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Abstract: An hourglass is the only graph with degree sequence 4,2,2,2,2
(i.e. two triangles meeting in exactly one vertex). There are infinitely many
claw-free graphs G such that G is not hamiltonian connected while its
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Ryjác̆ek closure cl(G) is hamiltonian connected. This raises such a problem
what conditions can guarantee that a claw-free graph G is hamiltonian
connected if and only if cl(G) is hamiltonian connected. In this paper, we
will do exploration toward the direction, and show that a 3-connected {claw,
(P6)2, hourglass}-free graph G with minimum degree at least 4 is hamilto-
nian connected if and only if cl(G) is hamiltonian connected, where (P6)2 is
the square of a path P6 on 6 vertices. Using the result, we prove that every
4-connected {claw , (P6)2,hourglass}-free graph is hamiltonian connected,
hereby generalizing the result that every 4-connected hourglass-free line
graph is hamiltonian connected by Kriesell [J Combinatorial Theory (B) 82
(2001), 306–315]. � 2010 Wiley Periodicals, Inc. J Graph Theory 68: 285–298, 2011

MSC 2000: 05C45; 05C38
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1. INTRODUCTION

Graphs considered in this paper are simple and finite graphs. We use [3] as a source
for undefined terms and notations. An (x1,xn)-path is a path P[x1,xn]=x1x2 . . .xn
whose end-vertices are x1 and xn. P[xi,xj] denotes the sub-path xixi+1 . . .xj for i<j,
and P−[xj,xi] denotes the sub-path xjxj−1 . . .xi for i<j. A path P on n vertices is also
denoted by Pn. For graphs G and H, write G=H to mean that the graphs G and H are
isomorphic. The line graph of a graph H, denoted by L(H), is a graph whose vertex
set V(L(H)) is E(H), where two vertices in L(H) are adjacent if and only if the corre-
sponding edges are adjacent in H. Given a set of graphs S, we say that a graph G is S-free
if G contains no induced subgraph isomorphic to any graph in the set S. An induced
subgraph isomorphic to K1,3 is called a claw, and the only vertex of degree three in the
claw is called the center of the claw. The classical results on line graphs are surveyed
by Hemminger and Beineke [7]. An hourglass is the only graph with degree sequence
4,2,2,2,2 (i.e. two triangles meeting in exactly one vertex) (Fig. 1(A)). The vertex of
degree 4 is called the center of the hourglass. G8 (Fig. 1(B)) is the graph on 6 vertices
u1,u2,u,v,v1,v2 obtained from K4 by deleting one edge v1u2 and adding two paths u2v2v
and v1u1u of length 2, where V(K4)={u,u2,v,v1}. Thus G8 could be easier described
as the square of a path P6 on six vertices, where the square of a graph G is the graph
(denoted by G2) obtained by inserting new edges into G joining all pairs of vertices
at distance 2 in G. Hemminger and Beineke [7] defined nine forbidden subgraphs
{G1 =K1,3,G2 =K5 −e,G3,G4,G5,G6,G7,G8 = (P6)2,G9} (Fig. 2) to characterize line
graphs. One of the major results on line graphs is the following fundamental theorem.

Theorem 1 (Hemminger and Beineke [7]). A connected graph is a line graph if and
only if it is {G1,G2, . . . ,G9}-free.

For hamiltonian connectedness in claw-free graphs, many authors are interested in
it, and there exist many results (see [1–11]). Brandt [4] proved the following result.

Theorem 2 (Brandt [4]). Every 9-connected claw-free graph is hamiltonian
connected.
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A B

FIGURE 1. Forbidden subgraphs: (A) Hourglass and (B) G8= (P6)2.

FIGURE 2. Nine forbidden induced subgraphs for line graphs.

Recently, Hu et al. improved Theorem 2 as follows.

Theorem 3 (Hu et al. [8]). Every 8-connected claw-free graph is hamiltonian
connected.

Lai and Soltes [10] proved the following result.

Theorem 4 (Lai and Soltes [10]). Every 7-connected {claw,K4 −e,G3}-free graph is
hamiltonian connected.

Theorem 5 (Kriesell [9]). Every 4-connected hourglass-free line graph is hamilto-
nian connected.

In this paper, one motivation of ours is to strengthen Theorem 5, and improve
Theorem 4 by reducing connectivity. We show the following result.

Journal of Graph Theory DOI 10.1002/jgt
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Theorem 6. Every 4-connected {claw, (P6)2,hourglass}-free graph is hamiltonian
connected.

Obviously, Theorem 5 is a corollary of Theorem 6 because connected line graphs are
{claw, (P6)2}-free by Theorem 1. The condition of “4-connectedness” in Theorems 5
and 6 is necessary. A vertex x is locally connected if its neighborhood N(x) is connected.
In [12], Ryjác̆ek defined the closure cl(G) of a claw-free graph G to be one obtained
by recursively adding edges to join two nonadjacent vertices in the neighborhood of
any locally connected vertex of G, as long as this is possible. As we know, there are
infinitely many claw-free graphs G such that G is not hamiltonian connected but cl(G)
is hamiltonian connected. This raises such a problem what conditions can guarantee
that a claw-free graph G is hamiltonian connected if and only if cl(G) is hamiltonian
connected. In this paper, the other motivation of ours is to explore this direction. We
show the following result.

Theorem 7. Let G be a 3-connected {claw, (P6)2,hourglass}-free graph with
minimum degree at least 4. Then G is hamiltonian connected if and only if cl(G) is
hamiltonian connected.

