remark that since the graph
G has maximum degree four, this example also shows that ad(4) ≥ 3.

The fact that acyclic partitions into dominating sets do not always exist lends
credence to the idea that the acyclic dominating number and ad(d) are natural
objects of study. Given that a partition of V into two dominating sets is extremely
easy to find (any bipartition that maximises the number of edges in the cut is such a
partition), it seems prima facie plausible that ad(d) can be bounded independently
of d. However, this turns out not to be the case. It was shown in Addario et al. [1]
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that χd−1
a (d) = Ω(d2/3). In particular, this shows that ad(d) ≥ χd−1

a (d) tends to
infinity as d →∞. We improve upon this result by showing the following.

Theorem 2. χd−1
a (d) = Ω(d).

It immediately follows that ad(d) = Ω(d). Our lower bound is a within a logarithmic
factor of optimal as we also give the following upper bound on ad(d).

Theorem 3. ad(d) = O(d ln d).

This extends one case of a result in Addario et al. [1], which stated that χd−1
a (d) =

O(d ln d). It seems plausible that ad(d) = Θ(d), but proving the requisite upper
bound seems to require a more refined analysis.

1.1 Notation

For a vertex v ∈ V we denote the neighbourhood N(v) of v to be the set {w : vw ∈ E}
and the degree deg(v) of v to be |N(v)|; the closed neighbourhood C(v) of v is the
set {v}∪N(v) and the closed second neighbourhood C2(v) of v is

⋃
u∈N(v) N(u). The

square of a graph G = (V, E) has vertex set V and edge set {uv : u ∈ C2(v), u 6= v}
For a given partition P of V , and v ∈ V , the colour cP(v) of v with respect to P is
the part of P to which v belongs. We write c(v) in place of cP(v) when the partition
P is clear from context. Given sets A, S, the symmetric difference A∇S between A
and S is the set (A \ S) ∪ (S \ A).

2 Graphs of maximum degree three

The primary ingredient in proving Theorem 1 is the following lemma.

Lemma 4. If G = (V, E) is 2-connected, ∆(G) = 3 and P = {A,B} is a partition
of V such that G possesses a unique alternating cycle C1 then ad(G) = 2.

We first provide the straightforward proof of Theorem 1 assuming that the lemma
holds, then prove the lemma.

Proof of Theorem 1. Consider an arbitrary graph G = (V, E) of maximum degree
three. We proceed by induction on m = |E|; clearly if |E| ≤ 3 then ad(G) = 2
as G has no even cycles. We may presume G is connected; if not, we consider
each connected component of G separately. We may also assume G has no vertex of
degree one, for if deg(v) = 1 then G\v contains no isolated vertices and by induction
there is an acyclic dominating partition of G \ v; such a partition easily extends to
an acyclic dominating partition of G.

Now if G contains a cutedge uv and G \ uv has connected components G1, G2

(each of which contains no isolated vertices), then by induction there is an acyclic
dominating partition {A1, B1} (resp. {A2, B2}) of G1 (resp. G2); we may assume,
perhaps by switching the names of the parts, that u ∈ A1, v ∈ B2. Then {A1 ∪
A2, B1 ∪B2} forms an acyclic dominating partition of G.
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If G contains no cutedge then let uv be any edge of G; by induction G\uv permits
an acyclic dominating partition P = {A,B}. Since P is still a dominating partition
in G, either P is an acyclic dominating partition for G or G possesses a unique
alternating cycle C1 with respect to P . In the latter case it follows by Lemma 4 that
ad(G) = 2; thus ad(G) = 2 in both cases and so ad(3) = 2, as claimed.

We shall prove Lemma 4 by producing a sequence of local alterations that trans-
form P into an acyclic dominating partition P ′ = {A′, B′}. In order to do so, we
first introduce a structure that is at the heart of the proof and some basic conditions
that allow us to immediately “fix alternating cycles”.

We say C is an almost alternating cycle with respect to partition P = {A,B} if
there exists a vertex u ∈ C such that C is an alternating cycle with respect to the
partition {A∇{u}, B∇{u}}; in other words, if switching u from A to B (or from B
to A) yields that C is an alternating cycle. Given an almost alternating cycle C,
the unique u ∈ C such that C is an alternating cycle with respect to the partition
{A∇{u}, B∇{u}} is called the crucial vertex of C.

