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Abstract: An hourglass is the only graph with degree sequence 4,2,2,2,2
(i.e. two triangles meeting in exactly one vertex). There are infinitely many
claw-free graphs G such that G is not hamiltonian connected while its
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Ryjacek closure ¢/(G) is hamiltonian connected. This raises such a problem
what conditions can guarantee that a claw-free graph G is hamiltonian
connected if and only if ¢/(G) is hamiltonian connected. In this paper, we
will do exploration toward the direction, and show that a 3-connected {claw,
(Pg)2, hourglass)-free graph G with minimum degree at least 4 is hamilto-
nian connected if and only if ¢/(G) is hamiltonian connected, where (Pg)? is
the square of a path Ps on 6 vertices. Using the result, we prove that every
4-connected {claw, (Pg)?, hourglass}-free graph is hamiltonian connected,
hereby generalizing the result that every 4-connected hourglass-free line
graph is hamiltonian connected by Kriesell [J Combinatorial Theory (B) 82
(2001), 306—315]. © 2010 Wiley Periodicals, Inc. T Graph Theory 68: 285-298, 2011

MSC 2000: 05C45; 05C38
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1. INTRODUCTION

Graphs considered in this paper are simple and finite graphs. We use [3] as a source
for undefined terms and notations. An (x1,x,)-path is a path Plxi,x,]=x1x2...x,
whose end-vertices are x; and x,. P[x;,x;] denotes the sub-path x;x;y1...x; for i<j,
and P~ [x;,x;] denotes the sub-path x;x; | ...x; for i<j. A path P on n vertices is also
denoted by Pj,. For graphs G and H, write G=H to mean that the graphs G and H are
isomorphic. The line graph of a graph H, denoted by L(H), is a graph whose vertex
set V(L(H)) is E(H), where two vertices in L(H) are adjacent if and only if the corre-
sponding edges are adjacent in H. Given a set of graphs S, we say that a graph G is S-free
if G contains no induced subgraph isomorphic to any graph in the set S. An induced
subgraph isomorphic to K 3 is called a claw, and the only vertex of degree three in the
claw is called the center of the claw. The classical results on line graphs are surveyed
by Hemminger and Beineke [7]. An hourglass is the only graph with degree sequence
4,2,2,2,2 (i.e. two triangles meeting in exactly one vertex) (Fig. 1(A)). The vertex of
degree 4 is called the center of the hourglass. Gg (Fig. 1(B)) is the graph on 6 vertices
ui,uy,u,v,vy, vy obtained from K4 by deleting one edge viu» and adding two paths usvov
and vyuu of length 2, where V(K4)={u,uz,v,v1}. Thus Gg could be easier described
as the square of a path Pg on six vertices, where the square of a graph G is the graph
(denoted by G?) obtained by inserting new edges into G joining all pairs of vertices
at distance 2 in G. Hemminger and Beineke [7] defined nine forbidden subgraphs
{G1=K13,G2=K5—e¢, G3,G4,Gs,Gg,G7,Gg = (Pg)?, Go) (Fig. 2) to characterize line
graphs. One of the major results on line graphs is the following fundamental theorem.

Theorem 1 (Hemminger and Beineke [7]). A connected graph is a line graph if and
only if it is {G1,Ga,...,Go}-free.

For hamiltonian connectedness in claw-free graphs, many authors are interested in
it, and there exist many results (see [1—11]). Brandt [4] proved the following result.

Theorem 2 (Brandt [4]). Every 9-connected claw-free graph is hamiltonian
connected.
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FIGURE 1. Forbidden subgraphs: (A) Hourglass and (B) Gg=(Ps)?.
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FIGURE 2. Nine forbidden induced subgraphs for line graphs.

Recently, Hu et al. improved Theorem 2 as follows.

Theorem 3 (Hu et al. [8]).
connected.

Lai and Soltes [10] proved the following result.

Theorem 4 (Lai and Soltes [10]).

hamiltonian connected.

Theorem 5 (Kriesell [9]).
nian connected.

Every 8-comnected claw-free graph is hamiltonian

Every T-connected {claw, K4 — e, G3}-free graph is

Every 4-connected hourglass-free line graph is hamilto-

In this paper, one motivation of ours is to strengthen Theorem 5, and improve
Theorem 4 by reducing connectivity. We show the following result.

Journal of Graph Theory DOI 10.1002/jgt



288 JOURNAL OF GRAPH THEORY

Theorem 6. Every 4-connected {claw,(Pg)*, hourglass)-free graph is hamiltonian
connected.

Obviously, Theorem 5 is a corollary of Theorem 6 because connected line graphs are
{claw, (P6)2}-free by Theorem 1. The condition of “4-connectedness” in Theorems 5
and 6 is necessary. A vertex x is locally connected if its neighborhood N(x) is connected.
In [12], Ryjacek defined the closure cl(G) of a claw-free graph G to be one obtained
by recursively adding edges to join two nonadjacent vertices in the neighborhood of
any locally connected vertex of G, as long as this is possible. As we know, there are
infinitely many claw-free graphs G such that G is not hamiltonian connected but c/(G)
is hamiltonian connected. This raises such a problem what conditions can guarantee
that a claw-free graph G is hamiltonian connected if and only if c/(G) is hamiltonian
connected. In this paper, the other motivation of ours is to explore this direction. We
show the following result.

