Excluding Induced Subdivisions of the Bull and Related Graphs

Maria Chudnovsky, Irena Penev ${ }^{\dagger}$ Alex Scott ${ }^{\ddagger}$, Nicolas Trotignon ${ }^{\S}$

June 27, 2011

Abstract

For any graph H, let Forb ${ }^{*}(H)$ be the class of graphs with no induced subdivision of H. It was conjectured in [A.D. Scott, Induced trees in graphs of large chromatic number, Journal of Graph Theory, 24:297311, 1997] that, for every graph H, there is a function $f_{H}: \mathbb{N} \rightarrow \mathbb{R}$ such that for every graph $G \in \operatorname{Forb}^{*}(H), \chi(G) \leq f_{H}(\omega(G))$. We prove this conjecture for several graphs H, namely the paw (a triangle with a pendant edge), the bull (a triangle with two vertex-disjoint pendant edges), and what we call a "necklace," that is, a graph obtained from a path by choosing a matching such that no edge of the matching is incident with an endpoint of the path, and for each edge of the matching, adding a vertex adjacent to the ends of this edge.

1 Introduction

All graphs in this paper are finite and simple. A clique (respectively: stable set) in a graph G is a set of pairwise adjacent (respectively: non-adjacent) vertices in G. Given a graph G, we denote by $\omega(G)$ the clique number of G (i.e. the maximum number of vertices in a clique in G), and we denote by $\chi(G)$ the chromatic number of G. A class \mathcal{G} of graphs is said to be hereditary if it is closed under isomorphism and taking induced subgraphs. A hereditary class \mathcal{G} is said to be χ-bounded if there is a non-decreasing function $f: \mathbb{N} \rightarrow \mathbb{R}$ such that $\chi(G) \leq f(\omega(G))$ for all graphs $G \in \mathcal{G}$; under such circumstances, we say that the class \mathcal{G} is χ-bounded by f, and that f

[^0]is a χ-bounding function for \mathcal{G}. Given a graph H, we say that a graph G is an H^{*} provided that G is a subdivision of the graph H (in particular, the graph H itself is an H^{*}). Given a graph H, we say that a graph G is H-free if it does not contain H as an induced subgraph, and we say that G is H^{*}-free if it does not contain any subdivision of H as an induced subgraph. We denote by $\operatorname{Forb}(H)$ the class of all H-free graphs, and we denote by Forb ${ }^{*}(H)$ the class of all H^{*}-free graphs. Clearly, $\operatorname{Forb}(H)$ and Forb $^{*}(H)$ are hereditary classes for every graph H.

Gyárfás [4] and Sumner [16] independently conjectured that for any tree T, the class $\operatorname{Forb}(T)$ is χ-bounded. The conjecture has been proven for trees of radius 2 and a few trees of larger radius (see [5, 6], 7, 8, [14). Scott [14 proved a weakened ("topological") version of the conjecture: for any tree T, the class Forb ${ }^{*}(T)$ is χ-bounded. (Since every forest is an induced subgraph of some tree, this result immediately implies that Forb $^{*}(F)$ is χ-bounded for every forest F.) Scott further conjectured that for any graph H, the class Forb $^{*}(H)$ is χ-bounded; this generalized a still-open conjecture of Gyárfás [5], that the class Forb* $\left(C_{n}\right)$ is χ-bounded for every n, where C_{n} is the chordless cycle of length n (see also [15]). The aim of this paper is to investigate Scott's conjecture for several particular graphs H.

The paw is the graph with vertex-set $\left\{x_{1}, x_{2}, x_{3}, y\right\}$ and edge-set $\left\{x_{1} x_{2}, x_{2} x_{3}, x_{3} x_{1}, x_{1} y\right\}$. In section 2, we give a structural description of the class Forb* ${ }^{*}$ (paw), which we then use to compute the best possible χ-bounding function for the class (see [2.2). Together with previously known results, this theorem implies that the class Forb* (H) is χ-bounded for all graphs H on at most four vertices. Indeed, if H is a forest, then the result follows from the result of Scott [14] mentioned above. If H is the triangle (i.e. the complete graph on three vertices), then $\operatorname{Forb}^{*}(H)$ is the class of all forests. If H is the graph with vertex-set $\{x, y, z, w\}$ and edge-set $\{x y, y z, z x\}$, then any graph G in $\operatorname{Forb}^{*}(H)$ can be partitioned into a forest and a graph whose clique number is smaller than $\omega(G)$ (indeed, take any vertex v of G, and note that the subgraph of G induced v and its non-neighbors is a forest, while the subgraph of G induced by the neighbors of v has clique number smaller than $\omega(G)$), and consequently, $\operatorname{Forb}^{*}(H)$ is χ-bounded by the function $f(n)=2 n$. If H is the diamond (i.e. the graph obtained by deleting an edge from the complete graph on four vertices), then the result follows from a theorem of Trotignon and Vušković, see [17. If H is the complete graph on four vertices, Scott's conjecture follows from the work of several authors, see [10. Finally, if H is the square (i.e. the chordless cycle on four vertices), then Forb* (H) is the famous class of chordal graphs, see [13].

The bull is the graph with vertex-set $\left\{x_{1}, x_{2}, x_{3}, y_{1}, y_{2}\right\}$ and edge-set
$\left\{x_{1} x_{2}, x_{2} x_{3}, x_{3} x_{1}, x_{1} y_{1}, x_{2} y_{2}\right\}$. In section 3, we prove a decomposition theorem for bull*-free graphs, see 3.1. In section [4, we use this theorem to prove that the class Forb ${ }^{*}$ (bull) is χ-bounded by the function $f(n)=n^{2}$, see 4.4. We note that this is the best possible polynomial χ-bounding function for Forb* (bull) in the following sense: there do not exist positive constants $c, r \in \mathbb{R}$, with $r<2$, such that Forb* ${ }^{*}$ (bull) is χ-bounded by the function $f(n)=c n^{r}$. As Forb* (bull) contains all graphs with no stable set of size three, this follows immediately from a result of Kim [9] that the Ramsey number $R(t, 3)$ has order of magnitude $\frac{t^{2}}{\log t}$ (in fact, it is enough that $R(t, 3)=t^{2-o(1)}$, which also follows from an earlier result of Erdős [3]).

Finally, in section 5 we consider graphs that we call "necklaces." A necklace is a graph obtained from a path by choosing a matching such that no edge of the matching is incident with an endpoint of the path, and for each edge of the matching, adding a vertex adjacent to the ends of this edge (see section 5 for a more formal definition). We prove that for any given necklace N, the class $\operatorname{Forb}^{*}(N)$ is χ-bounded by an exponential function (see 5.2). We observe that the bull is a special case of a necklace, and so the results of section 5 imply that Forb $^{*}(b u l l)$ is χ-bounded; however, the χ-bounding function for Forb*(bull) from 4.4 is polynomial, whereas the one from 5.2 is exponential. Further, we note that for all positive integers m, the m-edge path, denoted by P_{m+1}, is a necklace; furthermore, since any subdivision of an m-edge path contains an m-edge path as an induced subgraph, we know that $\operatorname{Forb}\left(P_{m+1}\right)=$ Forb $^{*}\left(P_{m+1}\right)$. Thus, 5.2 implies a result of Gyárfás (see [5]) that the class Forb $\left(P_{m+1}\right)$ is χ-bounded by an exponential function (we note, however, that our χ-bounding function is faster growing than that of Gyárfás).

We end this section with some terminology and notation that will be used throughout the paper. The vertex-set of a graph G is denoted by V_{G}. Given a vertex $v \in V_{G}, \Gamma_{G}(v)$ is the set of all neighbors of v in G. The complement of G is denoted by \bar{G}. Given a set $S \subseteq V_{G}$, the subgraph of G induced by S is denoted by $G[S]$; if $S=\left\{v_{1}, \ldots, v_{n}\right\}$, we sometimes write $G\left[v_{1}, \ldots, v_{n}\right]$ instead of $G[S]$. Given a set $S \subseteq V_{G}$, we denote by $G \backslash S$ the graph obtained by deleting from G all the vertices in S; if $S=\{v\}$, we often write $G \backslash v$ instead of $G \backslash S$. Given a vertex $v \in V_{G}$ and a set $A \subseteq V_{G} \backslash\{v\}$, we say that v is complete (respectively: anti-complete) to A provided that v is adjacent (respectively: non-adjacent) to every vertex in A; we say that v is mixed on A provided that v is neither complete nor anti-complete to A. Given disjoint sets $A, B \subseteq V_{G}$, we say that A is complete (respectively: anti-complete) to B provided that every vertex in A is complete (respectively: anti-complete) to B.

2 Subdivisions of the Paw

In this section, we give a structure theorem for paw*-free graphs (2.1), and then use it to derive the fact that Forb* $(p a w)$ is χ-bounded by a linear function (2.2). We first need a definition: a graph is said to be complete multipartite if its vertex-set can be partitioned into stable sets, pairwise complete to each other.
2.1. A graph G is paw*-free if and only if each of its components is either a tree, a chordless cycle, or a complete multipartite graph.

Proof. The 'if' part is established by routine checking. For the 'only if' part, suppose that G is a connected paw*-free graph. Our goal is to show that if G is both triangle-free and square-free, then G is either a tree or a chordless cycle, and otherwise G is a complete multipartite graph.

Suppose first that G is both triangle-free and square-free. If G contains no cycles, then it is a tree, and we are done. So assume that G does contain a cycle, and let $v_{0}-v_{1}-\ldots-v_{k-1}-v_{0}$ (with the indices in \mathbb{Z}_{k}) be a cycle in G of length as small as possible; note that the minimality of k implies that this cycle is induced, and the fact that G is triangle-free and square-free implies that $k \geq 5$. If $V_{G}=\left\{v_{0}, v_{1}, \ldots, v_{k-1}\right\}$, then G is a chordless cycle, and we are done. So assume that $\left\{v_{0}, \ldots, v_{k-1}\right\} \varsubsetneqq V_{G}$. Since G is connected, there exists a vertex $v \in V_{G} \backslash\left\{v_{0}, \ldots, v_{k-1}\right\}$ that has a neighbor in $\left\{v_{0}, \ldots, v_{k-1}\right\}$. Note that v must have at least two neighbors in $\left\{v_{0}, v_{1}, \ldots, v_{k-1}\right\}$, for otherwise, $G\left[v, v_{0}, v_{1}, \ldots, v_{k-1}\right]$ would be a paw*. By symmetry, we may assume that for some $i \in \mathbb{Z}_{k} \backslash\{0\}, v$ is complete to $\left\{v_{0}, v_{i}\right\}$ and anti-complete to $\left\{v_{1}, \ldots, v_{i-1}\right\}$ in G. By the minimality of k, the cycle $v-v_{0}-v_{1}-\ldots-v_{i}-v$ is of length at least k, and so it follows that either $i=k-2$ or $i=k-1$. But then $v-v_{i}-v_{i+1}-\ldots-v_{0}-v$ is a (not necessarily induced) cycle of length at most four in G, which contradicts the fact that G is triangle-free and square-free.

It remains to consider the case when G contains a triangle or a square. Let H be an inclusion-wise maximal complete multipartite induced subgraph of G such that H contains a cycle. (The existence of such a graph H follows from the fact that a triangle or a square is itself a complete multipartite graph that contains a cycle.) If $G=H$, then G is complete multipartite, and we are done. So assume that this is not the case. Since G is connected, there exists a vertex $v \in V_{G} \backslash V_{H}$ with a neighbor in V_{H}.

