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Abstract

We study theorems giving sufficient conditions on the vertex degrees of a

graph G to guarantee G is t-tough. We first give a best monotone theorem

when t ≥ 1, but then show that for any integer k ≥ 1, a best monotone

theorem for t = 1
k ≤ 1 requires at least f(k) · |V (G)| nonredundant conditions,

where f(k) grows superpolynomially as k → ∞. When t < 1, we give an

additional, simple theorem for G to be t-tough, in terms of its vertex degrees.

1 Introduction

We consider only simple graphs without loops or multiple edges. Our terminology

and notation will be standard except as indicated, and a good reference for any

undefined terms or notation is [7]. For two graphs G,H on disjoint vertex sets, we
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denote their union by G∪H . The join G+H of G and H is the graph formed from

G ∪H by adding all edges between V (G) and V (H).

For a positive integer n, an n-sequence (or just a sequence) is an integer sequence

π = (d1, d2, . . . , dn), with 0 ≤ dj ≤ n − 1 for all j. In contrast to [7], we will

usually write the sequence in nondecreasing order (and may make this explicit by

writing π = (d1 ≤ · · · ≤ dn)). We will employ the standard abbreviated notation

for sequences, e.g., (4, 4, 4, 4, 4, 5, 5, 6) will be denoted 45 52 61. If π = (d1, . . . , dn)

and π′ = (d′1, . . . , d
′
n) are two n-sequences, we say π′ majorizes π, denoted π′ ≥ π, if

d′j ≥ dj for all j.

A degree sequence of a graph is any sequence π = (d1, d2, . . . , dn) consisting of the

vertex degrees of the graph. A sequence π is graphical if there exists a graph G

having π as one of its degree sequences, in which case we call G a realization of π.

If P is a graph property (e.g., hamiltonian, k-connected, etc.), we call a graphical

sequence π forcibly P if every realization of π has property P .

Historically, the degree sequence of a graph has been used to provide sufficient condi-

tions for a graph to have certain properties, such as hamiltonicity or k-connectivity.

In particular, sufficient conditions for π to be forcibly hamiltonian were given by

several authors, culminating in the following theorem of Chvátal [4].

Theorem 1.1 ([4]). Let π = (d1 ≤ · · · ≤ dn) be a graphical sequence, with n ≥ 3.

If di ≤ i < 1
2
n implies dn−i ≥ n− i, then π is forcibly hamiltonian.

Unlike its predecessors, Chvátal’s theorem has the property that if it does not guar-

antee that π is forcibly hamiltonian because the condition fails for some i < 1
2
n,

then π is majorized by π′ = ii (n − i − 1)n−2i (n − 1)i, which has a unique non-

hamiltonian realization Ki + (Ki ∪Kn−2i). As we will see below, this implies that

Chvátal’s theorem is the strongest of an entire class of theorems giving sufficient

degree conditions for π to be forcibly hamiltonian.

Sufficient conditions for π to be forcibly k-connected were given by several authors,

culminating in the following theorem of Bondy [3] (though the form in which we

present it is due to Boesch [2]).

Theorem 1.2 ([2, 3]). Let π = (d1 ≤ · · · ≤ dn) be a graphical sequence with n ≥ 2,

and let 1 ≤ k ≤ n−1. If di ≤ i+k−2 implies dn−k+1 ≥ n−i, for 1 ≤ i ≤ 1
2
(n−k+1),

then π is forcibly k-connected.

Boesch [2] also observed that Theorem 1.2 is the strongest theorem giving sufficient

degree conditions for π to be forcibly k-connected, in exactly the same sense as

Theorem 1.1.

Let ω(G) denote the number of components of a graph G. For t ≥ 0, we call G

t-tough if t · ω(G − X) ≤ |X|, for every X ⊆ V (G) with ω(G − X) > 1. The
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toughness of G, denoted τ(G), is the maximum t ≥ 0 for which G is t-tough (taking

τ(Kn) = n−1, for all n ≥ 1). So if G is not complete, then τ(G) = min
{ |X|
ω(G−X)

∣

∣

∣

X ⊆ V (G) is a cutset of G
}

.

In this paper we consider forcibly t-tough theorems, for any t ≥ 0. When trying to

formulate and prove this type of theorem, we encountered very different behavior

in the number of conditions required for a best possible theorem for the cases t ≥ 1

and t < 1. In order to describe this behavior precisely, we need to say what we

mean by a ‘condition’ and by a ‘best possible theorem’.