We now define three basic local conditions to check for (almost) alternating
cycles. Suppose we are given an alternating or almost alternating cycle C and non-
crucial vertices v, w of C adjacent along C; if deg(v) = 3 (resp. deg(w) = 3) then
denote the neighbour of v (resp w) not along C by x (resp. y). We remark that
possibly x ∈ C, in which case vx is a chord of C. We say that v is flippable (with
respect to C and P) if deg(v) = 3 and c(v) = c(x). We say v and w are switchable
if neither v nor w are flippable and

(i) either deg(v) = 2 or (deg(v) = 3 and there is z1 ∈ N(x)\{v} with c(z1) = c(v));
and

(ii) either deg(w) = 2 or (deg(w) = 3 and there is z2 ∈ N(y) \ {w} with c(z2) =
c(w)).

Finally, v and x are exchangeable (with respect to C and P) if deg(v) = 3, v is not
flippable and

(i) x is not the crucial vertex of an almost alternating cycle, and

(ii) for any z1 ∈ N(x) \ {v} with c(z1) = c(v), there exists z′ ∈ N(z1) \ {x} such
that c(z′) 6= c(v).

We define exchangeability for w and y symmetrically. The definitions of flippable
vertices and of switchable and exchangeable pairs are illustrated in Figures 1 and 2.
The key properties of flippable vertices and of switchable and exchangeable pairs
are the following.

Fact 5. If P1 = {A1, B1} is a dominating partition for G, G[A1, B1] contains a
unique cycle C, and v is a flippable vertex with respect to C and P1, then, letting
A2 = A1∇{v}, B2 = B1∇{v}, P2 = {A2, B2} is an acyclic dominating partition for
G.
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Fact 6. If P1 = {A1, B1} is a dominating partition for G, G[A1, B1] contains a
unique cycle C, and v and w are switchable with respect to C and P1, then, let-
ting A2 = A1∇{v, w}, B2 = B1∇{v, w}, P2 = {A2, B2} is an acyclic dominating
partition for G.

Fact 7. If P1 = {A1, B1} is a dominating partition for G, G[A1, B1] contains a
unique cycle C, and there are vertices v ∈ C and x such that v and x are exchangeable
with respect to C and P1, then, letting A2 = A1∇{v, x}, B2 = B1∇{v, x}, P2 =
{A2, B2} is an acyclic dominating partition for G.

In the proofs of all three facts, we denote the neighbours of v along C by w and
v′. If v has a neighbour not along C we denote this neighbour x.

v

x

wv

x

v′ w v′

Figure 1: Examples of a flippable vertex (v, left) and of a switchable pair of vertices
(v and w, right).

v v

x x

z1

Figure 2: Two situations where v and x are not exchangeable. On the left, v and x
are not exchangeable because x is the crucial vertex of an almost alternating cycle.
On the right, v and x are not exchangeable because all of z1’s neighbours (aside
from x) have the same colour as z1.

Proof of Fact 5. We show that (a) P2 contains no alternating cycles, and (b) P2 is
dominating. Any cycle C ′ that does not pass through v has C ′ ∩ A2 = C ′ ∩ A1 and
C ′∩B2 = C ′∩B1; therefore, to prove (a) it suffices to show that no cycle containing
v is alternating with respect to P2. Similarly, to prove (b) we need only check that
each vertex u ∈ {v} ∪N(v) is dominated under P2.

To prove (a), observe that under P2, v has the same colour as both w and v′; thus
no alternating cycle passes through v under P2. To prove (b), note that since v′ is in
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C, the neighbour of v′ along C that is not v dominates v′ under P2; symmetrically,
w is dominated under P2. Finally, under P2, x is dominated by v, which establishes
(b).

Proof of Fact 6. As in the proof of Fact 5, it suffices to prove that (a) no cycle
containing either v or w is alternating with respect to P2, and (b) each vertex
u ∈ {v, w} ∪ N(v) ∪ N(w) is dominated under P2. Let w′ be the neighbour of w
along C that is not v; if deg(w) = 3 then denote by y the neighbour of w not along
C.

Under P2, v has the same colour as v′ and w has the same colour as w′; thus,
no new alternating cycles pass through the edges vv′ or ww′. Furthermore, if x
and y exist, then under P2, v and x have the same colour so no cycle through
xvwy is alternating. This establishes (a). To prove (b), first note that v′ and w′

are dominated by their neighbours along C (other than v and w), and v and w
dominate each other under P2. If x exists, then, by condition (i) in the definition
of switchable pairs, x must be dominated under P2. Symmetrically, if y exists it is
dominated under P2. Thus (b) holds.

Proof of Fact 7. As in the proof of Fact 5, it suffices to prove that (a) no cycle
containing either v or x is alternating with respect to P2, and (b) each vertex u ∈
{v, x} ∪N(v) ∪N(x) is dominated under P2.

