The structure of graphs with a vital linkage of order 2^{*}

Dillon Mayhew ${ }^{\dagger}$ Geoff Whittle ${ }^{\dagger} \quad$ Stefan H. M. van Zwam *

April 18, 2019

Abstract

A linkage of order k of a graph G is a subgraph with k components, each of which is a path. A linkage is vital if it spans all vertices, and no other linkage connects the same pairs of end vertices. We give a characterization of the graphs with a vital linkage of order 2: they are certain minors of a family of highly structured graphs.

1 Introduction

Robertson and Seymour [4] defined a linkage in a graph G as a subgraph in which each component is a path. The order of a linkage is the number of components. A linkage L of order k is unique if no other collection of paths connects the same pairs of vertices, it is spanning if $V(L)=V(G)$, and it is vital if it is both unique and spanning. Graphs with a vital linkage are well-behaved. For instance, Robertson and Seymour proved the following:

Theorem 1.1 (Robertson and Seymour [4, Theorem 1.1]). There exists an integer w, depending only on k, such that every graph with a vital linkage of order k has tree width at most w.

Note that Robertson and Seymour use the term p-linkage to denote a linkage with p terminals. Robertson and Seymour's proof of this theorem is surprisingly elaborate, and uses their structural description of graphs with no large clique-minor. Recently Kawarabayashi and Wollan

[^0]

Figure 1: The graph $K_{2,4}$.

Figure 2: The graphs \ddot{U}_{4} and \ddot{U}_{5}.
[2] proved a strengthening of this result. Their shorter proof avoids using the structure theorem.

Our interest in linkages, in particular those of order 2, stems from quite a different area of research: matroid theory. Truemper [5] studied a class of binary matroids that he calls almost regular. His proofs lean heavily on a class of matroids that are single-element extensions of the cycle matroids of graphs with a vital linkage of order 2 . These matroids turned up again in the excluded-minor characterization of matroids that are either binary or ternary, by Mayhew et al. [3].

Truemper proves that an almost regular matroid can be built from one of two specific matroids by certain $\Delta-Y$ operations. This is a deep result, but it does not yield bounds on the branch width of these matroids. In a forthcoming paper the authors of this paper, together with Chun, will give an explicit structural description of the class of almost regular matroids [1]. The main result of this paper will be of use in that project.

To state our main result we need a few more definitions. Fix a graph G and a spanning linkage L of order k. A path edge is a member of $E(L)$; an edge in $E(G)-E(L)$ is called a chord if its endpoints lie in a single path, and a rung edge otherwise. If L is vital, then G cannot have any chords.

A linkage minor of G with respect to a (chordless) linkage L is a minor H of G such that all path edges in $E(G)-E(H)$ have been contracted, and all rung edges in $E(G)-E(H)$ have been deleted. If the linkage L is clear from the context we simply say that H is a linkage minor of G. Moreover, let G be a graph with a chordless 2-linkage L. If G has a linkage minor isomorphic to $K_{2,4}$, such that the terminals of L are mapped to the degree2 vertices of $K_{2,4}$, we say that G has an $X X$ linkage minor (cf. Figure 1).

For each integer n, the graph \ddot{U}_{n} is the graph with $V\left(\ddot{U}_{n}\right)=\left\{v_{1}, \ldots, v_{n}\right\} \cup$ $\left\{u_{1}, \ldots, u_{n}\right\}$, and

$$
\begin{align*}
E\left(\ddot{U}_{n}\right)= & \left\{v_{i} v_{i+1} \mid i=1, \ldots, n-1\right\} \cup\left\{u_{i} u_{i+1} \mid i=1, \ldots, n-1\right\} \cup \\
& \left\{u_{i} v_{i} \mid i=1, \ldots, n\right\} \cup\left\{u_{i} v_{n+1-i} \mid i=1, \ldots, n\right\} . \tag{1}
\end{align*}
$$

We denote by L_{n} the linkage of \ddot{U}_{n} consisting of all edges $v_{i} v_{i+1}$ and $u_{i} u_{i+1}$ for $i=1, \ldots, n-1$. In Figure 2 the graphs \ddot{U}_{4} and \ddot{U}_{5} are depicted.

Finally, we say that G is a Truemper graph if G is a linkage minor of \ddot{U}_{n} for some n. The main result of this paper is the following:
Theorem 1.2. Let G be a graph. The following statements are equivalent:

Figure 3: The graph \ddot{U}_{6}. The linkage is formed by the two diagonally drawn paths.
(i) G has a vital linkage of order 2;
(ii) G has a chordless spanning linkage of order 2 with no XX linkage minor;
(iii) G is a Truemper graph.

Robertson and Seymour [4] commented, without proof, that graphs with a vital linkage with $k \leq 5$ terminal vertices have path width at most k. A weaker claim is the following:

Corollary 1.3. Let G be a graph with a vital linkage of order 2 . Then G has path width at most 4.

Another consequence of our result is that graphs with a vital linkage of order 2 embed in the projective plane:

Corollary 1.4. Let G be a graph with a vital linkage of order 2. Then G can be embedded on a Möbius strip.