First note that the conditions in Theorems 1.1 can be written in the form:

di ≥ i+ 1 or dn−i ≥ n− i, for i = 1, . . . ,
⌊

1
2
(n− 1)

⌋

,

and the conditions in Theorem 1.2 can be written in a similar way. We will use

the term ‘Chvátal-type conditions’ for such conditions. Formally, a Chvátal-type

condition for n-sequences (d1 ≤ d2 ≤ · · · ≤ dn) is a condition of the form

di1 ≥ ki1 ∨ di2 ≥ ki2 ∨ . . . ∨ dir ≥ kir ,

where all ij and kij are integers, with 1 ≤ i1 < i2 < · · · < ir ≤ n and 1 ≤ ki1 ≤
ki2 ≤ · · · ≤ kir ≤ n.

A graph property P is called increasing if whenever a graph G has P , so does

every edge-augmented supergraph ofG. In particular, “hamiltonian”, “k-connected”

and “t-tough” are all increasing graph properties. In this paper, the term “graph

property” will always mean an increasing graph property.

Given a graph property P , consider a theorem T which declares certain degree

sequences to be forcibly P , rendering no decision on the remaining degree sequences.

We call such a theorem T a forcibly P -theorem (or just a P -theorem, for brevity).

Thus Theorem 1.1 would be a forcibly hamiltonian theorem. We call a P -theorem T

monotone if, for any two degree sequences π, π′, whenever T declares π forcibly P

and π′ ≥ π, then T declares π′ forcibly P . We call a P -theorem T optimal if

whenever T does not declare a degree sequence π forcibly P , then π is not forcibly P ;

T is weakly optimal if for any sequence π (not necessarily graphical) which T does

not declare forcibly P , π is majorized by a degree sequence which is not forcibly P .

A P -theorem which is both monotone and weakly optimal is a best monotone

P -theorem, in the following sense.

Theorem 1.3. Let T , T0 be monotone P -theorems, with T0 weakly optimal. If T

declares a degree sequence π to be forcibly P , then so does T0.

Proof of Theorem 1.3: Suppose to the contrary that there exists a degree se-

quence π so that T declares π forcibly P , but T0 does not. Since T0 is weakly
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optimal, there exists a degree sequence π′ ≥ π which is not forcibly P . This means

that also T will not declare π′ forcibly P . But if T declares π forcibly P , π′ ≥ π,

and T does not declare π′ forcibly P , then T is not monotone, a contradiction.

�

If T0 is Chvátal’s hamiltonian theorem (Theorem 1.1), then T0 is clearly monotone,

and we noted above that T0 is weakly optimal. So by Theorem 1.3, Chvátal’s

theorem is a best monotone hamiltonian theorem.

Our goal in this paper is to consider forcibly t-tough theorems, for any t ≥ 0. In

Section 2 we first give a best monotone t-tough theorem for n-sequences, requiring at

most
⌊

1
2
n
⌋

Chvátal-type conditions, for any t ≥ 1. In contrast to this, in Sections 3

and 4 we show that for any integer k ≥ 1, a best monotone 1/k-tough theorem

contains at least f(k) · n nonredundant Chvátal-type conditions, where f(k) grows

superpolynomially as k → ∞. A similar superpolynomial growth in the complexity

of the best monotone k-edge-connected theorem in terms of k was previously noted

by Kriesell [6].

This superpolynomial complexity of a best monotone 1/k-tough theorem suggests

the desirability of finding more reasonable t-tough theorems, when t < 1. In Sec-

tion 5 we give one such theorem. This theorem is a monotone, though not best

monotone, t-tough theorem which is valid for any t ≤ 1.

2 A Best Monotone t-Tough Theorem for t ≥ 1

We first give a best monotone t-tough theorem for t ≥ 1.

Theorem 2.1. Let t ≥ 1, n ≥ ⌈t⌉+ 2, and let π = (d1 ≤ · · · ≤ dn) be a graphical

sequence. If

(∗t) d⌊i/t⌋ ≥ i+ 1 or dn−i ≥ n− ⌊i/t⌋, for t ≤ i <
tn

(t + 1)
,

then π is forcibly t-tough.

