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Abstract

Motivated by the observation that the sparse tree-like subgraphs in a
small world graph have large diameter, we analyze random spanning trees
in a given host graph. We show that the diameter of a random spanning
tree of a given host graph G is between c

√
n and c′

√
n log n with high

probability., where c and c′ depend on the spectral gap of G and the ratio
of the moments of the degree sequence. For the special case of regular
graphs, this result improves the previous lower bound by Aldous by a
factor of log n.

1 Introduction

Many information networks or social networks have very small diameters, as
dictated by the so-called “small world phenomenon”. In a recent study by
Liben-Nowell and Kleinberg [8] on the cascading effect in complex graphs, it was
observed that the tree-like subgraphs based on chain-letter data have relatively
large diameters. Of special interests are the structure and shape of these tree-like
graphs, which was described to be “surprisingly deep and narrow”. Questions
were raised in the attempt to understanding such sparse graphs that are formed
from information propagation in real-world graphs.

A sparse subgraph naturally can have very different behavior from its host
graph. It is of interest to understand the connections between a graph and its
subgraphs. Numerous questions arise. What are the crucial invariants of the
host graph which can be used to control its subgraphs? Under what conditions
of these invariants can we predict the behavior of subgraphs? In particular,
can the large diameter of tree-like subgraphs, observed by Liben-Nowell and
Kleinberg, be quantitatively and rigorously validated? In this paper, we will
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address this question by considering random spanning trees in a given host
graph.

We will analyze the diameter of random spanning trees in a given host graph
by using and extending techniques originating in the study of random graphs and
random walks on graphs. We use a variant of random walks, called truncated
random walks, which are particularly effective in dealing with general graphs
with uneven degree distributions (see Section 4 for details). We will show that,
under some appropriate conditions, a random spanning tree of a given graph
has diameter of order

√
n (which will be clarified later). This result improves

the previous diameter lower bound established by Aldous for regular graphs. In
addition, this result also supports the observations made in [8]. Namely, one of
the chain-letter trees in [8] with about n = 10, 000 nodes have width about 80
and diameter about 120, both of which are approximately of order

√
n.

To state our result rigorously, we will need definitions. In Section 2, we will
state the main theorems and discuss examples and conditions. In Section 3,
we mention a number of useful facts on the spectrum of the Laplacian, random
walks, and spanning trees. In Section 4, we the method of using random walks
to generate a uniform spanning tree in a host graph. In Section 5, we will prove
the lower bound for the diameter of a random spanning tree and give an upper
bound in Section 6.

2 Statements of the main theorems

A spanning tree T of a connected graph G is an acyclic, connected subgraph
of G. The diameter of a connected spanning subgraph is always at least the
diameter of G. However, the diameter of a spanning tree may be much larger
than the diameter of the graph. The case that the host graph G is the complete
graph Kn is well-studied in the literature. The number of spanning trees of Kn

is nn−2 by Cayley’s theorem. Rényi and Szekeres [11] showed that the diameter
of a uniformly random spanning tree in Kn is of order

√
n, in contrast to the

fact that the diameter of Kn is 1. At the other extreme, if the underlying host
graph is, itself, a tree then there is only one spanning tree and the diameter
does not change at all.

Motivated by these examples, we consider the general question of determin-
ing the diameter of a random spanning tree for any given host graph. Various
host graphs can have diverse behavior and structures. Nevertheless, we wish to
examine crucial parameters of the host graph that can effect the diameter of
random spanning trees.

Previously Aldous [1] proved that in a regular graph G with spectral bound
σ (which will be defined later), the expected diameter of a uniformly random
spanning tree T of G, denoted by diam(T ), has expected value satisfying

cσ
√
n

log n
≤ E(diam(T )) ≤ c

√
n log n√
σ

for some absolute constant c, where here (and throughout this paper); where
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log refers to the natural logarithm.
We partially improve Aldous’ result as follows:

Theorem 1. For a d-regular graph G on n vertices with spectral gap σ, a
spanning tree T of G has expected value satisfying

c
√
n ≤ E(diam(T )) ≤ c′

√
n log n√

log(1/σ)

for some absolute constants c and c′, provided that d� log2 n
log2 σ

.