Let $H_{1}, H_{2}, \ldots, H_{k}$ be a partition of V_{H} into stable sets, pairwise complete to each other. First, we claim that v is not mixed on any set among H_{1}, \ldots, H_{k}. Suppose otherwise. By symmetry, we may assume that v is adjacent to some $h_{1} \in H_{1}$ and non-adjacent to some $h_{1}^{\prime} \in H_{1}$. Then v is
anti-complete to $H_{2} \cup \ldots \cup H_{k}$, for if v had a neighbor $h \in H_{2} \cup \ldots \cup H_{k}$, then $G\left[v, h, h_{1}, h_{1}^{\prime}\right]$ would be a paw. Now, since H contains a cycle, we know that $\left|H_{2} \cup \ldots \cup H_{k}\right| \geq 2$; fix distinct vertices $h, h^{\prime} \in H_{2} \cup \ldots \cup H_{k}$. But if $h h^{\prime}$ is an edge then $G\left[h, h^{\prime}, h_{1}, v\right]$ is a paw, and if $h h^{\prime}$ is a non-edge then $G\left[h, h^{\prime}, h_{1}, h_{1}^{\prime}, v\right]$ is a paw*. This proves our claim. Now v is anti-complete to at least two sets among H_{1}, \ldots, H_{k} (say H_{1} and H_{2}), for otherwise, $G\left[V_{H} \cup\{v\}\right]$ would contradict the maximality of H. Let $h \in H_{3} \cup \ldots \cup H_{k}$ be some neighbor of v, and fix $h_{1} \in H_{1}$ and $h_{2} \in H_{2}$. Then $G\left[h_{1}, h_{2}, h, v\right]$ is a paw, which is a contradiction. This completes the argument.

We note that our structure theorem for paw*-free graphs (2.1) is similar to the structure theorem for paw-free graphs (due to Olariu [12]), which states that a graph G is paw-free if and only if every component of G is either triangle-free or complete multipartite. In fact, our proof of 2.1 could be slightly shortened by using [12], but in order to keep the section selfcontained, we include an independent proof. We now turn to proving that the class Forb ${ }^{*}$ (paw) is χ-bounded by a linear function.
2.2. Forb $^{*}($ paw $)$ is χ-bounded by the function $f: \mathbb{N} \rightarrow \mathbb{R}$ defined by $f(2)=3$ and for all $n \neq 2, f(n)=n$.

Proof. Let $G \in$ Forb $^{*}($ paw $)$. We may assume that G is connected (otherwise, we consider the components of G separately). By 2.1]then, G is either a tree, or a chordless cycle, or a complete multipartite graph, and in each of these cases, we have that $\chi(G)=3$ or $\chi(G)=\omega(G)$.

It is easy to see that the χ-bounding function given in 2.2 is the best possible for the class Forb* ${ }^{*}(p a w)$. Indeed, on the one hand, we have that $\omega(G) \leq$ $\chi(G)$ for every graph G, and on the other hand, there exist paw*-free graphs with clique number 2 and chromatic number 3 (any chordless cycle of odd length greater than three is such a graph.)

3 Decomposing Bull*-Free Graphs

In this section, we prove a decomposition theorem for bull*-free graphs. We begin with some definitions. Let G be a graph. A hole in G is an induced cycle in G of length at least four. An anti-hole in G is an induced subgraph of G whose complement is a hole in \bar{G}. We often denote a hole (respectively: anti-hole) H in G by $h_{0}-h_{1}-\ldots-h_{k}-h_{0}$, where $V_{H}=\left\{h_{0}, h_{1}, \ldots, h_{k}\right\}$ and $h_{0}-h_{1}-\ldots-h_{k}-h_{0}$ is an induced cycle in G (respectively: in \bar{G}). The length of a hole or anti-hole is the number of vertices that it contains. An odd hole (respectively: odd anti-hole) is a hole (respectively: anti-hole) of odd length. Given a vertex $v \in V_{G}$ and a set $S \subseteq V_{G} \backslash\{v\}$, we say that v is a center (respectively: anti-center) for S or for $G[S]$ provided that v is complete (respectively: anti-complete) to S. We say that G is basic if it
contains neither an odd hole with an anti-center nor an odd anti-hole with an anti-center. A non-empty set $S \varsubsetneqq V_{G}$ is said to be a homogeneous set in G provided that no vertex in $V_{G} \backslash S$ is mixed on S; a homogeneous set S in G is said to be proper if $|S| \geq 2$. We say that a vertex $v \in V_{G}$ is a cut-vertex of G provided that $G \backslash v$ has more components than G. Our goal in this section is to prove the following decomposition theorem.
3.1. Let $G \in$ Forb* * (bull). Then either G is basic, or it contains a proper homogeneous set or a cut-vertex.

We will need the following result, which is an immediate consequence of 1.4 from [2].
3.2 (Chudnovsky and Safra [2]). Let $G \in$ Forb* $^{*}($ bull $)$. If G contains an odd hole with a center and an anti-center, or an odd anti-hole with a center and an anti-center, then G has a proper homogeneous set.

The proof of 3.1 proceeds as follows. We assume that a graph $G \in$ Forb* (bull) is not basic, and then we consider two cases: when G contains an odd anti-hole of length at least seven with an anti-center; and when G contains an odd hole with an anti-center. In the former case, we show that G contains a proper homogeneous set (see 3.3 below). The latter case is more difficult, and our approach is to prove a series of lemmas that describe how vertices that lie outside of our odd hole "attach" to this odd hole and to each other, and then to use these results to prove that G contains a proper homogeneous set or a cut-vertex (see 3.8). Since an anti-hole of length five is also a hole of length five, these two results (3.3 and 3.8) imply 3.1.
3.3. Let $G \in$ Forb $^{*}($ bull $)$, let $h_{0}-h_{1}-\ldots-h_{k-1}-h_{0}$ (with $k \geq 7$ and the indices in \mathbb{Z}_{k}) be an odd anti-hole in G, and set $H=\left\{h_{0}, h_{1}, \ldots, h_{k-1}\right\}$. Assume that G contains an anti-center for H. Then G contains a proper homogeneous set.

Proof. We may assume that G is connected, for otherwise, G contains a proper homogeneous set and we are done. Since G is connected and contains an anti-center for H, there exist adjacent $a, a^{\prime} \in V_{G} \backslash H$ such that a is anti-center for H and a^{\prime} has a neighbor in H. Our goal is to show that a^{\prime} is a center for H, for then we are done by 3.2.

First, we claim that there is no index $i \in \mathbb{Z}_{k}$ such that a^{\prime} is anticomplete to $\left\{h_{i}, h_{i+1}\right\}$. Suppose otherwise. Since a^{\prime} has a neighbor in H, we may assume by symmetry that a^{\prime} is adjacent to h_{0} and anti-complete to $\left\{h_{1}, h_{2}\right\}$. But then if $a^{\prime} h_{4}$ is an edge, then $G\left[h_{0}, h_{1}, h_{4}, a, a^{\prime}\right]$ is a bull; and if $a^{\prime} h_{4}$ is a non-edge, then $G\left[h_{0}, h_{1}, h_{2}, h_{4}, a^{\prime}\right]$ is a bull. This proves our claim.

Next, since H has an odd number of vertices, there exists some $i \in \mathbb{Z}_{k}$
such that a^{\prime} is either complete or anti-complete to $\left\{h_{i}, h_{i+1}\right\}$; by what we just showed, the latter is impossible, and so the former must hold. Now, if a^{\prime} is not a center for H, then we may assume by symmetry that a^{\prime} is non-adjacent to h_{0} and complete to $\left\{h_{1}, h_{2}\right\}$; but then $a^{\prime} h_{k-1}$ is an edge (because a^{\prime} is not anti-complete to $\left\{h_{k-1}, h_{0}\right\}$), and so $G\left[h_{0}, h_{2}, h_{k-1}, a, a^{\prime}\right]$ is a bull. Thus, a^{\prime} is a center for H, which completes the argument.

For the remainder of this section, we focus on graphs in Forb*(bull) that contain an odd-hole with an anti-center. We begin with some definitions. Let G be a graph, let $h_{0}-h_{1}-\ldots-h_{k-1}-h_{0}$ (with $k \geq 5$ and the indices in \mathbb{Z}_{k}) be a hole in G, let $H=\left\{h_{0}, h_{1}, \ldots, h_{k-1}\right\}$, and let $v \in V_{G} \backslash H$. Then for all $i \in \mathbb{Z}_{k}$:

- v is a leaf for H at h_{i} if v is adjacent to h_{i} and anti-complete to $H \backslash\left\{h_{i}\right\} ;$
- v is a star for H at h_{i} if v is complete to $H \backslash\left\{h_{i}\right\}$ and non-adjacent to h_{i};
- v is an adjacent clone for H at h_{i} if v is complete to $\left\{h_{i-1}, h_{i}, h_{i+1}\right\}$ and anti-complete to $H \backslash\left\{h_{i-1}, h_{i}, h_{i+1}\right\}$;
- v is a non-adjacent clone for H at h_{i} if v is complete to $\left\{h_{i-1}, h_{i+1}\right\}$ and anti-complete to $H \backslash\left\{h_{i-1}, h_{i+1}\right\}$;
- v is a clone for H at h_{i} if v is an adjacent clone or a non-adjacent clone for H at h_{i}.

We say that v is a leaf (respectively: star, adjacent clone, non-adjacent clone, clone) for H if there exists some $i \in \mathbb{Z}_{k}$ such that v is a leaf (respectively: star, adjacent clone, non-adjacent clone, clone) for H at h_{i}. If $|H|=k$ is odd, then we say that a vertex $v \in V_{G} \backslash H$ is appropriate for H or for $G[H]$ provided that one of the following holds:

- v is a center for H;
- v is an anti-center for H;
- v is a leaf for H;
- v is an adjacent clone for H;
- v is a non-adjacent clone for H and $|H|=5$;
- v is a star for H and $|H|=5$.
3.4. Let $G \in$ Forb $^{*}\left(\right.$ bull), let $h_{0}-h_{1}-\ldots-h_{k-1}-h_{0}$ (with $k \geq 5$ and the indices in \mathbb{Z}_{k}) be an odd hole in G, and set $H=\left\{h_{0}, h_{1}, \ldots, h_{k-1}\right\}$. Then every vertex in $V_{G} \backslash H$ is appropriate for H.

Proof. Fix $v \in V_{G} \backslash H$. We may assume that v has at least two neighbors and at least one non-neighbor in H, for otherwise, v is a center, an anti-center, or a leaf for H, and we are done.

Suppose first that v has two adjacent neighbors in H. Fix a path $h_{i}-h_{i+1}-\ldots-h_{j}$ of maximum length in $G\left[H \cap \Gamma_{G}(v)\right]$; set $P=\left\{h_{i}, h_{i+1}, \ldots, h_{j}\right\}$. Note first that $|P| \geq 3$, for otherwise, we would have that $j=i+1$, and then $G\left[v, h_{i-1}, h_{i}, h_{i+1}, h_{i+2}\right]$ would be a bull. Now, we claim that v is anti-complete to $H \backslash P$. Suppose otherwise. Fix $h_{l} \in H \backslash P$ such that $v h_{l}$ is an edge; by the maximality of P, we know that $l \notin\{i-1, j+1\}$. Since neither $G\left[v, h_{i-1}, h_{i}, h_{i+1}, h_{l}\right]$ nor $G\left[v, h_{j-1}, h_{j}, h_{j+1}, h_{l}\right]$ is bull, we get that $l=i-2=j+2$, and consequently, that $|H|=|P|+3$. Since $|H|$ is odd and $|P| \geq 3$, this means that $|P| \geq 4$, and so $G\left[v, h_{i-1}, h_{i}, h_{i+1}, h_{i+3}\right]$ is a bull, which is a contradiction. It follows that v is anti-complete to $H \backslash P$. Now, if $|P|=3$, then v is an adjacent clone for H at h_{i+1}, and we are done. So assume that $|P| \geq 4$. Since $G\left[v, h_{i-1}, h_{i}, h_{i+1}, h_{i+3}\right]$ is not a bull, h_{i+3} is adjacent to h_{i-1}, and so $|H|=5$ and v is a star for H at h_{i-1}.