Clearly, property (∗t) in Theorem 2.1 is monotone. Furthermore, if π does not

satisfy (∗t) for some i with t ≤ i < tn/(t + 1), then π is majorized by π′ = i⌊i/t⌋

(n−⌊i/t⌋− 1)n−i−⌊i/t⌋ (n− 1)i, which has the non-t-tough realization Ki +
(

K⌊i/t⌋ ∪
Kn−i−⌊i/t⌋

)

. Thus (∗t) in Theorem 2.1 is also weakly optimal, and so Theorem 2.1

is best monotone by Theorem 1.3. Finally, note that when t = 1, (∗t) reduces to

Chvátal’s hamiltonian condition in Theorem 1.1.

Proof of Theorem 2.1: Suppose π satisfies (∗t) for some t ≥ 1 and n ≥ ⌈t⌉ + 2,

but π has a realization G which is not t-tough. Then there exists a set X ⊆ V (G)

that is maximal with respect to ω(G − X) ≥ 2 and
|X|

ω(G−X)
< t. Let x

.
= |X|
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and w
.
= ω(G − X), so that w ≥ ⌊x/t⌋ + 1. Also, let H1, H2, . . . , Hw denote the

components of G − X , with |H1| ≥ |H2| ≥ · · · ≥ |Hw|, and let hj
.
= |Hj| for

j = 1, . . . , w. By adding edges (if needed) to G, we may assume 〈X〉 is complete,

and each 〈Hj〉 is complete and completely joined to X .

Set i
.
= x+ h2 − 1.

Claim 1. i ≥ t.

Proof: It is enough to show that x ≥ t. Assume instead that x < t. Define

X ′ .
= X ∪ {v}, with v ∈ H1. If h1 ≥ 2, then

|X ′|
ω(G−X ′)

=
x+ 1

ω(G−X)
<

t+ 1

2
≤ t,

which contradicts the maximality of X . Similarly, if h1 = 1 and w ≥ 3, then

|X ′|
ω(G−X ′)

=
x+ 1

ω(G−X)− 1
<

t + 1

2
≤ t,

also a contradiction. Finally, if h1 = 1 and w = 2, then G is the graph Kn−2 +K2

with n− 2 = x < t, contradicting n ≥ ⌈t⌉ + 2. �

Claim 2. i <
tn

t+ 1

Proof: Note that n = x+ h1 + h2 + · · ·+ hw ≥ x+ 2h2 + w − 2. Since x < tw, we

obtain

i = x+ h2 − 1 =
tx+ x+ (t+ 1)(h2 − 1)

t + 1

<
t(x+ w + (1 + 1/t)(h2 − 1))

t + 1
≤ t(x+ 2h2 + w − 2)

t+ 1
≤ tn

t + 1
.

�

By the claims we have t ≤ i <
tn

t+ 1
. Next note that

d⌊i/t⌋ = d⌊(x+h2−1)/t⌋ ≤ d⌊x/t⌋+h2−1 ≤ dw+h2−2 ≤ d(h2+···+hw) = x+ h2 − 1 = i.

However, we also have

dn−i ≤ dn−x = x+ h1 − 1 = n− h2 − (h3 + · · ·+ hw)− 1 ≤ n− (w + h2 − 1)

< n−
(x

t
+ h2 − 1

)

≤ n− x+ h2 − 1

t
= n− i/t ≤ n− ⌊i/t⌋,

contradicting (∗t). �
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3 The Number of Chvátal-Type Conditions in

Best Monotone Theorems

In this section we provide a theory that allows us to lower bound the number of

degree sequence conditions required in a best monotone P -theorem.

Recall that a Chvátal-type condition for n-sequences (d1 ≤ d2 ≤ · · · ≤ dn) is a

condition of the form

di1 ≥ ki1 ∨ di2 ≥ ki2 ∨ . . . ∨ dir ≥ kir ,

where all ij and kij are integers, with 1 ≤ i1 < i2 < · · · < ir ≤ n and 1 ≤ ki1 ≤
ki2 ≤ · · · ≤ kir ≤ n. Given an n-sequence π = (k1 ≤ k2 ≤ · · · ≤ kn), let C(π) denote

the Chvátal-type condition:

d1 ≥ k1 + 1 ∨ d2 ≥ k2 + 1 ∨ . . . ∨ dn ≥ kn + 1.

