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Abstract

Let G be a 3-connected graph on more than 4 vertices. We show that every
depth-first-search tree of G contains a contractible edge. Moreover, we show that if
G is 3-regular or does not have two disjoint pairs of adjacent degree-3 vertices, every
spanning tree of G' contains a contractible edge.

1 Introduction

A graph G is connected if there exists a path between every two of its vertices. For k > 1,
G is k-connected if deleting any k& — 1 of its vertices leaves a connected graph. In a k-
connected graph every vertex has degree at least k. An edge in a 3-connected graph is
contractible (also called 3-contractible) if its contraction results in a 3-connected graph.

Over 40 years ago, Tutte [Tut61] proved the fundamental result that every 3-connected
graph on more than 4 vertices contains a contractible edge. Since then, the distribution
of contractible edges in 3-connected graphs has been intensively studied. Many papers
establish lower bounds on the number of contractible edges [AES87, [Ota88|, or on entire
contractible subgraphs [Kri08]. See [Kri02] for an excellent survey. Bounds on the number
of removable edges in 3-connected graphs [HISWI0, KWL07| have also been proved; an
edge is removable if its removal leaves a 3-connected graph.

In this paper, we strengthen Tutte’s result by showing that every depth-first-search tree
of a 3-connected graph contains a contractible edge. We also exhibit 3-connected graphs
with a depth-first-search tree containing exactly one contractible edge, and 3-connected
graphs with a spanning tree containing no contractible edge. We call a 3-connected graph
a fox if it has a spanning tree containing no contractible edge. We present infinite families
of foxes and give conditions under which a 3-connected graph is not a fox.

A certifying algorithm for 3-connectivity returns a proof (a certificate) for the 3-
connectivity of the input graph, which can be verified efficiently. See [KMMSO06] and [MNU99,
Section 2.14] for a general discussion of certifying algorithms. In [EMSI0] we exploit the
existence of a contractible edge in every depth-first-search tree to establish a linear-time
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certifying algorithm for 3-connectivity of Hamiltonian graphs. The best certifying al-
gorithm for 3-connectivity [Schi0] of general graphs runs in time O(n?) and the best
non-certifying decision algorithms [HT73, [MR92] run in time O(n + m), where n is the
number of vertices and m is the number of edges of the underlying graph.

Notations

Let G = (V, E) be an undirected graph with n := |V| and m := |E|. For a vertex x € V,
let deg(z) be its degree in G. We denote an edge between vertices x and y by zy. If
xy € E(G), we say that x and y are neighbors in G.

For any subset of vertices V' C V, let G\ V' denote the graph resulting from G by the
removal of the vertices in V/ and all their incident edges. A set of vertices whose removal
disconnects the graph is called a vertex cut. If V' is a vertex cut of G, the connected
components of G \ V' are called the split components (or separation classes) with respect
to V'. Vertex cuts of size one, two and three are called separation vertices, separation
pairs and separation triples, respectively. Analogously, an edge cut of a graph G is a set
of edges whose removal disconnects G.

Let zy be an edge of G. The contraction of zy results in a graph G’ = G/xy with
vertex set V(G') = V(G) \ {z,y} U {vyy}, where vy, is a new vertex. The edge zy is
removed and for all edges having exactly one endpoint in {z, y}, this vertex is replaced by
Ugy. Finally, only one edge of each set of parallel edges is kept.

Preliminaries

We use the following known results in our proofs.

Fact 1.1 An edge xy in a 3-connected graph with n > 4 is contractible if and only if no
separation triple containing x and y exists.

Theorem 1.2 (Tutte [Tut61]) Every 3-connected graph with n > 4 contains a con-
tractible edge.

Lemma 1.3 (Halin [Hal69]) In a 3-connected graph with n > 4, every vertex of degree
3 has an incident contractible edge.

Lemma 1.4 (Ota [Ota88]) Let v be a vertex of degree 3 in a 3-connected graph G with
n >4 and let x, y, and z be its neighbors. If xy € E(G), then vz is contractible.