Suppose now that $H \cap \Gamma_{G}(v)$ is a stable set. Fix distinct $i, j \in \mathbb{Z}_{k}$ such that v is complete to $\left\{h_{i}, h_{j}\right\}$ and the path $h_{i}-h_{i+1}-\ldots-h_{j}$ is as short as possible (in particular, v is non-adjacent to the interior vertices of the path). Since the neighbors of v in H are pairwise non-adjacent, and v is complete to $\left\{h_{i}, h_{j}\right\}$, we know that v is anti-complete to $\left\{h_{i-1}, h_{j+1}\right\}$. Since $G\left[v, h_{i-1}, h_{i}, h_{i+1}, \ldots, h_{j}, h_{j+1}\right]$ is not a bull*, this implies that either $h_{i-1}=h_{j+1}$, or $h_{i-1} h_{j+1}$ is an edge, and in either case, v is anti-complete to $H \backslash\left\{h_{i}, h_{j}\right\}$. We now know that the path $h_{j}-h_{j+1}-\ldots-h_{i}$ has at most three edges and that v is adjacent to the ends of this path and non-adjacent to its interior vertices. The minimality of the path $h_{i}-h_{i+1}-\ldots-h_{j}$ then implies that $|H| \leq 6$. Since $|H|$ is odd and $|H| \geq 5$, it follows that $|H|=5$. The minimality of the path $h_{i}-h_{i+1}-\ldots-h_{j}$ now implies that v is a non-adjacent clone for H at h_{i+1}. This completes the argument.

Given a graph G with a hole $h_{0}-h_{1}-\ldots-h_{k-1}-h_{0}$ (with $k \geq 5$ and the indices in \mathbb{Z}_{k}), and setting $H=\left\{h_{0}, h_{1}, \ldots, h_{k-1}\right\}$, we let A_{H} denote the set of all anti-centers for H in G, and for all $i \in \mathbb{Z}_{k}$:

- we let L_{H}^{i} denote the set of all leaves for H at h_{i};
- we let N_{H}^{i} denote the set of all non-adjacent clones for H at h_{i};
- we let C_{H}^{i} denote the set of all adjacent clones for H at h_{i};
- we let S_{H}^{i} denote the set of all stars for H at h_{i}.
3.5. Let $G \in$ Forb * (bull), let $h_{0}-h_{1}-\ldots-h_{k-1}-h_{0}$ (with $k \geq 5$ and the indices in \mathbb{Z}_{k}) be an odd hole in G, and set $H=\left\{h_{0}, h_{1}, \ldots, h_{k-1}\right\}$. Assume that G contains an anti-center for H, and that G does not contain a proper homogeneous set. Then there exists an index $i \in \mathbb{Z}_{k}$ such that all of the following hold:
(i) $L_{H}^{i} \neq \emptyset$, and for all $j \in \mathbb{Z}_{k} \backslash\{i\}, L_{H}^{j}=\emptyset$;
(ii) A_{H} is not anti-complete to L_{H}^{i};
(iii) A_{H} is anti-complete to $V_{G} \backslash\left(A_{H} \cup L_{H}^{i}\right)$.

Proof. First, since G does not contain a proper homogeneous set and $\left|V_{G}\right| \geq 3$, we know that G is connected. Further, since G does not contain a proper homogeneous set and contains an anti-center for $H,[3.2$ implies that G does not contain a center for H.

Now, we claim that every vertex in $V_{G} \backslash\left(H \cup A_{H}\right)$ that has a neighbor in A_{H} is a leaf for H. Suppose otherwise; fix adjacent $v \in V_{G} \backslash\left(H \cup A_{H}\right)$ and $a \in A_{H}$ such that v is not a leaf for H. Since v is appropriate for H (by (3.4), and since v is not a leaf, or a center, or an anti-center for H, we know that v is either a star, or an adjacent clone, or a non-adjacent clone for H. Suppose first that v is a star or an adjacent clone for H. Then there exists an index $i \in \mathbb{Z}_{k}$ such that v is complete to $\left\{h_{i}, h_{i+1}\right\}$ and non-adjacent to h_{i+2}; but now $G\left[a, v, h_{i}, h_{i+1}, h_{i+2}\right]$ is a bull. Suppose now that v is a non-adjacent clone for H. Then there exists an index $i \in \mathbb{Z}_{k}$ such that v is complete to $\left\{h_{i-1}, h_{i+1}\right\}$ and anti-complete to $\left\{h_{i}, h_{i+2}\right\}$; but now $G\left[a, v, h_{i-1}, h_{i}, h_{i+1}, h_{i+2}\right]$ is a bull*. This proves our claim.

Since G is connected and A_{H} is non-empty, what we just showed implies that there exists an index $i \in \mathbb{Z}_{k}$ such that L_{H}^{i} is non-empty and is not anti-complete to A_{H}. The only thing left to show is that $L_{H}^{j}=\emptyset$ for all $j \in \mathbb{Z}_{k} \backslash\{i\}$. Suppose otherwise. Fix some $j \in \mathbb{Z}_{k} \backslash\{i\}$ such that $L_{H}^{j} \neq \emptyset$. First, note that L_{H}^{j} is complete to L_{H}^{i}, for if some $l_{i} \in L_{H}^{i}$ and $l_{j} \in L_{H}^{j}$ were non-adjacent, $G\left[H \cup\left\{l_{i}, l_{j}\right\}\right]$ would be a bull*. By symmetry and the fact that $|H|$ is odd, we may assume that the path $h_{i}-h_{i+1}-\ldots-h_{j}$ is shorter than the path $h_{j}-h_{j+1}-\ldots-h_{i}$; since $|H| \geq 5$, this means that $i-1 \notin\{j, j+1\}$. Note furthermore that $j \neq i+1$, for otherwise, we fix some $l_{i} \in L_{H}^{i}$ and $l_{i+1} \in L_{H}^{i+1}$ and note that $G\left[l_{i}, l_{i+1}, h_{i-1}, h_{i}, h_{i+1}, h_{i+2}\right]$ is a bull*. Next, fix an anti-center a for H such that a is adjacent to some $l_{i} \in L_{H}^{i}$. Fix $l_{j} \in L_{H}^{j}$. But then if $a l_{j}$ is an edge, $G\left[a, l_{i}, l_{j}, h_{i}, h_{j}\right]$ is a bull; and if $a l_{j}$ is a non-edge, then $G\left[a, l_{i}, l_{j}, h_{i-1}, h_{i}, h_{i+1}, \ldots, h_{j-1}, h_{j}\right]$ is a bull*. This completes the argument.
3.6. Let $G \in$ Forb $^{*}($ bull $)$, let $h_{0}-h_{1}-\ldots-h_{k-1}-h_{0}$ (with $k \geq 5$ and the indices in \mathbb{Z}_{k}) be an odd hole in G, and set $H=\left\{h_{0}, h_{1}, \ldots, h_{k-1}\right\}$.

Assume that G contains an anti-center for H, and that G does not contain a proper homogeneous set. Then there exists an index $i \in \mathbb{Z}_{k}$ such that $V_{G}=H \cup A_{H} \cup L_{H}^{i} \cup S_{H}^{i} \cup \bigcup_{j \in \mathbb{Z}_{k}}\left(N_{H}^{j} \cup C_{H}^{j}\right)$, where L_{H}^{i} is non-empty, L_{H}^{i} is anti-complete to S_{H}^{i}, and if $k \geq 7$, then S_{H}^{i} and $\bigcup_{j \in \mathbb{Z}_{k}} N_{H}^{j}$ are empty.
Proof. If $k \geq 7$, then the result is immediate from 3.2, 3.4, and 3.5. So assume that $k=5$. By 3.2, 3.4 and 3.5, we know that $V_{G}=H \cup A_{H} \cup L_{H}^{i} \cup \bigcup_{j \in \mathbb{Z}_{5}}\left(S_{H}^{j} \cup N_{H}^{j} \cup C_{H}^{j}\right)$, with $L_{H}^{i} \neq \emptyset$, for some $i \in \mathbb{Z}_{5}$. We need to show that $S_{H}^{j}=\emptyset$ for all $j \in \mathbb{Z}_{5} \backslash\{i\}$, and that L_{H}^{i} is anti-complete to S_{H}^{i}.

We first show that $S_{H}^{j}=\emptyset$ for all $j \in \mathbb{Z}_{5} \backslash\{i\}$. By symmetry, it suffices to show that S_{H}^{i+1} and S_{H}^{i+2} are empty. Fix some $l_{i} \in L_{H}^{i}$. Suppose first that $S_{H}^{i+1} \neq \emptyset$, and fix $s_{i+1} \in S_{H}^{i+1}$. But then if $s_{i+1} l_{i}$ is an edge, then $G\left[l_{i}, s_{i+1}, h_{i-2}, h_{i}, h_{i+1}\right]$ is a bull; and if $s_{i+1} l_{i}$ is a non-edge, then $G\left[l_{i}, s_{i+1}, h_{i-1}, h_{i}, h_{i+2}\right]$ is a bull. Thus, $S_{H}^{i+1}=\emptyset$. Suppose now that $S_{H}^{i+2} \neq \emptyset$, and fix $s_{i+2} \in S_{H}^{i+2}$. But then if $s_{i+2} l_{i}$ is an edge, then $G\left[s_{i+2}, l_{i}, h_{i-2}, h_{i-1}, h_{i+2}\right]$ is a bull; and if $s_{i+2} l_{i}$ is a non-edge, then $G\left[s_{i+2}, l_{i}, h_{i}, h_{i+1}, h_{i+2}\right]$ is a bull. Thus, $S_{H}^{i+2}=\emptyset$.

It remains to show that L_{H}^{i} is anti-complete to S_{H}^{i}. Suppose otherwise. By [3.5, A_{H} is not anti-complete to L_{H}^{i}, and A_{H} is anti-complete to $H \cup S_{H}^{i}$. We first note that every vertex in L_{H}^{i} is anti-complete to at least one of A_{H} and S_{H}^{i}, for otherwise, we fix some $l_{i} \in L_{H}^{i}, s_{i} \in S_{H}^{i}$, and $a \in A_{H}$ such that l_{i} is adjacent to both s_{i} and a, and we observe that $G\left[l_{i}, s_{i}, a, h_{i-1}, h_{i}, h_{i+2}\right]$ is a bull*. Now, fix some adjacent $l_{i} \in L_{H}^{i}$ and $s_{i} \in S_{H}^{i}$. By what we just showed, l_{i} is anti-complete to A_{H}. Since A_{H} is not anti-complete to L_{H}^{i}, there exist adjacent $a \in A_{H}$ and $l_{i}^{\prime} \in L_{H}^{i} \backslash\left\{l_{i}\right\}$. Since $l_{i}^{\prime} \in L_{H}^{i}$ has a neighbor in A_{H}, we know that l_{i}^{\prime} is anti-complete to S_{H}^{i}, and in particular, that $l_{i}^{\prime} s_{i}$ is a non-edge. But now if $l_{i} l_{i}^{\prime}$ is an edge, then $G\left[l_{i}, l_{i}^{\prime}, a, s_{i}, h_{i}\right]$ is a bull; and if $l_{i} l_{i}^{\prime}$ is a non-edge, then $G\left[l_{i}, l_{i}^{\prime}, s_{i}, h_{i-1}, h_{i}, h_{i+2}\right]$ is a bull*. This completes the argument.
3.7. Let $G \in$ Forb $^{*}\left(\right.$ bull), let $h_{0}-h_{1}-\ldots-h_{k-1}-h_{0}$ (with $k \geq 5$ and the indices in \mathbb{Z}_{k}) be an odd hole in G, and set $H=\left\{h_{0}, h_{1}, \ldots, h_{k-1}\right\}$. Assume that G contains an anti-center for H, and that G does not contain a proper homogeneous set. Then there exists an index $i \in \mathbb{Z}_{k}$ such that $V_{G}=H \cup A_{H} \cup L_{H}^{i} \cup S_{H}^{i}$, where L_{H}^{i} is non-empty, L_{H}^{i} is anti-complete to S_{H}^{i}, and if $k \geq 7$, then S_{H}^{i} is empty.