Now we guess that the condition of (P6)2-freeness in Theorem 7 may be dropped,
and so make the following conjectures.

Conjecture 8. Let G be a 3-connected {claw,hourglass}-free graph with minimum
degree at least 4. Then G is hamiltonian connected if and only if cl(G) is hamiltonian
connected.

2. PROOFS OF THEOREMS 6 AND 7

In this section, we will provide the proofs of Theorems 6 and 7. If x is a locally
connected vertex of G, then the local completion at x is the operation of adding all
possible edges between vertices in N(x). The resulting graph, denoted by G′

x, is easily
shown to be claw-free again. Iterating local completions, we finally arrive at a graph
in which all locally connected vertices have complete neighborhoods. This graph cl(G)
does not depend on the order of local completions. Ryjác̆ek [12] proved the following
result.

Theorem 9 (Ryjác̆ek [12]). Let G is a connected claw-free graph. Then the closure
cl(G) of G is the line graph of some triangle-free graph.

The following proposition will be used in the proofs of Proposition 12 and Theorem 7.

Proposition 10. Let G be a connected {claw, (P6)2,hourglass}-free graph and x a
locally connected vertex in G. Then G′

x is also {claw, (P6)2,hourglass}-free.

Proof. Obviously, G′
x is claw-free. First we prove that G′

x is hourglass-free. Suppose
that G′

x has an hourglass H =G′
x[v3,v1,v2,v4,v5], where v3 is the center of H. Then

v1v4,v1v5,v2v4,v2v5 /∈E(G′
x) and we have the following claim. �

Claim 1. If v4v5 /∈E(G), then either v3v5 /∈E(G) or v3v4 /∈E(G).
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Proof. If v4v5 /∈E(G), then xv4,xv5 ∈E(G), and v1x /∈E(G) from G[x,v4,v5,v1] �=K1,3.
Thus, v1v3 ∈E(G). If v3v5,v3v4 ∈E(G), then G[v3,v4,v5,v1]=K1,3. This contradiction
shows that v3v5 /∈E(G) or v3v4 /∈E(G). Thus xv3 ∈E(G). If v3v5 /∈E(G) and v3v4 /∈E(G)
then G[v3,v4,v5,x]=K1,3, a contradiction. Thus Claim 1 is true. �

Claim 2. v4v5 ∈E(G) and v1v2 ∈E(G).

Proof. If v4v5 /∈E(G), then, by Claim 1, assume that v3v5 /∈E(G) and v3v4 ∈E(G).
Thus xv4,xv5,xv3 ∈E(G). Obviously, xv1,xv2 /∈E(G). Thus G[v3,v1,v2,x,v4] is an hour-
glass in G. This contradiction shows that v4v5 ∈E(G). Similarly, v1v2 ∈E(G). �

Since G is hourglass-free, there is at least one edge (say v3v5) in {v1v3,v2v3,v3v4,v3v5}
such that v3v5 /∈E(G). Thus, xv3,xv5 ∈E(G). Note that v2x,v1x /∈E(G) since otherwise
v2v5 ∈E(G′

x), a contradiction. Obviously v3v4 /∈E(G) since otherwise xv4 ∈E(G) from
G[v3,v2,v4,x] �=K1,3, and so G[v3,v1,v2,x,v4] is an hourglass in G, a contradiction.
Thus, xv4 ∈E(G). Since dG(x)≥4, there is a vertex v6 such that xv6 ∈E(G). Since x is
a locally connected vertex, there is a vertex y∈N(x) such that yv3 ∈E(G). Without loss
of generality assume that y=v6. Then

Claim 3. Either v1v6 ∈E(G) or v2v6 ∈E(G), and either v4v6 ∈E(G) or v5v6 ∈E(G).

Proof. If v1v6,v2v6 /∈E(G), then G[v3,v1,v2,x,v6] is an hourglass in G. Thus
v1v6∈E(G) or v2v6 ∈E(G). Similarly, v4v6 ∈E(G) or v5v6 ∈E(G). If v1v6 ∈E(G)
and v2v6 ∈E(G), then G[v6,v1,v2,v5,x] is an hourglass in G if v5v6 ∈E(G) and
G[v6,v1,v2,v4,x] is an hourglass in G if v4v6 ∈E(G). This contradiction shows that
v1v6 /∈E(G) or v2v6 /∈E(G). Without loss of generality assume that v1v6 ∈E(G) but
v2v6 /∈E(G). If v4v6 ∈E(G) and v5v6 ∈E(G), then G[v6,v4,v5,v1,v3] is an hourglass in
G. Thus v4v6 /∈E(G) or v5v6 /∈E(G). Thus Claim 3 is true. �

Without loss of generality assume that v1v6 ∈E(G) but v2v6 /∈E(G), and v4v6 ∈E(G)
but v5v6 /∈E(G). Thus G[v1,v2,v3,x,v4,v6] is (P6)2. This contradiction shows that G′

x
is hourglass-free.

Now we prove that G′
x is (P6)2-free. Suppose that G′

x has a subgraph H isomorphic to
(P6)2 such that V(H)={u,v,u1,u2,v1,v2} and E(H)={u1v1,u1u,uu2,u2v2,v2v,vv1,uv1,
uv,u2v} (Fig. 1(B)). Obviously, x /∈{u1,v2}, since otherwise, if x=u1, then u1v1,u1u∈
E(G), and uv1 ∈E(G) since otherwise G[v,v1,v2,u]=K1,3. So E(H) is contained in E(G),
a contradiction. Thus x �=u1. Similarly, x �=v2. We have the
following claim.

