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Fire Containment in Planar Graphs

Louis Esperet∗ Jan van den Heuvel†

Frédéric Maffray‡ Félix Sipma§

Abstract

In a graph G, a fire starts at some vertex. At every time step, firefighters can

protect up to k vertices, and then the fire spreads to all unprotected neighbours.

The k-surviving rate ρk(G) of G is the expectation of the proportion of vertices that

can be saved from the fire, if the starting vertex of the fire is chosen uniformly at

random. For a given class of graphs G we are interested in the minimum value k such

that for some constant ǫ > 0 and all G ∈ G, ρk(G) ≥ ǫ (i.e., such that linearly many

vertices are expected to be saved in every graph from G).

In this note, we prove that for planar graphs this minimum value is at most 4,

and that it is precisely 2 for triangle-free planar graphs.

Keywords: the Firefighter Problem; surviving rate; planar graphs.

1 Introduction

The Firefighter Problem in graphs was introduced by Hartnell in 1995 [6]. In a graph G, a

fire starts at time 0 at some vertex v of G. At every subsequent time step, the firefighters

protect at most k vertices from the fire (this protection is permanent), and then the fire

spreads to all unprotected neighbours. This problem has been heavily studied over the

past decade; we refer the reader to a survey of Finbow and MacGillivray [4] for a general

overview, and to [2, 3, 7] for specific algorithmic and complexity results.
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We denote by snk(G, v) the maximum number of vertices of G that can be saved from

the fire if it starts at v. In general, the parameter snk(G, v) depends heavily on v. For

instance, if G is a star on n vertices, v is the centre, and u is a leaf, then sn1(G, v) = 1

while sn1(G, u) = n− 1. A good indicator of the robustness of a graph against a random

fire is the following parameter introduced by Cai and Wang in 2009 [1]. They define the

k-surviving rate ρk(G) of a graph G on n vertices as
1

n2

∑

v∈G

snk(G, v). In other words,

ρk(G) is the expectation of the proportion of vertices that can be saved from the fire if it

starts randomly in G.

For a family C of graphs, by a slight abuse of notation we use ρk(C) to denote the

infimum of ρk(G) over all graphs G ∈ C with at least two vertices. We also define the

firefighter number ff (C) of the family C as the minimum integer k such that ρk(C) > 0. If

no such value k exists, we set ff (C) = +∞.

Let P, Pg, and OP denote, respectively, the set of planar graphs, the set of planar

graphs with girth (size of a shortest cycle) at least g, and the set of outerplanar graphs.

Cai and Wang [1] proved that ρ1(OP) ≥ 1/6, and asked the following.

Question 1 [1, Problem 6.2]

What is the minimum k such that ρk(P) > ǫ for some ǫ > 0?

Using the notation introduced above, this is equivalent to asking for the value of ff (P).

Such a constant is at least two, as shown by the complete bipartite (planar) graph K2,n−2:

When there is only one firefighter, only two vertices can be saved wherever the fire starts,

hence ρ1(K2,n−2) = 2/n.

Wang et al. [8] recently proved that ρ1(P9) ≥ 2/35, and that if a graphG is d-degenerate

(and has at least two vertices), ρ2d−1(G) ≥ 2/(5 d). This implies that the firefighter

number of every proper minor-closed class of graphs is finite. Wang et al. also proved that

ρ5(P) ≥ 2/15, which implies that 2 ≤ ff (P) ≤ 5.

The main purpose of this note is to prove the following results.

Theorem 2

(1) For the class P of planar graphs, we have 2 ≤ ff (P) ≤ 4.

(2) For the class P4 of triangle-free planar graphs, we have ff (P4) = 2.

The proofs of these results can be found in Sections 2 and 3. For the planar case, we indeed

prove a much stronger theorem: we show that if 4 firefighters are available at the first step,

and 3 firefighters at each subsequent step, then the surviving rate of every planar graph is

bounded by a positive constant.

The main idea of the two proofs is to partition the vertices of a graph G into two

carefully chosen sets X and Y . If the fire starts at a vertex of X , we will show that it
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can be quickly contained (saving all vertices but a constant number). If the fire starts at

a vertex of Y , we will do nothing and let everything burn. We could easily save a couple

of vertices by protecting them, but this would only make the computation harder (and

only improve the constants). Then we will show that |Y | ≤ c |X| for some constant c > 0,

concluding the proof.

We illustrate this technique by proving the easy result below. The proofs in Sections 2

and 3 are more involved and use the well-known discharging method for planar graphs.

The novel aspect of our approach is that we use the discharging method not just to prove

that a particular configuration must exist at least once, but that it must exist many times.

Theorem 3

Any planar graph G with girth at least 5 and at least two vertices satisfies ρ2(G) ≥ 1/22.

Proof From Euler’s formula, it is easy to deduce that planar graphs with girth at least 5

have average degree less than 10/3; while planar graphs with girth at least 6 have average

degree less than 3.

Let X2 and Y4 be the set of vertices of G of degree at most 2 and at least 4, respectively.