Proof. By 3.6, we just need to show that $N_{H}^{j} \cup C_{H}^{j}=\emptyset$ for all $j \in \mathbb{Z}_{k}$. It suffices to show that for all $j \in \mathbb{Z}_{k},\left\{h_{j}\right\} \cup N_{H}^{j} \cup C_{H}^{j}$ is a homogeneous set in G, for then the fact that G contains no proper homogeneous set will imply that $\left\{h_{j}\right\} \cup N_{H}^{j} \cup C_{H}^{j}$ is a singleton, and therefore, that $N_{H}^{j} \cup C_{H}^{j}=\emptyset$.

Fix $j \in \mathbb{Z}_{k}$, and suppose that $\left\{h_{j}\right\} \cup N_{H}^{j} \cup C_{H}^{j}$ is not a homogeneous set in G. Fix some $v \in V_{G} \backslash\left(\left\{h_{j}\right\} \cup N_{H}^{j} \cup C_{H}^{j}\right)$ such that v is mixed on $\left\{h_{j}\right\} \cup N_{H}^{j} \cup C_{H}^{j}$. Clearly, $v \notin H$. Fix some $c_{j}, c_{j}^{\prime} \in\left\{h_{j}\right\} \cup N_{H}^{j} \cup C_{H}^{j}$ such that v is adjacent to c_{j} and non-adjacent to c_{j}^{\prime}. Set $\hat{H}=\left(H \backslash\left\{h_{j}\right\}\right) \cup\left\{c_{j}\right\}$ and $\hat{H}^{\prime}=\left(H \backslash\left\{h_{j}\right\}\right) \cup\left\{c_{j}^{\prime}\right\}$. Then $G[\hat{H}]$ and $G\left[\hat{H}^{\prime}\right]$ are both odd holes of length k. Next, by 3.5, A_{H} is anti-complete to $\left\{c_{j}, c_{j}^{\prime}\right\}$, and so since A_{H} is non-empty, G contains an anti-center for both \hat{H} and \hat{H}^{\prime}; thus, 3.6 applies to both \hat{H} and \hat{H}^{\prime}. This, together with the fact that v has exactly one more neighbor in \hat{H} than in \hat{H}^{\prime}, implies that either:
(a) v is a leaf for \hat{H} and an anti-center for \hat{H}^{\prime}; or
(b) $k=5$ and one of the following holds:
(b1) v is a non-adjacent clone for \hat{H} and a leaf for \hat{H}^{\prime};
(b2) v is an adjacent clone for \hat{H} and a non-adjacent clone for \hat{H}^{\prime};
(b3) v is a star for \hat{H} and an adjacent clone for \hat{H}^{\prime}.
Suppose that (a) holds. Since v is adjacent to c_{j}, v is a leaf for \hat{H} at c_{j}. But now if $c_{j} c_{j}^{\prime}$ is an edge, then $G\left[v, c_{j}, c_{j}^{\prime}, h_{j+1}, h_{j+2}\right]$ is a bull; and if $c_{j} c_{j}^{\prime}$ is a non-edge, then $G\left[v, c_{j}, c_{j}^{\prime}, h_{j-1}, h_{j+1}, h_{j+2}\right]$ is a bull*. From now on, we assume that (b) holds, and so $k=5$.

Suppose first that (b1) holds. Since v is a non-adjacent clone for \hat{H} and is adjacent to c_{j}, we know that v is a non-adjacent clone for \hat{H} at either h_{j-1} or at h_{j+1}; by symmetry, we may assume that v is a non-adjacent clone for \hat{H} at h_{j+1}. But now if $c_{j} c_{j}^{\prime}$ is an edge, then $G\left[v, c_{j}, c_{j}^{\prime}, h_{j-2}, h_{j-1}\right]$ is a bull; and if $c_{j} c_{j}^{\prime}$ is a non-edge, then $G\left[v, c_{j}, c_{j}^{\prime}, h_{j-2}, h_{j-1}, h_{j+1}\right]$ is a bull*.

Suppose next that (b2) holds. Since v is a clone for both \hat{H} and \hat{H}^{\prime}, and since v is adjacent to c_{j} and non-adjacent to c_{j}^{\prime}, it is easy to see that v is an adjacent clone for \hat{H} at c_{j} and a non-adjacent clone for \hat{H}^{\prime} at c_{j}^{\prime}. But now v is a clone for H at h_{j}, contrary to the fact that $v \in V_{G} \backslash\left(\left\{h_{j}\right\} \cup N_{H}^{j} \cup C_{H}^{j}\right)$.

Suppose finally that (b3) holds. Since v is adjacent to c_{j} and nonadjacent to c_{j}^{\prime}, it is easy to see that v is a star for \hat{H} at either h_{j-1} or h_{j+1}; by symmetry, we may assume that v is a star for \hat{H} at h_{j+1}. Since 3.6 applies to \hat{H}, it follows that G contains a leaf l_{j+1} for \hat{H} at h_{j+1}, and that l_{j+1} is non-adjacent to v. Since l_{j+1} is appropriate for \hat{H}^{\prime}, it is non-adjacent to c_{j}^{\prime}. But now if $c_{j} c_{j}^{\prime}$ is an edge, then $G\left[v, c_{j}, c_{j}^{\prime}, l_{j+1}, h_{j+1}\right]$ is a bull; and if $c_{j} c_{j}^{\prime}$ is a non-edge, then $G\left[v, c_{j}, c_{j}^{\prime}, h_{j-1}, h_{j+2}\right]$ is a bull. This completes the argument.
3.8. Let $G \in \operatorname{Forb}^{*}($ bull $)$, let $h_{0}-h_{1}-\ldots-h_{k-1}-h_{0}$ (with $k \geq 5$ and the indices in \mathbb{Z}_{k}) be an odd hole in G, and set $H=\left\{h_{0}, h_{1}, \ldots, h_{k-1}\right\}$. Assume that G contains an anti-center for H. Then G contains a proper homogeneous set or a cut-vertex.

Proof. We assume that G does not contain a proper homogeneous set and show that it contains a cut-vertex. By 3.7, there exists an index $i \in \mathbb{Z}_{k}$ such that $V_{G}=H \cup A_{H} \cup L_{H}^{i} \cup S_{H}^{i}$ and L_{H}^{i} is non-empty and anti-complete to S_{H}^{i}. Now, by 3.5, A_{H} is anti-complete to S_{H}^{i}. Thus, $A_{H} \cup L_{H}^{i}$ is anti-complete to $\left(H \backslash\left\{h_{i}\right\}\right) \cup S_{H}^{i}$. Since $V_{G}=H \cup A_{H} \cup L_{H}^{i} \cup S_{H}^{i}$, and since h_{i} has neighbors both in L_{H}^{i} and in $H \backslash\left\{h_{i}\right\}$, it follows that h_{i} is a cut-vertex of G.

We now restate and prove 3.1, the main result of this section.
3.1. Let $G \in \operatorname{Forb}^{*}(b u l l)$. Then either G is basic, or it contains a proper homogeneous set or a cut-vertex.

Proof. Since an anti-hole of length five is also a hole of length five, the result is immediate from 3.3 and 3.8 .

4 A χ-Bounding Function for Forb * (bull)

In this section, we use 3.1 to prove that the class Forb* (bull) is χ-bounded by the function $f(n)=n^{2}$. We begin with some definitions. Given graphs G_{1} and G_{2} with $V_{G_{1}} \cap V_{G_{2}}=\{u\}$, we say that a graph G is obtained by gluing G_{1} and G_{2} along u provided that the following hold:

- $V_{G}=V_{G_{1}} \cup V_{G_{2}}$;
- for all $i \in\{1,2\}, G\left[V_{G_{i}}\right]=G_{i}$;
- $V_{G_{1}} \backslash\{u\}$ is anti-complete to $V_{G_{2}} \backslash\{u\}$ in G.

We observe that if a graph G has a cut-vertex, then G is obtained by gluing smaller graphs (i.e. graphs that have strictly fewer vertices than G) along a vertex.

Given graphs G_{1} and G_{2} with disjoint vertex-sets, a vertex $u \in V_{G_{1}}$, and a graph G, we say that G is obtained by substituting G_{2} for u in G_{1} provided that the following hold:

- $V_{G}=\left(V_{G_{1}} \backslash\{u\}\right) \cup V_{G_{2}}$;
- $G\left[V_{G_{1}} \backslash\{u\}\right]=G_{1} \backslash u ;$
- $G\left[V_{G_{2}}\right]=G_{2}$;
- for all $v \in V_{G_{1}} \backslash\{u\}$, if v is adjacent (respectively: non-adjacent) to u in G_{1}, then v is complete (respectively: anti-complete) to $V_{G_{2}}$ in G.

Under these circumstances, we also say that G is obtained by substitution from G_{1} and G_{2}. We note that if a graph G has a proper homogeneous set, then it is obtained by substitution from smaller graphs.

We say that a graph G is perfect if for every induced subgraph H of $G, \chi(H)=\omega(H)$. We now state two results about perfect graphs that we will need in this section.
4.1 (Chudnovsky, Robertson, Seymour, and Thomas [1]). A graph G is perfect if and only if it contains no odd holes and no odd anti-holes.
4.2 (Lovász [11]). Let G_{1} and G_{2} be perfect graphs with disjoint vertex-sets, and let $u \in V_{G_{1}}$. Let G be the graph obtained by substituting G_{2} for u in G_{1}. Then G is perfect.

We note that 4.1 is called the strong perfect graph theorem, and 4.2 is called the replication lemma.

In this paper, a weighted graph is a graph G such that each vertex $v \in V_{G}$ is assigned a positive integer called its weight and denoted by w_{v}. The weight of a non-empty set $S \subseteq V_{G}$ is the sum of weights of the vertices in S. We denote by W_{G} the weight of a clique of maximum weight in G. Given an induced subgraph H of G, and a vertex $v \in V_{G}$, we say that H covers v provided that $v \in V_{H}$. We now prove a technical lemma, which we then use to prove the main result of this section.
4.3. Let $G \in$ Forb* * (bull) be a weighted graph. Then there exists a family \mathcal{P}_{G} of at most W_{G} perfect induced subgraphs of G such that for every vertex $v \in V_{G}$, at least w_{v} members of \mathcal{P}_{G} cover v.

Proof. We assume inductively that the claim holds for graphs with fewer than $\left|V_{G}\right|$ vertices. By [3.1, we know that either G is basic, or G contains a proper homogeneous set, or G contains a cut-vertex.

Suppose first that V_{G} is basic. Fix $u \in V_{G}$ such that w_{u} is maximal. Let A be the set of all neighbors of u in G, and let B be the set of all non-neighbors of u in G. Since G is basic, and u is an anti-center for B, we know that $G[B]$ contains no odd holes and no odd anti-holes. Since u is anti-complete to B, it follows that $G[B \cup\{u\}]$ contains no odd holes and no odd anti-holes, and so by the strong perfect graph theorem (4.1), $G[B \cup\{u\}]$ is perfect. Let \mathcal{P}_{B} be the family consisting of w_{u} copies of the perfect graph $G[B \cup\{u\}]$. Note that by the maximality of w_{u}, every vertex $v \in B \cup\{u\}$ is covered by at least w_{v} graphs in \mathcal{P}_{B}. If $A=\emptyset$ (so that
$\left.V_{G}=B \cup\{u\}\right)$, then we set $\mathcal{P}_{G}=\mathcal{P}_{B}$, and we are done. So assume that $A \neq \emptyset$. Now by the induction hypothesis, there exists a family \mathcal{P}_{A} of at most $W_{G[A]}$ perfect induced subgraphs of $G[A]$ such that each vertex $v \in A$ is covered by at least w_{v} graphs in \mathcal{P}_{A}. Since u is complete to A, we have that $w_{u}+W_{G[A]} \leq W_{G}$. Since the family \mathcal{P}_{B} contains exactly w_{u} graphs, it follows that the family $\mathcal{P}_{G}=\mathcal{P}_{A} \cup \mathcal{P}_{B}$ contains at most W_{G} graphs, and by construction, every vertex $v \in V_{G}$ is covered by at least w_{v} graphs in \mathcal{P}_{G}.