Theorem 7. Let G be a 3-connected {claw, (P6)2,h0urglass}-ﬁee graph with
minimum degree at least 4. Then G is hamiltonian connected if and only if cl(G) is
hamiltonian connected.

Now we guess that the condition of (Pg)>-freeness in Theorem 7 may be dropped,
and so make the following conjectures.

Conjecture 8. Let G be a 3-connected {claw,hourglass}-free graph with minimum
degree at least 4. Then G is hamiltonian connected if and only if cl(G) is hamiltonian
connected.

2. PROOFS OF THEOREMS 6 AND 7

In this section, we will provide the proofs of Theorems 6 and 7. If x is a locally
connected vertex of G, then the local completion at x is the operation of adding all
possible edges between vertices in N(x). The resulting graph, denoted by G, is easily
shown to be claw-free again. Iterating local completions, we finally arrive at a graph
in which all locally connected vertices have complete neighborhoods. This graph cl(G)
does not depend on the order of local completions. Ryjacek [12] proved the following
result.

Theorem 9 (Ryjacek [12]). Let G is a connected claw-free graph. Then the closure
cl(G) of G is the line graph of some triangle-free graph.

The following proposition will be used in the proofs of Proposition 12 and Theorem 7.

Proposition 10. Ler G be a connected {claw,(Pg)?, hourglass}-free graph and x a
locally connected vertex in G. Then G is also {claw, (Ps)?, hourglass)-free.

Proof. Obviously, G, is claw-free. First we prove that G/, is hourglass-free. Suppose
that G/ has an hourglass H=G/[v3,v1,v2,v4,vs5], where v3 is the center of H. Then
V1V4,V1V5,v2v4,v2vs € E(G)) and we have the following claim. [ |

Claim 1. [f vqvs € E(G), then either v3vs & E(G) or v3vq & E(G).
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Proof. Ifv4vs ¢ E(G), then xva,xvs € E(G), and vix ¢ E(G) from Glx,v4,vs,v1]#K1 3.
Thus, viv3 € E(G). If v3vs,v3v4 € E(G), then G[v3,v4,vs,v1] =K1,3. This contradiction
shows that v3vs & E(G) or vavq ¢ E(G). Thus xv3 € E(G). If v3vs ¢ E(G) and v3v4 € E(G)
then G[v3,v4,vs,x]=Kj 3, a contradiction. Thus Claim 1 is true. [ |

Claim 2. v4v5€E(G) and viv, € E(G).

Proof. 1If vqvs ¢ E(G), then, by Claim 1, assume that v3vs € E(G) and v3vy4 € E(G).
Thus xv4,xv5,xv3 € E(G). Obviously, xvi,xv2 € E(G). Thus G[v3,v1,v2,x,v4] is an hour-
glass in G. This contradiction shows that v4vs € E(G). Similarly, viv; € E(G). ]

Since G is hourglass-free, there is at least one edge (say v3vs) in {v{v3,Vv2v3,V3V4,V3V5}
such that v3vs ¢ E(G). Thus, xv3,xvs5 € E(G). Note that vox,vix ¢ E(G) since otherwise
vavs € E(G)), a contradiction. Obviously v3vs € E(G) since otherwise xv4 € E(G) from
G[v3,v2,v4,x]#K1 3, and so G[v3,vi,v2,X,v4] is an hourglass in G, a contradiction.
Thus, xv4 € E(G). Since dg(x) >4, there is a vertex vg such that xvg € E(G). Since x is
a locally connected vertex, there is a vertex y € N(x) such that yv3 € E(G). Without loss
of generality assume that y=ve. Then

Claim 3. Either vive € E(G) or vove € E(G), and either v4vg € E(G) or vsvg € E(G).

Proof. If vive,vove € E(G), then G[v3,vi,v2,x,V6] is an hourglass in G. Thus
vive€E(G) or wvge€E(G). Similarly, vavg€ E(G) or vsvg€E(G). If vivg € E(G)
and wve € E(G), then Glvg,vi,v2,v5,x] is an hourglass in G if vsvs€E(G) and
Glvs,v1,v2,v4,x] is an hourglass in G if v4ve € E(G). This contradiction shows that
vive € E(G) or wve ¢ E(G). Without loss of generality assume that vive € E(G) but
vave € E(G). If v4vg € E(G) and vsve € E(G), then G[vg,v4,Vs,v1,v3] is an hourglass in
G. Thus vqve € E(G) or vsvg € E(G). Thus Claim 3 is true. [ |

Without loss of generality assume that vivg € E(G) but vave € E(G), and v4vg € E(G)
but vsve € E(G). Thus G[vi,v2,v3,x,va,ve] is (Pe)*. This contradiction shows that G,
is hourglass-free.

Now we prove that G, is (Pg)*-free. Suppose that G’ has a subgraph H isomorphic to
(P6)2 such that V(H)={u,v,u,uz,v1,v2} and E(H)={ujv,uiu, uur,uzvy,vav,vvi,uvy,
uv,upv} (Fig. 1(B)). Obviously, x ¢ {u1,v,}, since otherwise, if x=uy, then ujvy,ujue
E(G), and uv1 € E(G) since otherwise G[v,v1,v2,u] =K1 3. So E(H) is contained in E(G),
a  contradiction.  Thus  xswu;.  Similarly, x7#v;. We  have the
following claim.