Under P2, v has the same colour as both v′ and w; thus, no new alternating
cycles pass through v. Since x is not the crucial vertex of an almost alternating
cycle, no new alternating cycles pass through x and (a) holds. To prove (b), note
that v′ and w are dominated by their neighbours along C (other than v), and v and
x are dominated by each other under P2. Let z1 ∈ N(x) \ {v}. If z1 and x were
in the same part of P , then they are in different parts of P2, in which case z1 is
dominated under P2; otherwise, we know from condition (ii) of exchangeability that
z1 is dominated under P2 by some z′ ∈ N(z1) \ {x}, which establishes (b).

Motivated by these facts, we say that an alternating cycle C is fixable (with
respect to P), if it has either a flippable vertex or an exchangeable or switchable
pair. The proof of Lemma 4 proceeds by first finding a sequence of local alterations
to P resulting in a dominating partition {A1, B1} such that G[A1, B1] contains a
unique cycle C that is fixable, then applying one of Facts 5, 6 or 7. We now turn to
the details.

Proof of Lemma 4. Let C1, . . . , Ck be a sequence of cycles with C1 the alternating
cycle in the statement of the lemma, and such that for i ∈ {2, . . . , k},

(a) Ci is an almost alternating, induced cycle, and

(b) denoting the crucial vertex of Ci by ui and its neighbours along Ci by xi, yi,
we have {ui, xi, yi} ∩

⋃i−1
j=1 Cj = ∅.

For i ∈ {1, . . . , k}, let C∗
i be the maximal sub-segment along Ci containing {ui, xi, yi}

and such that C∗
i ∩

⋃i−1
j=1 Cj = ∅ (so C∗

1 = C1); we additionally require that for
i ∈ {1, . . . , k − 1},
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(c) C∗
i contains no flippable or exchangeable vertices and no switchable pairs; and

(d) ui+1 has a neighbour vi on C∗
i , and vi 6= ui if i > 1.

Choose C1, . . . , Ck to maximize k subject to the constraints (a) through (d). It is
of course possible that k = 1. Let S =

⋃k−1
i=1 {vi, ui+1} (if k = 1 then S = ∅), and

let P ′ = {A′, B′} = {A∇S,B∇S}. The lemma follows immediately from Facts 5, 6
and 7 together with the following claims.

Claim 8. P ′ is a dominating partition for G.

Claim 9. Ck is the unique alternating cycle in G[A′, B′].

Claim 10. Ck is fixable with respect to P ′.
In what follows, we write c(·) in place of cP(·) and c′(·) in place of cP ′(·).
Proof of Claim 8. First observe that if v 6∈ S ∪ N(S) then none of its neighbours
change colour in the transition from P to P ′. Thus, since v was dominated under P ,
it must still be dominated under P ′. Next, observe that, for all i ∈ {1, . . . , k − 1},
c(vi) 6= c(ui+1) so, as vi and ui+1 are both in S, they must both be dominated under
P ′.

Finally, we consider the vertices in N(S) \ S = ∪k
i=1(N(vi) ∪ N(ui+1) \ S). We

shall prove by induction that all i ∈ {1, . . . , k−1}, the vertices in N(vi)∪N(ui+1)\S
are dominated under the partition P ′. Fix i ≥ 1; we first consider the elements of
N(ui+1) \S. If xi+1 /∈ S then since c(xi+1) = c(ui+1), necessarily c′(xi+1) 6= c′(ui+1),
so xi+1 is dominated under P ′; symmetrically, if yi+1 /∈ S then yi+1 is dominated
under P ′.

Next consider z ∈ N(vi) \ S and let z′ denote the neighbour of z along Ci that
is not vi. If c(z) = c(z′) then we must have z′ = ui, so c′(z) = c(z) = c(ui) 6= c′(ui)
and z is dominated under P ′. If c(z) 6= c(z′) but c′(z) = c′(z′) then z′ = vj for some
j ∈ {1, . . . , k}. By condition (b) in the definition of the cycles C1, . . . , Ck, vj /∈ Cj′

for j′ < j, so as vj ∈ Ci we must have j < i. (Since we cannot have j < i if i = 1,
this shows that z is dominated if i = 1, which completes the proof of the base case
of the induction.) As z ∈ N(vj), by induction z is dominated under P ′. Finally,
if c(z) 6= c(z′) and c′(z) 6= c′(z′) then z is dominated under P ′ by definition. As
z ∈ N(vi) \ S was arbitrary, this establishes that N(vi) ∪N(ui+1) \ S is dominated
under P ′ and completes the inductive step and the proof.

