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Bipartite Induced Subgraphs and Well-Quasi-Ordering∗

Nicholas Korpelainen† Vadim V. Lozin‡

Abstract

We study bipartite graphs partially ordered by the induced subgraph relation. Our
goal is to distinguish classes of bipartite graphs which are or are not well-quasi-ordered
(wqo) by this relation. Answering an open question from [3], we prove that P7-free
bipartite graphs are not wqo. On the other hand, we show that P6-free bipartite graphs
are wqo. We also obtain some partial results on subclasses of bipartite graphs defined by
forbidding more than one induced subgraph.
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1 Introduction

A binary relation ≤ on a set X is a quasi-order if it is reflexive and transitive. Two elements
x, y ∈ X are said to be incomparable if neither x ≤ y nor y ≤ x. An antichain in a quasi-order
is a set of pairwise incomparable elements. A quasi-order (X,≤) is a well-quasi-order if X
contains no infinite strictly decreasing sequences and no infinite antichains.

In this paper, we study binary relations defined on sets of graphs. A graph H is said to be
a minor of a graph G if H can be obtained from G by a (possibly empty) sequence of vertex
deletions, edge deletions and edge contractions. According to the celebrated Graph Minor
Theorem of Robertson and Seymour, the set of all graphs is well-quasi-ordered by the graph
minor relation [8]. This, however, is not the case for the more restrictive relations such as
subgraphs or induced subgraphs. A graphH is a subgraph of G ifH can be obtained fromG by
a (possibly empty) sequence of vertex deletions and edge deletions; H is an induced subgraph
of G if H can be obtained from G by a (possibly empty) sequence of vertex deletions. Clearly,
the cycles C3, C4, C5, . . . form an infinite antichain with respect to both relations. Except for
this example, only a few other infinite antichains are known with respect to the subgraph or
induced subgraph relations. One of them is the sequence of graphsH1,H2,H3, . . . represented
in Figure 1(left). Moreover, Ding proved in [3] that, in a sense, the cycles C3, C4, C5, . . . and
the graphs H1,H2,H3, . . . are the only two infinite antichains with respect to the subgraph
relation. More formally, Ding proved that a class of graphs closed under taking subgraphs
is well-quasi-ordered by the subgraph relation if and only if it contains finitely many graphs
Cn and Hn. The situation with induced subgraphs is less explored.
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Figure 1: Graphs Hi (left) and Sun4 (right)

Damaschke [2] proved that the class of cographs is well-quasi-ordered by induced sub-
graphs. A cograph is a graph whose every induced subgraph with at least two vertices is
either disconnected or the complement of a disconnected graph. The class of cographs is
precisely the class of P4-free graphs, i.e., graphs containing no P4 as an induced subgraph.
In [3], Ding studied bi-cographs, i.e., the bipartite analog of cographs: these are bipartite
graphs whose every induced subgraph with at least two vertices is either disconnected or the
bipartite complement of a disconnected graph. Ding proved that the class of bi-cographs is
also well-quasi-ordered by induced subgraphs. In terms of forbidden induced subgraphs this
is precisely the class of (P7, Sun4, S1,2,3)-free bipartite graphs [3] (see also [5]), where Sun4

is the graph represented in Figure 1(right) and S1,2,3 is a tree with 3 leaves being of distance
1,2,3 from the only vertex of degree 3.

Obviously, exclusion of an induced path is a necessary condition for a class of graphs de-
fined by finitely many forbidden induced subgraphs to be well-quasi-ordered, since otherwise
the class contains infinitely many cycles. It is also necessary for such classes to exclude the
complement of an induced path, since the complements of cycles also form an antichain with
respect to the induced subgraph relation. In the case of bipartite graphs, together with an
induced path one also has to exclude the bipartite complement P̃k of an induced path Pk.
Excluding an induced path and the bipartite complement of an induced path is not, however,
sufficient for a class of bipartite graphs to be well-quasi-ordered. In [3], Ding found an infinite
antichain of (P8, P̃8)-free bipartite graphs. On the other hand, he proved that (P6, P̃6)-free
bipartite graphs are well-quasi-ordered by induced subgraphs. Observe that the bipartite
complement of a P7 is a P7 again. The question whether the class of P7-free bipartite graphs
is well-quasi-ordered remained open for about 20 years. In the present paper we answer this
question negatively by exhibiting an antichain of P7-free bipartite graphs. Moreover, we show
that this antichain is also Sun4-free. On the other hand, we show that (P7, Sun1)-bipartite
graphs are well-quasi-ordered by the induced subgraph relation, where Sun1 is the graph
obtained from Sun4 by deleting 3 vertices of degree 1. We also obtain two other positive re-
sults. First, we show that (P7, S1,2,3)-free bipartite graphs are well-quasi-ordered by induced
subgraphs, generalizing both the bi-cographs and P6-free graphs. Second, we prove that Pk-
free bipartite permutation graphs are well-quasi-ordered by induced subgraphs for any value
of k. The latter fact is in contrast with one more negative result of the present paper: by
strengthening the Ding’s idea, we show that (P8, P̃8)-free bipartite graphs are not well-quasi-
ordered even when restricted to biconvex graphs, a class generalizing bipartite permutation
graphs. The relationship between the classes of graphs under consideration is represented in
Figure 2.

