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Abstract

A graph is called integral if all eigenvalues of its adjacency matrix consist entirely of integers.

Recently, Csikvári proved the existence of integral trees of any even diameter. In the odd

case, integral trees have been constructed with diameter at most 7. In this paper, we show

that for every odd integer n > 1, there are infinitely many integral trees of diameter n.
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1 Introduction

Let G be a graph with the vertex set {v1, . . . , vn}. The adjacency matrix of G is an n × n

matrix A(G) whose (i, j)-entry is 1 if vi is adjacent to vj and 0 otherwise. The characteristic

polynomial of G, denoted by ϕ(G;x), is the characteristic polynomial of A(G). We will drop the

indeterminate x for simplicity of notation whenever there is no danger of confusion. The zeros

of ϕ(G) are called the eigenvalues of G. Note that A(G) is a real symmetric matrix so that all

eigenvalues of G are reals. The graph G is said to be integral if all eigenvalues of G are integers.

The notion of integral graphs was first introduced in [5]. The general characterization prob-

lem of integral graphs seems to be intractable. Therefore, it is natural to deal with the problem

within specific classes of graphs such as trees, cubic graphs and so on. Here, we are concerned

with finding integral trees. These objects are extremely rare and very difficult to find. For

instance, among trees up to 50 vertices there are only 28 integral ones [1] and out of a total

number of 2, 262, 366, 343, 746 trees on 35 vertices only one tree is integral. For a long time,

it has been an open question whether there exist integral trees of any diameter [13]. Many

attempts by various authors led to the constructions of integral trees of diameters 2–8 and 10,
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see [6, 7, 8, 9, 10, 11, 12]. Recently, Csikvári found a nice construction of integral trees for any

even diameter [3]. In the odd case, all integral trees of diameter 3 have been characterized by

a result from number theory given in [4]. Infinitely many integral trees of diameter 5 were first

constructed in [9]. The existence of integral trees of diameter 7 was established in [7] where the

authors found four such trees. In this paper, we show that for every odd integer n > 1, there

are infinitely many integral trees of diameter n.

2 Csikvári’s trees

In this section, we revisit the trees constructed in [3] and compute their eigenvalues using a

simple argument. We will make use of them to construct new integral trees of odd diameters.

A rooted tree is a tree with a specified vertex called the root. For a rooted tree T , we denote

by T ′ the forest resulting from removing the root of T . Let n be a positive integer and T1, T2

be two rooted trees with disjoint vertex sets. Then T1 ∼ nT2 is the rooted tree obtained from

T1 and n copies of T2 by joining the root of T1 to the roots of the copies of T2. The root of T1

is considered to be the root of the resulting tree. For positive integers r1 < r2 < · · · < rn, we

define the rooted tree C(r1, . . . , rn) constructed in [3] recursively as

C(r1, . . . , rn) = C(r1, . . . , rn−2) ∼ (rn − rn−1)C(r1, . . . , rn−1),

for n > 2, with initial trees C( ) and C(r1) being the one-vertex tree and the star tree on r1 +1

vertices, respectively.

The following lemma is proved in [2, p. 59] for n = 1. The general case is straightforward by

induction on n.

Lemma 1. Let T1, T2 be two rooted trees and let T = T1 ∼ nT2. Then

ϕ(T ) = ϕ(T2)
n−1

(

ϕ(T1)ϕ(T2)− nϕ(T ′

1)ϕ(T
′

2)
)

.

The following lemma can be used to determine the eigenvalues of Csikvári’s trees and their

multiplicities.

Lemma 2. Let n > 2 and r1, . . . , rn be positive integers. Then

ϕ
(

C(r1, . . . , rn)
)

= ϕrn−rn−1
(

C(r1, . . . , rn−1)
)

ϕ
(

C(r1, . . . , rn−2)
) x2 − rn
x2 − rn−1

.