Intuitively, C(π) is the weakest condition that ‘blocks’ π. For instance, if π = 22335,

then C(π) is

d1 ≥ 3 ∨ d2 ≥ 3 ∨ d3 ≥ 4 ∨ d4 ≥ 4 ∨ d5 ≥ 4 ∨ d6 ≥ 6. (1)

Since n-sequences are assumed to be nondecreasing, d1 ≥ 3 implies d2 ≥ 3, etc.

Also, we cannot have di ≥ n, so the condition d6 ≥ 6 is redundant. Hence (1) can

be simplified to the equivalent Chvátal-type condition

d2 ≥ 3 ∨ d5 ≥ 4, (2)

and we use (1) ∼= (2) to denote this equivalence.

Conversely, given a Chvátal-type condition c, let Π(c) denote the minimal n-sequence

that majorizes all sequences which violate c (Π(c) may not be graphical). So if c is the

condition in (2) and n = 6, then Π(c) is 22335. Of course, Π(c) itself violates c. Note

that C and Π are inverses: For any Chvátal-type condition c we have C(Π(c)) ∼= c,

and for any n-sequence π we have Π(C(π)) = π.

Given a graph property P , we call a Chvátal-type degree condition c P -weakly-

optimal if any sequence π (not necessarily graphical) which does not satisfy c is

majorized by a degree sequence which is not forcibly P . In particular, each of the
⌊

1
2
(n− 1)

⌋

conditions in Chvátal’s hamiltonian theorem is weakly optimal.

Next consider the poset whose elements are the graphical sequences of length n,

with the majorization relation π ≤ π′ as the partial order relation. We call this

poset the n-degree-poset. Posets of integer sequences with a different order relation

were previously used by Aigner & Triesch [1] in their work on graphical sequences.

Given a graph property P , consider the set of n-vertex graphs without property P

which are edge-maximal in this regard. The degree sequences of these edge-maximal,
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non-P graphs induce a subposet of the n-degree-poset, called the P -subposet. We

refer to the maximal elements of this P -subposet as sinks, and denote their number

by s(n, P ).

We first prove the following lemma.

Lemma 3.1. Let P be a graph property. If a sink π of the P -subposet violates a

P -weakly-optimal Chvátal-type condition c, then c ∼= C(π).

Proof: Since π violates c, π ≤ Π(c). Since Π(c) violates c, and c is P -weakly-

optimal, there is a sequence π′ ≥ Π(c) such that π′ has a non-P realization. But

π′ ≤ π′′ for some sink π′′, giving π ≤ Π(c) ≤ π′ ≤ π′′. Since distinct sinks are

incomparable, π = π′′. This implies Π(c) = π, and thus c ∼= C(Π(c)) ∼= C(π).

�

Theorem 3.2. Let P be a graph property. Then any P -theorem for n-sequences

whose hypothesis consists solely of P -weakly-optimal Chvátal-type conditions must

contain at least s(n, P ) such conditions.

Proof: Consider a P -theorem whose hypothesis consists solely of P -weakly-optimal

Chvátal-type conditions. By Lemma 3.1, a sink π satisfies every Chvátal-type

condition besides C(π). So the theorem must include all the Chvátal-type con-

ditions C(π), as π ranges over the s(n, P ) sinks. �

On the other hand, it is easy to see that if we take the collection of Chvátal-type

conditions C(π) for all sinks π in the P -subposet, then this gives a best monotone

P -theorem.

We do not have a comparable result for P -theorems if we do not require the con-

ditions to be P -weakly-optimal, let alone if we consider conditions that are not of

Chvátal-type. On the other hand, all results we have discussed so far, and most of

the forcibly P -theorems we know in the literature, involve only P -weakly-optimal

Chvátal-type degree conditions.

4 Best Monotone t-Tough Theorems for t ≤ 1

Using the terminology from Section 3, it follows that Theorem 2.1 gives, for t ≥ 1,

a best monotone t-tough theorem using a linear number (in n) of weakly optimal

Chvátal-type conditions. On the other hand, we now show that for any integer

k ≥ 1, a best monotone 1/k-tough theorem for n-sequences requires at least f(k) ·n
weakly optimal Chvátal-type conditions, where f(k) grows superpolynomially as

k → ∞. In view of Theorem 3.2, to prove this assertion it suffices to prove the

following lemma.
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Lemma 4.1. Let k ≥ 2 be an integer, and let n = m(k + 1) for some integer

m ≥ 9. Then the number of (1/k-tough)-subposet sinks in the n-degree-subposet is

at least
p(k − 1)

5(k + 1)
n, where p denotes the integer partition function.