All graphs in this paper are undirected, without loops or multiple edges. The vertex set
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Figure 2: Inclusion relationships between subclasses of bipartite graphs

of a graph G is denoted V (G) and its edge set E(G). For a subset U ⊆ V (G), by G[U ] we
denote the subgraph of G induced by U . The neighborhood of a vertex v ∈ V (G) (i.e., the
set of vertices of G adjacent to v) is denoted NG(v). The degree of a vertex is the number of
its neighbors. A graph is 1-regular if each of its vertices has degree 1.

As usual, we denote by Pn, Cn and Kn the chordless path, the chordless cycle and the
complete graph on n vertices. Also, 2K2 is the disjoint union of two copies of K2.

A graph is bipartite if the vertex set of the graph can be split into two parts each of which
is an independent set, i.e., a set of pairwise nonadjacent vertices. The bipartite complement
of a bipartite graph G = (V1, V2, E) with parts V1 and V2 and vertex set E is a bipartite
graph G̃ = (V1, V2, V1 × V2 − E).

We say that a graph G is H-free if G contains no copy of H as an induced subgraph. It is
well known (and not difficult to see) that a 2K2-free bipartite graph possesses the property
that the vertices in each part of the graph can be linearly ordered under inclusion of their
neighborhoods.

2 Not well-quasi-ordered classes of bipartite graphs

In [3], Ding proved that the class of (P8, P̃8)-free bipartite graphs is not well-quasi-ordered by
the induced subgraph relation. In this section, we strengthen this result in two ways. First,
we show that P7-free bipartite graphs are not wqo. Then we prove that (P8, P̃8)-free biconvex
graphs are not wqo. To prove the results, in both cases we use the notion of a permutation,
i.e., a bijection of the set [n] := {1, 2, . . . , n} to itself. To represent a permutation π : [n] → [n],
we use one of the following two ways:

• one-line notation, which is the ordered sequence (π(1), π(2), . . . , π(n)).

• a diagram (see Figure 3 for an example).
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Figure 3: The diagram representing the permutation (2, 3, 5, 1, 7, 4, 9, 6, 12, 8, 11, 10).

The permutation graph Gπ of a permutation π is the intersection graph of the digram
representing π. Figure 4 gives an example of a permutation and its permutation graph.

The composition µ ◦ ρ of two permutations µ and ρ is a permutation π such that π(i) =
µ(ρ(i)). The inverse of a permutation π is a permutation π−1 such that π−1(π(i)) = i.

Let π and ρ be two permutations given in one-line notation. We say that π is contained
in ρ if ρ has a subsequence which is order-isomorphic to π. (Two sequences (a1, . . . , an) and
(b1, . . . , bn) are order-isomorphic if ai ≤ aj if and only if bi ≤ bj .) It is not difficult to see
from the diagram representations that if Gπ is not an induced subgraph of Gρ, then π is not
contained in ρ.

2.1 The class of (P7, Sun4)-free bipartite graphs is not WQO

We start by introducing a special class of bipartite graphs defined as follows:

Definition 1. For each permutation π := πn on [n], the graph T := Tπ is a bipartite graph
with parts A ∪C and B ∪D, where:

1. The vertex set of T is the disjoint union of four independent vertex sets

• A := {a1, a2, . . . , an},

• B := {b1, b2, . . . , bn},

• C := {c1, c2, . . . , cn},

• D := {d1, d2, . . . , dn}.

2. X(T ) := T [A∪B] is a 1-regular graph with ei := aibπ(i) being an edge for each i ∈ [n].

3. Y (T ) := T [C ∪D] is a biclique (i.e., a complete bipartite graph).

4. Each of Z ′(T ) := T [A∪D] and Z ′′(T ) := T [B∪C] is a 2K2-free bipartite graph defined
as follows: for i = 1, 2, . . . , n,

• NZ′(ai) = {d1, . . . , di},

• NZ′′(bi) = {c1, . . . , ci}.

Any graph of the form Tπ will be called a T -graph.