Claim 4. uivi,uzvp EE(G).

Proof. 1If ujvy € E(G), then xuy,xv; € E(G) by the definition of G;. We also have
that uju € E(G) or uvy € E(G) since otherwise xu € E(G) and so G[x,u;,vi,u]=K;3, a
contradiction.

If xueE(G), then uv| ¢ E(G) since otherwise G[x,u,us,v7,v,v1] is isomorphic
to (Pg)*>. Thus ujucE(G). Obviously, xv,xus ¢ E(G). Thus, G[u,uj,x,v,uz] is an
hourglass. This contradiction shows that xu¢ E(G). So uju,uvi € E(G). It follows
that Glu,uy,vi,u2] is a claw. This contradiction shows that uv| € E(G). Similarly,
upv2€E(G). Thus Claim 4 is true. |
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If uuy € E(G), then xui,xucE(G), and so xv,xvy,xups ¢ E(G). If uv; € E(G), then
xv1 € E(G) since otherwise Glu,x,v1,u2]=Kj 3. Thus G[x,u,uz,v2,v,v1] is isomorphic
to (Pg)?. This contradiction shows that uv ¢ E(G), and so xv; € E(G) by the definition
of G.. Note that xv,xv2 ¢ E(G) and so vva,uv € E(G). Thus G[v,vi,u,v2]=K; 3. This
contradiction shows that uu € E(G). Similarly, vv, € E(G).

If uv¢E(G), then xu,xv€E(G). Since ujv¢E(G),), xui ¢ E(G). Since viup¢
E(G)), xvi ¢ E(G) or xuz ¢ E(G) (say xup ¢ E(G)). It follows that uu, € E(G) and so
Glu,u1,u2,x]=Ki 3 since ujup ¢ E(G). Thus uv € E(G).

If uuy ¢ E(G), then xup,xu € E(G). Since ujup ¢ E(G), uix¢ E(G). Since ujv¢E(G)
and Glu,u1,v,x]#K; 3, xve E(G). Since viug éE(G;), xv1 € E(G) and so vive E(G).
Thus G[v,x,v1,v2]=Kj 3. This contradiction shows uuy € E(G). Similarly, vvy € E(G).
Since Glu,u1,v,uz]#K13 and G[v,u,v2,v1]#K1 3, uvi,upve E(G). Thus all edges in
H belong to E(G). That is, H is isomorphic to (Pg)? in G. This contradiction shows
that G/, is (Pg)?-free. Thus, Proposition 10 is true. |

In order to prove Proposition 12, we need the following lemma.

Lemma 11. Let x| and x, be two vertices in a connected claw-free graph G of order
n such that G has no any hamiltonian path between them, and let x be a locally
connected vertex in G such that G, has a hamiltonian path between x| and x,. Assume
that P=X1X2...XiXi}+1 ... Xn—1Xy is a hamiltonian path in G, connecting x| and x, such
that |E(P)—E(G)| is minimal. Let x;xj11 € E(P)—E(G), xj=x and 1<j<n. Then

(D) xix,xip1x€ E(G) and xj_1xj11,xixi+1 € E(G).
(2) xixj—1,xir1x141 € E(G) and xi11xj—1,Xixj+1 € E(G).
(3) P contains exactly one edge x;xi+1 € E(G,)—E(G).

Proof. (1) From the definition of G/, we have x;x;y ¢ E(G) and x;x,xi11x € E(G).
If xj_1xj41 €E(G), and without loss of generality assume that j<i, then there is a
hamiltonian (x,x,)-path

P =P[x1,%-11P[Xj11, X% P[xi41, %]

in G, containing fewer edges of E(G,)— E(G) than P since x;x;+1 ¢ E(P"), a contradic-
tion. Thus (1) is true.

(2) By symmetry, without loss of generality assume that i<j. Then x;x;_; € E(G),
since otherwise there exists a hamiltonian (x1,x,)-path P’'=P[x1,x;1P~[xj—1,Xi+1]
P[xj,x,] in G}, containing fewer edges of E(G’,)—E(G) than P since x;xiy1 ¢ E(P'), a
contradiction. Similarly, x;;1xj11 € E(G).

From G[xj,xj_1,%;,xi+1]# K1 3, Xip-1xj—1 € E(G). Similarly, x;x; 1 € E(G). Thus (2) is
true.

(3) If P contains at least two edges xixi+i, xkxx+1 in E(G,)—E(G) (Fig. 3).
If i<j<k, then, by (2), xj11x,€E(G). Since Glxj,xg,Xpr1,Xi+1] is not a claw,
Xit1Xk €E(G) or xip1xp41€E(G). If xiy1xx € E(G), then there is a hamiltonian
path P'=P[x1,x;)P[xj41,Xk]P[Xi11,%]]P[X+1,X,] in G, containing fewer edges of
E(G,)—E(G) than P since xixjy1,xkXk+1 € E(P'). Thus xiy1x+1 € E(G), and so G
has a hamiltonian path P'= P[x1,X;]1P[xj41,X]P [Xj,Xi+1]P[Xx41,X,] containing fewer
edges of E(G,)—E(G) than P since xixit1,xkxXk+1 ¢ E(P'). This contradiction shows
that the case i<j<k cannot occur. Without loss of generality assume that i<k<j
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FIGURE 3. A hamiltonian path with x;ixi1, Xk Xk+1 € E(G}) connecting
x1 and x, in Gj.