Theorem 1 is an immediate consequence of the following result for general
graphs.

Theorem 2. Suppose G is a connected graph on n vertices, with average degree
d, minimum degree δ, and second-order average degree d̃ =

∑
v d

2
v/
∑
u du, and

ε > 0 is fixed. Suppose the average degree satisfies

d� log2 n

log2 σ
. (1)

Then with probability 1− ε, the diameter diam(T ) of a random spanning tree T
in G satisfies

c1
√
n ≤ diam(T ) ≤ c2

√
n log n, (2)

where c1 and c2 are constants depending on ε, d, δ, d̃, σ, defined as follows:

c1 = (1− ε)
√
εd

d̃
.

and

c2 =
10
ε

√
d

δ log(1/σ)
.

Remark 1: While the conditions in Theorem 2 look technical, they are derived
from the proofs in Sections 4 and 5. It should be noted that the condition (1)
is really a condition on both d and σ. The smaller the spectral gap σ is, the
smaller d is allowed to be. For example, (1) is satisfied for any graph with the
average degree is at least log2 n, and σ = o(1).
Remark 2: The conditions in Theorem 2 are satisfied if

σ = o

(
log n√
d

)
.

For random d-regular graphs, it is known that σ is about 2√
d

with high prob-

ability. Thus random d-regular graphs, with d of order at least log2 n, easily
satisfy the conditions (1) and (2).
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Remark 3: Ideally, we would like to let ε be a function of n tending to zero.
This can be done and we discuss the necessary requirements after the proof of
Theorem 2. The proof is explicit, as opposed to asymptotic, for a graph with
fixed average degree d, and σ (as opposed to the o(1) term in the statement of
the theorem), although the expression is somewhat complicated. For simplicity
we do not state the technical generalizations here.
Remark 4: For the random graph model G(w) for a given expected degree
sequence w = (w1, w2, . . . , wn), as introduced in [4], the probability pij that
there is an edge between vi and vj is proportional to the product wiwj (as well as
the loop at vi with probability proportional to w2

i ). It has been shown in [6] that
G(w) has σ ≤ (1 + o(1)) 4√

d
with high probability provided that the minimum

degree is Ω(log n). Theorem 2 implies the diameter of random spanning tree

of a graph in G(w) is Ω(
√

d
d̃
n) with high probability, if the average degree is

d = Ω(( logn
log logn )2). The upper bound for the diameter is within a multiplicative

factor of O
(√

d̃
δ log n

)
.

Remark 6: It has been observed that many real-world networks satisfy the so-
called power law. We say a family of graphs satisfies a power law with exponent
β if the degree sequence of the graph satisfies the property that the number
of vertices having degree k is asymptotically proportional to k−β . There are
many models being used to capture the behavior of such power law graphs [5],
especially for the exponent β in the range between 2 and 3. Suppose we use the
random graph model G(w) with w satisfying the power law to generate graphs
with a power-law degree distribution. The G(w) model is appropriate for this
task, so long as the (expected) maximum degree m is no larger than

√
n. (In

other words, if the maximum degree exceeds
√
n, then G(w) can only be used

to model the subgraph with degree no larger than
√
n.) Generating a random

power law graph in such a fashion, and noting that the second average degree is
of order dβ−1m3−β , we may use the Theorem 2 to study the diameter of random
spanning trees in power law graphs. Setting m =

√
n and using Theorem 2, the

diameter of a random spanning tree in such a random power law graph is at
least cn(β−2)/4(log n)(2−β)/2 and at most c′

√
n(log n)3/2 for some constants c

and c′, with high probability.

3 Preliminary Spectral Lemmas

Suppose G is a connected (non-bipartite) graph on vertex set [n] = {1, 2, . . . , n}.
Let A = (aij) be the adjacency matrix of G defined by

aij =
{

1 if ij is an edge;
0 otherwise.