In order to derive the main result of this section, we will show that every T -graph is
(P7, Sun4)-free and that the set of T -graphs is not well-quasi-ordered by induced subgraphs.
In fact, we will prove a slightly stronger result: we will show that every T -graph is (2P3, Sun4)-
free, where 2P3 is the graph obtained from P7 by deleting the central vertex.
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Lemma 1. Any T -graph is (2P3, Sun4)-free.

Proof. Suppose, for contradiction, that T := Tπ contains an induced 2P3. Then it is easy to
check that each of the two P3 must contain at least one vertex in each of X(T ) and Y (T ).
Note that the vertices in 2P3 ∩ Y (T ) must all belong to the same part of the biclique Y (T ).
We may assume without loss of generality that this part is D. It is clear that each P3 has
an edge from A to D. But then Z ′(T ) is not 2K2-free, a contradiction showing that T is
2P3-free.

Now suppose, for contradiction, that T contains an induced Sun4. Note that any two
vertices in the same part of Y (T ) have nested neighborhoods. Therefore, no two vertices of
degree 3 in the Sun4 can belong to the same part of Y (T ). This implies that no two vertices
of degree 3 in the Sun4 can belong to the same part of X(T ). Therefore, each of A,B,C
and D must contain exactly one vertex of degree 3 in the Sun4. Suppose that these vertices
are a, b, c and d, respectively. The leaf attached to a in the Sun4 cannot belong to B (since
otherwise a has degree more than 1 in X(T )) and cannot belong to D (since otherwise Y (T )
is not a biclique). This contradiction shows that T is Sun4-free.

Now we turn to showing that the set of T -graphs is not well-quasi-ordered by the induced
subgraph relation. To this end, for each even n ≥ 6 we define a specific permutation π∗

n, as
follows:

π∗
n := (4, 2, . . . , 2j, 2j − 5, . . . , n− 1, n − 3) j = 3, . . . , n/2.

For instance, π∗
6 = (4, 2, 6, 1, 5, 3) and π∗

8 = (4, 2, 6, 1, 8, 3, 7, 5). For n = 10, we use the
diagram to represent π∗

n (see Figure 4 (left)). This diagram can also be interpreted as the
subgraph X(T ) of Tπ∗

10
, which can be seen by labeling the vertices in the upper part of the

diagram by a1, . . . , a10 consecutively from left to right and the vertices in the lower part of
the diagram by b1, . . . , b10 consecutively from left to right. The permutation graph Gπ∗

10
of

the permutation π∗
10 is represented in Figure 4 (right).
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Figure 4: The permutation π∗
10 (left) and the permutation graph Gπ∗

10
(right)

The important fact about the permutations π∗
n is that

Claim 2. The sequence π∗
6, π

∗
8 , π

∗
10 . . . is an antichain of permutations with respect to the

containment relation.

This claim follows directly from the fact that no graph Gπ∗
n
is an induced subgraph of Gπ∗

m

with n 6= m, which can be easily seen. We now use Claim 2 in order to prove the following
result.
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Lemma 3. The sequence Tπ∗
6
, Tπ∗

8
, Tπ∗

10
, . . . is an antichain with respect to the induced sub-

graph relation.

Proof. Suppose by contradiction that there is a graphH := Tπ∗
m
which is an induced subgraph

of a graph G := Tπ∗
n
for some even 6 ≤ m < n. We fix an arbitrary embedding of H into G,

i.e., we assume that V (H) ⊂ V (G). We will denote the vertex subsets A,B,C,D of the graph
H by A(H), B(H), C(H),D(H) and of the graph G by A(G), B(G), C(G),D(G). Since both
graphs are connected bipartite and πn = π−1

n , then in both graphs the role of the parts A∪C
and B ∪D is symmetric, so we may assume that

Claim 4. A(H) ∪ C(H) ⊆ A(G) ∪ C(G) and B(H) ∪D(H) ⊆ B(G) ∪D(G).

Keeping Claim 4 in mind, we derive a series of conclusions. First, we show that

Claim 5. |A(H) ∩C(G)| ≤ 1, |B(H) ∩D(G)| ≤ 1, |C(H) ∩A(G)| ≤ 1, |D(H) ∩B(G)| ≤ 1.

Proof. Suppose |A(H) ∩C(G)| ≥ 2, and pick two distinct vertices ai, aj ∈ A(H) that belong
to C(G). Let π := π∗

m. Since Y (G) is a biclique, both bπ(i) and bπ(j) must lie in B(G), which
contradicts the 2K2-freeness of Z ′′(G). Thus |A(H) ∩ C(G)| ≤ 1. The second inequality
follows by symmetry.