(and the proofs of other cases are similar). By (2), x;_1x;y1 € E(G). If i+1=k, then
XiXi+2 € E(G) since G[x,x;,Xi+1,Xi+2] # K1,3. Thus

P’ =Px1,x1P[xi12,%j-1 141 P[xj(=X), %]

is a hamiltonian path connecting x; and x,, but contains fewer edges of E(G)—
E(G) than P since x;xij11,xixk+1 € E(P'). This contradiction shows that i+ 1#k. Since
Glx, xi, Xk, Xk+117# K1 3, xixg € E(G) or xixp+1 € E(G). If xix; € E(G), then

P'=Plx1,x]1P~ [xk, Xip1 1P~ [xj— 1, Xk+11P[Xj, X )

is a hamiltonian path connecting x| and x, in G/, but contains fewer edges of E(G’,)—
E(G) than P since xixiy1,Xexkr1 € E(P), a contradiction. Thus xjx; ¢ E(G) and so
Xixk+1 € E(G) (Fig. 3). It follows that

P =Px1, 5] 1P[xk1,%— 1 1P[xig 1, X Pxj (= %), x,]

is a hamiltonian path connecting x; and x, in G/, containing fewer edges of E(G',) — E(G)
than P since x;xjy1,Xxxk+1 € E(P"), a contradiction. Thus P contains exactly one edge
in E(G,)—E(G). Therefore the proof of Lemma 11 is completed. |

Proposition 12. Let G be a 3-connected {claw,(Ps)?, hourglass}-free graph with
minimum degree at least 4 and x a locally connected vertex in G. Then G is hamiltonian
connected if and only if G, is hamiltonian connected.

Proof. ltis easy to see that we only need to prove that if G/, is hamiltonian connected
then G is hamiltonian connected. Assume that G is a non-hamiltonian connected graph
of order n which satisfies the conditions of Proposition 12 and G is hamiltonian
connected. Then G, is also {claw, (Pe)?, hourglass)-free by Proposition 10, and there is
a pair of vertices (say x; and x,) such that G/, has a hamiltonian path connecting x; and
Xn, but there is no a hamiltonian path connecting x; and x, in G. Let P=x1x3 - - - X, —1Xp,
be a hamiltonian path connecting x; and x, in G/, such that |E(P)—E(G)| is minimal.
By Lemma 11(3), |[E(P)—E(G)|=1. Let xj=x and E(P)—E(G)={x;x;+1}. Then, by
Lemma 11(1), xix,x;1x € E(G), that is, x;xj,x;y1xj € E(G). Furthermore, we have the
following fact.

Claim 1. j=1orj=n

Journal of Graph Theory DOI 10.1002/jgt
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Otherwise, by symmetry, without loss of generality assume that i+2 <j<n—1, then
Xj1+1X-1 ¢ E(G) by Lemma 11(1). By Lemma 11(2), xyxj—1,Xi11xj41 € E(G). If j#
i+2, then, from Lemma 11(2), xj_1xi+1 €E(G) and xj;1x; € E(G). It follows that
G[xj,xj—1,Xj+1,%i,Xi+-1] is an hourglass, a contradiction. Thus j=i+2.

By Lemma 11(2), x;x;13 € E(G) and x;11x;4+3 ¢ E(G). Since x;1» is locally connected
and x;x;;+1 ¢ E(G), there is a shortest path with at most 4 vertices connecting x; and
Xi+1 in N(xiy2), which implies that there is a vertex x, (#x;j, xj+3) on P such that
Xit1Xrs Xi42Xr € E(G).

If i+3<r<n, then xj41x—1,Xiy1X-+1 ¢ E(G) since otherwise G has a hamilto-
nian (x1,x,)-path, and so x,11x,—1 €E(G) since Glx,, X 1.%—1,xi+1]7#K13. We
have xji2x,—1 ¢ E(G) since otherwise G has a hamiltonian (x1,x,)-path P[x,x;]
Plxit3,x0—11xiy2Xiy1P[xr,x,], a contradiction. Similarly, x;;2x,41 € E(G). Thus
GlXr, Xr41,Xr—1,Xi+1,Xi+2] 1s an hourglass, a contradiction.

If 1<r<i, then Xx,y1xi11,X—1%i+1 € E(G) since otherwise, say x,—ixi+1 € E(G),
G has a hamiltonian path P[xy,x,—1]xi+1P[xr,x;]1P[Xi+2,%,], a contradiction. Thus
Xr+1%r—1 € E(G) from G[x,,xi+1,X—1,Xr+1]# K1 3. Recall that x;x;13 € E(G). Note that
Xit2Xr41,Xip2Xr—1 € E(G) since otherwise, say xj7x,4+1 € E(G), G has a hamiltonian
(x1,x,)-path

Plxy,x: x4 1% 2 P[xr4 1, X PXi43, X ]

Thus G[xy,Xr—1,Xr+1,Xi+1,Xi4+2] is an hourglass. This contradiction shows that r=n or
r=1.