Both corollaries can be seen to be true by considering an alternative depiction of $\ddot{U}_{2 n}$, analogous to Figure 3.

2 Proof of Theorem 1.2

We start with a few more definitions. Suppose L is a linkage of order 2 with components P_{1} and P_{2}, such that the terminal vertices of P_{1} are s_{1} and t_{1}, and those of P_{2} are s_{2} and t_{2}. We order the vertices on the paths in a natural way, as follows. If v and w are vertices of P_{i}, then we say that v is (strictly) to the left of w if the graph distance from s_{i} to v in the subgraph P_{i} is (strictly) smaller than the graph distance from s_{i} to w. The notion to the right is defined analogously.

We will frequently use the following elementary observation, whose proof we omit.
Lemma 2.1. Let G be a graph with a chordless spanning linkage L of order 2. Let P_{1} and P_{2} be the components of L, with terminal vertices respectively s_{1}, t_{1} and s_{2}, t_{2}. Let H be a linkage minor of G. If v and w are on P_{i}, and v is to the left of w, then the vertex corresponding to v in H is to the left of the vertex corresponding to w in H.

Figure 4: Detail of the proof of Lemma 2.2.

Without further ado we dive into the proof, which will consist of a sequence of lemmas. The first deals with the equivalence of the first two statements in the theorem.
Lemma 2.2. Let G be a graph with a chordless spanning linkage L of order 2. Then L is vital if and only if G has no XX linkage minor with respect to L.

Proof. First we suppose that there exists a graph G with a non-vital chordless spanning linkage L of order 2 such that G has no $X X$ linkage minor. Let P_{1}, P_{2} be the paths of L, where P_{1} runs from s_{1} to t_{1}, and P_{2} runs from s_{2} to t_{2}. Let $P_{1}^{\prime}, P_{2}^{\prime}$ be different paths connecting the same pairs of vertices. Without loss of generality, $P_{1}^{\prime} \neq P_{1}$. But then P_{1}^{\prime} must meet P_{2}, so $P_{2}^{\prime} \neq P_{2}$. Let $e=v_{1} v_{2}$ be an edge of P_{1}^{\prime} such that the subpath $s_{1}-v_{1}$ of P_{1}^{\prime} is also a subpath of P_{1}, but e is not an edge of P_{1}. Let $f=u_{2} u_{1}$ be an edge of P_{1}^{\prime} such that the subpath $u_{1}-t_{1}$ of P_{1}^{\prime} is also a subpath of P_{2}, but f is not an edge of P_{2}. Similarly, let $e^{\prime}=v_{2}^{\prime} \nu_{1}^{\prime}$ be an edge of P_{2}^{\prime} such that the subpath $s_{2}-v_{2}^{\prime}$ of P_{2}^{\prime} is also a subpath of P_{2}, but e^{\prime} is not an edge of P_{2}. Let $f^{\prime}=u_{1}^{\prime} u_{2}^{\prime}$ be an edge of P_{2}^{\prime} such that the subpath $u_{2}^{\prime}-t_{2}$ of P_{2}^{\prime} is also a subpath of P_{2}, but f^{\prime} is not on P_{2}. See Figure 4.

Since P_{1}^{\prime} and P_{2}^{\prime} are vertex-disjoint, v_{2}^{\prime} must be strictly to the left of v_{2} and u_{2}. For the same reason, v_{1}^{\prime} must be strictly between v_{1} and u_{1}. Likewise, u_{2}^{\prime} must be strictly to the right of v_{2} and u_{2}, and u_{1}^{\prime} must be strictly between v_{1} and u_{1}. Now construct a linkage minor H of G, as follows. Contract all edges on the subpaths $s_{1}-v_{1}, v_{1}^{\prime}-u_{1}^{\prime}$, and $u_{1}-t_{1}$ of P_{1}, contract all edges on the subpaths $s_{2}-v_{2}^{\prime}, v_{2}-u_{2}$, and $u_{2}^{\prime}-t_{2}$ of P_{2}, delete all rung edges but $\left\{e, f, e^{\prime}, f^{\prime}\right\}$, and contract all but one of the edges of each series class in the resulting graph. Clearly H is isomorphic to $X X$, a contradiction.

Conversely, suppose that G has an $X X$ linkage minor, but that L is unique. Clearly having a vital linkage is preserved under taking linkage minors. But $X X$ has two linkages, a contradiction.

Next we show that the third statement of Theorem 1.2 implies the second.

Lemma 2.3. For all n, \ddot{U}_{n} has no $X X$ linkage minor with respect to L_{n}.
Proof. The result holds for $n \leq 2$, because then $\left|V\left(\ddot{U}_{n}\right)\right|<|V(X X)|$. Suppose the lemma fails for some $n \geq 3$, but is valid for all smaller n. Every edge of $X X$ is incident with exactly one of the four end vertices of the paths. Hence all rung edges incident with at least two of the four end vertices are not in any $X X$ linkage minor. But after deleting those edges
from \ddot{U}_{n} the end vertices have degree one, and hence the edges incident with them will not be in any $X X$ linkage minor. Contracting these four edges produces \ddot{U}_{n-2}, a contradiction.