Suppose ci, cj ∈ C(H) ∩A(G) (i < j). Since bj ∈ B(H) is adjacent to both ci and cj, we
have bj ∈ D(G). Since |B(H) ∩ D(G)| ≤ 1, bi ∈ B(G). Then aπ−1(i) is adjacent to bi but
bi has only one neighbor ci in A(G), and therefore aπ−1(i) ∈ C(G). Then aπ−1(i) ∈ C(G) is
adjacent to bj ∈ D(G), a contradiction. This proves that |C(H) ∩ A(G)| ≤ 1. The fourth
inequality follows by symmetry.

Now we prove that

Claim 6. |X(H) ∩ Y (G)| ≤ 1 and |Y (H) ∩X(G)| ≤ 1.

Proof. By Claim 5 and the definition of Y (G), if the intersection X(H)∩ Y (G) contains two
vertices, then these vertices must be adjacent. Let π := π∗

m and suppose an edge aibπ(i) of
X(H) belongs to Y (G). By Claim 5, |D(H) ∩ B(G)| ≤ 1, which means that ai is adjacent
to all but at most one vertex of D(H). According to the definition of H, we conclude that
i ∈ {m − 1,m}. Similarly, bπ(i) is adjacent to all but at most one vertex of C(H), implying
that π(i) ∈ {m−1,m}. Together i ∈ {m−1,m} and π(i) ∈ {m−1,m} imply i = π(i) = m−1.
From this and Claim 5 we conclude that both am ∈ A(H) and bm ∈ B(H) belong to X(G).
Also, since

• am−1 ∈ A(H) belongs to Y (G),

• am−1 is not adjacent to dm ∈ D(H) in H and

• Y (G) is a biclique,

we conclude that dm ∈ D(H) belongs to X(G). Similarly, cm ∈ C(H) belongs to X(G).
This contradicts the 1-regularity of X(G), since cm ∈ A(G) is adjacent to both bm and dm in
B(G). Thus |X(H) ∩ Y (G)| ≤ 1.

The prove the second inequality, suppose there is an edge cd of Y (H) belonging to X(G).
By definition, vertex c ∈ C(H) must have a neighbor in B(H), and due to 1-regularity of

6



X(G) this neighbor must belong to D(G). Similarly, d must have a neighbor in A(H)∩C(G).
But this contradicts |X(H) ∩ Y (G)| ≤ 1.

Next, we show that

Claim 7. X(H) ∩ Y (G) = Y (H) ∩X(G) = ∅.

Proof. Assume first that X(H) ∩ Y (G) is not empty, and suppose without loss of generality
that a vertex ai of A(H) belongs to Y (G). Then by Claim 6 all vertices of B(H) belong
to X(G). By Claim 5, |D(H) ∩ B(G)| ≤ 1, which means that ai is adjacent to all but at
most one vertex of D(H). According to the definition of H, we conclude that i = m− 1 or
i = m. In either case, vertex bm is not adjacent to ai, and the neighborhood of bm in the
graph Z ′′(H) is strictly greater than the neighborhood of bπ(i).

Suppose i = m. By Claim 5, at least one of cm−1, cm ∈ C(H) belongs to C(G), say
cm ∈ C(G). But then am, bm−3, bm, cm induce a 2K2, contradicting the 2K2-freeness of
Z ′′(G).

Suppose now that i = m− 1. By definition, the vertex am−1 of A(H) has a non-neighbor
in D(H). Therefore, the set D(H) must have a vertex in X(G). This implies by Claim 6
that C(H) ⊂ C(G), and hence the vertices am−1, bm−1, cm, bm induce a 2K2, contradicting
the 2K2-freeness of Z

′′(G). This completes the proof of the fact that X(H) ∩ Y (G) = ∅.

Now assume that Y (H) ∩X(G) 6= ∅ and suppose without loss of generality that a vertex
di of D(H) belongs to X(G). Since X(H)∩Y (G) = ∅, the vertex ai ∈ A(H) lies in A(G) and
has two neighbors bπ(i) and di in B(G), a contradiction. Therefore, Y (H) ∩X(G) = ∅.

Claims 7 and Claim 4 together imply the following conclusion.

Claim 8. A(H) ⊆ A(G), B(H) ⊆ B(G), C(H) ⊆ C(G) and D(H) ⊆ D(G).

Assuming that H is an induced subgraph of G, we must conclude that the ordering of
vertices of A(H) respects the ordering of vertices of A(G), and similarly, the ordering of
vertices of B(H) respects the ordering of vertices of B(G). But then we must conclude that
π∗
m is contained in π∗

n which is a contradiction to Claim 2. This contradiction completes the
proof of the lemma.

Lemmas 1 and 3 imply the main result of this section.

Theorem 9. The class of (P7, Sun4)-free bipartite graphs is not well-quasi-ordered by the
induced subgraph relation.