Proof of Claim 9. To prove that Ck is the unique alternating cycle in G[A′, B′], let
us consider the sequence of partitions defined by P1 = P , and, for j ∈ {2, . . . , k},
Sj =

⋃j−1
i=1{vi, ui+1} and Pj = {Aj, Bj} = {A∇Sj, B∇Sj}. We show by induction

that Cj is the unique alternating cycle in G[Aj, Bj], and this proves the claim since
Pk = P ′. The case j = 1 holds by assumption, so let j ∈ {2, . . . , k}. Note that
Aj = Aj−1∇{vj−1, uj}, Bj = Bj−1∇{vj−1, uj}. By this observation, it follows that
under Pj, Cj−1 is not alternating and Cj is alternating; by induction, we just need
to show that we have created no other alternating cycles in the transition from Pj−1

to Pj. Under Pj, the neighbours of vj−1 other than uj are in the same part of Pj

as vj−1; thus, no new alternating cycle passes through vj−1. This means any new
alternating cycle must pass through xjujyj. If some C 6= Cj is alternating under
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Pj, then the subgraph C ∪Cj \ {uj} contains an alternating cycle C ′ 6= Cj−1. As C ′

contains neither vj−1 nor uj, C ′ is alternating under Pj−1, but this contradicts the
uniqueness of Cj−1 in G[Aj−1, Bj−1].

To prove that Ck is fixable with respect to P ′ we show first the following.

Claim 11. One of the following holds:

(A) C∗
k contains a vertex that is flippable with respect to Ck and P;

(B) C∗
k contains a pair of vertices that are switchable with respect to Ck and P; or

(C) there are vertices v and x with v ∈ C∗
k such that v and x are exchangeable with

respect to Ck and P and such that

∀ z ∈ N(x) \ {v}, c(z) = c(x) 6= c(v). (1)

Proof. First suppose k = 1 or |C∗
k | ≥ 4. In this case, there exist two adjacent, non-

crucial vertices v∗, w∗ ∈ C∗
k . If it exists, denote by x∗ (resp. y∗) the neighbour not

along Ck of v∗ (resp. w∗). If v∗ or w∗ is flippable with respect to P , then (A) holds;
otherwise, it follows that either deg(v∗) = 2 or (deg(v∗) = 3 and c(x∗) 6= c(v∗)), and
either deg(w∗) = 2 or (deg(w∗) = 3 and c(y∗) 6= c(w∗)). If v∗ and w∗ are switchable
with respect to P , then (B) holds; otherwise, either v∗ or w∗ has degree three —
without loss of generality, we may presume v∗ — and

∀ z∗ ∈ N(x∗) \ {v∗}, c(z∗) = c(x∗) 6= c(v∗). (2)

Finally, (2) immediately implies that (1) holds with v∗ = v,x∗ = x. We note that
by (2), no vertex in N(x∗) \ {v∗} has the same colour as v∗, so condition (ii) in the
definition of exchangeable vertices holds vacuously. Therefore, if (C) does not hold
then it must be the case that x∗ is the crucial vertex of an almost alternating cycle,
which contradicts the maximality of k. We conclude that if k = 1 or |C∗

k | ≥ 4, then
one of (A), (B), or (C) holds.

We now show that one of (A), (B), or (C) holds if k ≥ 2 and |C∗
k | = 3. Let z1

denote the neighbour of xk along Ck other than uk. We know that z1 6∈ C∗
k , so pick

j < k as small as possible such that z1 ∈ Cj; necessarily, z1 ∈ C∗
j . By condition (b)

in the definition of C1, . . . , Ck, it must be the case that xk /∈ Cj. Also, note that
c(z1) 6= c(xk). From this, it follows that z1 is not vj; otherwise, it must be that
xk = uj+1, which contradicts condition (b) in the definition of C1, . . . , Ck. Now, xk

is not in Cj, and by condition (c) in the definition of C1, . . . , Ck, z1 and xk are not
exchangable with respect to Cj. Suppose that condition (i) of exchangeability does
not hold, i.e. xk is the crucial vertex of an almost alternating cycle. This implies that
xk has a third neighbour z2 /∈ Ck with c(xk) = c(z2), in which case (A) holds; thus,
we may assume that condition (ii) of exchangeability does not hold for xk and z1.

We know that uk has neighbour vk−1 on the other side of the partition P ; there-
fore, since condition (ii) for exchangeability of z1 and xk does not hold, it must be
that xk has a third neighbour z2 /∈ Ck and such that

∀z ∈ N(z2) \ xk, c(z) = c(z2) 6= c(xk). (3)
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Therefore, (1) holds with z2 = x and xk = v. Furthermore, condition (ii) for
exchangeability is satisfied (again vacuously) with respect to xk and z2; thus, either
xk and z2 are exchangeable with respect to Ck and P , in which case (C) holds, or z2

is the crucial vertex of an almost alternating cycle, contradicting maximality of k.
We conclude that if k ≥ 2 and |C∗

k | = 3, then in fact either (A) or (C) occurs.