Let X3 be the set of vertices of degree 3 with a neighbour of degree at most 3, and let Y3

be the set of vertices of degree 3 not in X3. We use x2, x3, y3, y4 to denote the cardinality

of the sets X2, X3, Y3, Y4, respectively. Let n be the number of vertices in G.

If the fire starts at v ∈ X2, we protect its two neighbours, saving n−1 vertices. Consider

a vertex v ∈ X3, and let u be its neighbour of degree at most 3. If the fire starts at v, we

first protect its two neighbours distinct from u. The fire then reaches u, and we protect

the two neighbours of u distinct from v, saving n− 2 vertices. If the fire starts at a vertex

from Y3 or Y4, we do nothing.

Since for a fire that starts at a vertex from X2 ∪X3 we can save at least n− 2 vertices,

we obtain for the 2-surviving rate

ρ2(G) =
1

n2

∑

v∈G

sn2(G, v) ≥
1

n2
· (x2 + x3) (n− 2) =

n− 2

n
·

x2 + x3

x2 + x3 + y3 + y4
. (1)

Consider the subgraph H of G induced by the edges with one end in Y3 and the other

in Y4. This graph has at most y3+y4 vertices and precisely 3 y3 edges. Since H is bipartite

and G has girth at least 5, H has girth at least 6. Hence, its average degree is less than 3

and we have 6 y3 ≤ 3 (y3 + y4), implying that y3 ≤ y4.

Since the average degree in G is less than 10/3, 3 x3+3 y3+4 y4 ≤
10

3
(x2+x3+y3+y4).

Using that y3 ≤ y4, this implies y4 ≤ 10 x2 + x3, and hence y3 + y4 ≤ 20 x2 + 2 x3 ≤

20 (x2 + x3). As a consequence, we obtain, using (1):

ρ2(G) ≥
n− 2

n
·

x2 + x3

x2 + x3 + y3 + y4
≥

n− 2

n
·

1

1 + y3+y4
x2+x3

≥
n− 2

21n
.
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If n ≥ 44, we obtain ρ2(G) ≥ 1/22. Otherwise, if G has only two vertices, the vertex

distinct from the firestart can be saved, while if G has 3 ≤ n ≤ 44 vertices, at least

2/44 = 1/22 of the vertices can be saved. So in all cases we have ρ2(G) ≥ 1/22.

Theorem 3 has the following immediate consequence.

Corollary 4

For the class P5 of planar graphs with girth at least 5, we have 1 ≤ ff (P5) ≤ 2.

2 Planar graphs

In this section we prove the following theorem.

Theorem 5

Assume 4 firefighters are given at the first step, and then 3 at each subsequent step. Then

the firefighters have a strategy such that every planar graph has surviving rate at least

1/2712.

Proof We can assume that G is a maximal planar graph (hence a planar triangulation),

since adding edges to the graph can only make things more difficult for the firefighters.

Hence, G has minimum degree at least 3. For 3 ≤ d ≤ 6, let Xd be the set of vertices v of

degree d so that if the fire starts at v, the firefighters have a strategy that saves at least

|V (G)| − 6 vertices; the other vertices of degree d form the set Yd. For d ≥ 7, Yd is the set

of all vertices of degree d. We set X =
⋃

3≤d≤6
Xd and Y =

⋃

d≥3
Yd.

Note that every vertex v of degree 3 ≤ d ≤ 4 is in Xd, since placing the firefighters

on v’s neighbours saves all the vertices except v. Hence, Y3 and Y4 are both empty. Also

observe that if a vertex v of degree 5 has a neighbour u of degree at most 6, then v is in X5:

first place four firefighters on the neighbours of v distinct from u, the fire then spreads to u.

Since G is maximal planar only three unprotected neighbours of u remain, which can be

protected by three firefighters in the next step.

We now make a small observation about the sets X6 and Y6. The length of a path is

the number of edges on the path.

Observation 6 For every vertex v ∈ Y6, there is a path of length at most 3 connecting v

and a vertex u of degree distinct from 6, and such that all the internal vertices on the path

have degree precisely 6.

Assume this is not the case. Then the subgraph of G induced by the vertices at distance at

most 3 from v is the induced subgraph of a hexagonal grid. In this case, Figure 1 depicts a

strategy for the firefighters saving all the vertices except at most six (which contradicts the
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fact that v ∈ Y6). The figure should be read as follows: the fire starts at the squared vertex

labelled 0, then the firefighters protect the circled vertices labelled 1, the fire spreads to all

the squared vertices labelled 1, the firefighters protect the circled vertices labelled 2, and

so on. ✷

01

1 1

1

1

1

22

2

2

2 3

3

3

3 4

4

4

Figure 1: A strategy saving at least n− 6 vertices if the neighbourhood of the firestart is

a hexagonal grid.

For a planar graph with vertex set V , edge set E and face set F , Euler’s formula gives

|V | − |E| + |F | = 2. For simple maximal planar graphs, it is well known that this is

equivalent to
∑

v∈V

(d(v) − 6) = −12. We interpret this by giving each vertex v an initial

charge σ1(v) = d(v)−6. We redistribute this initial charge according to the following rules.