2 Separation Triples and Split Components

We establish some properties of separation triples and split components. We shall use
them later to prove our main results.

Lemma 2.1 Let ST = {x,y,z} be a separation triple in a 3-connected graph G. Let D
be one of the split components of G\ ST. Then, every vertex in ST has a neighbor in D.



Proof. Assume otherwise, say z has no neighbor in D. Then, D is a split component of
G\ {z,y}, a contradiction to G being 3-connected. O

Lemma 2.2 Let ST = {z,y,z} be a separation triple in a 3-connected graph G, and let
D be one of the split components of G\ ST. If ST' = {2/,y',2'} is a separation triple
in G with ST' # ST and ST’ C V(D) U ST, then there is a split component of G \ ST’
properly contained in D.

Proof. Let D, Dq,...,D; be the split components of G\ ST. Consider the components
D;, where 1 <i < j. Every D; is connected in G \ (V(D) U ST), and hence connected in
G\ ST'. Moreover, according to Lemma any vertex in ST \ ST’ has a neighbor in
D;. Tt follows that (ST \ ST') UV (D;) is contained in a split component of G\ ST’. Since
ST\ ST’ is non-empty, (ST \ ST') U Ui<i<; V(D;) is contained in a split component of
G\ ST'. Any other split component of G'\ ST’ (there must be at least one) is contained
in V(G)\ ((ST\ ST") UU,<<; V(D;) U ST"), and hence properly contained in D. O

Lemma 2.3 Let G be a 3-connected graph, and let {x,y, z} and {v,y, w} be two separation
triples in G intersecting exvactly in y. Then, v and w are contained in the same split
component of G\ {x,y, z} if and only if x and z are contained in the same split component
of G\ {v,y,w}. Moreover, if v and w belong to distinct split components, then each of
G\ {z,y,z} and G\ {v,y,w} has exactly two split components.

Proof. Assume that v and w are contained in the same split component of G \ {z,y, z}.
Then, there is a split component S of G \ {z,y, 2} that contains a neighbor of = and a
neighbor of z, but neither v nor w. As S U {x,z} is connected in G \ {v,y,w}, z and z
belong to the same split component of G \ {v,y,w}. Conversely, if  and z belong to the
same split component of G \ {v,y, w}, then v and w belong to the same split component
of G\ {z,y, 2z} for the same reason. This proves the first claim.

Assume that there are more than two split components of G \ {x,y, z}. Then, among
these split components there is a component containing neither v nor w. It follows that
x and z belong to the same split component of G \ {v,y,w}, and in accordance v and w
belong to the same split component of G \ {z,y, z}. The same arguments apply if there
are more than two split components of G \ {v,y, w}. O

We call two separation triples {z,y, z} and {v,y, w} crossing, if they intersect in exactly
one vertex and if v and w belong to distinct components of G \ {z,y, z}. Then, z and z
belong to distinct components of G \ {v,y,w} by Lemma In addition, G \ {z,y, z}
and G\ {v,y,w} both have exactly two split components.

Lemma 2.4 Let G be a 3-connected graph, let {x,y,z} and {v,y,w} be two crossing
separation triples in G, let D be the split component of G\ {z,y,z} containing v, and let
X and Z be the split components of G\ {v,y,w} containing x and z, respectively. Then,
either X N D =0 or {x,y,v} is a separation triple. Also, either ZND =0 or {z,y,v} is
a separation triple.
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Figure 1: Two crossing separation triples.

Proof. Assume X N D # (). Consider any edge ur € E(G) with v € V(X N D) and
r ¢ V(X ND). See Figure[l] Then, r € {z,y, z,v,w}. However, r # z because {v,y, w}
separates X from z, and r # w because {x,y,z} separates D from w. It follows that
{z,y,v} separates X N D from the rest of G. Analogously, if Z N D # (), then {z,y,v}
separates Z N D from the rest of G. U

Lemma 2.5 Let G be a 3-connected graph, let ST = {v,y,w} be a separation triple in
G, and let X be a split component of G\ ST. If G\ X is not 2-connected and a is a
separation vertex of G\ X, then a ¢ ST and one of the vertices in ST has a as its only
neighbor in G\ X (and hence is a split component of G\ (V(X) U {a})). Conversely, if
each vertex in ST has at least two neighbors in G\ X, then G\ X is 2-connected.