Proof. For convenience, we set Pk = ϕ(C(r1, . . . , rk)), Qk = ϕ(C ′(r1, . . . , rk)) and dk =

rk − rk−1 for k > 1, with the convention r0 = 0. Since C ′(r1, . . . , rk) = C ′(r1, . . . , rk−2) ∪
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dkC(r1, . . . , rk−1) for k > 2, we have Qk = P dk
k−1

Qk−2. By Lemma 1,

Pk = P dk−1

k−1

(

Pk−1Pk−2 − (rk − rk−1)Qk−1Qk−2

)

= P dk−1

k−1

(

P
dk−1

k−2

(

Pk−2Pk−3 − (rk−1 − rk−2)Qk−2Qk−3

)

− (rk − rk−1)P
dk−1

k−2
Qk−2Qk−3

)

= P dk−1

k−1
P

dk−1

k−2

(

Pk−2Pk−3 − (rk − rk−2)Qk−2Qk−3

)

...

= P dk−1

k−1
P

dk−1

k−2
· · ·P d3

2

(

P2P1 − (rk − r2)Q2Q1

)

= P dk−1

k−1
P

dk−1

k−2
· · ·P d2

1

(

P1x− (rk − r1)Q1

)

= P dk−1

k−1
P

dk−1

k−2
· · ·P d2

1
xd1(x2 − rk).

Note that P1 = xd1−1(x2 − r1) and so Pk = P dk−1

k−1
P

dk−1

k−2
· · ·P d2

1
xd1(x2 − rk) holds for k > 1. To

complete the proof, apply this equality for k = n− 1, n and then compute Pn/Pn−1. ✷

It is not hard to see that diameter of C(r1, . . . , rn) is 2n provided that rn − rn−1 > 1. The

following theorem readily follows from Lemma 2 which establishes the existence of infinitely

many integral trees of any even diameter.

Theorem 3. [3] The set of distinct eigenvalues of the tree C(r1, . . . , rn) is
{

0,±√
r1, . . . ,±

√
rn
}

.

Let us introduce an alternative representation of ϕ(C(r1, . . . , rn)) and ϕ(C ′(r1, . . . , rn)) to

be used in sequel. For C = C(r1, . . . , rn), we let

f(C) =

⌈n

2
⌉

∏

i=1

ϕdn−2i+2

(

C(r1, . . . , rn−2i+1)
)

x2 − rn−2i+1

,

where di = ri− ri−1 with the convention r0 = 0. By Lemma 2, f(C) is a polynomial and clearly

we have

ϕ(C) = xf(C)

⌈n

2 ⌉
∏

i=1

(x2 − rn−2i+2) (1)

and

ϕ(C ′) = f(C)

⌈n

2 ⌉
∏

i=1

(x2 − rn−2i+1). (2)

Note that by Lemma 2, if rn−rn−1 > 1, then the positive zeroes of f(C) read as
√
r1, . . . ,

√
rn−1.

3 A class of trees

In this section, we introduce a class of trees which will be used to obtain integral trees of odd

diameters. For positive integers n, r, r0, r1, . . . , rn such that n > 2 and max{r0, r1} < r2 < · · · <
rn, let U = C(r1, . . . , rn), V = C(r0, r2, . . . , rn−1), W = C(r2, . . . , rn), and define

T (r, r0, r1, . . . , rn) = U ∼ (V ∼ rW ).
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Note that for n = 2, we let V = C(r0). It is easily checked that the maximum distance between

a vertex of C(k1, . . . , kn) and its root is n. So T = T (r, r0, r1, . . . , rn) is a tree of diameter 2n+1.

We proceed to determine ϕ(T ). Applying Lemma 1, we find that

ϕ(T ) =ϕ(U)ϕr−1(W )
(

ϕ(V )ϕ(W )− rϕ(V ′)ϕ(W ′)
)

− ϕ(U ′)ϕ(V ′)ϕr(W )

=ϕr−1(W )
(

ϕ(U)ϕ(V )ϕ(W )− rϕ(U)ϕ(V ′)ϕ(W ′)− ϕ(U ′)ϕ(V ′)ϕ(W )
)

.