Finally, to conclude that Ck is fixable with respect to P ′ and complete the proof
of Claim 10, we show that in fact Ck is fixable with respect to P ′ at “the same
place” that it is fixable with respect to P . In doing so, we use the following easy
observation, which guarantees that P ′ and P are not very different near to C∗

k .

Fact 12. If v ∈ C∗
k and v 6= uk then (N(v) \ {uk}) ∩ S is empty.

Proof. Fix j ∈ {1, . . . , k − 2}, and let w ∈ N(v) \ {uk}. If w ∈ {vj, uj+1} then
N(w) ⊂ Cj ∪ Cj+1, so v ∈ Cj ∪ Cj+1, which contradicts the fact that v ∈ C∗

k .
Likewise, if vk−1 is adjacent to v then v is in Ck−1, a contradiction.

Proof of Claim 10. Suppose v ∈ C∗
k is flippable with respect to P (i.e. (A) in

Claim 11 holds), and denote by x the neighbour not along Ck of v. Since v is in C∗
k

and v 6= uk, v /∈ S. Furthermore, x /∈ S by Fact 12, so c′(x) = c(x) = c(v) = c′(v)
and v is flippable with respect to P ′.

Next, suppose v and w are neighbours along C∗
k and are switchable with respect

to P (i.e. (B) in Claim 11 holds). If v (resp. w) has degree three then denote the
neighbour of v (resp. w) not along Ck by x (resp. y). Since neither v nor w is in
S, c′(v) = c(v) 6= c(w) = c′(w). If deg(v) = 3 then since v and w are switchable,
c(x) 6= c(v), and so c′(x) 6= c′(v) by Fact 12. Furthermore, since v and w are
switchable with respect to P there exists z ∈ N(x) \ {v} with c(z) = c(v). By
Fact 12, x 6= vk−1; furthermore, if x = xk or x = yk then Ck contains an alternating
cycle (with respect to P) that intersects C∗

k , and so is not the cycle C1, which
contradicts the uniqueness of C1. Thus x is none of vk−1, xk, yk, so z 6= uk.

If z = vi for some i ∈ {1, . . . , k−1} then as x 6= ui+1 and Ci does not pass through
v, necessarily x ∈ Ci and furthermore, x must have a second neighbour z′ 6= v with
z′ ∈ Ci. If c(z′) = c(x) then necessarily z′ = ui so c′(z′) 6= c(z′) = c(x) and so
c′(z′) = c′(v). If c(z′) = c(z) then as we showed for z, necessarily z′ /∈ {u1, . . . , uk}.
Since z′ ∈ Ci, by condition (b) in the definition of the cycles C1, . . . , Ck it follows
that z′ /∈ {vi+1, . . . , vk−1}. Furthermore, if z′ = vj for some j < i, then arguing
just as we did above it follows that z ∈ Cj, which contradicts condition (b) in the
definition of the cycles C1, . . . , Ci as z = vi. Thus z′ /∈ S, so c′(z′) = c(z′) 6= c(x)
and thus c′(z′) = c′(v).

We have just shown that if z ∈ S then x has a neighbour z′ 6= z with c′(z′) = c′(v).
Furthermore, if z /∈ S then c′(z) = c′(v). Thus, in all cases c′(x) 6= c′(v) and x has
some neighbour z1 such that c′(z1) = c′(v). Symmetrically, if deg(w) = 3 then
c′(y) 6= c′(w) and y has a neighbour z2 with c′(w) = c′(z2). Therefore, v and w are
switchable with respect to P ′.

Finally, suppose that there are vertices v and x with v ∈ Ck such that v and x
are exchangeable with respect to Ck and P and such that for all x′ ∈ N(x) \ {v},
c(x′) = c(x) (i.e. (C) in Claim 11 holds). We now show that v and x are exchangeable
with respect to Ck and P ′.
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Let z be an element of N(x)\{v}. If z = vi for some i ∈ {1, . . . , k−1}, then x = ui

which contradicts Fact 12. If z = ui+1 for some i ∈ {1, . . . , k − 2}, then x ∈ Ci+1.
As v /∈ Ci+1, x must have neighbour z′, with z 6= z′ 6= v and with z′ ∈ Ci+1; but
Ci+1 is an almost alternating cycle with respect to P , so we must have c(z′) 6= c(x),
contradicting our assumption. Thus z /∈ S so c′(z) = c(z) = c(x) = c′(x). As z was
arbitrary it follows that for all x′ ∈ N(x) \ {v}, c′(x′) = c′(x), so condition (ii) in
the definition of exchangeable vertices holds for v and x with respect to Ck and P ′.