For 1 ≤ i ≤ n let di =
∑
j aij be the degree of vertex i. Let ∆ = max(d1, . . . , dn)

be the maximum degree and δ = min(d1, . . . , dn) be the minimum degree. For
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each k, we define the k-th volume, closely related to the k-th moment of the
degree sequence, of G to be

volk(G) =
n∑
i=1

dki .

The volume vol(G) is simply the sum of all degrees, i.e. vol(G) = vol1(G).
We define the average degree d = 1

nvol(G) = vol1(G)
vol0(G) and the second order

average degree d̃ = vol2(G)
vol1(G) .

Let D = diag(d1, d2, . . . , dn) denote the diagonal degree matrix. The Lapla-
cian matrix is defined as

L = I −D− 1
2AD−

1
2 .

The spectrum of the Laplacian is the sequence of eigenvalues of L sorted in
increasing order.

0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1.

The first eigenvalue λ0 is always equal to 0. λ1 > 0 if G is connected and
λn−1 ≤ 2 with equality holding only if G is bipartite graph.

Let σ = max{1 − λ1, λn−1 − 1}. Thus σ < 1 if G is connected and non-
bipartite. Note that σ is closely related to the mixing rate of random walks on
G.

Let α0, α1, . . . , αn−1 be orthonormal (row) eigenvectors of the Laplacian L,
U = (α∗0, α

∗
1, . . . , α

∗
n−1). Also we define Λ = diag(λ0, . . . , λn−1). We can write

L = UΛU∗.

For 0 ≤ i ≤ n − 1, we define φi = αiDα
∗
i . We define (φ0, φ1, . . . , φn−1) to

be the degree spectrum. Then we have the following useful facts:

Lemma 1. The degree spectrum satisfies the following properties.

1. φ0 = d̃.

2. For 0 ≤ i ≤ n− 1, δ ≤ φi ≤ ∆.

3.
∑n−1
i=0 φi = vol(G).

Proof. Note φ0 = (
√
d1√

vol(G)
, . . . ,

√
dn√

vol(G)
)∗ since Lφ0 = 0. We have

φ0 = α0Dα
∗
0

=
n∑
i=1

√
di√

vol(G)
di

√
di√

vol(G)

=
∑n
i=1 d

2
i

vol(G)

= d̃.
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We have

|φi −
δ + ∆

2
| = |αiDα∗i −

δ + ∆
2
|

= |αi(D −
δ + ∆

2
I)φ∗i |

≤ ‖D − δ + ∆
2

I‖

=
∆− δ

2
.

Thus, we have
δ ≤ φi ≤ ∆.

We also have ∑
i

φi = Tr(U∗DU)

= Tr(D)
= vol(G).

Lemma 2. For any integer j ≥ 1,

Tr(A(D−1A)j−1) ≤ d̃+ σj(vol(G)− d̃).

Proof. We have

Tr(A(D−1A)j−1) = Tr(D(D−1A)j)

= Tr(D(D−
1
2AD−

1
2 )j

= Tr(D(I − L)j)
= Tr(DU(I − Λ)jU∗)
= Tr(U∗DU(I − Λ)j)

=
n−1∑
i=0

φi(1− λi)j

= d̃+
∑
i>0

φi(1− λi)j

≤ d̃+
∑
i>0

φiσ
j

= d̃+ (vol(G)− d̃)σj .

A simple random walk on G is a sequence of vertices v0, v1, . . . , vk, . . . with

P(vk = j | vk−1 = i) = pij =
{

1
di

if ij ∈ E(G)
0 otherwise
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for all k ≥ 1.
The transition matrix P is a n× n matrix with entries pij for 1 ≤ i, j ≤ n.

We can write P = D−1A.
A probability distribution over the set of vertices is a row vector β (β∗ ∈ Rn)

satisfying

1. The entries of β are non-negative.

2. The L1-norm ‖β‖1 (= β1) equal to 1 where 1 denotes a column vector
with all entries 1.

If β is a probability distribution, so is βP . The stationary distribution is a
vector, denoted by π, satisfying π = πP and

π =
1

vol(G)
(d1, d2, . . . , dn).