First assume that n = 2m+ 1 is odd. By (1) and (2), we have

ϕ(U) =xf(U)(x2 − r1)(x
2 − rn)

m
∏

i=2

(x2 − r2i−1), (3)

ϕ(V ) =xf(V )

m
∏

i=1

(x2 − r2i), (4)

ϕ(W ) =xf(W )(x2 − rn)

m
∏

i=2

(x2 − r2i−1), (5)

and

ϕ(U ′) =x2f(U)
m
∏

i=1

(x2 − r2i), (6)

ϕ(V ′) = f(V )(x2 − r0)

m
∏

i=2

(x2 − r2i−1), (7)

ϕ(W ′) = f(W )

m
∏

i=1

(x2 − r2i). (8)

Hence, by (3)–(8),

ϕ(T ) = x(x2 − rn)ϕ
r−1(W )f(U)f(V )f(W )

m
∏

i=2

(x2 − r2i)
m
∏

i=2

(x2 − r2i−1)
2ψo(x),

where

ψo(T ) = x2(x2 − r1)(x
2 − rn)− r(x2 − r0)(x

2 − r1)− x2(x2 − r0).

Next suppose that n = 2m is even. By (1) and (2), we have

ϕ(U) =xf(U)(x2 − rn)

m−1
∏

i=1

(x2 − r2i), (9)

ϕ(V ) =xf(V )(x2 − r0)
m
∏

i=2

(x2 − r2i−1), (10)

ϕ(W ) =xf(W )(x2 − rn)
m−1
∏

i=1

(x2 − r2i), (11)
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and

ϕ(U ′) = f(U)(x2 − r1)

m
∏

i=2

(x2 − r2i−1), (12)

ϕ(V ′) =x2f(V )
m−1
∏

i=1

(x2 − r2i), (13)

ϕ(W ′) =x2f(W )
m
∏

i=2

(x2 − r2i−1). (14)

Thus, by (9)–(14),

ϕ(T ) = x3(x2 − rn)ϕ
r−1(W )f(U)f(V )f(W )

m
∏

i=2

(x2 − r2i−1)
m−1
∏

i=1

(x2 − r2i)
2ψe(x),

where

ψe(T ) = (x2 − r0)(x
2 − rn)− rx2 − (x2 − r1).

In summary, using the above notation, we have the following theorem.

Theorem 4. Let n be odd (respectively, even). Then T is an integral tree of diameter 2n+1 if

and only if r0, r1, . . . , rn are perfect squares and all the zeros of ψo(T ) (respectively, ψe(T )) are

integers.

4 Integral trees of diameter 4k + 1

Let n be even. It is not difficult to choose the parameters of T in such a way that the zeros of

ψe(T ) are all integers. For instance, let r0 = 1, r1 = 4k2, rn = (k2 − 1)2 and r = 4k2 − 1. Then

ψe(T ) = (x2 − 1)
(

x2 − (k2 − 1)2
)

− (4k2 − 1)x2 − (x2 − 4k2)

= (x2 − 1)
(

x2 − (k2 + 1)2
)

.

Clearly, if we choose k large enough, then we are able to take distinct prefect squares r2, . . . , rn−1

in the interval (4k2, (k2 − 1)2). Hence, we have proved the following theorem.

Theorem 5. For every even positive integer n, there are infinitely many integral trees of

diameter 2n+ 1.

5 Integral trees of diameter 4k + 3

Let n be odd. Our objective is to choose the parameters of T in such a way that all the zeros

of ψo(T ) are integers. This can be done in many ways. For instance, if we set r0 = r1 = a2 and

r = rn = 4(a− 1)2 for some integer a with |a| > 3, then

ψo(T ) =
(

x2 − a2
)

(

x4 −
(

8(a− 1)2 + 1
)

x2 + 4a2(a− 1)2
)

.
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The zeros of ψo(T ) are ±a and ±(a− 3

2
)± 1

2

√
12a2 − 20a+ 9. So the zeros of ψo(T ) are integers

if and only if 12a2 − 20a + 9 is a perfect square, say b2. We have (6a − 5)2 − 3b2 = −2. From

number theory, we know that the Pell-like equation x2 − 3y2 = −2 has infinitely many integral

solutions with x ≡ ±1 (mod 6). For example, one may take

a =
1

12

(

(

1−
√
3
)(

− 2 +
√
3
)k

+
(

1 +
√
3
)(

− 2−
√
3
)k

+ 10
)

,

for arbitrary integer k > 2. Therefore, we come up with the following theorem.

Theorem 6. For every odd integer n > 3, there are infinitely many integral trees of diameter

2n+ 1.
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