Claim 4. u1v1,u2v2 ∈E(G).

Proof. If u1v1 /∈E(G), then xu1,xv1 ∈E(G) by the definition of G′
x. We also have

that u1u∈E(G) or uv1 ∈E(G) since otherwise xu∈E(G) and so G[x,u1,v1,u]=K1,3, a
contradiction.

If xu∈E(G), then uv1 /∈E(G) since otherwise G[x,u,u2,v2,v,v1] is isomorphic
to (P6)2. Thus u1u∈E(G). Obviously, xv,xu2 /∈E(G). Thus, G[u,u1,x,v,u2] is an
hourglass. This contradiction shows that xu /∈E(G). So u1u,uv1 ∈E(G). It follows
that G[u,u1,v1,u2] is a claw. This contradiction shows that u1v1 ∈E(G). Similarly,
u2v2∈E(G). Thus Claim 4 is true. �
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If uu1 /∈E(G), then xu1,xu∈E(G), and so xv,xv2,xu2 /∈E(G). If uv1 ∈E(G), then
xv1 ∈E(G) since otherwise G[u,x,v1,u2]=K1,3. Thus G[x,u,u2,v2,v,v1] is isomorphic
to (P6)2. This contradiction shows that uv1 /∈E(G), and so xv1 ∈E(G) by the definition
of G′

x. Note that xv,xv2 /∈E(G) and so vv2,uv∈E(G). Thus G[v,v1,u,v2]=K1,3. This
contradiction shows that uu1 ∈E(G). Similarly, vv2 ∈E(G).

If uv /∈E(G), then xu,xv∈E(G). Since u1v /∈E(G′
x), xu1 /∈E(G). Since v1u2 /∈

E(G′
x), xv1 /∈E(G) or xu2 /∈E(G) (say xu2 /∈E(G)). It follows that uu2 ∈E(G) and so

G[u,u1,u2,x]=K1,3 since u1u2 /∈E(G). Thus uv∈E(G).
If uu2 /∈E(G), then xu2,xu∈E(G). Since u1u2 /∈E(G), u1x /∈E(G). Since u1v /∈E(G)

and G[u,u1,v,x] �=K1,3, xv∈E(G). Since v1u1 /∈E(G′
x), xv1 /∈E(G) and so v1v∈E(G).

Thus G[v,x,v1,v2]=K1,3. This contradiction shows uu2 ∈E(G). Similarly, vv1 ∈E(G).
Since G[u,u1,v,u2] �=K1,3 and G[v,u,v2,v1] �=K1,3, uv1,u2v∈E(G). Thus all edges in
H belong to E(G). That is, H is isomorphic to (P6)2 in G. This contradiction shows
that G′

x is (P6)2-free. Thus, Proposition 10 is true. �

In order to prove Proposition 12, we need the following lemma.

Lemma 11. Let x1 and xn be two vertices in a connected claw-free graph G of order
n such that G has no any hamiltonian path between them, and let x be a locally
connected vertex in G such that G′

x has a hamiltonian path between x1 and xn. Assume
that P=x1x2 . . . xixi+1 . . . xn−1xn is a hamiltonian path in G′

x connecting x1 and xn such
that |E(P)−E(G)| is minimal. Let xixi+1 ∈E(P)−E(G), xj =x and 1<j<n. Then

(1) xix,xi+1x∈E(G) and xj−1xj+1,xixi+1 /∈E(G).
(2) xixj−1,xi+1xj+1 /∈E(G) and xi+1xj−1,xixj+1 ∈E(G).
(3) P contains exactly one edge xixi+1 ∈E(G′

x)−E(G).

Proof. (1) From the definition of G′
x, we have xixi+1 /∈E(G) and xix,xi+1x∈E(G).

If xj−1xj+1 ∈E(G), and without loss of generality assume that j<i, then there is a
hamiltonian (x1,xn)-path

P′ =P[x1,xj−1]P[xj+1,xi]xjP[xi+1,xn]

in G′
x containing fewer edges of E(G′

x)−E(G) than P since xixi+1 /∈E(P′), a contradic-
tion. Thus (1) is true.

(2) By symmetry, without loss of generality assume that i<j. Then xixj−1 /∈E(G),
since otherwise there exists a hamiltonian (x1,xn)-path P′ =P[x1,xi]P−[xj−1,xi+1]
P[xj,xn] in G′

x containing fewer edges of E(G′
x)−E(G) than P since xixi+1 /∈E(P′), a

contradiction. Similarly, xi+1xj+1 /∈E(G).
From G[xj,xj−1,xi,xi+1] �=K1,3, xi+1xj−1 ∈E(G). Similarly, xixj+1 ∈E(G). Thus (2) is

true.
(3) If P contains at least two edges xixi+1, xkxk+1 in E(G′

x)−E(G) (Fig. 3).
If i<j<k, then, by (2), xj+1xi ∈E(G). Since G[xj,xk,xk+1,xi+1] is not a claw,
xi+1xk ∈E(G) or xi+1xk+1 ∈E(G). If xi+1xk ∈E(G), then there is a hamiltonian
path P′ =P[x1,xi]P[xj+1,xk]P[xi+1,xj]P[xk+1,xn] in G′

x containing fewer edges of
E(G′

x)−E(G) than P since xixi+1,xkxk+1 /∈E(P′). Thus xi+1xk+1 ∈E(G), and so G′
x

has a hamiltonian path P′ =P[x1,xi]P[xj+1,xk]P−[xj,xi+1]P[xk+1,xn] containing fewer
edges of E(G′

x)−E(G) than P since xixi+1,xkxk+1 /∈E(P′). This contradiction shows
that the case i<j<k cannot occur. Without loss of generality assume that i<k<j
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4-CONNECTED HOURGLASS-FREE CLAW-FREE GRAPHS 291

FIGURE 3. A hamiltonian path with xixi+1,xkxk+1∈E(G′
x ) connecting

x1 and xn in G′
x .