The eigenvalues of P are 1, 1− λ1, . . . , 1− λn−1, since P = D−
1
2 (I −L)D

1
2 . In

general, P is not symmetric unless G is regular.
The following lemma concerns the mixing rate of the random walks; similar

mixing lemmas are well known, see, eg. [3].

Lemma 3. For any integer t > 0, any α ∈ Rn, and any two probability distri-
butions β and γ, we have

〈(β − γ)P t, αD−1〉 ≤ σt‖(β − γ)D−1/2)‖2‖αD−1/2‖2. (3)

In particular,
‖(β − γ)P tD−1/2‖ ≤ σt‖(β − γ)D−1/2‖. (4)

Proof. Here, we assume all vectors are row vectors (including 1 which is the all
row vector containing only ones).

Let ϕ = 1√
vol(G)

1(
√
d1, . . . ,

√
dn) = vol(G)−

1
2 (D

1
2 ) denote the (row) eigen-

vector of I − L for the eigenvalue 1. The matrix (I − L)t − ϕ∗ϕ, which is the
projection of (I − L)t to the subspace ϕ⊥, has L2-norm σt. Note that

(β − γ)D−
1
2ϕ∗ =

1
vol(G)

(β − γ)1 = 0.

We have

〈(β − γ)P t, D−1α∗〉 = (β − γ)D−
1
2 [(I − L)t − ϕ∗ϕ]D−

1
2α∗

≤ ‖(β − γ)D−
1
2 ‖2σt‖αD−

1
2 ‖2.

Now we choose α = (β − γ)P t to obtain (4) as desired.

The mixing rate of the random walks on G measures how fast βP t converges
to the stationary distribution π from an initial distribution β. We can use the
above lemma to show that the distribution βP t converges to π rapidly if σ is
strictly less than 1.
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4 Random spanning trees generated by random
walks

Assume that we have a fixed graph G, and we wish to understand uniformly ran-
dom spanning trees within this graph G. The following so-called groundskeeper
algorithm gives a method of generating spanning trees of G using random walks:
Start a random walk at a vertex, v. When a vertex is visited first time via some
edge, we add that edge to our spanning tree. Once the graph is covered, the
resulting set of edges form a spanning tree. This gives a map Φ from random
walks to random spanning trees. Aldous [1] and Broder [2] independently show
that the groundskeeper algorithm generates a uniformly random spanning tree:

Theorem 3 (Groundskeeper Algorithm). The image of Φ is uniformly dis-
tributed over all spanning trees. It is independent of the choice of initial vertex
v.

If we pick a random initial vertex with stationary distribution π, then at any
step t, the vertex visited by our random walk is distributed according to π.

Starting a random walk at our uniformly chosen initial vertex, we generate
a random spanning tree. We derive, for an integer g ≥ 3, a g-truncated random
walk from the random walk defining our spanning tree by stopping the first time
our random walker visits a site that he has last visited more than g − 2 steps
in the past. That is, if our random walk is a sequence of vertices v1, v2, . . ., we
allow the backtrack step vt+1 = vt−i for some i ≤ g−2. However, if vt+1 = vt−i
for some i > g − 2, the random walk stops. Recall that we build our spanning
tree by recording the edges vt−1vt the first time vt is visited.

Lemma 4. The probability that a g-truncated random walk stops before or at
time t is at most

(t− g + 3)(t− g + 2)d̃
2nd

+ (t− g + 2)
σg

1− σ
.