2.2 The class of (P8, P̃8)-free biconvex graphs is not WQO

A bipartite graph is biconvex if the vertices of the graph can be linearly ordered so that the
neighborhood of each vertex forms an interval, i.e., the neighborhood consists of consecutive
vertices in the order. [9] Strengthening the result from [3], we show in this section that the
class of (P8, P̃8)-free biconvex graphs is not wqo by the induced subgraph relation. We start
by introducing two special types of permutations.
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Definition 2. A permutation πn is convex if for any 1 ≤ i ≤ n the set π−1
n ({i, i+ 1, . . . , n−

1, n}) forms an interval, i.e., the elements of the set occupy consecutive positions in the
permutation.

For instance, the permutation ρ = (1, 2, 3, 5, 7, 9, 10, 8, 6, 4) is convex. Indeed, the el-
ements of the set {5, 6, 7, 8, 9, 10} occupy positions 4, 5, 6, 7, 8, 9, the elements of the set
{6, 7, 8, 9, 10} occupy positions 5, 6, 7, 8, 9, and the same is true for any other set of the form
{i, i + 1, . . . , n − 1, n}. The permutation µ = (2, 3, 5, 7, 10, 9, 8, 6, 4, 1) is another example of
a convex permutation.

Definition 3. A permutation π is biconvex if there are two convex permutations µ and ρ
such that π = µ ◦ ρ−1.

To give an example, consider the following permutation: π = (2, 3, 5, 1, 7, 4, 10, 6, 9, 8). It
is not difficult to verify that π = µ◦ρ−1, where µ and ρ are the two convex permutations given
above. For instance, π(1) = µ(ρ−1(1)) = 2, π(2) = µ(ρ−1(2)) = 3, π(3) = µ(ρ−1(3)) = 5, etc.
Therefore, π is a biconvex permutation.

By π[µ, ρ] we shall denote a biconvex permutation π given together with a pair of convex
permutations µ and ρ such that π = µ ◦ ρ−1. Now we introduce a special class of bipartite
graphs defined as follows:

Definition 4. For a biconvex permutation π := πn[µ, ρ], the graph S := Sπ is a bipartite
graph with parts A ∪ C and B, where:

1. V (S) is the disjoint union of three independent vertex sets

• A := {a1, a2, . . . , an},

• B := {b1, b2, . . . , bn},

• C := {c1, c2, . . . , cn},

2. Each of X(S) := S[A ∪B] and Y (S) := S[B ∪C] is a 2K2-free bipartite graph defined
as follows: for i = 1, 2, . . . , n,

• NX(bi) = {a1, . . . , aρ(i)},

• NY (bi) = {c1, . . . , cµ(i)}.

Any graph of the form Sπ will be called an S-graph.

Remark. NG(ai) = {bρ−1(i), . . . , bρ−1(n)} and NG(ci) = {bµ−1(i), . . . , bµ−1(n)}.

Claim 10. Any S-graph is a (P8, P̃8)-free biconvex graph.

Proof. Let S := Sπ be an S-graph associated with a biconvex permutation π := πn such that
π = µ ◦ ρ−1, where µ and ρ are two convex permutations. The (P8, P̃8)-freeness of S follows
from the 2K2-freeness of X(T ) and Y (T ). Now let us prove that S is biconvex. To this end,
we need to show that the vertices in each part of the graph can be linearly ordered so that the
neighborhood of any vertex in the opposite part forms an interval. To achieve this goal we
keep the natural order of the vertices in the B-part, i.e., B = (b1, . . . , bn). The vertices of the
A∪C-part are ordered under inclusion of their neighborhoods, increasingly for the A-vertices
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and decreasingly for the C-vertices, i.e., the vertices with the largest neighborhood in A and
C are in the middle of the order. Now let us show that the defined order is biconvex.

Let b be any vertex from B. If b is adjacent to any vertex a from A, then b is adjacent to
any vertex from A with larger neighborhood than N(a), i.e., b is adjacent to any vertex of A
following a. Similarly, if b is adjacent to any vertex c from C, then b is adjacent to any vertex
from C with larger neighborhood than N(c), i.e., b is adjacent to any vertex of C preceding
c. Therefore, N(b) is an interval.

Now let ai be a vertex from A. Let I be the interval (i.e., the set of positions) of length
n−i+1 containing the elements {i, . . . , n} of the permutation ρ. Then N(ai) = {bj : j ∈ I},
i.e., N(ai) is an interval. Similarly, if ci is a vertex from C and I is the interval of length
n− i+1 containing the elements {i, . . . , n} of the permutation µ, then N(ci) = {bj : j ∈ I},
i.e., N(ci) is an interval

Now we define a specific permutation π∗
n in the following way: for each even n ≥ 8,

π∗
n := (2, 3, 5, 1 . . . , 2j + 3, 2j, . . . , n, n− 4, n− 1, n − 2) j = 2, . . . , n/2− 4.