Recall that the integer partition function p(r) counts the number of ways a positive

integer r can be written as a sum of positive integers. Since p(r) ∼ 1

4r
√
3
eπ
√

2r/3 as

r → ∞ [5], f(k) =
p(k − 1)

5(k + 1)
grows superpolynomially as k → ∞.

Proof of Lemma 4.1: Consider the collection C of all connected graphs on n

vertices which are edge-maximally not-(1/k-tough). Each G ∈ C has the form

G = Kj + (Kc1 ∪ · · · ∪Kckj+1
), where j < n/(k + 1) = m, so that 1 ≤ j ≤ m − 1,

and c1 + · · ·+ ckj+1 is a partition of n − j. Assuming c1 ≤ · · · ≤ ckj+1, the degree

sequence of G becomes π
.
= (c1+ j−1)c1 . . . (ckj+1+ j−1)ckj+1 (n−1)j. Note that π

cannot be majorized by the degrees of any disconnected graph on n vertices, since a

disconnected graph has no vertex of degree n− 1. By a complete degree of a degree

sequence we mean an entry in the sequence equal to n− 1.

Partition the degree sequences of the graphs in C into m − 1 groups, where the

sequences in the jth group, 1 ≤ j ≤ m−1, are precisely those containing j complete

degrees. We establish two basic properties of the jth group.

Claim 1. There are exactly pkj+1

(

(k + 1)(m− j)− 1
)

sequences in the jth group.

Here pℓ(r) denotes the number of partitions of integer r into at most ℓ parts, or

equivalently the number of partitions of r with largest part at most ℓ.

Proof of Claim 1: Each sequence in the jth group corresponds uniquely to a

set of kj + 1 component sizes which sum to n − j. If we subtract 1 from each of

those component sizes, we obtain a corresponding collection of kj+1 integers (some

possibly 0) which sum to n− j− (kj+1) = (k+1)(m− j)− 1, and which therefore

form a partition of (k + 1)(m− j)− 1 into at most kj + 1 parts. �

Claim 2. No sequence in the jth group majorizes another sequence in the jth group.

Proof: Suppose the sequences π
.
= (c1 + j − 1)c1 . . . (ckj+1 + j − 1)ckj+1 (n − 1)j

and π′ .
= (c′1 + j − 1)c

′

1 . . . (c′kj+1 + j − 1)c
′

kj+1 (n − 1)j are in the jth group, with

π ≥ π′. Deleting the j complete degrees from each sequence gives sequences σ
.
=

(c1 − 1)c1 . . . (ckj+1 − 1)ckj+1 and σ′ .
= (c′1 − 1)c

′

1 . . . (c′kj+1 − 1)c
′

kj+1, with σ ≥ σ′.

Let m be the smallest index with cm 6= c′m; since σ ≥ σ′, we have cm > c′m. In

particular, c1+ · · ·+cm > c′1+ · · ·+c′m. But c1+ · · ·+ckj+1 = c′1+ · · ·+c′kj+1 = n−j,

and so there exists a smallest index ℓ > m with c1 + · · · + cℓ ≤ c′1 + · · · + c′ℓ. In

particular, cℓ < c′ℓ. Since c
′
1+ · · ·+c′ℓ−1 < c1+ · · ·+cℓ−1 < c1+ · · ·+cℓ ≤ c1+ · · ·+c′ℓ,

8



we have dc1+···+cℓ = cℓ − 1 < c′ℓ − 1 = d′c1+···+cℓ
, and thus σ � σ′, a contradiction.

�

Since Kj +(Kc1 ∪ · · ·∪Kckj+1
) has n vertices, Kckj+1

has at most n− j−kj vertices.

This means the largest possible noncomplete degree in a sequence in the jth group is

j+(n− j−kj−1) = n−kj−1. Using this observation we can prove the following.

Claim 3. If a sequence π = · · · dd−j+1 (n − 1)j in the jth group has largest non-

complete degree d ≥ n− k(j +1), then π is not majorized by any sequence in the ith

group, for i ≥ j + 1.