Proof. When the truncated random walk stops, there exists a closed walk C =
vi, vi+1, . . . , vt, vi+k = vi of length k ≥ g for some 0 ≤ i ≤ t− k+ 1. For a fixed
i and k, the probability f(i, k) for such a closed walk is at most

f(i, k) ≤
∑

closed walk: vi,...,vi+k=vi

dvi
vol(G)

k∏
j=1

1
dvi+j−1

=
1

vol(G)
Tr(A(D−1A)k−1)

≤ d̃

vol(G)
+ σk(1− d̃

vol(G)
)

<
d̃

vol(G)
+ σk.
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By summing up for i ≥ 0, k ≥ g, and i+ k ≤ t+ 1, we have

t−g+1∑
i=0

t−i+1∑
k=g

f(i, k) =
t−g+1∑
i=0

t−i+1∑
k=g

d̃

vol(G)
+ σk

≤ (t− g + 3)(t− g + 2)
2

d̃

vol(G)
+
t−g+1∑
i=0

∞∑
k=g

σk

≤ (t− g + 3)(t− g + 2))
2

d̃

vol(G)
+ (t− g + 2)

σg

1− σ
.

The lemma now follows.

5 Proving a lower bound for the diameter of a
random spanning tree

In this section we will prove a diameter lower bound for spanning trees of G as
stated in inequality (2) of Theorem 2.

Proof of (2); the lower bound of Theorem 2: Let

t =

⌊√
ε
d

d̃
n

⌋

and

g =


log
(
ε(1−σ)

√
δ

4t
√
d̃

)
log(σ)

 .
Note that g is chosen so that

σg

1− σ
≤ ε

4t
.

We generate a uniformly random spanning tree starting a random walk
(vi)∞i=1 at a vertex chosen according to the stationary distribution. Consider
the g-truncated random walk derived from that walk. By Lemma 4, the g-
truncated random walk will survive up to time t with probability at least

1− (t− g + 3)(t− g + 2)d̃
2nd

− (t− g + 2)
σg

1− σ
> 1− t2d̃

2nd
− t σg

1− σ
> 1− ε

2
− ε

4

≥ 1− 3ε
4
.
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For i = 1, . . . , t, we say vi−1vi is a forward step if vi 6= vj for some j < i; we say
vi−1vi is a k-backward step if vi = vi−k for some k ≤ g − 2 (here, if vi = vi−k
for more than one k ≤ g − 2, we call it a k-backward step for the smallest such
k).

Let Xi = −k if vi−1vi is a k-backward step and Xi = 1 otherwise. For all i,
we have

−(g − 2) ≤ Xi ≤ 1.

Let Y be the distance of v0vt in the random spanning tree (determined by the
entire random walk) and X =

∑t
i=1Xi. Note that the Xi are defined from

the underlying random walk and hence are always defined. Conditioning on the
event that the truncated random walk survives up to time t, however, we have
Y ≥ X. This implies that

P(Y < X) <
3ε
4
.

Let Fi be the σ-algebra generated by v0, . . . , vi. For i = 0, . . . , t, E(X | Fi)
forms a martingale. We would like to establish a Lipschitz condition for this
martingale. For 1 ≤ i, j ≤ t, it is enough to bound |E(Xj | Fi)− E(Xj | Fi−1)|.
For j < i, Xj is completely determined by the information on v0, v1, . . . , vi. In
this case we have

E(Xj | Fi) = E(Xj | Fi−1).

For j ≥ i, E(Xj | Fi) and E(Xj | Fi−1) are different because vi is exposed.
For i ≤ j ≤ i+ 2g − 3, we apply the trivial bound

|E(Xj | Fi)− E(Xj | Fi−1)| ≤ g − 1.

For j ≥ i+ 2g− 2, Xj only depends on vj−g+2, vj−g+3, . . . , vj+1. Note that the
random walk at step i only depends on the current position vi and is indepen-
dent of history position v0, . . . , vi−1. Thus E(Xj | vj−g+2) is independent of vi
because of i < j − g + 2. We use the mixing of our random walk to show that
information gained from knowing vi is quickly lost. Let p be the distribution of
vi given vi−1 and q be the distribution of vi given vi (q is a singleton distribu-
tion). Let p′ be the distribution of vj−g+2 given vi−1 and q′ be the distribution
of vj−g+2 given vi. (Note: Here p′ is not p transposed.) Applying Lemma 3,
we have

‖(p′ − q′)D−1/2‖ ≤ ‖(p− q)D−1/2‖σj−g+2−i ≤ 2√
δ
σj−g+2−i.