(and the proofs of other cases are similar). By (2), xj−1xi+1 ∈E(G). If i+1=k, then
xixi+2 ∈E(G) since G[x,xi,xi+1,xi+2] �=K1,3. Thus

P′ =P[x1,xi]P[xi+2,xj−1]xi+1P[xj(=x),xn]

is a hamiltonian path connecting x1 and xn, but contains fewer edges of E(G′
x)−

E(G) than P since xixi+1,xkxk+1 /∈E(P′). This contradiction shows that i+1 �=k. Since
G[x,xi,xk,xk+1] �=K1,3, xixk ∈E(G) or xixk+1 ∈E(G). If xixk ∈E(G), then

P′ =P[x1,xi]P
−[xk,xi+1]P−[xj−1,xk+1]P[xj,xn]

is a hamiltonian path connecting x1 and xn in G′
x, but contains fewer edges of E(G′

x)−
E(G) than P since xixi+1,xkxk+1 /∈E(P′), a contradiction. Thus xixk /∈E(G) and so
xixk+1 ∈E(G) (Fig. 3). It follows that

P′ =P[x1,xi]P[xk+1,xj−1]P[xi+1,xk]P[xj(=x),xn]

is a hamiltonian path connecting x1 and xn in G′
x containing fewer edges of E(G′

x)−E(G)
than P since xixi+1,xkxk+1 /∈E(P′), a contradiction. Thus P contains exactly one edge
in E(G′

x)−E(G). Therefore the proof of Lemma 11 is completed. �

Proposition 12. Let G be a 3-connected {claw, (P6)2,hourglass}-free graph with
minimum degree at least 4 and x a locally connected vertex in G. Then G is hamiltonian
connected if and only if G′

x is hamiltonian connected.

Proof. It is easy to see that we only need to prove that if G′
x is hamiltonian connected

then G is hamiltonian connected. Assume that G is a non-hamiltonian connected graph
of order n which satisfies the conditions of Proposition 12 and G′

x is hamiltonian
connected. Then G′

x is also {claw, (P6)2,hourglass}-free by Proposition 10, and there is
a pair of vertices (say x1 and xn) such that G′

x has a hamiltonian path connecting x1 and
xn, but there is no a hamiltonian path connecting x1 and xn in G. Let P=x1x2 · · ·xn−1xn
be a hamiltonian path connecting x1 and xn in G′

x such that |E(P)−E(G)| is minimal.
By Lemma 11(3), |E(P)−E(G)|=1. Let xj =x and E(P)−E(G)={xixi+1}. Then, by
Lemma 11(1), xix,xi+1x∈E(G), that is, xixj,xi+1xj ∈E(G). Furthermore, we have the
following fact.

Claim 1. j=1 or j=n.

Journal of Graph Theory DOI 10.1002/jgt
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Otherwise, by symmetry, without loss of generality assume that i+2≤ j≤n−1, then
xj+1xj−1 /∈E(G) by Lemma 11(1). By Lemma 11(2), xixj−1,xi+1xj+1 /∈E(G). If j �=
i+2, then, from Lemma 11(2), xj−1xi+1 ∈E(G) and xj+1xi ∈E(G). It follows that
G[xj,xj−1,xj+1,xi,xi+1] is an hourglass, a contradiction. Thus j= i+2.

By Lemma 11(2), xixi+3 ∈E(G) and xi+1xi+3 /∈E(G). Since xi+2 is locally connected
and xixi+1 /∈E(G), there is a shortest path with at most 4 vertices connecting xi and
xi+1 in N(xi+2), which implies that there is a vertex xr ( �=xi, xi+3) on P such that
xi+1xr,xi+2xr ∈E(G).

If i+3<r<n, then xi+1xr−1,xi+1xr+1 /∈E(G) since otherwise G has a hamilto-
nian (x1,xn)-path, and so xr+1xr−1 ∈E(G) since G[xr,xr+1.xr−1,xi+1] �=K1,3. We
have xi+2xr−1 /∈E(G) since otherwise G has a hamiltonian (x1,xn)-path P[x1,xi]
P[xi+3,xr−1]xi+2xi+1P[xr,xn], a contradiction. Similarly, xi+2xr+1 /∈E(G). Thus
G[xr,xr+1,xr−1,xi+1,xi+2] is an hourglass, a contradiction.

If 1<r<i, then xr+1xi+1,xr−1xi+1 /∈E(G) since otherwise, say xr−1xi+1 ∈E(G),
G has a hamiltonian path P[x1,xr−1]xi+1P[xr,xi]P[xi+2,xn], a contradiction. Thus
xr+1xr−1 ∈E(G) from G[xr,xi+1,xr−1,xr+1] �=K1,3. Recall that xixi+3 ∈E(G). Note that
xi+2xr+1,xi+2xr−1 /∈E(G) since otherwise, say xi+2xr+1 ∈E(G), G has a hamiltonian
(x1,xn)-path

P[x1,xr]xi+1xi+2P[xr+1,xi]P[xi+3,xn].