In particular, such a π is a sink, since π is certainly not majorized by another

sequence in the jth group by Claim 2, nor by a sequence in groups 1, 2, . . . , j − 1,

since any such sequence has fewer than j complete degrees.

Proof of Claim 3: If d ≥ n−k(j+1), then the d+1 largest degrees dd−j+1 (n−1)j

in π could be majorized only by complete degrees in a sequence in group i ≥ j + 1,

since the largest noncomplete degree in any sequence in group i is at most n−ki−1 <

n − k(j + 1). There are only i ≤ m− 1 complete degrees in a sequence in group i.

On the other hand, since j + 1 ≤ i < m, we have d + 1 ≥ n − k(j + 1) + 1 >

m(k + 1)− km+ 1 = m+ 1 > m− 1, a contradiction. �

So by Claim 3, the sequences π in the jth group which could possibly be nonsinks

(i.e., majorized by a sequence in group i, for some i ≥ j + 1), must have largest

noncomplete degree at most n − k(j + 1) − 1. So in a graph G ∈ C, G = Kj +

(Kc1 ∪ · · · ∪ Kckj+1
), which realizes a nonsink π, each of the Kc’s must have order

at most (n − k(j + 1) − 1) − j + 1 = (k + 1)(m − j) − k. Subtracting 1 from

the order of each of these components gives a sequence of kj + 1 integers (some

possibly 0) which sum to (n− j)− (kj + 1) = (k + 1)(m− j)− 1, and which have

largest part at most (k + 1)(m − j) − k − 1 = (k + 1)(m − j − 1). Thus there are

exactly p(k+1)(m−j−1)

(

(k + 1)(m− j)− 1)
)

such sequences, and so there are at most

this many nonsinks in the jth group. Setting N(j)
.
= (k + 1)(m − j) − 1, so that

(k+1)(m− j − 1) = N(j)− k, this becomes at most pN(j)−k

(

N(j)
)

nonsinks in the

jth group of sequences.

But by Claim 1, there are exactly pkj+1

(

N(j)
)

sequences in group j, and so the

number of sinks in the jth group is at least pkj+1

(

N(j)
)

− pN(j)−k

(

N(j)
)

.

Note that pkj+1(N(j)) reduces to p(N(j)) if kj+1 ≥ N(j). However, kj+1 ≥ N(j)

is equivalent to j ≥ (k + 1)m− 2

2k + 1
. Since k ≥ 2, the inequality j ≥ (k + 1)m− 2

2k + 1
holds if j ≥ 3

5
m. Thus pkj+1(N(j)) = p(N(j)) holds for j ≥ 3

5
m.

On the other hand, for j ≤ m− 2 we can show the following.
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Claim 4. If j ≤ m− 2, then

p
(

N(j)
)

− pN(j)−k

(

N(j)
)

= 1 + p(1) + · · ·+ p(k − 1) ≥ p(k − 1).

Proof: Note that if j ≤ m− 2, then k < 1
2
N(j). The left side of the equality in the

claim counts partitions of N(j) with largest part at least N(j)− (k− 1). The right

side counts the same according to the exact order N(j) − ℓ, 0 ≤ ℓ ≤ k − 1, of the

largest part in the partition, using that the largest part is unique since N(j)− ℓ ≥
N(j)− (k − 1) > 1

2
N(j). �

Completing the proof of Lemma 4.1, we find that the number of sinks in the

(1/k-tough)-subposet of the n-degree-poset is at least

m−2
∑

j=⌈3m/5⌉

[

pkj+1

(

N(j)
)

− pN(j)−k

(

N(j)
)]

=

m−2
∑

j=⌈3m/5⌉

[

p
(

N(j)
)

− pN(j)−k

(

N(j)
)]

≥
m−2
∑

j=⌈3m/5⌉

p(k − 1) ≥
(

2
5
m− 9

5

)

p(k − 1)

=
( 2n

5(k + 1)
− 9

5

)

p(k − 1) ≥ n

5(k + 1)
p(k − 1),

as asserted, since n = m(k+ 1) ≥ 9(k+ 1) implies
2n

5(k + 1)
− 9

5
≥ n

5(k + 1)
. �

Combining Lemma 4.1 with Theorem 3.2 gives the promised superpolynomial growth

in the number of weakly optimal Chvátal-type conditions for 1/k-toughness.