Therefore,

|E(Xj | Fi)− E(Xj | Fi−1)| = |
n∑
u=1

(p′u − q′u)E(Xj | vj−g+2 = u)|

≤ ‖p′ − q′‖1(g − 2)

≤
√

vol(G)‖(p′ − q′)D−1/2‖(g − 2)

≤ 2(g − 2)

√
vol(G)√
δ

σj−g+2−i.
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We have

|E(X | Fi)− E(X | Fi−1)| ≤
t∑

j=1

|E(Xj | Fi)− E(Xj | Fi−1)|

≤ 2(g − 1)2 +
t∑

j=i+2g−2

2(g − 2)

√
vol(G)√
δ

σj−g+2−i

≤ 2(g − 1)2 + 2(g − 2)

√
vol(G)σg√
δ(1− σ)

≤ 3g2,

noting that g has been chosen so that

σg

1− σ
≤

√
ε
√
δ

4(1− ε)
√

vol(G)

is sufficiently small to make the last inequality hold.
Thus we have established that E(X|Fi) satisfies the Lipschitz condition with

constant 3g2. By applying the Azuma-Hoeffding inequality, we have

P(X − E(X) < −α) < 2e−
α2

18g4t ,

for any positive real α.
Note that

E(X) =
t∑
i=1

E(Xi)

=
t∑
i=1

n∑
j=1

E(Xi | vi−1 = j)P(vi−1 = j)

≥
t∑
i=1

n∑
j=1

(
(1− g − 1

dj
) +

g−2∑
k=1

−k
dj

)
dj

vol(G)

=
t∑
i=1

n∑
j=1

(1− g(g − 1)
2dj

)
dj

vol(G)

=
t∑
i=1

(
1− g(g − 1)n

2vol(G)

)
= (1− g(g − 1)

2d
)t.

By choosing α =
√

18g4t log 4
ε , we have

P

(
X < (1− g(g − 1)

2d
)t−

√
18g4t log

4
ε

)
<
ε

4
.
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Combining our ingredients, we have

P

(
Y < (1− g(g − 1)

2d
)t−

√
18g4t log

4
ε

)

≤ P

(
X < (1− 2

d
)t−

√
18g4t log

4
ε

)
+ P(Y < X)

<
3ε
4

+
ε

4
= ε.

To complete the proof, it suffices to check that our degree conditions imply
that

(1− g(g − 1)
2d

)t−
√

18g4t log
4
ε

= (1− o(1))

√
ε
nd

d̃
.

In particular it suffices to check that

g√
d

= o(1),

as g4 is clearly o(t).
Since

g ≤
log
(

4
ε(1−σ)

)
+ log

(
t d̃δ

)
log(1/σ)

+ 1

and

log

(
t
d̃

δ

)
= log((1− ε)

√
ε) +

1
2

log
(
d

δ
n

)
we have g/

√
d = o(1), since

d� log2(n)
log2(1/σ)

as hypothesized.

Note that this does provide a somewhat complicated, but explicit, bound on
the diameter of a uniformly random spanning tree in a given graph; as opposed
to simply an asymptotic result: In particular, with probability at least 1 − ε,
the diameter of a random spanning tree of a graph on n vertices with minimum
degree δ, spectral bound σ, average degree d and second order average degree d̃
satisfies

diam(T ) ≥

1− g(g − 1)
2d

−

√√√√
18g4

√
d̃

εnd
log

4
ε

√εnd
d̃
,
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where

g =


log
(
ε(1−σ)

√
δ

4t
√
d̃

)
log(σ)


is as in the above.

6 Proving a diameter upper bound

For the upper bound, we extend the methods in [1] for a general host graph. In
particular we provide a generalization of Theorem 15 of the Aldous’ paper to
give an upper bound in the general degree case.

Here, we let Xt denote the position of a random walk at time t. We denote
by TB the hitting time of a set B; that is

TB = min{t : Xt ∈ B}.

We denote the return time of a set B to be

T+
B = min{t ≥ 1 : Xt ∈ B}.