Proof. Assume that G\ X is not 2-connected. Then, there is a separation vertex a that
splits G\ X. If one of the split components of G\ (V(X)U {a}) does not contain a vertex
from ST, then a is a separation vertex in G, contradicting G being 3-connected. It follows
that every split component of G \ (V(X) U {a}) contains at least one vertex from ST. If
a € ST, say a =y, then G\ (V(X)U{a}) has exactly two split components one containing
v and one containing w. Since ST is a separation triple in G, there are vertices in G \ X
other than those in ST'. It follows that one of the components of G \ (V(X) U {a}) must
have at least two vertices, say the component containing w. Then, {y,w} splits G, a
contradiction to G being 3-connected. Therefore, a ¢ ST.

The vertices of ST cannot all lie in one split component of G\ (V(X) U {a}). Hence,
at least one of these split components, say S, contains exactly one vertex from ST, say
w. If w has a neighbor in G \ X other than a, then |V(S)| > 1 and S\ {w} is a split
component of G \ {a,w}, contradicting G being 3-connected. O

3 Contractible Edges and Spanning Trees

We next give a sufficient condition for every spanning tree of a 3-connected graph to
contain a contractible edge.

Lemma 3.1 Let G be a 3-connected graph with n > 4, and let F' be an edge cut of G. If
every edge e in F' has an end vertex x, where deg(x) = 3 and x has two neighbors in G\ F
adjacent to each other, then G is not a fox.



Figure 3: A depth-first-search tree (thick edges) with only one contractible edge, namely
Tw.

Proof. Let v and w be the two neighbors of x in G\ F. Since v and w are adjacent,
Lemma implies that e is contractible. Therefore, every edge in F' is contractible, and
hence every spanning tree of G contains at least one contractible edge. ([l

Examples: There are arbitrary large foxes; the wheel graphs W;, ¢ > 5, with the spokes
as the spanning tree form an infinite family, see Figure Figure shows the base
graph of another infinite family of examples. In this graph, the vertices z, y, and w play
a special role. The next larger graph in this family is obtained as follows: Let v be the
neighbor of x that is neither y nor w in the smaller graph, subdivide xzv by one vertex and
connect the new vertex with y; see Figure

We will show that every depth-first-search tree of a 3-connected graph contains a
contractible edge. The graph on 6 vertices of Figure [3| shows that this bound is tight.
However, we are not aware of any graph on more than 6 vertices that admits a depth-
first-search tree containing exactly one contractible edge.

Consider a 3-connected graph G with n > 4. Assume that G is a fox and let T
be a spanning tree of G containing no contractible edge. It follows that for every edge
xy € E(T) there exists a vertex z € V(G) such that {z,y, z} is a separation triple. We
call {z,y,z} a T-separation triple. Split components that result from the removal of a
T-separation triple are called T-split components. A T-split component is minimal if there
is no T-split component properly contained in it.



Figure 4: The T-minimal split component D.

Lemma 3.2 Let G be a 3-connected graph with n > 4. Assume that G is a for and let
T be a spanning tree of G containing no contractible edge. Then, every T-minimal split
component consists of exactly one vertex, say v. This vertex has degree 3 and is incident
to exactly one edge of T. More precisely, if the neighbors of v in G are z, y, and z with
xy € E(T), then vz ¢ E(T), and either ve € E(T) or vy € E(T).

Proof. Let D be a T-minimal split component, and let {x,y, z} with xy € E(T) be the
associated separation triple. Since T is a spanning tree, there exists a vertex v € V(D)
that is a neighbor of z, y, or z in T. We show that D has only one vertex, namely v.