If r=n, then x;x,—1 ¢ E(G) since otherwise G has a hamiltonian (xg, x,)-path P[xy,x;]
P [x,—1,Xi+1]x,. Obviously, x;+1x,—1 ¢ E(G) since otherwise G has a hamiltonian
(-xl ,xn)‘path

Plx1, % P[Xi42,Xp—11Xi+1Xn,

a contradiction. We have x;x, ¢ E(G) since otherwise G[x,x;,Xi+1,X,—1]1=K13, a
contradiction. Since X;Xj4+3,XiXit+2,XnXi+1,XnXit2 € E(G) and G[xjy2,Xi,Xi+3,Xi+1,Xn] 18
not an hourglass, x;43x, € E(G). It follows that x;3x,_1 € E(G) since G[xy,Xi+1,Xi+3,
Xn—1]1#K1 3.

If i+4=n—1, then x,_; and x;;; have exactly two neighbors in P[xjy1,x,],
respectively, and so there are at least two vertices x, and x; in P[x1,x;] such that
Xn—1Xp,Xn—1X4 € E(G) since d(G)>4. Let p<g. Then g#i since otherwise we easily
construct a hamiltonian (xi,x,)-path in G. Obviously x4 1,x4—1 € N(x,1) since other-
wise G has a hamiltonian (x1,x,)-path by inserting x,,_1 into P[x1,x;]. Thus p+1#£gq
and x;y1x5-1 €E(G) from Glxg,xg1+1,%g—1,Xn—11# K1 3. Similarly, Xpt1,Xp—1 €EN(—1)
and x4 1xp—1 € E(G) if x1 #x.

Assume that x| #x,. Then we similarly prove that p+2#¢g—1. We have x,x,_1 ¢
E(G) since otherwise G has a hamiltonian path

Plx1,xp—11P[Xpt1,Xg—11%pXn—1P[xg, Xi 1 Xi 13X 42X 11 %0

Similarly, xpx,41 ¢ E(G). Thus x,x, ¢ E(G) since otherwise G[xg,X4—1,Xg+1,Xp,Xn—1]
is an hourglass, a contradiction. Since Glx,—1,Xi13,Xp.Xq]l #K13, xpxi13€E(G) or
XgXir3 €E(G). It is easy to prove that xpy1,Xp—1,X511,%5-1 €N(xip3). If xpx43€
E(G), then Glxp,xp_1,Xp11,X—1,%i3] is an hourglass. If x,x;13€E(G), then

Journal of Graph Theory DOI 10.1002/jgt
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X, =X

71

Xn—2

Y X,

FIGURE 4. A hamiltonian path with x;=Xx,=x connecting x; and x, in G,.

Glxg,X4—1,%g+1,Xn—1,Xi43] is an hourglass. This contradiction shows that x; =x,. That
is, X1x,—1 € E(G).

It is easy to see that x;;; has at least two neighbors in P[xy,x;]. By a similar
argument to the above, we can prove that x;x; € E(G). Note that x,_1x;+1 € E(G)
and x2x;y1,X2x,—1 € E(G) since otherwise, say xpx;1] € E(G), G has a hamiltonian path
X1Xi+1P[x2,x;1P[X;42,%,], a contradiction. Thus G[x1,x2,%;+1,%,—1]1=K1 3. This contra-
diction shows that i+4#n—1.

Note that x;;4x; ¢ E(G) since otherwise G has a hamiltonian (x1,x,)-path

Plx1,xi1P[Xit4, Xn—11Xi43Xi42Xi4-1 %0

Similarly, x;42x;44 € E(G). From G[xi43,Xi+4,X—1,%]]1# K13, Xitaxn—1 € E(G). Obvi-
ously, xjy2x,—1 ¢ E(G). Thus G[xj43,Xit+4,X,—1,Xi+2,X;] is an hourglass. This contra-
diction shows that r#n, and so r=1.

By Lemma 11(2), xj+1xiy3 ¢ E(G) and x;xiy3 € E(G). Note that x;i,, ¢ N(x2) for
m=1,2,3,4 since otherwise, say x>x;3 € E(G), G has a hamiltonian path xjx;;1x;12
P~ [x2,%1P[xi+3,%,]. Thus x1x;13¢E(G) since otherwise G[x1,x2,Xi43,Xi+1]=K]3.
Since Glxjt2,Xi+3,%i,X1,%i+1] is not an hourglass, xix;€ E(G), which implies that
x2x; € E(G) from Glx1,x2,xi,%i+1]1# K1 3. Note that x;_1x,2 ¢ E(G) since otherwise G
has a hamiltonian path xx;41xi42 P~ [xi—1,x2]xiP[xi+3,X,]. It follows that xox;_; € E(G)
from Glx;,x2,xi—1,Xxi+2]# K1 3. Also, x;—1x,43¢E(G) since otherwise G has a hamil-
tonian path xyx;+1xi0xiP[x2, xi—1]1P[xiy3,Xx,]. Thus G[x;,xi12,xi43,%2,X;—1] is an
hourglass. This contradiction shows that j=1 or j=n. Thus Claim 1 is true. ]

By symmetry, without loss of generality assume that j=n (Fig. 4). Then we have
the following fact.

Claim 2. 1l<i<n—1.