(Note that if the random walker does not start in B, TB = T+
B .)

When considering the probability that our random walk has some property
under some number of steps we use the notation Pρ to denote that we condi-
tion on our random walker having initial distribution ρ. Likewise, Eρ denotes
expectation conditioning on the initial distribution. If no distribution is given,
it is assumed to be starting from the stationary distribution. As a convenient
abuse of notation, for a vertex v, Pv denotes starting with the distribution that
places weight 1 on v.

The first tool is the following, rather standard, mixing lemma.

Lemma 5. For all initial distributions ρ and all B ⊆ G,

Pρ
(
TB > 3

log n
log(1/σ)

vol(G)
vol(B)

)
≤ 1

2

Proof. We begin by bounding |P s(ρ,B)−π(B)|, where ρ is an (arbitrary) initial
distribution and π(B) = vol(B)

vol(G) . As before, all vectors are considered to be row
vectors. Write

ρD−1/2 =
∑
i

aiαi

where the αi are left eigenvectors of (I−L) corresponding to eigenvalues (1−λi).
Then

a0 = 〈ρD−1/2,
D1/21√

volG
〉 =

1√
vol(G)

.
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Thus

ρD−1/2 =
1D1/2

vol(G)
+
∑
i≥1

aiαi.

Then

|P s(ρ,B)− π(B)| =
∣∣∣∣ρP sχB − 1D

vol(G)
χB

∣∣∣∣
=

∣∣∣∣(ρD−1/2(I − L)s − 1D1/2

vol(G)

)
D1/2χB

∣∣∣∣
=

∣∣∣∣∣∣
 1D1/2

vol(G)
+
∑
i≥1

(1− λi)saiαi −
1D1/2

vol(G)

D1/2χB

∣∣∣∣∣∣
≤

∑
i≥1

σs|ai||αiD1/2χB |

≤ σs
√
nvol1/2(B)

≤ σs
√
n|B|vol(B)|

where the last step follows from an application of Cauchy-Schwarz inequality.
Let

s = log

( √
vol(B)

2
√
n|B|vol(G)

)
/ log(σ)

so

σs
√
n|B|vol(B) =

vol(B)
2vol(G)

.

Fix ti = is, then

P(TB > x) ≤ P(Xt1 6∈ B,Xt2 6∈ B, . . . ,Xtx/s 6∈ B)
= P(Xt1 6∈ B)P(Xt2 6∈ B|Xt1 6∈ B) · · ·P(Xtx/s 6∈ B|Xtj 6∈ B, ∀j < i)

≤
(

1− vol(B)
vol(G)

+
√
n|B|vol(B)σs

)x/s
≤

(
1− vol(B)

2vol(G)

)x/s
.

Fix x = 2 log(2)s vol(G)
vol(B) and it is easy to check that

P(TB > x) ≤ 1
2
.

In all, we have

x = 2 log(2)
log
(

2
√
n|B|vol(G)√

vol(B)

)
vol(G)

log(1/σ)vol(B)
≤ 3

log n
log(1/σ)

vol(G)
vol(B)

.
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The following result (and its proof) are due to Aldous [1]. LetB = {v0, . . . , vc}
denote a set of vertices and let PB denote the event that the path from v0 to the
root (starting location of our random walker for generating a UST, chosen by
the uniform distribution) in a uniform spanning tree starts v0, v1, . . . , vc. Then

Lemma 6.

P(Tvc = `|PB) =
Pvc(T

+
B > `)

Evc(T
+
B )

. (5)

Proof. For i < c, we denote the event Di to be

Di = {T{v0,...,vi} = Tvi , XTvi−1 = vi−1}.