Finally, we need to show that x does not become the crucial vertex of an almost
alternating cycle C under P ′. If it does, then C contains none of the vertices vi (or
else C cannot be an almost alternating cycle under P ′) and at least one of the vertices
ui (or else it was already an almost alternating cycle under P). Let I = {i : ui ∈ C}
and let H =

⋃
i∈I(Ci \ {ui}) ∪ (C \ {x}). All of the edges in H cross the partition

P ; also, H is connected and there is a path P in H between the two neighbours of
x other than v. But then P ∪ {x} induces an almost alternating cycle under P for
which x is the crucial vertex, contradicting that v and x are an exchangeable pair
for Ck with respect to P . Therefore, v and x are exchangeable for Ck with respect
to P ′. This establishes that in all cases, Ck is fixable with respect to P ′, which
completes the proof of Claim 10.

This also completes the proof of Lemma 4.

3 Graphs of arbitrary maximum degree

3.1 Proof of Theorem 3

We make use of the following result, which may also be of independent interest.

Theorem 13. There exists a universal constant c > 0 such that every graph G =
(V,E) with maximum degree d has a dominating set D satisfying |C2(v)∩D| ≤ cd ln d
for all v ∈ V .

The proof of Theorem 3 is straightforward given Theorem 13.

Proof of Theorem 3. Given a graph G = (V, E) of maximum degree d, let D be the
dominating set that is guaranteed by Theorem 13. We first assign colours to the
members of D by greedily colouring the vertices of D in the square of G; this requires
at most k = cd ln d + 1 colours. To extend this colouring to the entire graph, we use
one new colour for members of the set V \D. It can be checked that this assignment
of colours gives an acyclic dominating partition with k + 1 = O(d ln d) parts.

The following lemma is a crucial element in the proof of Theorem 13 and we
show it using a linear programming approach.

Lemma 14. For any graph G = (V, E) with maximum degree d, there exist non-
negative reals (wv)v∈V such that

∑
u∈C(v) wu ≥ 1 and

∑
u∈C2(v) wu ≤ d + 1 for all

v ∈ V .
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Proof. Without loss of generality, let us assume V = {1, . . . , n}. We shall con-
sider the optimisation problem of minimising maxi∈{1,...,n}

∑
j∈C2(i) wj subject to the

constraints
∑

j∈C(i) wj ≥ 1 for all i ∈ {1, . . . , n}, over all w1, . . . , wn ≥ 0. This
optimisation problem can be written as a linear program as follows.

minimise z

subject to
∑

j∈C2(i)

wj ≤ z (i ∈ {1, . . . , n}),
∑

j∈C(i)

wj ≥ 1 (i ∈ {1, . . . , n}),

w1, . . . , wn ≥ 0

(4)

Let us write

A =

( −C2(G) 1
C(G) 0

)
, b =

(
0
1

)
,

y = (w1, . . . , wn, z)T , c = (0, . . . , 0, 1)T .

Here 1 (resp. 0) denotes the all-ones (resp. all-zeros) vector of length n, and C(G)
(resp. C2(G)) denotes the (n × n)-matrix whose rows are the incidence vectors of
the closed neighbourhoods C(i) (resp. the C2(i)). With these definitions we can
write (4) in the standard form as follows.

minimise cT y

subject to Ay ≥ b,
y ≥ 0.

The dual linear program is

maximise bT x

subject to AT x ≤ c,
x ≥ 0.

Equivalently, writing x = (θ1, . . . , θn, ξ1, . . . , ξn)T we see that this dual program can
be written as

maximise ξ1 + · · ·+ ξn

subject to
∑

j∈C(i)

ξj ≤
∑

j∈C2(i)

θj (i ∈ {1, . . . , n}),

θ1 + · · ·+ θn ≤ 1,
θ, ξ ≥ 0.

(5)

We shall now show that the optimum of (5) is bounded above by d+1, which proves
the result.
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First notice that we may add the additional constraints

ξi ≤
∑

j∈C2(i)

θj (i ∈ {1, . . . , n}), (6)

without altering the value of the optimum, since the constraints (6) are trivially
satisfied by any choice of θ, ξ that is feasible for (5).