Thus G[xr,xr−1,xr+1,xi+1,xi+2] is an hourglass. This contradiction shows that r=n or
r=1.

If r=n, then xixn−1 /∈E(G) since otherwise G has a hamiltonian (x1,xn)-path P[x1,xi]
P−[xn−1,xi+1]xn. Obviously, xi+1xn−1 /∈E(G) since otherwise G has a hamiltonian
(x1,xn)-path

P[x1,xi]P[xi+2,xn−1]xi+1xn,

a contradiction. We have xixn /∈E(G) since otherwise G[xn,xi,xi+1,xn−1]=K1,3, a
contradiction. Since xixi+3,xixi+2,xnxi+1,xnxi+2 ∈E(G) and G[xi+2,xi,xi+3,xi+1,xn] is
not an hourglass, xi+3xn ∈E(G). It follows that xi+3xn−1 ∈E(G) since G[xn,xi+1,xi+3,
xn−1] �=K1,3.

If i+4=n−1, then xn−1 and xi+1 have exactly two neighbors in P[xi+1,xn],
respectively, and so there are at least two vertices xp and xq in P[x1,xi] such that
xn−1xp,xn−1xq ∈E(G) since �(G)≥4. Let p<q. Then q �= i since otherwise we easily
construct a hamiltonian (x1,xn)-path in G. Obviously xq+1,xq−1 /∈N(xn−1) since other-
wise G has a hamiltonian (x1,xn)-path by inserting xn−1 into P[x1,xi]. Thus p+1 �=q
and xq+1xq−1 ∈E(G) from G[xq,xq+1,xq−1,xn−1] �=K1,3. Similarly, xp+1,xp−1 /∈N(xn−1)
and xp+1xp−1 ∈E(G) if x1 �=xp.

Assume that x1 �=xp. Then we similarly prove that p+2 �=q−1. We have xpxq−1 /∈
E(G) since otherwise G has a hamiltonian path

P[x1,xp−1]P[xp+1,xq−1]xpxn−1P[xq,xi]xi+3xi+2xi+1xn.

Similarly, xpxq+1 /∈E(G). Thus xpxq /∈E(G) since otherwise G[xq,xq−1,xq+1,xp,xn−1]
is an hourglass, a contradiction. Since G[xn−1,xi+3,xp,xq] �=K1,3, xpxi+3 ∈E(G) or
xqxi+3 ∈E(G). It is easy to prove that xp+1,xp−1,xq+1,xq−1 /∈N(xi+3). If xpx+3 ∈
E(G), then G[xp,xp−1,xp+1,xn−1,xi+3] is an hourglass. If xqxi+3 ∈E(G), then
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FIGURE 4. A hamiltonian path with xj =xn=x connecting x1 and xn in G′
x .

G[xq,xq−1,xq+1,xn−1,xi+3] is an hourglass. This contradiction shows that x1 =xp. That
is, x1xn−1 ∈E(G).

It is easy to see that xi+1 has at least two neighbors in P[x1,xi]. By a similar
argument to the above, we can prove that x1xi+1 ∈E(G). Note that xn−1xi+1 /∈E(G)
and x2xi+1,x2xn−1 /∈E(G) since otherwise, say x2xi+1 ∈E(G), G has a hamiltonian path
x1xi+1P[x2,xi]P[xi+2,xn], a contradiction. Thus G[x1,x2,xi+1,xn−1]=K1,3. This contra-
diction shows that i+4 �=n−1.

Note that xi+4xi /∈E(G) since otherwise G has a hamiltonian (x1,xn)-path

P[x1,xi]P[xi+4,xn−1]xi+3xi+2xi+1xn.

Similarly, xi+2xi+4 /∈E(G). From G[xi+3,xi+4,xn−1,xi] �=K1,3, xi+4xn−1 ∈E(G). Obvi-
ously, xi+2xn−1 /∈E(G). Thus G[xi+3,xi+4,xn−1,xi+2,xi] is an hourglass. This contra-
diction shows that r �=n, and so r=1.

By Lemma 11(2), xi+1xi+3 /∈E(G) and xixi+3 ∈E(G). Note that xi+m /∈N(x2) for
m=1,2,3,4 since otherwise, say x2xi+3 ∈E(G), G has a hamiltonian path x1xi+1xi+2
P−[x2,xi]P[xi+3,xn]. Thus x1xi+3 /∈E(G) since otherwise G[x1,x2,xi+3,xi+1]=K1,3.
Since G[xi+2,xi+3,xi,x1,xi+1] is not an hourglass, x1xi ∈E(G), which implies that
x2xi ∈E(G) from G[x1,x2,xi,xi+1] �=K1,3. Note that xi−1xi+2 /∈E(G) since otherwise G
has a hamiltonian path x1xi+1xi+2P−[xi−1,x2]xiP[xi+3,xn]. It follows that x2xi−1 ∈E(G)
from G[xi,x2,xi−1,xi+2] �=K1,3. Also, xi−1xi+3 /∈E(G) since otherwise G has a hamil-
tonian path x1xi+1xi+2xiP[x2,xi−1]P[xi+3,xn]. Thus G[xi,xi+2,xi+3,x2,xi−1] is an
hourglass. This contradiction shows that j=1 or j=n. Thus Claim 1 is true. �

By symmetry, without loss of generality assume that j=n (Fig. 4). Then we have
the following fact.