Suppose now that G contains a proper homogeneous set; let S be a proper homogeneous set in G, let A be the set of all vertices in V_{G} that are complete to S, and let B be the set of all vertices in V_{G} that are anti-complete to S. Let H be the graph whose vertex-set is $\{s\} \cup A \cup B$, with $H[A \cup B]=G[A \cup B]$, and s complete to A and anti-complete to B in H. We turn H into a weighted graph by letting the vertices in $A \cup B$ have the same weights in H as they do in G, and setting $w_{s}=W_{G[S]}$. Clearly, $W_{H}=W_{G}$. Using the induction hypothesis, we let \mathcal{P}_{H} be a family of at most $W_{H}=W_{G}$ perfect induced subgraphs of H such that every vertex $v \in V_{H}$ is covered by at least w_{v} graphs in \mathcal{P}_{H}, and we let $\mathcal{P}_{G[S]}$ be the family of at most $W_{G[S]}=w_{s}$ perfect inducted subgraphs of $G[S]$ such that every vertex $v \in S$ is covered by at least w_{v} graphs in $\mathcal{P}_{G[S]}$. We may assume that the vertex s is covered by exactly w_{s} graphs in \mathcal{P}_{H}; let $P_{1}, \ldots, P_{w_{s}}$ be the graphs in \mathcal{P}_{H} covering s, and let $\mathcal{P}_{H}^{\prime}=\mathcal{P}_{H} \backslash\left\{P_{1}, \ldots, P_{w_{s}}\right\}$. We may assume that $\mathcal{P}_{G[S]}$ contains exactly $W_{G[S]}=w_{s}$ graphs; say $\mathcal{P}_{G[S]}=\left\{Q_{1}, \ldots, Q_{w_{s}}\right\}$. Now, for each $i \in\left\{1, \ldots, w_{s}\right\}$, let P_{i}^{\prime} be the graph obtained by substituting the graph Q_{i} for s in P_{i}; by the replication lemma (4.2), the graph P_{i}^{\prime} is perfect for all $i \in\left\{1, \ldots, w_{s}\right\}$. We then set $\mathcal{P}_{G}=\left\{P_{1}^{\prime}, \ldots, P_{w_{s}}^{\prime}\right\} \cup \mathcal{P}_{H}^{\prime}$. By construction, \mathcal{P}_{G} is a family of at most W_{G} perfect induced subgraphs of G such that for every vertex $v \in V_{G}$, at least w_{v} members of \mathcal{P}_{G} cover v.

Suppose finally that G contains a cut-vertex. Then there exist $u \in V_{G}$ and $C_{1}, C_{2} \subseteq V_{G} \backslash\{u\}$ such that $V_{G}=\{u\} \cup C_{1} \cup C_{2}$, where C_{1} and C_{2} are non-empty, disjoint, and anti-complete to each other. For $i \in\{1,2\}$, let $G_{i}=G\left[C_{i} \cup\{u\}\right]$. (Note that G is obtained by gluing G_{1} and G_{2} along u.) Using the induction hypothesis, for each $i \in\{1,2\}$, we get a family $\mathcal{P}_{G_{i}}$ of at most $W_{G_{i}}$ perfect induced subgraphs of G_{i} such that each vertex $v \in V_{G_{i}}$ is covered by at least w_{v} graphs in $\mathcal{P}_{G_{i}}$. We may assume that for all $i \in\{1,2\}, \mathcal{P}_{G_{i}}$ contains exactly $W_{G_{i}}$ graphs, and that u_{i} is covered by exactly $w_{u_{i}}$ graphs in $\mathcal{P}_{G_{i}}$. By symmetry, we may assume that $W_{G_{1}} \leq W_{G_{2}}$. For each $i \in\{1,2\}$, let $P_{1}^{i}, \ldots, P_{w_{u}}^{i}$ be the graphs in $\mathcal{P}_{G_{i}}$ covering u, let $P_{w_{u}+1}^{i}, \ldots, P_{W_{G_{1}}}^{i}$ be $W_{G_{1}}-w_{u}$ graphs in $\mathcal{P}_{G_{i}}$ that do not cover u, and let $P_{W_{G_{1}+1}}^{2}, \ldots, P_{W_{G_{2}}}^{2}$ be the remaining $W_{G_{2}}-W_{G_{1}}$ graphs in $\mathcal{P}_{G_{2}}$. Now, for all $j \in\left\{1, \ldots, w_{u}\right\}$, let P_{j} be the graph obtained by gluing P_{j}^{1} and P_{j}^{2} along u; for all $j \in\left\{w_{u}+1, \ldots ., W_{G_{1}}\right\}$, let P_{j} be the disjoint union of P_{j}^{1} and
P_{j}^{2}; and for all $j \in\left\{W_{G_{1}}+1, \ldots, W_{G_{2}}\right\}$, let $P_{j}=P_{j}^{2}$. It is easy to see that P_{j} is perfect for all $j \in\left\{1, \ldots, W_{G_{2}}\right\}$. Now set $\mathcal{P}_{G}=\left\{P_{1}, \ldots, P_{W_{G_{2}}}\right\}$. Since $W_{G}=\max \left\{W_{G_{1}}, W_{G_{2}}\right\}=W_{G_{2}}, \mathcal{P}_{G}$ is a family of at most W_{G} perfect induced subgraphs of G such that for every vertex $v \in V_{G}$, at least w_{v} members of \mathcal{P}_{G} cover v.

4.4. The class Forb*(bull) is χ-bounded by the function $f(n)=n^{2}$.

Proof. Let $G \in$ Forb * (bull). Using 4.3, we obtain a family \mathcal{P} of at most $\omega(G)$ perfect induced subgraphs of G such that each vertex in V_{G} is covered by at least one graph in \mathcal{P}. Clearly, we may assume that each vertex in V_{G} is covered by exactly one graph in \mathcal{P}. Since the graphs in \mathcal{P} are perfect, each graph $P \in \mathcal{P}$ can be colored with $\omega(P) \leq \omega(G)$ colors; we may assume that the sets of colors used on the graphs in \mathcal{P} are pairwise disjoint. Now we take the union of the colorings of the graphs in \mathcal{P} to obtain a coloring of G that uses at most $\omega(G)^{2}$ colors.

5 Necklaces

We begin with some definitions. Let n be a non-negative integer, and let m_{0}, \ldots, m_{n} be positive integers. Let H be a graph whose vertex-set is $\bigcup_{i=0}^{n}\left\{x_{i, 0}, x_{i, 1}, \ldots, x_{i, m_{i}}\right\} \cup\left\{y_{1}, \ldots, y_{n}\right\}$, with adjacency as follows:

- $x_{0,0}-\ldots-x_{0, m_{0}}-x_{1,0}-\ldots-x_{1, m_{1}}-\ldots-x_{n, 0}-\ldots-x_{n, m_{n}}$ is a chordless path;
- $\left\{y_{1}, \ldots, y_{n}\right\}$ is a stable set;
- for all $i \in\{1, \ldots, n\}$, the vertex y_{i} has exactly two neighbors in the set $\bigcup_{i=0}^{n}\left\{x_{i, 0}, x_{i, 1}, \ldots, x_{i, m_{i}}\right\}$, namely $x_{i-1, m_{i-1}}$ and $x_{i, 0}$.

Under these circumstances, we say that H is an $\left(m_{0}, \ldots, m_{n}\right)$-necklace with base $x_{0,0}$ and hook $x_{n, m_{n}}$, or simply that H is an $\left(m_{0}, \ldots, m_{n}\right)$-necklace. If G is a subdivision of H, then we say that G is an $\left(m_{0}, \ldots, m_{n}\right)$-necklace ${ }^{*}$ with base $x_{0,0}$ and hook $x_{n, m_{n}}$, or simply that G is an $\left(m_{0}, \ldots, m_{n}\right)$-necklace*. To simplify notation, given a non-negative integer n and a positive integer m, we often write " $(m)_{n}$-necklace" instead of " $\underbrace{(m, \ldots, m)}_{n+1}$-necklace," and " $(m)_{n}$-necklace*" instead of " $\underbrace{(m, \ldots, m)}_{n+1}$-necklace*." (We remark that a (1) 1_{1}-necklace is the bull, and that for all positive integers m, an $(m)_{0^{-}}$ necklace with base x_{0} and hook x_{m} is a chordless m-edge path between x_{0} and x_{m}.)

Our goal in this section is to prove that for all non-negative integers
n and positive integers m_{0}, \ldots, m_{n}, the class Forb ${ }^{*}\left(\left(m_{0}, \ldots, m_{n}\right)-\right.$ necklace $)$ is χ-bounded by an exponential function (see 5.2 below). We observe that in order to prove 5.2, it suffices to consider only the $(m)_{n}$-necklaces. Indeed, if $m=\max \left\{m_{0}, \ldots, m_{n}\right\}$, then an $(m)_{n^{-}}$ necklace is a subdivision of an $\left(m_{0}, \ldots, m_{n}\right)$-necklace, and consequently, Forb ${ }^{*}\left(\left(m_{0}, \ldots, m_{n}\right)-\right.$ necklace $) \subseteq$ Forb* $\left((m)_{n}-\right.$ necklace $)$. Thus, it suffices to show that Forb $^{*}\left((m)_{n}\right.$ - necklace) is χ-bounded by an exponential function.

We now need some more definitions. First, in this paper, the local chromatic number of a graph G, denoted by $\chi_{l}(G)$, is the number $\max _{v \in V_{G}} \chi\left(G\left[\Gamma_{G}(v)\right]\right)$. Next, let n be a non-negative and m a positive integer. Let G be a graph whose vertex-set is the disjoint union of non-empty sets N and X, let x_{0} and x be distinct vertices in N, and assume that the adjacency in G is as follows:

- $G[N]$ is an $(m)_{n}$-necklace* with base x_{0} and hook x;
- $G[X]$ is connected;
- $N \backslash\{x\}$ is anti-complete to X;
- x has a neighbor in X.

Under these circumstances, we say that $\left(G, x_{0}, x\right)$ is an $(m)_{n}$-alloy or simply an alloy. The graph G is referred to as the base graph of the alloy $\left(G, x_{0}, x\right)$, and the ordered pair (N, X) is the partition of the alloy $\left(G, x_{0}, x\right)$. The potential of the alloy $\left(G, x_{0}, x\right)$ is the chromatic number of the graph $G[X]$.

We now state the main technical lemma of this section.
5.1. Let G be a connected graph, and let $x_{0} \in V_{G}$. Let n and β be nonnegative integers, and let m and α be positive integers. Assume that $\chi_{l}(G) \leq$ α and $\chi(G)>2^{n+1}((m+3) \alpha+\beta)$. Then there exists an induced subgraph H of G and a vertex $x \in V_{G}$ such that $\left(H, x_{0}, x\right)$ is an $(m)_{n}$-alloy of potential greater than β.

Since the base graph of an $(m)_{n}$-alloy contains an $(m)_{n}$-necklace* as an induced subgraph, 5.1 easily implies the main result of this section (5.2), as we now show. (We note that our proof of 5.2 relies only on the special case of 5.1 when $\beta=0$.)
5.2. Let n be a non-negative integer, let m_{0}, \ldots, m_{n} be positive integers, and let $m=\max \left\{m_{0}, \ldots, m_{n}\right\}$. Then the class Forb* $\left(\left(m_{0}, \ldots, m_{n}\right)-\right.$ necklace $)$ is χ-bounded by the exponential function $f(k)=\left(2^{n+1}(m+3)\right)^{k-1}$.