If vz € E(T), then vz is non-contractible, and hence a separation triple {v, z, w} exists.
Since zy € E(G), either w € {x,y} or both = and y are in the same split component of
G\ {v,z,w}. Consequently, there exists a split component S of G \ {v, z,w} such that
z,y ¢ V(S). By Lemma[2.1] v has a neighbor, say u, in S. Since u ¢ {z,y, 2}, u is in the
same split component of G\ {z,y, z} as v, i.e. uw € V(D). It follows that every vertex in
S is also in D. Since v ¢ V(5), S is properly contained in D, a contradiction to D being
minimal. It follows that vz ¢ E(T). Accordingly, either vz € E(T) or vy € E(T).

Assume w.l.o.g. that vy € E(T). See Figure Therefore, vy is non-contractible
and a separation triple {v,y,w} exists. If there is a split component of G \ {v,y, w}
containing neither z nor z, the arguments of the preceding paragraph indicate that the
T-split component D is not T-minimal. It follows that {v,y, w} splits G into exactly two
components, one containing x and one containing z. Call the former component X and
the latter Z. We show next that both X N D and Z N D must be empty.

IfXND#0, Lemma implies that {x,y,v} separates X N D from the rest of G, a
contradiction to D being minimal. This implies that X N D = (). Analogously, ZN D = ).

We have thus shown that, assuming v € V(G) is in a T-minimal split component,
there exists a separation triple {z,y, z} with zy € E(T), such that vz,vy,vz € E(G),
deg(v) =3, vz ¢ E(T) and w.l.o.g. vy € E(T). O

It is interesting to note that although foxes must have some degree-3 vertices as indi-
cated by the previous lemma, not all vertices of a fox can be of degree 3.

Theorem 3.3 If G is a 3-connected 3-regular graph with n > 4, then G is not a foz.

Proof. Assume that G has a spanning tree T' containing no contractible edge. According
to Lemma there are vertices v, z,y,z € V(G), such that vz, vy,vz € E(G), zy,vy €



E(T) but vz ¢ E(T). Because G is 3-regular, deg(x) = deg(y) = 3. As T is a spanning tree
of G, either the third edge incident to x, say ar, or the third edge incident to y, say ys, is
a tree edge. Since vy € E(G), ar is contractible by Lemmall.4] Since zy,vy € E(T), both
edges are non-contractible by assumption. Accordingly, ys is contractible by Lemma [I.3
This contradicts the assumption that 7' contains no contractible edge. ]

Consider a 3-connected graph G with n > 4. Assume that G is a fox and let T be a
spanning tree of G containing no contractible edge. Let v be a T-minimal split component
in G, and let vy be the only tree edge incident to v. We call a T-separation triple {v, y, w}
a special T-separation triple. Split components that result from the removal of a special
T-separation triple are called special T-split components. A special T-split component is
minimal if there is no special T-split component properly contained in it.

Lemma 3.4 Let G be a 3-connected graph with n > 4. Assume that G is a for and let T
be a spanning tree of G containing no contractible edge. Then, every special T-minimal
split component consists of exactly one vertex and has a neighbor that is also a special T -
mianimal split component. Letv and v’ be such a pair of special T-minimal split components
with vv' € E(G). Then, there exists a vertex y such that vy,v'y € E(T).

Proof. Let X be a minimal special T-split component; it is split off by the special T-
separation triple ST = {v,y, w} with v being a T-minimal split component and vy € E(T).
By Lemma no other special T-separation triple has its three vertices in V(X) U ST.
Since ST is a T-separation triple, there exists a T-minimal split component v € V(X);
v' belongs to a special T-separation triple ST' = {v',vy/,w'} with v'y/ € E(T), where
y e V(X)UST and w' ¢ V(X) U ST (otherwise, X would not be minimal).