Proof. 1t is easy to see that i#n—1 since j=n. If i=1, then, by Lemma 11(2),
X1Xy—1 € E(G) and x2x,_1 € E(G). Since x,, is locally connected, there is a vertex xj in
P such that xix1,xpx, € E(G).

Note that xjx;—1 € E(G) since otherwise x1 P~ [xr—1,X2 P~ [x,—1,Xk )X, 1S a hamilto-
nian (x1,x,)-path in G, a contradiction. Again, x1x;+1 € E(G) since otherwise G has a
hamiltonian (x1,x,)-path

X1 P[xk41,Xn—11P[x2, Xk I,
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a contradiction. From G[xg,xk—1,Xk+1,x1]1# K13, we have that xi11x¢—1 € E(G). It is
easy to check that x;1x, ¢ E(G) since otherwise

X1P™ [Xp, 21 P [Xp—1, Xket-1 1%

is a hamiltonian (x1,x,)-path in G. Note that x;_1x, ¢ E(G) since otherwise G has a
hamiltonian (x,x,)-path

X1 Pxg, xp—11P[x2, Xk —1 1.

Thus G[xg,Xk—1,Xk+1,X1,X,] 1S an hourglass. This contradiction shows that i>1. Thus
Claim 2 is true. [ |

Since x;, is locally connected, there is a vertex x; such that xgx;, xxx, € E(G) (Fig. 4).
We have the following fact.

Claim 3. 1<k<i-—1.

Proof. Otherwise, x;€ V(P[xi+2,x,—1]). By Lemma 11(2), xiy1x,—1€E(G). It
follows that xz_1x;,xx+1%; € E(G) since otherwise, for example, x;—1x; € E(G), G has a
hamiltonian (x,x,)-path

Plx1,xi]P™ [Xg—1,Xi+11P ™ [Xn—1, Xk Xn,
a contradiction. Similarly, xx—1x,, Xk+1X, € E(G). Thus we have from G[xg, Xx—1,Xk+1,Xi]

# K 3 that x4 1xk—1 € E(G). It follows that G[xk, xk—1,Xk+1,%i,X,] 1s an hourglass. This
contradiction shows that 1 <k <i—1. Thus Claim 3 is true. [ |

Furthermore, we have the following fact.

Claim 4. x; {1 X4 1, X+ 1X0—1,XiXn—1 € E(G); and Xp—2X11,Xit2Xk+1,XiXi+2 € E(G) if
Xit2 F Xp.

Proof. Assume that xg41xi+1 € E(G). Then G has a hamiltonian (xy,x;)-path
Plxt, xi 1P~ [ Xk 1 1P[Xig 1, X ]
This contradiction shows that xiy1x;+1 € E(G). Similarly, xg41x,—1,Xix,—1 € E(G). By
Lemma 11(2), xj+1x,—1 € E(G).
Assume that x; 15 #x,,. If x4 1xi42 € E(G), then G has a hamiltonian (x1,x,)-path
Plx1,xi )P [0, Xk 1 1P[Xi42, Xn—1 1Xige 1 X
Similarly, x;xj+2 € E(G). If x,_2xx+1 € E(G), then G has a hamiltonian (x1,x,)-path
Plx1,xi )P [ Xk 1 1P [Xn—2, Xip 1 X — 1%
This contradiction shows that Claim 4 is true. |

Claim 5. i+2+#n.
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Proof. Assume that i+2=n, then we have the following facts:

(1) If xxiy1 € E(G) for 1<r<i, then x;—1Xjy1,X+1Xi+1 € E(G) and x;—1x.41 € E(G).
For example, x;_1x;+1 € E(G), we easily construct a hamiltonian (x1,x,)-path in
G by replacing the edge x;—1x; by x;—1xi+1x;. From G[x;,x—1,X41,Xi+1]1 # K1 3,
we have x;_1x.41 € E(G).

(2) There does not exist such a vertex x; (1<r<i) that x;x;y1,x:x; € E(G) since other-
wise x;—1x; € E(G) from Glx;,x;—1,xi,Xi+1]1# K13, and so G has a hamiltonian
path Plx1,x;—1 1P [Xi, X¢]Xi 1%

Since 6(G) >4, there are at least two vertices xp and x4 such that xpx;1,x4%; 11 € E(G)
and 1<p<g<i. By (1), g#p+1, and x4 1 X4 1,Xp—1Xi4-1,Xg+1Xi4-1,Xg—1Xi+1 € E(G) and
Xp+1Xp—1,Xg+1Xg—1 € E(G).

We have x,1x, ¢ E(G) since otherwise G has a hamiltonian (x1,x,)-path

Plx1,xp1xi41x¢P[Xp+1,Xg—11P[Xg+1,Xi1%n,

a contradiction. Similarly, x, x4 € E(G). Since G[xp,X11,Xp—1,%4,Xi11] is not an hour-
glass, x,x4 € E(G). From G[xi11,Xp,Xg,Xn] # K13, XuXp € E(G) or xpx, € E(G).