Reversing a path P_{i} means exchanging the labels of vertices s_{i} and t_{i}, thereby reversing the order on the vertices of the path.

Lemma 2.4. Let G be a graph, and L a chordless spanning linkage of order 2 of G consisting of paths P_{1}, running from s_{1} to t_{1}, and P_{2}, running from s_{2} to t_{2}. If G has no $X X$ linkage minor, then G is a linkage minor of \ddot{U}_{n} with respect to L_{n} for some integer n, such that L is a contraction of L_{n}.

Proof. Suppose the statement is false. Let G be a counterexample with as few edges as possible. If some end vertex of a path, say s_{1}, has degree one (with $e=s_{1} v$ the only edge), then we can embed G / e in \ddot{U}_{n} for some n. Let G^{\prime} be obtained from \ddot{U}_{n} by adding four vertices $s_{1}^{\prime}, t_{1}^{\prime}, s_{2}^{\prime}, t_{2}^{\prime}$, and edges $s_{1}^{\prime} v_{1}, s_{1}^{\prime} s_{2}^{\prime}, s_{1}^{\prime} t_{2}^{\prime}, s_{2}^{\prime} u_{1}, s_{2}^{\prime} t_{1}^{\prime}, v_{n} t_{1}^{\prime}, u_{n} t_{2}^{\prime}, t_{1}^{\prime} t_{2}^{\prime}$. Then G^{\prime} is isomorphic to \ddot{U}_{n+2}, and G^{\prime} certainly has G as linkage minor.

Hence we may assume that each end vertex of P_{1} and P_{2} has degree at least two. Suppose no rung edge runs between two of these end vertices. Then it is not hard to see that G has an $X X$ minor, a contradiction. Therefore some two end vertices must be connected. By reversing paths as necessary, we may assume there is an edge $e=s_{1} s_{2}$.

By our assumption, $G \backslash e$ can be embedded in \ddot{U}_{n} for some n. Again, let G^{\prime} be obtained from \ddot{U}_{n} by adding four vertices $s_{1}^{\prime}, t_{1}^{\prime}, s_{2}^{\prime}, t_{2}^{\prime}$, and edges $s_{1}^{\prime} v_{1}, s_{1}^{\prime} s_{2}^{\prime}, s_{1}^{\prime} t_{2}^{\prime}, s_{2}^{\prime} u_{1}, s_{2}^{\prime} t_{1}^{\prime}, v_{n} t_{1}^{\prime}, u_{n} t_{2}^{\prime}, t_{1}^{\prime} t_{2}^{\prime}$. Then G^{\prime} is isomorphic to \ddot{U}_{n+2}, and G^{\prime} certainly has G as linkage minor, a contradiction.

As an aside, it is possible to prove a stronger version of the previous lemma. We say a partition (A, B) of the rung edges is valid if the edges in A are pairwise non-crossing, and the edges in B are pairwise non-crossing after reversing one of the paths. One can show:

- Each Truemper graph has a valid partition.
- For every valid partition (A, B) of a Truemper graph G, some \ddot{U}_{n} has G as linkage minor in such a way that (A, B) extends to a valid partition of \ddot{U}_{n}.
Now we have all ingredients of our main result.
Proof of Theorem 1.2. From Lemma 2.2 we learn that $(i) \Leftrightarrow(i i)$. From Lemma 2.3 we learn that (iii) \Rightarrow (ii), and from Lemma 2.4 we conclude that $(i i) \Rightarrow(i i i)$.

References

[1] Carolyn Chun, Dillon Mayhew, Geoff Whittle, and Stefan H. M. van Zwam. The structure of binary Fano-fragile matroids. In preparation.
[2] Ken-ichi Kawarabayashi and Paul Wollan. A shorter proof of the graph minor algorithm: the unique linkage theorem. In STOC, pages 687-694, 2010.
[3] Dillon Mayhew, Bogdan Oporowski, James Oxley, and Geoff Whittle. The excluded minors for the class of matroids that are binary or ternary. European J. Combin., 32(6):891-930, 2011.
[4] Neil Robertson and P. D. Seymour. Graph minors. XXI. graphs with unique linkages. J. Combin. Theory Ser. B, 99(3):583-616, 2009.
[5] K. Truemper. A decomposition theory of matroids. VI. Almost regular matroids. J. Combin. Theory Ser. B, 55(2):235-301, 1992. ISSN 0095-8956.

[^0]: *The research of all authors was partially supported by a grant from the Marsden Fund of New Zealand. The first author was also supported by a FRST Science \& Technology post-doctoral fellowship. The third author was also supported by the Netherlands Organization for Scientific Research (NWO).
 ${ }^{\dagger}$ School of Mathematics, Statistics and Operations Research, Victoria University of Wellington, New Zealand. E-mail: Dillon.Mayhew@msor.vuw.ac.nz, Geoff. Whittle@msor. vuw.ac.nz
 ${ }^{\ddagger}$ Centrum Wiskunde en Informatica, Postbus 94079, 1090 GB Amsterdam, The Netherlands. E-mail: Stefan.van. Zwam@cwi.nl