Proof. Since an $(m)_{n}$-necklace is a subdivision of an $\left(m_{0}, \ldots, m_{n}\right)$-necklace, we know that Forb $^{*}\left(\left(m_{0}, \ldots, m_{n}\right)-\right.$ necklace $) \subseteq \operatorname{Forb}^{*}\left((m)_{n}-\right.$ necklace $)$, and so it suffices to show that Forb* $\left((m)_{n}\right.$-necklace) is χ-bounded by the function f. Suppose that this is not the case, and let $k \in \mathbb{N}$ be minimal with the property that there exists a graph $G \in \operatorname{Forb}^{*}\left((m)_{n}\right.$ - necklace) such that $\omega(G)=k$ and $\chi(G)>f(k)$. Clearly, $k \geq 2$. Furthermore, we may assume that G is connected, for otherwise, instead of G, we consider a component of G with maximum chromatic number. Note that for all $v \in V_{G}$, we have that $\omega\left(G\left[\Gamma_{G}(v)\right]\right) \leq k-1$, and so by the minimality of k, $\chi\left(G\left[\Gamma_{G}(v)\right]\right) \leq f(k-1)$; thus $\chi_{l}(G) \leq f(k-1)$. Now, set $\alpha=f(k-1)$; then $\chi_{l}(G) \leq \alpha$ and $\chi(G)>2^{n+1}(m+3) \alpha$. Fix $x_{0} \in V_{G}$. Then 5.1 implies that there exists an induced subgraph H of G and a vertex $x \in V_{G}$ such that $\left(H, x_{0}, x\right)$ is an $(m)_{n}$-alloy. But then H contains an $(m)_{n}$-necklace* as an induced subgraph, contrary to the fact that $G \in \operatorname{Forb}^{*}\left((m)_{n}\right.$-necklace $)$.

The rest of the section is devoted to proving 5.1. The idea of the proof is to show that, given a connected graph G whose chromatic number is sufficiently large relative to its local chromatic number, it is possible to recursively "chisel" an $(m)_{n}$-alloy out of the graph G. At each recursive step, the "length" of the alloy (i.e. the number n) increases, and the potential of the alloy decreases (but in a controlled fashion, so as to allow the next recursive step). We begin with a technical lemma, which we will use many times in this section.
5.3. Let G be a graph, let $x_{0} \in V_{G}$, and let $S \subseteq V_{G} \backslash\left\{x_{0}\right\}$ be such that $G[S]$ is connected and x_{0} has a neighbor in S. Let k be a non-negative integer, let α be a positive integer, and assume that $\chi_{l}(G) \leq \alpha$, and that $\chi(G[S])>k \alpha$. Then there exist vertices $x_{1}, \ldots, x_{k} \in S$ and a set $X \subseteq S$ such that:
a. $x_{0}-x_{1}-\ldots-x_{k}$ is an induced path in G;
b. $G[X]$ is connected;
c. $x_{1}, \ldots, x_{k} \notin X$;
d. x_{k} has a neighbor in X;
e. vertices x_{0}, \ldots, x_{k-1} are anti-complete to X;
f. $\chi(G[X]) \geq \chi(G[S])-k \alpha$.

Proof. Let $i \in\{0, \ldots, k\}$ be maximal such that there exist vertices $x_{1}, \ldots, x_{i} \in$ S and a set $X \subseteq S$ such that:

- $x_{0}-x_{1}-\ldots-x_{i}$ is an induced path in G;
- $G[X]$ is connected;
- $x_{1}, \ldots, x_{i} \notin X$;
- x_{i} has a neighbor in X;
- vertices x_{0}, \ldots, x_{i-1} are anti-complete to X;
- $\chi(G[X]) \geq \chi(G[S])-i \alpha$.
(The existence of such an index i follows from the fact that x_{0} is an induced path in $G, G[S]$ is connected, x_{0} has a neighbor in S, and $\chi(G[S]) \geq \chi(G[S])-0 \cdot \alpha$.

We need to show that $i=k$. Suppose otherwise, that is, suppose that $i<k$. Then:

$$
\begin{aligned}
\chi(G[X]) & \geq \chi(G[S])-i \alpha \\
& \geq k \alpha-i \alpha \\
& =(k-i) \alpha \\
& \geq \alpha,
\end{aligned}
$$

and so $\chi(G[X])>\alpha$. Since $\chi\left(G\left[\Gamma_{G}\left(x_{i}\right)\right]\right) \leq \alpha$ (because $\left.\chi_{l}(G) \leq \alpha\right)$, it follows that x_{i} is not complete to X; let X^{\prime} be the vertex-set of a component of $G\left[X \backslash \Gamma_{G}\left(x_{i}\right)\right]$ with maximum chromatic number. Then $\chi(G[X]) \leq \chi\left(G\left[\Gamma_{G}\left(x_{i}\right)\right]\right)+\chi\left(G\left[X^{\prime}\right]\right)$, and so:

$$
\begin{aligned}
\chi\left(G\left[X^{\prime}\right]\right) & \geq \chi(G[X])-\chi\left(G\left[\Gamma_{G}\left(x_{i}\right)\right]\right) \\
& \geq(\chi(G[S])-i \alpha)-\alpha \\
& =\chi(G[S])-(i+1) \alpha
\end{aligned}
$$

Fix a vertex $x_{i+1} \in X \cap \Gamma_{G}\left(x_{i}\right)$ such that x_{i+1} has a neighbor in X^{\prime}. But now the sequence $x_{1}, \ldots, x_{i}, x_{i+1}$ and the set X^{\prime} contradict the maximality of i. It follows that $i=k$, which completes the argument.

The following is an easy consequence of 5.3, and it will serve as the base for our recursive construction of an $(m)_{n}$-alloy.
5.4. Let G be a connected graph, let $x_{0} \in V_{G}$, let β be a non-negative integer, and let m and α be positive integers. Assume that $\chi_{l}(G) \leq \alpha$, and that $\chi(G)>(m+1) \alpha+\beta$. Then there exists a vertex $x \in V_{G} \backslash\left\{x_{0}\right\}$ and an induced subgraph H of G such that $\left(H, x_{0}, x\right)$ is an $(m)_{0}$-alloy of potential greater than β.

Proof. Let S be the vertex-set of a component of $G \backslash x_{0}$ of maximum chromatic number. Clearly then, $\chi(G) \leq \chi(G[S])+1$, and consequently, $\chi(G[S])>m \alpha+\beta$. Since G is connected, x_{0} has a neighbor in S. By 5.3 then, there exist vertices $x_{1}, \ldots, x_{m} \in S$ and a set $X \subseteq S$ such that:

- $x_{0}-x_{1}-\ldots-x_{m}$ is an induced path in G;
- $G[X]$ is connected;
- $x_{1}, \ldots, x_{m} \notin X$;
- x_{m} has a neighbor in X;
- vertices x_{0}, \ldots, x_{m-1} are anti-complete to X;
- $\chi(G[X]) \geq \chi(G[S])-m \alpha$.

The fact that $\chi(G[X]) \geq \chi(G[S])-m \alpha$ and $\chi(G[S])>m \alpha+\beta$ implies that $\chi(G[X])>\beta$. Now set $H=G\left[\left\{x_{0}, \ldots, x_{m_{0}}\right\} \cup X\right]$ and $x=x_{m}$. Then $\left(H, x_{0}, x\right)$ is an $(m)_{0}$-alloy of potential greater than β.

Our goal now is to show that, given an $(m)_{n}$-alloy with large potential and small local chromatic number of the base graph, we can "chisel" out of this $(m)_{n}$-alloy an $(m)_{n+1^{-}}$-alloy of large potential. More formally, we wish to prove the following lemma.
5.5. Let n and β be non-negative integers, and let m and α be positive integers. Let $\left(G, x_{0}, x\right)$ be an $(m)_{n}$-alloy of potential greater than $2((m+$ $3) \alpha+\beta)$, and let (N, X) be the partition of the alloy $\left(G, x_{0}, x\right)$. Assume that $\chi_{l}(G) \leq \alpha$. Then there exist disjoint sets $N^{\prime}, X^{\prime} \subseteq V_{G}$ such that $N \subseteq N^{\prime}$ and $X^{\prime} \subseteq X$, and a vertex $x^{\prime} \in X$ such that $\left(G\left[N^{\prime} \cup X^{\prime}\right], x_{0}, x^{\prime}\right)$ is an $(m)_{n+1}$-alloy of potential greater than β and with partition $\left(N^{\prime}, X^{\prime}\right)$.

We now need some definitions. Let n be a non-negative and m a positive integer, and let $\left(G, x_{0}, x\right)$ be an $(m)_{n}$-alloy with partition (N, X). Assume that the potential of $\left(G, x_{0}, x\right)$ is greater than 2β (where β is some non-negative integer). For each $i \in \mathbb{N} \cup\{0\}$, let S_{i}^{\prime} be the set of all vertices in $\{x\} \cup X$ that are at distance i from x in $G[\{x\} \cup X]$; thus, $S_{0}^{\prime}=\{x\}$. Let $t \in \mathbb{N}$ be such that $\chi\left(G\left[S_{t}^{\prime}\right]\right)$ is as large as possible. As the sets $S_{1}, S_{3}, S_{5}, \ldots$ are pairwise anti-complete to each other, as are the sets $S_{2}, S_{4}, S_{6}, \ldots$, it is easy to see that $\chi(G[X]) \leq 2 \chi\left(G\left[S_{t}^{\prime}\right]\right)$, and consequently, $\chi\left(G\left[S_{t}^{\prime}\right]\right)>\beta$. Now, let S_{t} be the vertex-set of a component of $G\left[S_{t}^{\prime}\right]$ with maximum chromatic number (thus, $\chi\left(G\left[S_{t}\right]\right)>\beta$), and for each $i \in\{0,1, \ldots, t-1\}$, let S_{i} be an inclusion-wise minimal subset of S_{i}^{\prime} such that every vertex in S_{i+1} has a neighbor in S_{i}; clearly, $S_{0}=\{x\}$. Let $H=G\left[N \cup \bigcup_{i=1}^{t} S_{i}\right]$. We then say that $\left(H, x_{0}, x\right)$ is a reduction of the $(m)_{n}$-alloy $\left(G, x_{0}, x\right)$, and that $\left\{S_{i}\right\}_{i=0}^{t}$ is the stratification of $\left(H, x_{0}, x\right)$. Clearly, $\left(H, x_{0}, x\right)$ is itself an $(m)_{n}$-alloy, and $\left(N, \bigcup_{i=1}^{t} S_{i}\right)$ is the associated partition. Further, as $\chi\left(G\left[S_{t}\right]\right)>\beta$ and H is an induced subgraph of G, we know that $\chi\left(H\left[S_{t}\right]\right)>\beta$. Next, given vertices $a \in S_{p}$ and $b \in S_{q}$ for some $p, q \in\{0, \ldots, t\}$, a path P in H between a and b is said to be monotonic provided that it has $|p-q|$ edges. This means that if $p=q$ then $a=b$, and if $p \neq q$ then all the internal vertices of the path P lie in $\bigcup_{r=\min \{p, q\}+1}^{\max \{p, q\}-1} S_{r}$, with each set $S_{r}($ with $\min \{p, q\}+1 \leq r \leq \max \{p, q\}-1)$ containing exactly one vertex of the path. Clearly, every monotonic path is induced.

We observe that for all $p \in\{0, \ldots, t\}$ and $a \in S_{p}$, there exists a monotonic path between x and a.