Assume that x,x, € E(G). We have that x,_1x;,X4—1X;,Xp—1Xi11 € E(G) since other-
wise, say xp—1x; € E(G), G has a hamiltonian (x1,x,)-path P[x1,xp—11P™ [x;,Xp]x; 11X,
a contradiction. Thus, x,_1x,,x;-1x, ¢ E(G) since otherwise, say x,_1x,€E(G),
Glxn,xp—1,xi,xi+11=K13, a contradiction. We have that x,x,1€E(G) since
Glxp,Xp—_1,Xp+1,Xit1,X4] is not an hourglass and x,41Xiy1,%X,—1%i+1 € E(G). Since
Xit1Xp+1,XiXit1 ¢ E(G) and G[xn,xpﬂ,xi,xiﬂ] #K1,3, Xp+1Xi € E(G). Note that XpXp+2 ¢
E(G) since otherwise G has a hamiltonian (x1,x,)-path

Plx1,xp—11xp 1P [Xi, Xpr2 )XpXit 1 X

Similarly, xp,—1Xp2,XpXi, Xp—1X; € E(G). Since G[xp41,Xp,Xp—1,Xi,Xp42] is not an hour-
glass, xixp 2 € E(G). Thus Glxp11,Xp42,Xp—1,%;]=K; 3. This contradiction shows that
XuXp € E(G). It follows that x,x, € E(G). By a similar argument to the above, we can
get a contradiction. So Claim 5 is true. ]

Claim 6. i>3.

Proof. If i=2, then we have k=1 by Claim 3. By Claim 4, xpx,—1 ¢ E(G). Then
X3x,—1 € E(G) since Glxp,xp—1,%2,x3]#K1 3. Since 6(G)>4, there is at least two
vertices x,,xq on P[x3,x,—1] such that xox,, x2x, € E(G). Since x2x3,x2x,—1 € E(G), 3<p,
g<n—1.

Note that if xpx; € E(G) for some 3<t<n—1, then (N(x1)UN ()N {xs—1,X41} =0,
otherwise, for example, x;_1x, € E(G), G has a hamiltonian (xy,x;)-path xx2 P[x;, x,—1]
Plxz,xi—11x,. If x2x,1 €E(G) or xpx:41 € E(G), then x1x,—1 ¢ E(G) since otherwise
G has a hamiltonian path by inserting x, into P[x3,x,] and using these edges
{x1xn—1,Xx3%,%2%;}. Thus, we have that x1x,1,X1Xp 1, X0 Xp 11, XnXp—1,X1Xg—1,X1Xg415
XnXgi1,XnXg—1 € E(G).

Assume that p<gq. Then p+1zg¢q, otherwise we obtain, from the above, that
XpX1,XpXn,XgX1,Xg%n € E(G). Thus x1x, € E(G) from Glx2,x1,X4,%,]1#K13, and so
G[x1,xn,%2,Xp,%4] is an hourglass, a contradiction.

We further have that x, 1x,41,X-1X4+1 €E(G), since otherwise, for example,
Xp—1Xp+1 € E(G), we have xpx,_1 € E(G) or x2x,11 € E(G) (say xpxp_1 € E(G)) since
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Glxp,xp—1,%p11,%2] #K1 3. From Glx2,x1,%:,X%-1]1#K13, x1x, € E(G). Note that
x1x3 € E(G) since otherwise G has a hamiltonian path x1P[x3,x,1]x2P[x,,x,]. Since
Glx,,x3,X,—1,X1,Xx2] is not an hourglass, x1x,—1 € E(G). Thus G has a hamiltonian path
X1P7 [xp—1,%p1x20P™ [xp—1,X3]x,, @ contradiction.

Note that xixp,x1x4 € E(G), since otherwise, for example, x1x, € E(G), we have
X2Xp_1,X2%py1 ¢ E(G) since otherwise, say x;x,_1€E(G), G has a hamiltonian
(x1,x4)-path  x1P[xp,x,—1]1P[x3,xp—1]x2x,. Recall that x,y1x1,x,_1x1 € E(G). Thus
Glxp,xp—1,%p+1,%2,x1] is an hourglass. From G[xz,x1,%p,x4] # K13, Xpx4 € E(G).

Note that x,x, 1 € E(G) since otherwise we have x1x,€E(G) from G[x2,x1,Xp—1,X] #
K13, and so G[x,,x1,Xx2,X3,%,—1] 1 an hourglass (note that x;x,—1 ¢ E(G)), a contradic-
tion. Similarly, x2x,41,X2%4—1,X2%4+1 € E(G). It follows that x,,x, ¢ E(G) since otherwise
Glxp,Xxp—1,%p41,%2,X,] is an hourglass. Similarly, x,x, € E(G). From G[x2,x1,X,,Xp]#
K13, x1x, € E(G). Thus G[x2,xp,X4,X1,%,] is an hourglass. This contradiction shows
that i > 3. [ |

Claim 7. k<i—1.

Proof. 1If k=i—1, by Claim 6, k>2. By Lemma 12(2), xix,—1 ¢ E(G), which
implies xjy1x,—1 € E(G). Thus x;_1xi+1 € E(G) or x;x,—1€E(G), since otherwise,
Glxp,XisXi—1,Xi+1,Xn—1] 1s an hourglass. Assume that x;_1x;11 € E(G). We have that
xixi—> € E(G) since otherwise G has a hamiltonian (x1,x,)-path

Plxy,xi—2Jxixi— 1 P[xig1,Xu].