Given a vector θ = (θ1, . . . , θn) of nonnegative numbers, let P (θ) denote the set
of all ξ = (ξ1, . . . , ξn) ∈ Rn that satisfy ξi ≤

∑
j∈C2(i) θj and

∑
j∈C(i) ξj ≤

∑
j∈C2(i) θj

for all i ∈ {1, . . . , n} — notice we are no longer requiring ξ to be nonnegative —
and let f(θ) denote the supremum over all ξ ∈ P (θ) of ξ1 + · · · + ξn. To finish the
proof, it suffices to show that f(θ) ≤ (d + 1)(

∑n
i=1 θi) for all nonnegative θ with

θ1 + · · · + θn ≤ 1. We in fact prove that, letting k = max{i : θi > 0} (which we
interpret as 0 if θi = 0 for all i), f(θ) ≤ (d + 1)(

∑k
i=1 θi); we prove this stronger

statement by induction on k.
By the constraints (6) the claim trivially holds when k = 0, so consider 0 < k ≤ n

and suppose the claim holds for all k′ < k. Pick ξ ∈ P (θ) arbitrarily and denote
ξ′ = ξ − θk1C(k) (where 1C(k) denotes the incidence vector of C(k)). Note that
ξ′ ∈ P (θ1, . . . , θk−1, 0, . . . , 0), because (ξ′)k = ξk − θk and any i with k ∈ C2(i)
satisfies

∑
j∈C(i)(ξ

′)j ≤
∑

j∈C(i) ξj − θk as i is incident to at least one j ∈ C(k). This

gives that f(θ1, . . . , θk−1, 0, . . . , 0) ≥ ∑k
j=1 ξ′j =

∑k
j=1 ξj − θk(deg(k) + 1). Taking

the supremum over all ξ ∈ P (θ) and applying induction, we thus have:

f(θ)− θk(deg(k) + 1) ≤ f(θ1, . . . , θk−1, 0, . . . , 0) ≤ (d + 1)(
k−1∑
i=1

θi),

which completes the inductive step and the proof.

Now, for the proof of Theorem 13, we also need two standard probabilistic tools.
One is a symmetric version of the Lovász Local Lemma. The other is a Chernoff-
Hoeffding type bound for sums of indicator variables.

Lemma 15 (Lovász Local Lemma, [7]). Let A be a finite set of events and suppose
that p, δ satisfy that

1. P(A) ≤ p for all A ∈ A, and

2. each A ∈ A is independent of all but at most δ of the other events in A.

If ep(δ + 1) ≤ 1, then P(
⋂

A∈A A) > 0.

Lemma 16. Let Z =
∑m

i=1 Ii be a sum of independent {0, 1}-valued random vari-
ables, and pick k > µ = EZ. Then

P(Z > k) ≤ e−µH(k/µ),

where H(x) = x ln x− x + 1.

Lemma 16 is essentially what is found in Janson, ÃLuczak and Ruczinski [9], but in
a form that we desire. A short proof of this lemma is given in the appendix.
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Proof of Theorem 13. Let w = (wv)v∈V be the vector from Lemma 14, and set pv =
min(100wv ln d, 1) for all v. Let us now construct the set D at random, by selecting
each vertex v with probability pv independently of all other vertices. We claim that
with positive probability, the set D has the required properties. In order to prove
our claim we apply the Lovász Local Lemma. For v ∈ V , let Av denote the event
that either D ∩C(v) = ∅ or |D ∩C2(v)| > 200d ln d. If none of the events Av occur,
then the set D will satisfy the conclusion of the theorem.

If pu = 1 for some u ∈ C(v) then P(D∩C(v) = ∅) = 0. If pu < 1 for all u ∈ C(v),
then

P(D ∩ C(v) = ∅) ≤
∏

u∈C(v)

(1− 100wu ln d)

≤
∏

u∈C(v)

exp[−100wu ln d] = d−100
P

u∈C(v) wu

≤ d−100,

where the last inequality is due to Lemma 14. Next, let us consider the probability
that |D ∩ C2(v)| > 200d ln d. Let us write µ =

∑
u∈C2(v) pu. Note that 1 ≤ µ ≤

100d ln d by Lemma 14. By Lemma 16, we have that

P(|D ∩ C2(v)| > 200d ln d) ≤ exp[−µH(200d ln d
µ

)]

≤ exp[−100 ·H(2) · d ln d] ¿ d−100.

Thus, P(Av) ≤ 2d−100 for d sufficiently large.
Each event Av is independent of all but at most d4 others; therefore, for suffi-

ciently large d, it holds that

e · P(Av) · (d4 + 1) < 1.

Applying the Lovász Local Lemma, we conclude P(
⋂

v∈V Av) > 0, as required.

3.2 Proof of Theorem 2

Let n, m be integers and let us define a graph Gn,m = (V, E) with 2nm vertices as
follows. Set V = {v1

i,j, v
2
i,j : i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}} and add vx

i,jv
x′
i′,j′ to E if

and only if i = i′ or j = j′. The graph Gn,m may be envisaged as a (n×m)-matrix
with two vertices in each entry, where vertices are adjacent if and only if they share
the same row or column. Let us also define Hn,m = Gn,m \ {v2

i,m : i ∈ {1, . . . , n}},
i.e. Hn×m is the same as Gn,m except that it has only one vertex in each entry of the
last column. Thus, Gn,m is a regular graph with degree 2(n + m)− 3, and Hn,m has
maximum degree 2(n + m)− 4.