Claim 2. 1<i<n−1.

Proof. It is easy to see that i �=n−1 since j=n. If i=1, then, by Lemma 11(2),
x1xn−1 /∈E(G) and x2xn−1 ∈E(G). Since xn is locally connected, there is a vertex xk in
P such that xkx1,xkxn ∈E(G).

Note that x1xk−1 /∈E(G) since otherwise x1P−[xk−1,x2]P−[xn−1,xk]xn is a hamilto-
nian (x1,xn)-path in G, a contradiction. Again, x1xk+1 /∈E(G) since otherwise G has a
hamiltonian (x1,xn)-path

x1P[xk+1,xn−1]P[x2,xk]xn,
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a contradiction. From G[xk,xk−1,xk+1,x1] �=K1,3, we have that xk+1xk−1 ∈E(G). It is
easy to check that xk+1xn /∈E(G) since otherwise

x1P−[xk,x2]P−[xn−1,xk+1]xn

is a hamiltonian (x1,xn)-path in G. Note that xk−1xn /∈E(G) since otherwise G has a
hamiltonian (x1,xn)-path

x1P[xk,xn−1]P[x2,xk−1]xn.

Thus G[xk,xk−1,xk+1,x1,xn] is an hourglass. This contradiction shows that i>1. Thus
Claim 2 is true. �

Since xn is locally connected, there is a vertex xk such that xkxi,xkxn ∈E(G) (Fig. 4).
We have the following fact.

Claim 3. 1≤k≤ i−1.

Proof. Otherwise, xk ∈V(P[xi+2,xn−1]). By Lemma 11(2), xi+1xn−1 ∈E(G). It
follows that xk−1xi,xk+1xi /∈E(G) since otherwise, for example, xk−1xi ∈E(G), G has a
hamiltonian (x1,xn)-path

P[x1,xi]P
−[xk−1,xi+1]P−[xn−1,xk]xn,

a contradiction. Similarly, xk−1xn,xk+1xn /∈E(G). Thus we have from G[xk,xk−1,xk+1,xi]
�=K1,3 that xk+1xk−1 ∈E(G). It follows that G[xk,xk−1,xk+1,xi,xn] is an hourglass. This
contradiction shows that 1≤k≤ i−1. Thus Claim 3 is true. �

Furthermore, we have the following fact.

Claim 4. xi+1xk+1,xk+1xn−1,xixn−1 /∈E(G); and xn−2xk+1,xi+2xk+1,xixi+2 /∈E(G) if
xi+2 �=xn.

Proof. Assume that xk+1xi+1 ∈E(G). Then G has a hamiltonian (x1,xn)-path

P[x1,xk]P−[xi,xk+1]P[xi+1,xn].

This contradiction shows that xk+1xi+1 /∈E(G). Similarly, xk+1xn−1,xixn−1 /∈E(G). By
Lemma 11(2), xi+1xn−1 ∈E(G).

Assume that xi+2 �=xn. If xk+1xi+2 ∈E(G), then G has a hamiltonian (x1,xn)-path

P[x1,xk]P−[xi,xk+1]P[xi+2,xn−1]xi+1xn.

Similarly, xixi+2 /∈E(G). If xn−2xk+1 ∈E(G), then G has a hamiltonian (x1,xn)-path

P[x1,xk]P−[xi,xk+1]P−[xn−2,xi+1]xn−1xn.

This contradiction shows that Claim 4 is true. �

Claim 5. i+2 �=n.
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Proof. Assume that i+2=n, then we have the following facts:

(1) If xtxi+1 ∈E(G) for 1<t<i, then xt−1xi+1,xt+1xi+1 /∈E(G) and xt−1xt+1 ∈E(G).
For example, xt−1xi+1 ∈E(G), we easily construct a hamiltonian (x1,xn)-path in
G by replacing the edge xt−1xt by xt−1xi+1xt. From G[xt,xt−1,xt+1,xi+1] �=K1,3,
we have xt−1xt+1 ∈E(G).

(2) There does not exist such a vertex xt (1<t<i) that xtxi+1,xtxi ∈E(G) since other-
wise xt−1xi ∈E(G) from G[xt,xt−1,xi,xi+1] �=K1,3, and so G has a hamiltonian
path P[x1,xt−1]P−[xi,xt]xi+1xn.

Since �(G)≥4, there are at least two vertices xp and xq such that xpxi+1,xqxi+1 ∈E(G)
and 1<p<q<i. By (1), q �=p+1, and xp+1xi+1,xp−1xi+1,xq+1xi+1,xq−1xi+1 /∈E(G) and
xp+1xp−1,xq+1xq−1 ∈E(G).

We have xp+1xq /∈E(G) since otherwise G has a hamiltonian (x1,xn)-path

P[x1,xp]xi+1xqP[xp+1,xq−1]P[xq+1,xi]xn,

a contradiction. Similarly, xp−1xq /∈E(G). Since G[xp,xp+1,xp−1,xq,xi+1] is not an hour-
glass, xpxq /∈E(G). From G[xi+1,xp,xq,xn] �=K1,3, xnxp ∈E(G) or xnxq ∈E(G).