Assume first that ¢’ € V(X). Then, v’ must split G\ X, and Lemma implies that
one of the vertices in ST has w' as its only neighbor in G \ X. Since vy € E(G), such
vertex must be w. We next show that all neighbors of w are contained in ST”, and hence
w has degree 3. Assume to the contrary that w has a neighbor v’ ¢ ST’. Then, v’ and
w belong to the same split component of G\ ST'. Every path from «’ to any vertex in a
different split component of G\ ST’ must pass through either v/, 3/ or w. Hence, {v', ', w}
is a special T-separation triple contained in V(X) U ST. But such possibility is ruled out
in the previous paragraph because of the minimality of X. It follows that w has degree 3,
its neighbors are precisely the vertices in ST’, and w is a T-minimal split component. By
Lemma ww' is contractible, and accordingly does not belong to T'. Also, wv' & E(T)
since v'y’ € E(T) and v’ has only one incident tree edge. Hence, wy' € E(T). Let 2’ be
the third neighbor of v besides 3’ and w. Then, {w,y’, 2’} is a special T-separation triple
that separates v’ from the rest of G, see Figure |5, This again contradicts our choice of X
being minimal. We conclude that ¥’ ¢ V(X), and hence y € ST.

Since v' and w’ are in different split components of G \ ST, using Lemma the
triples ST and ST’ cross. Hence, the vertices of ST \ {y'} must belong to different split
components of G\ ST’. Since vy € E(G), this excludes the possibility that y' = w. Also,
Yy’ # v, since otherwise v would be incident to two tree edges, namely vy and v’y’. It must
then be the case that y = /. If |V(X)| > 1, Lemma implies that either {v/,y,v} or
{v/,y,w} is a special T-separation triple. Such a triple has a split component properly



Figure 5: A case contradicting the minimality of X

contained in X, a contradiction to the minimality of X. It follows that v’ is the only
vertex in X. Let w” be the third neighbor of v besides v and y. Then, {v',y,w"} is a
special T-separation triple that separates v from the rest of G. We conclude that v and
v" are both special T-minimal split components, vv’ € E(G) and vy, v'y € E(T). O

Theorem 3.5 Let G be a 3-connected graph with n > 4. Assume that G is a for and let
T be a spanning tree of G containing no contractible edge. Then, there exist two edges in
G such that their four end vertices are distinct special T-minimal split components.

Proof. Let v and v’ be adjacent special T-minimal split components as in Lemma v
is split off by ST = {v/,y,w'} and v’ is split off by ST = {v,y,w}.

Assume first that there is a special T-minimal split component in V(G)\{v, v, y, w, w'}.
Call it 2z, and let 2’ be the adjacent special T-minimal split component. Then, 2’ & {v, v},
and hence (v,v") and (z, 2’) are the desired pairs.

Otherwise, any special T-minimal split component of G is contained in {v, v, y, w, w'}.
Let W’ be the component of G\ ST containing w’, and let W be the component of G\ ST’
containing w. Both W’ and W are special T-split components, and hence contain special
T-minimal split components. These components must be w for W and w’ for W’. Then,
(v,w') and (v',w) are the desired pairs. O

Next, we use Theorem [3.5 to prove our main result.

Theorem 3.6 Consider a 3-connected graph G with n > 4. Fvery depth-first-search tree
of G contains a contractible edge.

Proof. Let T be a depth-first-search tree of GG, and assume that 1" contains no contractible
edge. By Theorem there exist two pairs of distinct degree-3 vertices, each vertex is
a T-minimal split component, such that the vertices of each pair are adjacent in G. By
Lemma |3.2] every T-minimal split component is a degree-3 vertex that is either the root
or a leaf in T'. Accordingly, there exists a pair of vertices that are leaves in T" while being
adjacent in (G, a contradiction to the fact that 71" is a depth-first-search tree. O



Figure 7: A fox with m = 2n — 3.

We remark that there are arbitrarily large foxes having exactly four vertices of degree
3, see Figure [0]

4 Conclusions

Our main result is that every depth-first-search tree of a 3-connected graph contains a
contractible edge. However, not every spanning tree of a 3-connected graph contains a
contractible edge. We hope that our positive result will lead to a linear-time certifying
algorithm for three-connectivity.

Foxes, i.e. 3-connected graphs with a spanning tree that contains no contractible
edge, are interesting from a combinatorial view. We wonder if there is an inductive
characterization of foxes. All Wheel graphs, as well as the foxes in Figure [2] satisfy the
equation m = 2n — 2. Figure[7] depicts a fox with m = 2n — 3.
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