Lemma 17. If n ≤ m, then χ
2(n+m)−3
a (Gn,m) ≥ n/2 and χ

2(n+m)−2
a (Hn,m+1) ≥ n/2.

Let us first show how this lemma implies Theorem 2.

Proof of Theorem 2. Let d be an arbitrary positive integer. There is a positive
integer n such that we can write either d = 4n − 4, d = 4n − 3, d = 4n − 2 or
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d = 4n− 1; thus, d is the maximum degree of one of Hn,n, Gn,n, Hn,n+1, or Gn,n+1,
respectively. By Lemma 17, it follows that χd−1

a (d) ≥ n/2 ≥ (d + 1)/8, so that
χd−1

a (d) = Ω(d) as required.

Proof of Lemma 17. Our proof improves upon the corresponding analysis in Addario
et al. [1]. We shall focus on the case of Hn,m+1, since the case of Gn,m is similar. Let
d be the maximum degree of Hn,m+1 and suppose that there exists a (d−1)-improper
colouring c : V → {1, . . . , k} for some k < n/2.

In any row, there is at most one colour that occurs more than once, because if two
distinct colours occur more than once in the same row, there is a 4-cycle alternating
between them. As the number of colours used is less than n/2, there is some colour
that appears at least 2m + 2− n/2 ≥ 3(m + 1)/2 + 1 times in each row and we call
this the “dominant colour” of that row. In particular, for any i ∈ {1, . . . , n}, there
are more than (m + 1)/2 values j ∈ {1, . . . , m} for which both vertices v1

i,j, v
2
i,j are

coloured by the dominant colour.
Now consider rows i, i′ for i 6= i′. By the above, there must exist j ∈ {1, . . . ,m}

such that the pair v1
i,j, v

2
i,j both have the dominant colour of row i and the pair

v1
i′,j, v

2
i′,j both have the dominant colour of row i′. We conclude that rows i and

i′ must have the same dominant colour, for otherwise the 4-cycle v1
i,jv

2
i′,jv

2
i,j, v

1
i′,j

is alternating. As i and i′ were arbitrary, it follows that all rows have the same
dominant colour. By similar aguments, there is a single dominant colour for the
columns 1 to m; furthermore, the dominant colour for the rows and the dominant
colour for the columns must coincide and we may assume this colour is, say, 1.

Because the colouring is (d − 1)-improper, it must either hold that none of the
rows is monochromatic or that none of columns 1 to m is monochromatic, for if both
row i and column j (with i ∈ {1, . . . , n} and j ∈ {1, . . . , m}) are monochromatic then
the vertices v1

i,j, v
2
i,j and their d neighbours all have colour 1. Let us assume none of

columns 1 through m is monochromatic. (The case when no row is monochromatic is
similar.) For technical reasons, let us assume by permuting the rows that if column
m + 1 is not monochromatic with colour 1, then a colour different from 1 occurs in
the intersection of row 1 and column m + 1.

Now let A1 ⊆ {2, . . . , k} be the set of non-dominant colours appearing in the first
row, and let C1 ⊆ {1, . . . , m+1} be the set of columns in which these colours appear.
Note that either m + 1 ∈ C1 or column m + 1 is monochromatic with colour 1, by
assumption. If a colour from A1 appears in column j ∈ {1 . . . ,m} \C1 then there is
an alternating 4-cycle through the vertices v1

1,j, v
2
1,j, both of colour 1; thus, colours

from A1 appear only in the columns from C1. For i ∈ {2, . . . , n}, let Ai ⊆ {2, . . . , k}
be the set of colours that appear in the row i and columns {1, . . . , m + 1} \⋃i−1

j=1 Cj;
let Ci be the corresponding set of columns in which these colours appear. By the
same logic, the colours from Ai do not appear outside the columns from Ci. Observe
that |Ai| ≥ |Ci| and the sets A1, . . . , An are mutually disjoint. Since none of the
columns 1 to m is monochromatic, each is a member of exactly one Ci and hence

k − 1 ≥ |A1|+ · · ·+ |An| ≥ |C1|+ · · ·+ |Cm| ≥ m ≥ n.

But this contradicts the assumption that k < n/2.
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Appendix

Proof of Lemma 16. Let pi = EIi. The moment generating function of Z equals

EetZ =
∏

i

EetIi =
∏

i

((1− pi) + etpi) ≤ e−(1−et)
P

i pi = e−µ(1−et).

For any t > 0, Markov’s inequality gives

P(Z > k) = P(etZ > etk) ≤ EetZ/etk = e−µ(t(k/µ)−et+1).

Setting t = ln(k/µ) gives the result.
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