For instance, π∗
8 = (2, 3, 5, 1, 8, 4, 7, 6) and π∗

10 = (2, 3, 5, 1, 7, 4, 10, 6, 9, 8). The permutation
π∗
12 is represented in Figure 3.
Let us show that π∗

n is a biconvex permutation. To this end, we define two convex
permutations ρ∗n and µ∗

n in the following way:

ρ∗n := (1, 2, 3, 5 . . . , odd numbers, . . . , n− 3, n− 1, n, n − 2, . . . , even numbers, . . . , 6, 4).

µ∗
n := (2, 3, 5 . . . , odd numbers, . . . , n− 3, n, n− 1, n− 2, n− 4, . . . , even numbers, . . . , 6, 4, 1).

It is not difficult to verify that for n = 10 the permutations π∗
n, ρ

∗
n and µ∗

n coincide with the
permutations π, ρ and µ defined in the beginning of the section.

Claim 11. π∗
n = µ∗

n ◦ ρ∗−1
n .

Proof. For small and large values of i, one can verify by direct inspection that π∗
n(i) =

µ∗
n(ρ

∗−1
n (i)). Now let 4 < i < n − 3. If i is odd then π∗

n(i) = µ∗
n(ρ

∗−1
n (i)) = i + 2, and if i is

even then π∗
n(i) = µ∗

n(ρ
∗−1
n (i)) = i− 2.

Lemma 12. The sequence Sπ∗
8
, Sπ∗

10
, Sπ∗

12
, . . . is an antichain with respect to the induced

subgraph relation.

Proof. Suppose by contradiction that there is a graphH := Sπ∗
m
which is an induced subgraph

of a graph G := Sπ∗
n
for some even 8 ≤ m < n. We fix an arbitrary embedding of H into

G, i.e., we assume that V (H) ⊂ V (G). Since both graphs are connected bipartite, we may
assume that exactly one of the following two possibilities holds:

1. A(H) ∪ C(H) ⊆ A(G) ∪ C(G) and B(H) ⊆ B(G).

2. A(H) ∪ C(H) ⊆ B(G) and B(H) ⊆ A(G) ∪ C(G)

We claim that the first possibility holds.

Claim 13. A(H) ∪C(H) ⊆ A(G) ∪ C(G) and B(H) ⊆ B(G).
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Proof. Note that, by definition, A(G)∪C(G) can be partitioned into two chains with respect
to the neighborhood inclusion. On the other hand, the set B(H) does not have this property,
since bn/2, bn/2+1, bn/2+2 is an antichain of length 3 with respect to the same relation. Indeed,
ρ∗(n/2) = n− 3, ρ∗(n/2+ 1) = n− 1, ρ∗(n/2+2) = n and µ∗(n/2) = n, µ∗(n/2+ 1) = n− 1
and µ∗(n/2 + 2) = n− 2. This proves the claim.

We make the following helpful remark:

• If two vertices of B(H) are incomparable with respect to the neighborhood inclusion
in B(H), then these two vertices must also be incomparable with respect to the neigh-
borhood inclusion in B(G).

Let B′(H) be the incomparability graph for the relation of neighborhood inclusion on
the vertex set B(H). In other words, two vertices of B(H) are adjacent in B′(H) precisely
when they are incomparable with respect to the neighborhood inclusion. We define B′(G)
similarly.

Clearly, by the above remark, B′(H) must be a subgraph of B′(G). But for any even
n ≥ 8, the graph B′(Sπ∗

n
) is simply the permutation graph Gπ∗

n
of π∗

n and this graph is
represented in Figure 5.

s s s ❵ ❵ ❵ s s
s

s

s

s
❅

❅

�
�

�
�

❅
❅

1 2 n− 5

Figure 5: The graph B′(Sπ∗
n
) = Gπ∗

n

It is not difficult to see that the sequence of graphs Gπ∗
n
, n ≥ 8, forms an antichain with

respect to the (induced) subgraph relation. Therefore, B′(H) is not a subgraph of B′(G).
As a result, H is not an induced subgraph of G. This contradiction completes the proof of
Lemma 12.

Lemma 12 and Claim 10 together imply the main result of this section:

Theorem 14. The class of (P8, P̃8)-free biconvex graphs is not well-quasi-ordered by the
induced subgraph relation.

3 Well-quasi-ordered classes of bipartite graphs

In this section, we turn to positive results, i.e., to classes of bipartite graphs which are
well-quasi-ordered by the induced subgraph relation.
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3.1 The class of (P7, S1,2,3)-free bipartite graphs

In [3], Ding showed that (P7, S1,2,3, Sun4)-free bipartite graphs and (P6, P̃6)-free bipartite
graphs are well-quasi-ordered by the induced subgraph relation. Now we extend both results
to the larger class of (P7, S1,2,3)-free bipartite graphs. To this end, let us introduce the
following notation.