Assume that xnxp ∈E(G). We have that xp−1xi,xq−1xi,xp−1xi+1 /∈E(G) since other-
wise, say xp−1xi ∈E(G), G has a hamiltonian (x1,xn)-path P[x1,xp−1]P−[xi,xp]xi+1xn,
a contradiction. Thus, xp−1xn,xq−1xn /∈E(G) since otherwise, say xp−1xn ∈E(G),
G[xn,xp−1,xi,xi+1]=K1,3, a contradiction. We have that xnxp+1 ∈E(G) since
G[xp,xp−1,xp+1,xi+1,xn] is not an hourglass and xp+1xi+1,xp−1xi+1 /∈E(G). Since
xi+1xp+1,xixi+1 /∈E(G) and G[xn,xp+1,xi,xi+1] �=K1,3, xp+1xi ∈E(G). Note that xpxp+2 /∈
E(G) since otherwise G has a hamiltonian (x1,xn)-path

P[x1,xp−1]xp+1P−[xi,xp+2]xpxi+1xn.

Similarly, xp−1xp+2,xpxi,xp−1xi /∈E(G). Since G[xp+1,xp,xp−1,xi,xp+2] is not an hour-
glass, xixp+2 /∈E(G). Thus G[xp+1,xp+2,xp−1,xi]=K1,3. This contradiction shows that
xnxp /∈E(G). It follows that xnxq ∈E(G). By a similar argument to the above, we can
get a contradiction. So Claim 5 is true. �

Claim 6. i≥3.

Proof. If i=2, then we have k=1 by Claim 3. By Claim 4, x2xn−1 /∈E(G). Then
x3xn−1 ∈E(G) since G[xn,xn−1,x2,x3] �=K1,3. Since �(G)≥4, there is at least two
vertices xp,xq on P[x3,xn−1] such that x2xp,x2xq ∈E(G). Since x2x3,x2xn−1 /∈E(G), 3<p,
q< n−1.

Note that if x2xt ∈E(G) for some 3<t<n−1, then (N(x1)∪N(xn))∩{xt−1,xt+1}=∅,
otherwise, for example, xt−1xn ∈E(G), G has a hamiltonian (x1,xn)-path x1x2P[xt,xn−1]
P[x3,xt−1]xn. If x2xt−1 ∈E(G) or x2xt+1 ∈E(G), then x1xn−1 /∈E(G) since otherwise
G has a hamiltonian path by inserting x2 into P[x3,xn] and using these edges
{x1xn−1,x3xn,x2xt}. Thus, we have that x1xp−1,x1xp+1,xnxp+1,xnxp−1,x1xq−1,x1xq+1,
xnxq+1,xnxq−1 /∈E(G).

Assume that p<q. Then p+1 �=q, otherwise we obtain, from the above, that
xpx1,xpxn,xqx1,xqxn /∈E(G). Thus x1xn ∈E(G) from G[x2,x1,xn,xp] �=K1,3, and so
G[x1,xn,x2,xp,xq] is an hourglass, a contradiction.

We further have that xp−1xp+1,xq−1xq+1 ∈E(G), since otherwise, for example,
xp−1xp+1 /∈E(G), we have x2xp−1 ∈E(G) or x2xp+1 ∈E(G) (say x2xp−1 ∈E(G)) since
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G[xp,xp−1,xp+1,x2] �=K1,3. From G[x2,x1,xn,xp−1] �=K1,3, x1xn ∈E(G). Note that
x1x3 /∈E(G) since otherwise G has a hamiltonian path x1P[x3,xp−1]x2P[xp,xn]. Since
G[xn,x3,xn−1,x1,x2] is not an hourglass, x1xn−1 ∈E(G). Thus G has a hamiltonian path
x1P−[xn−1,xp]x2P−[xp−1,x3]xn, a contradiction.

Note that x1xp,x1xq /∈E(G), since otherwise, for example, x1xp ∈E(G), we have
x2xp−1,x2xp+1 /∈E(G) since otherwise, say x2xp−1 ∈E(G), G has a hamiltonian
(x1,xn)-path x1P[xp,xn−1]P[x3,xp−1]x2xn. Recall that xp+1x1,xp−1x1 /∈E(G). Thus
G[xp,xp−1,xp+1,x2,x1] is an hourglass. From G[x2,x1,xp,xq] �=K1,3, xpxq ∈E(G).

Note that x2xp−1 /∈E(G) since otherwise we have x1xn∈E(G) from G[x2,x1,xp−1,xn] �=
K1,3, and so G[xn,x1,x2,x3,xn−1] is an hourglass (note that x1xn−1 /∈E(G)), a contradic-
tion. Similarly, x2xp+1,x2xq−1,x2xq+1 /∈E(G). It follows that xnxp /∈E(G) since otherwise
G[xp,xp−1,xp+1,x2,xn] is an hourglass. Similarly, xnxq /∈E(G). From G[x2,x1,xn,xp] �=
K1,3, x1xn ∈E(G). Thus G[x2,xp,xq,x1,xn] is an hourglass. This contradiction shows
that i≥3. �

Claim 7. k<i−1.

Proof. If k= i−1, by Claim 6, k≥2. By Lemma 12(2), xixn−1 /∈E(G), which
implies xi+1xn−1 ∈E(G). Thus xi−1xi+1 ∈E(G) or xixn−1 ∈E(G), since otherwise,
G[xn,xi,xi−1,xi+1,xn−1] is an hourglass. Assume that xi−1xi+1 ∈E(G). We have that
xixi−2 /∈E(G) since otherwise G has a hamiltonian (x1,xn)-path

P[x1,xi−2]xixi−1P[xi+1,xn].