In words, Di is the event that vi is hit before vj for j < i, and indeed vi is first
hit from vi−1, so

⋂
i<cDi = PB . Then:

{Tvc = `} ∩ PB = {Tvc = ` = TB} ∩ (∩c−1
i=0Di)

Note that, from the Markov property, it is clear that P(
⋂
i<cDi|Tvc = TB = `)

does not depend on ` (this is the motivation for writing PB in an obscure way),
thus:

P(Tvc = `|PB) = αP(Tvc = TB = `)

for ` = 0, 1, . . . and for some α which (critically) does not depend on `. We have
that:

Pvc(T
+
B > `) =

∑
w

Pvc(X0 = vc, X` = w, Xi /∈ B for 1 ≤ i ≤ `)

=
1

π(vc)

∑
w

Pπ(X0 = vc, X` = w, Xi /∈ B for 1 ≤ i ≤ `)

=
1

π(vc)

∑
w

Pπ(X0 = w,X` = vc, Xi /∈ B for 1 ≤ i ≤ `)

=
1

π(vc)
Pπ(X` = vc, Xi /∈ B for 1 ≤ i ≤ `)

=
1

π(vc)
Pπ(Tvc = TB = `)

with the third to last equality following from time reversal for the stationary
Markov chain. This implies:

Pπ(Tvc = `|PB) = απ(vc)Pvc(T
+
B > `).

Note finally, then that

1 =
∞∑
`=0

Pπ(Tvc = `|PB) =
∞∑
`=0

απ(vc)Pvc(T
+
B > `) =

απ(vc)
Evc(T

+
B )

.

so απ(vc) = Evc(T
+
B ), implying the result.

15



One can observe that, actually, while the normalizing constant is easy to
compute, the exact value is unnecessary for the proof of the upper bound itself.

We now prove the upper bound, establishing (3) in Theorem 2; whose proof
mimics that of Aldous.

Proof of (3); the upper bound from Theorem 2: Let us start our random walk
from the stationary distribution (unless explicitly noted, all probabilities related
with the random walk which generates the spanning tree are taken to start with
π).

We begin by fixing a path v0, v1, . . . , vc in our graph; and B be the set
{v0, . . . , vc}. As above, PB will denote the event that the path from v0 to the
root (that is, the starting location of our random walk, X0) in our uniform
spanning tree starts out along the path v0, . . . , vc. If we let

s =
⌈

3
log(1/σ)

vol(G)
(c+ 1)δ

⌉
≥ 3

log(1/σ)
vol(G)
vol(B)

log n

then, by iterating Lemma 5 we have that

Pvc(T
+
B > js) ≤ 1

2j−1
Pvc(T

+
B > s).

We are now in the position to apply Lemma 6 to both sides; note that the
normalizing constant will cancel and we are left with:

P(Tvc = js|PB) ≤ (1/2)j−1P(Tvc = s|PB) ≤ (1/2)j−1s−1.

where the last inequality follows from the fact that the right hand side of (5)
in Lemma 6 is decreasing with l and hence the left hand side must decrease as
well. This monotonicity property, and summing gives:

P(js ≤ Tvc ≤ (j + 1)s|PB) ≤ (1/2)j−1.

Further summing gives

P(js ≤ Tvc |PB) ≤ (1/2)j−2.

If PB occurs, then naturally we have that the distance from v0 to the root, X0,
satisfies

XSd(X0, v0) ≤ d(X0, vc) + c ≤ Tvc + c.

We also clearly have that if d(X0, v0) > c, then PB occurs for some unique path
v0, . . . , vc. Thus:

P(d(X0, v0) > c+ js) ≤ (1/2)j−2.

Clearly diam(T )/2 ≤ maxv d(X0, v); so

P(diam(T )/2 > c+ js) ≤ n(1/2)j−2.
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This gives us

E(diam(T )) ≤ 2c+ 3s log n ≤ 2c+
3vol(G)

c log(1/σ)δ
log2 n,

with the second inequality coming from the definition of S. These terms are the
same order of magnitude when setting c =

√
volG

δ log(1/σ) log n; giving the desired

bound. To establish the bound in the form stated in (3), simply apply Markov’s
inequality.

Note that by minimizing

2c+
3vol(G)

c log(1/σ)δ
log2 n

we actually get that

E(diam(T )) ≤ 2

√
6

vol(G)
δ log(1/σ)

log n.
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