Given a set of bipartite graphs F , we denote by [F ] the set of bipartite graphs constructed
from graphs in F by means of the following three binary operations defined for any two disjoint
bipartite graphs G1 = (X1, Y1, E1) and G2 = (X2, Y2, E2):

• the disjoint union is the operation that creates out of G1 and G2 the bipartite graph
G = (X1 ∪X2, Y1 ∪ Y2, E1 ∪ E2),

• the join is the operation that creates out of G1 and G2 the bipartite graph which is the
bipartite complement of the disjoint union of G̃1 and G̃2,

• the skew join is the operation that creates out of G1 and G2 the bipartite graph G =
(X1 ∪X2, Y1 ∪ Y2, E1 ∪ E2 ∪ {xy : x ∈ X1, y ∈ Y2}).

The importance of these operations is due to the following theorem.

Theorem 15. If F is a set of bipartite graphs well-quasi-ordered by the induced subgraph
relation, then so is [F ].

For the proof of this theorem, we refer the reader to Theorems 4.1 and 4.4 from [3], where
the author used this result (without formulating it implicitly) in his proof that (P7, S1,2,3,

Sun4)-free bipartite graphs and (P6, P̃6)-free bipartite graphs are will-quasi-ordered by the
induced subgraph relation. Now we combine Theorem 15 with a result from [4] that can be
formulated as follows.

Theorem 16. The class of (P7, S1,2,3)-free bipartite graphs is precisely [{K1}].

Together, Theorem 15 and Theorem 16 imply the following conclusion.

Theorem 17. The class of (P7, S1,2,3)-free bipartite graphs is well-quasi-ordered by the in-
duced subgraph relation.

3.2 The class of (P7, Sun1)-free bipartite graphs

The graph Sun1 is obtained from Sun4 (Figure 1) by deleting three vertices of degree 1.
Therefore, the class of (P7, Sun1)-free bipartite graphs is a proper subclass of (P7, Sun4)-free
bipartite graphs. In contrast to the result of Section 2.1, below we prove that (P7, Sun1)-
free bipartite graphs are well-quasi-ordered by the induced subgraph relation. According to
Theorem 15, it suffices to show that the set of connected (P7, Sun1)-free bipartite graphs
is well-quasi-ordered by this relation. The following lemma shows that the structure of
connected graphs in this class containing a C4 is rather simple.

Lemma 18. Every connected (P7, Sun1)-free bipartite graph containing a C4 is complete
bipartite.

11



Proof. LetH be a (P7, Sun1)-free bipartite graph containing a C4. Denote byH ′ any maximal
complete bipartite subgraph of H containing the C4. If H

′ 6= H, there must exist a vertex v
outside H ′ that has a neighbor in H ′. If v is a adjacent to every vertex of H ′ in the opposite
part, then H ′ is not maximal, and if v has a non-neighbor in the opposite part of H ′, the
reader can easily find an induced Sun1. The contradiction in both cases shows that H ′ = H,
i.e., H is a complete bipartite graph.

It is not difficult to see that there is no infinite antichain of complete bipartite graphs,
which follows, for instance, from the fact that every complete bipartite graph is P4-free and
the class of P4-free (not necessarily bipartite) graphs is well-quasi-ordered. This observa-
tion together with Lemma 18 reduces the problem from (P7, Sun1)-free bipartite graphs to
(P7, C4)-free bipartite graphs. The proof that the class of (P7, C4)-free bipartite graphs is
well-quasi-ordered is based on the following lemma.

Lemma 19. No (P7, C4)-free bipartite graph contains P9 as a subgraph (not necessarily in-
duced).

Proof. Let G be a (P7, C4)-free bipartite graph. To prove the lemma, we first derive the
following helpful observation.

Claim 20. If P := (a1, a2, . . . , a7) is a copy of P7 contained in G as a subgraph, then P has
exactly one chord in G, either a1a6 or a2a7.

Proof. Since G is P7-free, P must contain a chord, and since G is bipartite, any chord of P
connects an even-indexed vertex to an odd-indexed one. Among 6 possible chords of P only
a1a6 and a2a7 do not produce a C4, and these two chords cannot be present in the graph
simultaneously, since otherwise the vertices a1, a2, a7, a6 induce a C4. Therefore, P must
contain exactly one of a1a6 or a2a7 as a chord.

Suppose now that Q := (b1, b2, . . . , b9) is a copy of P9 contained as a subgraph in G, and
for 1 ≤ i ≤ 3, let Qi := (bibi+1 . . . bi+6). If b1b6 is a chord of Q, then Claim 20 applied to
each of Q1, Q2 and Q3 implies that Q contains exactly two chords, namely b1b6 and b3b8. But
then the vertices b1, b6, b5, b4, b3, b8, b9 induce a P7, a contradiction.