From G[x;—1,xi,Xi—2,%i+1]# K13, xi—2xi+1 € E(G). Note that x; _2x,—1,Xi42%i—2 € E(G).
From Glxit1,Xi42,Xi—2,Xn—11# K13, Xiy2X,—1 € E(G). Note that x;_1x,—1 ¢ E(G) since
otherwise G has a hamiltonian (x1,x,)-path

Plx1,X%i21P[Xix1,Xn—11Xi— 1XiXp.

Thus G[xjt1,Xi+2,Xn—1,Xi—1,Xi—2] is an hourglass, a contradiction. It follows that
Xi—1Xp—1 € E(G). Note that x;x;_» ¢ E(G) since otherwise G has a hamiltonian
path Plxy,x;]P[Xxi+2,Xn—1]%i+1%,- It follows that x;_ox,_; € E(G) since otherwise
Glxi—1,xi,Xi—2,x,—1]=K13. Since xj_1x,—2¢E(G), we have that xj;1x,—2€E(G),
otherwise, Glx,—1,X,—2,Xi+1,Xi—11=K13. Xi—2X,—2 € E(G), otherwise G has a hamil-
tonian path P[x1,x;—2]P~ [Xp—2,Xi+1Xn—1Xi—1XiX,, a contradiction. x;_2x;4+1 ¢ E(G),
otherwise, G has a hamiltonian path P[x,x;—2]P[xjt1,Xn—1]xi—1XiX, a contradiction.
It follows that G[x,—1,xi—2,xi—1,X,—2,X;+1] 1s an hourglass, a contradiction. So
Xi_1xy—1 ¢ E(G). It follows that k<i— 1. Thus Claim 7 is true. [ |

Claim 8.  xpxit1,Xk+1% € E(G) and xpxy—1,Xp+-1Xn—1,Xk—1Xn—1 € E(G) (if k>1).

Proof. By Claim 4, x;x,—1 ¢ E(G). By Lemma 12(2), xj+1x,—1 € E(G). If xpxj41 €
E(G), then, since G[xp,Xi+1,Xn—1,%i,Xk] 1S not an hourglass, x;x,—1 € E(G). Note that
Xk+1Xn—1 € E(G) since otherwise G has a hamiltonian (x1, x,)-path

Plx1,xi )P~ [xi, X1 1P [Xn—1,Xik1 1%,

a contradiction. Similarly, if k>1, then xjxg_1,x¢—1Xk+1 € E(G). From G[xg,Xr+1,%i,
Xxn—1]#K1 3, we have that x;1x; € E(G).
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If k=1, then it is easy to check that H=Gl[x,,x1,Xj,X,—1,Xi+1,X2] is isomorphic to
(P)? (note that dpy(x,) =du(x1)=4, d(xs—1)=du(x;))=3 and dy(xiy1) =dp(x2)=2).
This contradiction shows xgxi+1 € E(G). If k>2, then, from Glxp,Xg—1,Xk+1,Xn—1]15%
K13, xk—1x4—1 € E(G). Thus G[xk,Xk—1,Xk+1,Xi,X,—1] is an hourglass. This contradiction
shows that xix;+1 € E(G).

By Claim 4, xyy1xi+1 € E(G). From Glxg, Xk41,%i,Xit1]1 # K1 3, Xp41%: € E(G).

If xxx,—1 € E(G), then G[xg, Xi+1,Xn—1,Xi, Xk+1] 1S an hourglass, a contradiction. Thus
Xixp—1 € E(G). If x41x,—1 € E(G) then G has a hamiltonian (xg,x,)-path

Plxt, xi 1P [xi Xk 1 1P [Xp—1, Xig 11X
If k>1, then xx_1x,_1 € E(G) since otherwise G has a hamiltonian (x1,x,)-path
Plx, Xp—11P™ [Xp—1,Xi 1 1P Xk, Xi X
This contradiction shows that Claim 8 is true. ]

Now we complete the proof of Proposition 12. By Lemma 12(1), x;x,, xi+1x, € E(G)
and x;x;;+1 ¢ E(G). By Claims 5 and 6, we have i+27#n and i>3. Let x; be chosen
as before Claim 3 with xzx; € E(G) and xgx, € E(G). Then, by Claim 7, k<i—2. By
Lemma 12(2), xjx,—1 ¢ E(G) and xj;1x,—1 € E(G). By Claim 8, xjxg+1, xxxit1 € E(G)
and xxx,—1 € E(G). Note that x4 1x, € E(G) since otherwise G[x;;, Xg+1,Xi, Xi+1,Xn—1] 18
an hourglass since Xxjy1Xj,Xj4+1Xk+1,Xn—1%Xi>Xn—1Xk+1 € E(G). Thus we can derive that
G Xk, Xk 15Xis Xik 1, Xn—1,Xn] 1S @ (Pg)?, a contradiction. Therefore, we complete the proof
of Proposition 12.

By Propositions 10 and 12, we immediately deduce Theorem 7.

Proof of Theorem 6. Let G be a 3-connected {claw,(Ps)?, hourglass}-free graph.
By Theorem 7, we only consider the hamiltonian connectedness in the closure cl/(G)
of G. By Theorem 9, we know that c/(G) is the line graph of some triangle-free graph.
By Proposition 10, we easily obtain that c/(G) is hourglass-free. By Theorem 5, cl(G)
is hamiltonian connected. Again from Theorem 7, G is hamiltonian connected. Thus,
we complete the proof of Theorem 6. ]
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