The idea of the proof of 5.5 is as follows. First, we let $\left(H, x_{0}, x\right)$ be a reduction of the $(m)_{n}$-alloy $\left(G, x_{0}, x\right)$, and we let $\left\{S_{i}\right\}_{i=0}^{t}$ be the associated stratification. From now on, we work only with the graph H (and not $G)$. We find the needed vertex x^{\prime} in the set S_{t}, and the set X^{\prime} is chosen to be a suitable subset of the set S_{t}. Our proof splits into two cases. The first (and easier) case is when at least one of the sets S_{1}, \ldots, S_{t-2} is not stable (in this case, we necessarily have $t \geq 3$); the second (and harder) case is when the sets S_{1}, \ldots, S_{t-2} are all stable. We treat these two cases in two separate lemmas (the first case is treated in 5.6, and the second case in 5.7).
5.6. Let n and β be non-negative integers, and let m and α be positive integers. Let $\left(G, x_{0}, x\right)$ be an $(m)_{n}$-alloy of potential greater than $2(m \alpha+\beta)$, and let (N, X) be the partition of the alloy $\left(G, x_{0}, x\right)$. Assume that $\chi_{l}(G) \leq$ α. Let $\left(H, x_{0}, x\right)$ be a reduction of the $(m)_{n}$-alloy $\left(G, x_{0}, x\right)$, and let $\left\{S_{i}\right\}_{i=0}^{t}$ be the associated stratification. Assume that $t \geq 3$ and that at least one of the sets S_{1}, \ldots, S_{t-2} is not stable. Then there exist disjoint sets $N^{\prime}, X^{\prime} \subseteq V_{H}$ such that $N \subseteq N^{\prime}$ and $X^{\prime} \subseteq S_{t}$, and a vertex $x^{\prime} \in S_{t}$ such that $\left(H\left[N^{\prime} \cup X^{\prime}\right], x_{0}, x^{\prime}\right)$ is an $(m)_{n+1}$-alloy of potential greater than β and with partition $\left(N^{\prime}, X^{\prime}\right)$.

Proof. First, as pointed out above, we know that $\chi\left(H\left[S_{t}\right]\right)>m \alpha+\beta$. Now, let $r \in\{1, \ldots, t-2\}$ be minimal with the property that S_{r} is not stable; fix adjacent $a, b \in S_{r}$. Let $p \in\{0, \ldots, r-1\}$ be maximal with the property that there exists some $z \in S_{p}$ such that for each $d \in\{a, b\}$, there exists a monotonic path P_{d} between z and d (such an index p and a vertex z exist because $x_{0} \in S_{0}$ and there exist monotonic paths between x_{0} and a and between x_{0} and b). Since S_{0}, \ldots, S_{r-1} are all stable, this means that $H\left[V_{P_{a}} \cup V_{P_{b}}\right]$ is a chordless cycle, and by construction, $\left(V_{P_{a}} \cup V_{P_{b}}\right) \cap S_{p}=\{z\}$ and $\left(V_{P_{a}} \cup V_{P_{b}}\right) \cap S_{r}=\{a, b\}$. Next, let Q be a monotonic path between x and z. By the minimality of S_{r}, there exists some $s_{r+1} \in S_{r+1}$ that is adjacent to a and non-adjacent to b. Now, fix some $s_{t-1} \in S_{t-1}$ such that there exists a monotonic path R between s_{r+1} and s_{t-1} (the existence of s_{t-1} follows from the fact that for all $i \in\{0, \ldots, t-1\}$ and $v \in S_{i}, v$ has a neighbor in S_{i+1}). Since s_{t-1} has a neighbor in S_{t}, and since $\chi\left(H\left[S_{t}\right]\right)>m \alpha$, we can apply 5.3 to the vertex s_{t-1} and the set S_{t} to obtain vertices $u_{1}, \ldots, u_{m} \in S_{t}$ and a set $X^{\prime} \subseteq S_{t} \backslash\left\{u_{1}, \ldots, u_{m}\right\}$ such that the following hold:

- $s_{t-1}-u_{1}-\ldots-u_{m}$ is an induced path in G;
- u_{m} has a neighbor in X^{\prime};
- vertices $s_{t-1}, u_{1}, \ldots, u_{m-1}$ are anti-complete to X^{\prime};
- $H\left[X^{\prime}\right]$ is connected;
- $\chi\left(H\left[X^{\prime}\right]\right) \geq \chi\left(H\left[S_{t}\right]\right)-m \alpha$.

Set $N^{\prime}=N \cup V_{Q} \cup V_{P_{a}} \cup V_{P_{b}} \cup V_{R} \cup\left\{u_{1}, \ldots, u_{m}\right\}$ and $x^{\prime}=u_{m}$. Clearly then, $\left(H\left[N^{\prime} \cup X^{\prime}\right], x_{0}, x^{\prime}\right)$ is an $(m)_{n+1}$-alloy with partition $\left(N^{\prime}, X^{\prime}\right)$. Since $\chi\left(H\left[X^{\prime}\right]\right) \geq \chi\left(H\left[S_{t}\right]\right)-m \alpha$ and $\chi\left(H\left[S_{t}\right]\right)>m \alpha+\beta$, we get that $\chi\left(H\left[X^{\prime}\right]\right)>$ β. This completes the argument.
5.7. Let n and β be non-negative integers, and let m and α be positive integers. Let $\left(G, x_{0}, x\right)$ be an $(m)_{n}$-alloy of potential greater than $2((m+$ 3) $\alpha+\beta$), and let (N, X) be the partition of the alloy $\left(G, x_{0}, x\right)$. Assume that $\chi_{l}(G) \leq \alpha$. Let $\left(H, x_{0}, x\right)$ be a reduction of the $(m)_{n}$-alloy $\left(G, x_{0}, x\right)$, and let $\left\{S_{i}\right\}_{i=0}^{t}$ be the associated stratification. Assume that the sets S_{1}, \ldots, S_{t-2} are all stable. Then there exist disjoint sets $N^{\prime}, X^{\prime} \subseteq V_{H}$ such that $N \subseteq N^{\prime}$ and $X^{\prime} \subseteq S_{t}$, and a vertex $x^{\prime} \in S_{t}$ such that $\left(H\left[N^{\prime} \cup X^{\prime}\right], x_{0}, x^{\prime}\right)$ is an $(m)_{n+1}$-alloy of potential greater than β and with partition $\left(N^{\prime}, X^{\prime}\right)$.
Proof. First, since the potential of the alloy $\left(G, x_{0}, x\right)$ is greater than $2((m+$ 3) $\alpha+\beta$), we know that $\chi\left(H\left[S_{t}\right]\right)>(m+3) \alpha+\beta$. Next, fix $a \in S_{t-1}$, and set $A=S_{t} \cap \Gamma_{H}(a)$. Note that $\chi\left(H\left[S_{t}\right]\right)>2 \alpha$, and so we can apply 5.3 to the vertex a and the set S_{t} in H to obtain vertices $u_{0}^{\prime}, u_{1}^{\prime} \in S_{t}$ and a non-empty set $C \subseteq S_{t} \backslash\left\{u_{0}^{\prime}, u_{1}^{\prime}\right\}$ such that $a-u_{0}^{\prime}-u_{1}^{\prime}$ is an induced path in H, a and u_{0}^{\prime} are anti-complete to C (note that this implies that $C \cap A=\emptyset$), u_{1}^{\prime} has a neighbor in $C, H[C]$ is connected, and

$$
\begin{aligned}
\chi(H[C]) & \geq \chi\left(H\left[S_{t}\right]\right)-2 \alpha \\
& >((m+3) \alpha+\beta)-2 \alpha \\
& =(m+1) \alpha+\beta .
\end{aligned}
$$

Now, fix some $b \in S_{t-1}$ adjacent to u_{1}^{\prime}; since a is not adjacent to u_{1}^{\prime}, this means that $a \neq b$. Set $B=S_{t} \cap \Gamma_{H}(b)$; clearly, $u_{1}^{\prime} \in B$. Since $\chi(H[C])>\alpha$ and $\chi(H[B]) \leq \alpha$, we know that $C \nsubseteq B$; let U be the vertex-set of a component of $H[C \backslash B]$ with maximum chromatic number. Then

$$
\begin{aligned}
\chi(H[C]) & \leq \chi(H[B])+\chi(H[U]) \\
& \leq \alpha+\chi(H[U]),
\end{aligned}
$$

and so $\chi(H[U])>m \alpha+\beta$. Note that by construction, neither A nor B intersects U.

Let us define a path of type one in H to be an induced path $u_{0}-\ldots-u_{p}$ (with $p \geq 1$) in $H\left[S_{t} \backslash U\right]$ such that $u_{0} \in A \cup B$, exactly one vertex among u_{1}, \ldots, u_{p} is in $A \cup B, u_{p}$ has a neighbor in U, and u_{0}, \ldots, u_{p-1} are all anti-complete to U. We define a path of type two in H to be an induced path $u_{0}-\ldots-u_{p}($ with $p \geq 1)$ in $H\left[S_{t} \backslash U\right]$ such that $u_{0}=u_{0}^{\prime}$, no vertex among u_{1}, \ldots, u_{p} lies in $A \cup B$ (in particular, $u_{1}^{\prime} \notin\left\{u_{1}, \ldots, u_{p}\right\}$), u_{p} has a neighbor in U, vertices u_{0}, \ldots, u_{p-1} are all anti-complete to U, and u_{1}^{\prime} is
complete to $\left\{u_{0}, u_{1}\right\}$ and anti-complete to $\left\{u_{2}, \ldots, u_{p}\right\} \cup U$.
Our goal now is to show that H contains a path of type one or two. Suppose that there is no path of type one in H. Since $H\left[S_{t}\right]$ is connected, and u_{0}^{\prime} is anti-complete to U, there exists an induced path $u_{0}-\ldots-u_{p}$ (with $p \geq 1)$ in $H\left[S_{t} \backslash U\right]$ such that $u_{0}=u_{0}^{\prime}, u_{p}$ has a neighbor in U, and vertices u_{0}, \ldots, u_{p-1} are anti-complete to U. Note that $u_{0} \in A$ (because $u_{0}=u_{0}^{\prime}$ and $u_{0}^{\prime} \in A$). Clearly then, $u_{1}, \ldots, u_{p} \notin A \cup B$, for otherwise, at least two vertices among $u_{0}, u_{1}, \ldots, u_{p}$ would lie in $A \cup B$, and then $u_{p^{\prime}}-u_{p^{\prime}+1}-\ldots-u_{p}$ would be a path of type one in H for $p^{\prime} \in\{0, \ldots, p-1\}$ chosen maximal with the property that at least two vertices among $u_{p^{\prime}}, u_{p^{\prime}+1}, \ldots, u_{p}$ lie in $A \cup B$. Since $u_{0}=u_{0}^{\prime}$ and $u_{1}, \ldots, u_{p} \notin A \cup B$, we know that $u_{1}^{\prime} \notin\left\{u_{0}, \ldots, u_{p}\right\}$. Next, note that u_{1}^{\prime} is anti-complete to U, for otherwise, $u_{0}^{\prime}-u_{1}^{\prime}$ would be a path of type one in H. Further, u_{1}^{\prime} is anti-complete to $\left\{u_{2}, \ldots, u_{p}\right\}$, for otherwise, we let $p^{\prime} \in\{2, \ldots, p\}$ be maximal with the property that u_{1}^{\prime} is adjacent to $u_{p^{\prime}}$, and we observe that $u_{0}^{\prime}-u_{1}^{\prime}-u_{p^{\prime}}-u_{p^{\prime}+1}-\ldots-u_{p}$ is a path of type one in H. Finally, u_{1}^{\prime} is adjacent to u_{1}, for otherwise, $u_{1}^{\prime}-u_{0}-u_{1}-\ldots-u_{p}$ would be a path of type one in H. Thus, $u_{0}-\ldots-u_{p}$ is a path of type two in H. This proves that H contains a path of type one or two.