The case when b1b6 is not a chord of Q is symmetric and also leads (with the help of
Claim 20) to an induced P7 in G. The contradiction in both cases shows that G does not
contain P9 as a subgraph.

Now we combine Lemma 19 with the following result by Ding [3].

Theorem 21 (Ding [3]). For any fixed k ≥ 1, the class of graphs containing no Pk as a (not
necessarily induced) subgraph is well-quasi-ordered by the induced subgraph relation.

Together Lemma 19 and Theorem 21 imply the main conclusion of this section.

Theorem 22. The class of (P7, C4)-free bipartite graphs is well-quasi-ordered by the induced
subgraph relation.

12



3.3 The class of Pk-free bipartite permutation graphs

The class of bipartite permutation graphs is the intersection of bipartite graphs and permu-
tation graphs. This class is a subclass of biconvex graphs (see e.g. [1]). In contrast to the
result of Section 2.2 we show that Pk-free bipartite permutation graphs are well-quasi-ordered
by the induced subgraph relation for any fixed value of k. In general, bipartite permutation
graphs are not well-quasi-ordered by this relation, since they contain the antichain of graphs
of the form Hi (Figure 1). Our proof is based on a number of known results.

Denote by Hn,m the graph with nm vertices which can be partitioned into n independent
sets V1 = {v1,1, . . . , v1,m}, . . ., Vn = {vn,1, . . . , vn,m} so that for each i = 1, . . . , n − 1 and for
each j = 1, . . . ,m, vertex vi,j is adjacent to vertices vi+1,1, vi+1,2, . . . , vi+1,j and there are no
other edges in the graph. In other words, every two consecutive independent sets induce in
Hn,m a universal chain graph. An example of the graph Hn,n with n = 5 is given in Figure 6.
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Figure 6: The graph H5,5

It is not difficult to see that the graph Hn,n is a bipartite permutation graph. Moreover,
it was proved in [6] that Hn,n is an n-universal bipartite permutation graph in the sense
that every bipartite permutation graph with n vertices is an induced subgraph of Hn,n. If
a connected bipartite permutation graph is Pk-free, it occupies at most k consecutive levels
of Hn,n. In other words, every connected Pk-free bipartite permutation graph is an induced
subgraph of Hk,n.

In order to prove that Pk-free bipartite permutation graphs are well-quasi-ordered, we will
show that any connected graph in this class is a k-letter graph. This notion was introduced
in [7] and its importance for our study is due to the following result also proved in [7].

Theorem 23. For any fixed k, the class of k-letter graphs is well-quasi-ordered by the induced
subgraph relation.

The k-letter graphs have been characterized in [7] as follows.
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Theorem 24 (Petkovšek [7]). A graph G = (V,E) is a k-letter graph if and only if

1. there is a partition V1, . . . , Vp of V (G) with p ≤ k such that each Vi is either a clique
or an independent set in G,

2. there is a linear ordering L of V (G) such that for each pair of indices 1 ≤ i, j ≤ p,
i 6= j, the intersection of E with Vi × Vj is one of

(a) L ∩ (Vi × Vj),

(b) L−1 ∩ (Vi × Vj),

(c) Vi × Vj,

(d) ∅.

Corollary 25. Connected Pk-free bipartite permutation graphs are k-letter graphs.

Proof. From Theorem 24 it follows that an induced subgraph of a k-letter graph is again
a k-letter graph. In addition, we have seen already that any connected Pk-free bipartite
permutation graph is an induced subgraph of Hk,n. Therefore, all we have to do is to prove
that Hk,n is a k-letter graph. To this end, we define a partition V1, . . . , Vk of the vertices of
Hk,n by defining Vi to be the i-th row of Hk,n. Thus the first condition of Theorem 24 is
satisfied. Then we define a linear ordering L of the vertices of Hk,n by listing first the vertices
of the first column consecutively from bottom to top, then the vertices of the second column,
and so on. Now let’s take any two subsets Vi and Vj with i 6= j. If they are not consecutive
rows of the graph, then the intersection of E with Vi × Vj is empty. If they are consecutive,
then the intersection of E with Vi × Vj is either L ∩ (Vi × Vj) (if i > j) or L−1 ∩ (Vi × Vj) (if
i < j). Thus the second condition of Theorem 24 is satisfied, which proves the corollary.

Combining Corollary 25 with Theorems 15 and 23 we conclude that

Corollary 26. For any fixed k, the class of Pk-free bipartite permutation graphs is well-
quasi-ordered by the induced subgraph relation.
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