Theorem 4.2. Let k ≥ 2 be an integer, and let n = m(k + 1) for some integer

m ≥ 9. Then a best monotone 1/k-tough theorem for n-sequences whose degree

conditions consist solely of weakly optimal Chvátal-type conditions requires at least
p(k − 1)n

5(k + 1)
such conditions, where p(r) is the integer partition function.

5 A Simple t-Tough Theorem

The superpolynomial complexity as k → ∞ of a best monotone 1/k-tough theorem

suggests the desirability of finding simple t-tough theorems, when t < 1. We give

such a theorem below. It will again be convenient to assume at first that t = 1/k, for

some integer k ≥ 1. Note that the conditions in the theorem are still Chvátal-type

conditions.
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Lemma 5.1. Let k ≥ 1 be an integer, n ≥ k + 2, and π = (d1 ≤ · · · ≤ dn) a

graphical sequence. If

(i) di ≥ i− k + 2 or dn−i+k−1 ≥ n− i, for k ≤ i < 1
2
(n+ k − 1), and

(ii) di ≥ i or dn ≥ n− i, for 1 ≤ i ≤ 1
2
n,

then π is forcibly 1/k-tough.

Proof of Lemma 5.1: Suppose π has a realization G which is not 1/k-tough.

By (ii) and Theorem 1.2, G is connected. So we may assume (by adding edges

if necessary) that there exists X ⊆ V (G), with x
.
= |X| ≥ 1, such that G =

Kx + (Ka1 ∪Ka2 ∪ · · · ∪Kakx+1
), where 1 ≤ a1 ≤ a2 ≤ · · · ≤ akx+1.

Set i
.
= x+ k − 2 + akx.

Claim 1. k ≤ i < 1
2
(n+ k − 1)

Proof: The fact that i ≥ k follows immediately from the definition of i. Since

kx− x− k + 1 = (k − 1)(x− 1) ≥ 0, we have

kx− 1 ≥ x+ k − 2. (3)

This leads to

n = x+
kx−1
∑

j=1

aj + akx + akx+1 ≥ x+ kx− 1 + 2akx

≥ 2x+ k − 2 + 2akx = 2i− k + 2,

which is equivalent to i < 1
2
(n+ k − 1). �

Claim 2. di ≤ i− k + 1.

Proof: From (3) we get

i = x+ k − 2 + akx ≤ kx− 1 + akx ≤
kx
∑

j=1

aj . (4)

This gives di ≤ x+ (akx − 1) = i− k + 1. �

Claim 3. dn−i+k−1 < n− i.

Proof: We have n− i+k−1 = n−x−akx+1 ≤
kx+1
∑

j=1

aj. Thus, using the bound (4)

for i,

dn−i+k−1 ≤ x+ akx+1 − 1 < n−
kx
∑

j=1

aj ≤ n− i.
�
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Claims 1, 2 and 3 together contradict condition (i), completing the proof of the

lemma �

We can extend Lemma 5.1 to arbitrary t ≤ 1 by letting k = ⌊1/t⌋.
Theorem 5.2. Let t ≤ 1, n ≥ ⌊1/t⌋ + 2, and π = (d1 ≤ · · · ≤ dn) a graphical

sequence. If

(i) di ≥ i− ⌊1/t⌋+ 2 or dn−i+⌊1/t⌋−1 ≥ n− i, for ⌊1/t⌋ ≤ i < 1
2

(

n+ ⌊1/t⌋ − 1
)

,

and

(ii) di ≥ i or dn ≥ n− i, for 1 ≤ i ≤ 1
2
n,

then π is forcibly t-tough.

Proof: Set k = ⌊1/t⌋ ≥ 1. If π satisfies conditions (i), (ii) in Theorem 5.2, then π

satisfies conditions (i), (ii) in Lemma 5.1, and so is forcibly 1/k-tough. But k =

⌊1/t⌋ ≤ 1/t means 1/k ≥ t, and so π is forcibly t-tough. �

In summary, if
1

k + 1
< t ≤ 1

k
for some integer k ≥ 1, then Theorem 5.2 declares π

forcibly t-tough precisely if Lemma 5.1 declares π forcibly 1/k-tough.
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