From G[xi−1,xi,xi−2,xi+1] �=K1,3, xi−2xi+1 ∈E(G). Note that xi−2xn−1,xi+2xi−2 /∈E(G).
From G[xi+1,xi+2,xi−2,xn−1] �=K1,3, xi+2xn−1 ∈E(G). Note that xi−1xn−1 /∈E(G) since
otherwise G has a hamiltonian (x1,xn)-path

P[x1,xi−2]P[xi+1,xn−1]xi−1xixn.

Thus G[xi+1,xi+2,xn−1,xi−1,xi−2] is an hourglass, a contradiction. It follows that
xi−1xn−1 ∈E(G). Note that xixi−2 /∈E(G) since otherwise G has a hamiltonian
path P[x1,xi]P[xi+2,xn−1]xi+1xn. It follows that xi−2xn−1 ∈E(G) since otherwise
G[xi−1,xi,xi−2,xn−1]=K1,3. Since xi−1xn−2 /∈E(G), we have that xi+1xn−2∈E(G),
otherwise, G[xn−1,xn−2,xi+1,xi−1]=K1,3. xi−2xn−2 /∈E(G), otherwise G has a hamil-
tonian path P[x1,xi−2]P−[xn−2,xi+1]xn−1xi−1xixn, a contradiction. xi−2xi+1 /∈E(G),
otherwise, G has a hamiltonian path P[x1,xi−2]P[xi+1,xn−1]xi−1xixn a contradiction.
It follows that G[xn−1,xi−2,xi−1,xn−2,xi+1] is an hourglass, a contradiction. So
xi−1xn−1 /∈E(G). It follows that k<i−1. Thus Claim 7 is true. �

Claim 8. xkxi+1,xk+1xi ∈E(G) and xkxn−1,xk+1xn−1,xk−1xn−1 /∈E(G) (if k>1).

Proof. By Claim 4, xixn−1 /∈E(G). By Lemma 12(2), xi+1xn−1 ∈E(G). If xkxi+1 /∈
E(G), then, since G[xn,xi+1,xn−1,xi,xk] is not an hourglass, xkxn−1 ∈E(G). Note that
xk+1xn−1 /∈E(G) since otherwise G has a hamiltonian (x1,xn)-path

P[x1,xk]P−[xi,xk+1]P−[xn−1,xi+1]xn,

a contradiction. Similarly, if k>1, then xixk−1,xk−1xk+1 /∈E(G). From G[xk,xk+1,xi,
xn−1] �=K1,3, we have that xk+1xi ∈E(G).
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If k=1, then it is easy to check that H =G[xn,x1,xi,xn−1,xi+1,x2] is isomorphic to
(P6)2 (note that dH(xn)=dH(x1)=4, dH(xn−1)=dH(xi)=3 and dH(xi+1)=dH(x2)=2).
This contradiction shows xkxi+1 ∈E(G). If k≥2, then, from G[xk,xk−1,xk+1,xn−1] �=
K1,3, xk−1xn−1 ∈E(G). Thus G[xk,xk−1,xk+1,xi,xn−1] is an hourglass. This contradiction
shows that xkxi+1 ∈E(G).

By Claim 4, xk+1xi+1 /∈E(G). From G[xk,xk+1,xi,xi+1] �=K1,3, xk+1xi ∈E(G).
If xkxn−1 ∈E(G), then G[xk,xi+1,xn−1,xi,xk+1] is an hourglass, a contradiction. Thus

xkxn−1 /∈E(G). If xk+1xn−1 ∈E(G) then G has a hamiltonian (x1,xn)-path

P[x1,xk]P−[xi,xk+1]P−[xn−1,xi+1]xn.

If k>1, then xk−1xn−1 /∈E(G) since otherwise G has a hamiltonian (x1,xn)-path

P[x1,xk−1]P−[xn−1,xi+1]P[xk,xi]xn.

This contradiction shows that Claim 8 is true. �

Now we complete the proof of Proposition 12. By Lemma 12(1), xixn,xi+1xn ∈E(G)
and xixi+1 /∈E(G). By Claims 5 and 6, we have i+2 �=n and i≥3. Let xk be chosen
as before Claim 3 with xkxi ∈E(G) and xkxn ∈E(G). Then, by Claim 7, k≤ i−2. By
Lemma 12(2), xixn−1 /∈E(G) and xi+1xn−1 ∈E(G). By Claim 8, xixk+1, xkxi+1 ∈E(G)
and xkxn−1 /∈E(G). Note that xk+1xn /∈E(G) since otherwise G[xn,xk+1,xi,xi+1,xn−1] is
an hourglass since xi+1xi,xi+1xk+1,xn−1xi,xn−1xk+1 /∈E(G). Thus we can derive that
G[xk,xk+1,xi,xi+1,xn−1,xn] is a (P6)2, a contradiction. Therefore, we complete the proof
of Proposition 12.

By Propositions 10 and 12, we immediately deduce Theorem 7.

Proof of Theorem 6. Let G be a 3-connected {claw, (P6)2,hourglass}-free graph.
By Theorem 7, we only consider the hamiltonian connectedness in the closure cl(G)
of G. By Theorem 9, we know that cl(G) is the line graph of some triangle-free graph.
By Proposition 10, we easily obtain that cl(G) is hourglass-free. By Theorem 5, cl(G)
is hamiltonian connected. Again from Theorem 7, G is hamiltonian connected. Thus,
we complete the proof of Theorem 6. �
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