Let $u_{0}-\ldots-u_{p}$ (with $p \geq 1$) be a path of type one or two in H. Recall that $\chi(H[U])>m \alpha+\beta$. We now apply 5.3 to the vertex u_{p} and the set U in H to obtain vertices $u_{p+1}, \ldots, u_{p+m} \in U$ and a set $X^{\prime} \subseteq U \backslash\left\{u_{p+1}, \ldots, u_{p+m}\right\}$ such that the following hold:

- $u_{p}-u_{p+1}-\ldots-u_{p+m}$ is an induced path in H;
- u_{p+m} has a neighbor in X^{\prime};
- vertices u_{p}, \ldots, u_{p+m-1} are anti-complete to X^{\prime};
- $H\left[X^{\prime}\right]$ is connected;
- $\chi\left(H\left[X^{\prime}\right]\right) \geq \chi(H[U])-m \alpha ;$
note that the last condition, together with the fact that $\chi(H[U])>m \alpha+\beta$, implies that $\chi\left(H\left[X^{\prime}\right]\right)>\beta$. Set $x^{\prime}=u_{p+m}$. Our goal is to construct a set N^{\prime} with $N \subseteq N^{\prime}$ such that $\left(H\left[N^{\prime} \cup X^{\prime}\right], x_{0}, x^{\prime}\right)$ is an $(m)_{n+1}$-alloy with partition $\left(N^{\prime}, X^{\prime}\right)$. Since $\chi\left(H\left[X^{\prime}\right]\right)>\beta$, the potential of any such alloy is greater than β, as desired.

First, if $u_{0}-\ldots-u_{p}$ is a path of type two in H, then we let P be a monotonic path between a and x, we set $N^{\prime}=N \cup V_{P} \cup\left\{u_{0}, \ldots, u_{p+m}\right\} \cup\left\{u_{1}^{\prime}\right\}$, and we are done. From now on, we assume that $u_{0}-\ldots-u_{p}$ is a path of type one in H. Fix $l \in\{1, \ldots, p\}$ such that $u_{l} \in A \cup B$; then by the definition of a path of type one in H, we get that $u_{0}, u_{l} \in A \cup B$,
and no other vertex on the path $u_{0}-\ldots-u_{p}$ lies in $A \cup B$. If some vertex $d \in\{a, b\}$ is complete to $\left\{u_{0}, u_{l}\right\}$, then we let P be a monotonic path between x and d, we set $N^{\prime}=N \cup V_{P} \cup\left\{u_{0}, \ldots, u_{p+m}\right\}$, and we are done. From now on, we assume that neither a nor b is complete to $\left\{u_{0}, u_{l}\right\}$. Then one of a and b is adjacent to u_{0} and non-adjacent to u_{l}, and the other is adjacent to u_{l} and non-adjacent to u_{0}. Now, fix maximal $q \in\{0, \ldots, t-2\}$ such that there exists a vertex $z \in S_{q}$ with the property that for each $d \in\{a, b\}$, there exists a monotonic path P_{d} between z and d. Since S_{0}, \ldots, S_{t-2} are all stable, we get that if a and b are adjacent then $H\left[V_{P_{a}} \cup V_{P_{b}}\right]$ is a chordless cycle, and if a and b are non-adjacent then $H\left[V_{P_{a}} \cup V_{P_{b}}\right]$ is an induced path between a and b; in either case, we have that $\left(V_{P_{a}} \cup V_{P_{b}}\right) \cap S_{t-1}=\{a, b\}$ and $\left(V_{P_{a}} \cup V_{P_{b}}\right) \cap S_{q}=\{z\}$. Let Q be a monotonic path between z and x. Now, if a and b are adjacent, then we set $N^{\prime}=N \cup V_{Q} \cup V_{P_{a}} \cup V_{P_{b}} \cup\left\{u_{l}, u_{l+1}, \ldots, u_{p+m}\right\}$; and if a and b are non-adjacent, then we set $N^{\prime}=V_{Q} \cup V_{P_{a}} \cup V_{P_{b}} \cup\left\{u_{0}, \ldots, u_{p+m}\right\}$. This completes the argument.

We can now prove 5.5, restated below.
5.5. Let n and β be non-negative integers, and let m and α be positive integers. Let $\left(G, x_{0}, x\right)$ be an $(m)_{n}$-alloy of potential greater than $2((m+$ $3) \alpha+\beta$), and let (N, X) be the partition of the alloy $\left(G, x_{0}, x\right)$. Assume that $\chi_{l}(G) \leq \alpha$. Then there exist disjoint sets $N^{\prime}, X^{\prime} \subseteq V_{G}$ such that $N \subseteq N^{\prime}$ and $X^{\prime} \subseteq X$, and a vertex $x^{\prime} \in X$ such that $\left(G\left[N^{\prime} \cup X^{\prime}\right], x_{0}, x^{\prime}\right)$ is an $(m)_{n+1^{-}}$-alloy of potential greater than β and with partition $\left(N^{\prime}, X^{\prime}\right)$.

Proof. Let $\left(H, x_{0}, x\right)$ be a reduction of the $(m)_{n}$-alloy $\left(G, x_{0}, x\right)$, and let $\left\{S_{i}\right\}_{i=0}^{t}$ be the associated stratification. If $t \geq 3$ and at least one of the sets S_{1}, \ldots, S_{t-2} is not stable, then the result follows from 5.6. Otherwise, the result follows from 5.7.

Finally, we use 5.4 and 5.5 to prove 5.1 , restated below.
5.1. Let G be a connected graph, and let $x_{0} \in V_{G}$. Let n and β be nonnegative integers, and let m and α be positive integers. Assume that $\chi_{l}(G) \leq$ α and $\chi(G)>2^{n+1}((m+3) \alpha+\beta)$. Then there exists an induced subgraph H of G and a vertex $x \in V_{G}$ such that $\left(H, x_{0}, x\right)$ is an $(m)_{n}$-alloy of potential greater than β.

Proof. For all $j \in\{0, \ldots, n\}$, set $\beta_{j}=\beta+\left(\sum_{i=1}^{n-j} 2^{i}\right)((m+3) \alpha+\beta)$. Our goal is to prove inductively that for all $j \in\{0, \ldots, n\}$, there exist disjoint sets $N_{j}, X_{j} \subseteq V_{G}$ and a vertex $x^{j} \in V_{G}$ such that $\left(G\left[N_{j} \cup X_{j}\right], x_{0}, x^{j}\right)$ is an $(m)_{j}$-alloy of potential greater than β_{j}. Since $\beta_{n}=\beta$, the result will follow.

For the base case (when $j=0$), we observe that

$$
\begin{aligned}
\chi(G) & >2^{n+1}((m+3) \alpha+\beta) \\
& >\left(\sum_{i=0}^{n} 2^{2}\right)((m+3) \alpha+\beta) \\
& =(m+3) \alpha+\beta+\left(\Sigma_{i=1}^{n} 2^{i}\right)((m+3) \alpha+\beta) \\
& =(m+3) \alpha+\beta_{0} \\
& >(m+1) \alpha+\beta_{0},
\end{aligned}
$$

and so 5.4 implies that there exist sets $N_{0}, X_{0} \subseteq V_{G}$ and a vertex $x^{0} \in V_{G}$ such that $\left(G\left[N_{j} \cup X_{j}\right], x_{0}, x^{j}\right)$ is an $(m)_{j}$-alloy of potential greater than β_{0}.

For the induction case, suppose that $j \in\{0, \ldots, n-1\}$ and that there exist disjoint sets $N_{j}, X_{j} \subseteq V_{G}$ and a vertex $x^{j} \in V_{G}$ such that $\left(G\left[N_{j} \cup X_{j}\right], x_{0}, x^{j}\right)$ is an $(m)_{j}$-alloy of potential greater than β_{j}. Since

$$
\begin{aligned}
\beta_{j} & =\beta+\left(\sum_{i=1}^{n-j} 2^{i}\right)((m+3) \alpha+\beta) \\
& \geq\left(\sum_{i=1}^{n-1} 2^{i}\right)((m+3) \alpha+\beta) \\
& =2\left((m+3) \alpha+\beta+\left(\sum_{i=1}^{n-(j+1)} 2^{i}\right)((m+3) \alpha+\beta)\right) \\
& =2\left((m+3) \alpha+\beta_{j+1}\right),
\end{aligned}
$$

5.5 implies that there exist sets $N_{j+1}, X_{j+1} \subseteq V_{G}$ and a vertex x^{j+1} such that $\left(G\left[N_{j+1} \cup X_{j+1}\right], x_{0}, x^{j+1}\right)$ is an $(m)_{j+1}$-alloy of potential greater than β_{j+1}. This completes the induction.

References

[1] M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas. The strong perfect graph theorem. Annals of Mathematics, 164(1):51-229, 2006.
[2] M. Chudnovsky and S. Safra. The Erdős-Hajnal conjecture for bull-free graphs. Journal of Combinatorial Theory, Series B, 98(6):1301-1310, 2008.
[3] P. Erdős. Graph theory and probability. II. Canadian J. Math., 13: 346-352, 1961.
[4] A. Gyárfás. On Ramsey covering-numbers, Coll. Math. Soc. János Bolyai. In Infinite and Finite Sets, North Holland/American Elsevier, New York (1975), 10.
[5] A. Gyárfás. Problems from the world surrounding perfect graphs. Zastowania Matematyki Applicationes Mathematicae, 19:413-441, 1987.
[6] A. Gyárfás, E. Szemerédi, and Zs. Tuza. Induced subtrees in graphs of large chromatic number. Discrete Mathematics, 30:235-244, 1980.
[7] H.A. Kierstead and S.G. Penrice. Radius two trees specify χ-bounded classes. Journal of Graph Theory, 18:119-129, 1994.
[8] H.A. Kierstead and Y. Zhu. Radius three trees in graphs with large chromatic number. SIAM Journal of Discrete Mathematics, 17:571-581, 2004.
[9] J.H. Kim. The Ramsey number $R(3, t)$ has order of magnitude $t^{2} / \log t$. Random Structures and Algorithms, 7(3):173-208, 1995.
[10] B. Lévêque, F. Maffray, and N. Trotignon. On graphs with no induced subdivision of K_{4}. Manuscript, 2010.
[11] L. Lovász. Normal hypergraphs and the perfect graph conjecture. Discrete Mathematics, 2:253-267, 1972.
[12] S. Olariu. Paw-free graphs. Information Processing Letters, 28:53-54, 1988.
[13] J.L. Ramírez Alfonsín and B.A. Reed, editors. Perfect graphs. Series in Discrete Mathematics and Optimization. Wiley-Interscience, 2001.
[14] A.D. Scott. Induced trees in graphs of large chromatic number. Journal of Graph Theory, 24:297-311, 1997.
[15] A.D. Scott. Induced cycles and chromatic number. Journal of Combinatorial Theory, Ser. B, 76:70-75, 1999.
[16] D.P. Sumner. Subtrees of a graph and chromatic number. In The Theory and Applications of Graphs, G Chartrand, ed., John Wiley and Sons, New York (1981), 557-576.
[17] N. Trotignon and K. Vušković. A structure theorem for graphs with no cycle with a unique chord and its consequences. Journal of Graph Theory, 63(1):31-67, 2010.

[^0]: ${ }^{*}$ Columbia University, New York, NY 10027, USA. E-mail: mchudnov@columbia.edu. Partially supported by NSF grants DMS-0758364 and DMS-1001091.
 ${ }^{\dagger}$ Columbia University, New York, NY 10027, USA. E-mail: ipenev@math.columbia.edu.
 ${ }^{\ddagger}$ Mathematical Institute, University of Oxford, $24-29$ St Giles’, Oxford OX1 3LB, UK. E-mail: scott@maths.ox.ac.uk.
 ${ }^{\S}$ CNRS, LIP - ENS Lyon, 15 parvis René Descartes, BP 7000, 69342 Lyon cedex 07, France. E-mail: nicolas.trotignon@ens-lyon.fr. Partially supported by Agence Nationale de la Recherche under reference anr 10 JcJc 020401