Here the value of α will be determined later.

(R1) Each vertex of degree at least 7 gives a charge 1/4 to each of its neighbours from Y5.

(R2) For each vertex v ∈ Y6 we choose one vertex u with d(u) 6= 6 and dist(v, u) ≤ 3

(using Observation 6); this vertex u gives a charge α to v.

The charge obtained after applying the rules (R1) and (R2) is denoted by σ2(v), v ∈ V .

Note that we have
∑

v∈V

σ2(v) =
∑

v∈V

σ1(v) = −12.

Observation 7 A vertex v with d(v) ≥ 7 has at most
⌊

1

2
d(v)

⌋

neighbours in Y5.

This follows directly, since if v has a neighbour u in Y5, then the two common neighbours

of u and v must have degree at least 7 as well (otherwise u is in X5). ✷

Claim 8 There is a constant α > 0 such that for every v ∈ X we have σ2(v) > −3−93α;

while for every v ∈ Y we have σ2(v) ≥ α.

To prove the claim, we first estimate how often a vertex v with d(v) 6= 6 can give a charge α

according to (R2). As a very crude upper bound, this is at most the number of paths of

length at most 3, starting in v, and whose internal vertices all have degree exactly 6. This

number is clearly at most d(v) · (1 + 5 + 25) = 31 d(v).

Each vertex v of degree 3 gives at most 3× 31 times a charge according to (R2). Since

σ1(v) = −3, this gives σ2(v) ≥ −3 − 93α. Similarly, for a vertex v of degree 4 we have
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σ2(v) ≥ −2 − 124α; while for v ∈ X5 we have σ2(v) ≥ −1 − 155α. Finally, for a vertex

v ∈ X6 we have σ2(v) = σ1(v) = 0.

From rule (R2) it follows that if v ∈ Y6, then σ2(v) = σ1(v) + α = α.

For a vertex v with degree d(v) ≥ 7, we can estimate, using the observations above,

σ2(v) ≥ (d(v)− 6)−
⌊

1

2
d(v)

⌋

· 1/4− 31 d(v)α.

If d(v) = 7, this gives σ2(v) ≥ 1/4 − 217α; and if d(v) ≥ 8, we have the estimate

σ2(v) ≥ d(v) · (7/8− 31α)− 6.

We see that σ2(v) ≥ α > 0 for all v ∈ Y if we can choose α > 0 such that 1/4−217α ≥ α

and d · (7/8 − 31α)− 6 ≥ α for all d ≥ 8. It is easy to check that α = 1/872 will do the

job. That value will also guarantee that σ2(v) > −3 − 93α for all v ∈ X , completing the

proof of the claim. ✷

The claim means that −12 =
∑

v∈V

σ2(v) ≥ (−3 − 93α) |X| + α |Y |. This gives |Y | ≤

(93+ 3/α) |X| = 2709 |X|. So the surviving rate of a graph on n = |X|+ |Y | vertices with

this strategy is at least

n− 6

n
·

|X|

|X|+ |Y |
>

n− 6

n
·

|X|

2710 |X|
=

n− 6

2710n
.

So if n ≥ 10846, the surviving rate is at least 1/2712. On the other hand, if 2 ≤ n < 10846,

then we still can save at least min(4, n− 1) vertices, hence the surviving rate in that case

is still at least 4/10846 > 1/2712.

Theorem 5 gives the upper bound on ff (P) in Theorem 2 (1) and the lower bound follows

from the graph K2,n as considered earlier.

3 Triangle-free planar graphs

Theorem 9

Every triangle-free planar graph G with at least two vertices satisfies ρ2(G) ≥ 1/723636.

Proof For a star K1,n−1, n ≥ 2, we have ρ2(K1,n−1) ≥ 1/2, so we can assume G is not a

star.

Next we can assume that G is edge-maximal with the property of being triangle-free

and planar, since adding edges to the graph can only make things more difficult for the

firefighters. As a consequence it is not difficult to see that G is connected and, using the

assumption that G is not a star, in fact G has no cut-vertex. This means the minimum

degree is at least 2.
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We assume some fixed embedding of G in the plane. The embedding gives a circular

order on the neighbours of a vertex. We use this order to talk about consecutive neighbours.

Since G is 2-connected, the degree of a face (the number of edges in a boundary walk of

the face) is precisely the number of vertices incident with the face. We use d(f) to denote

the degree of a face.

For 2 ≤ d ≤ 4, let Xd be the set of vertices v of degree d such that if the fire starts

at v, the two firefighters have a strategy that saves at least |V (G)| − 18 vertices; the other

vertices of degree d form the set Yd. For d ≥ 5, Yd is the set of all vertices of degree d.

We set xd = |Xd| and yd = |Yd|, X =
⋃

2≤d≤4
Xd, and Y =

⋃

d≥2
Yd. Observe that every

vertex v of degree 2 is in X2, since placing the firefighters on v’s neighbours saves all the

vertices except v. Hence, Y2 is empty.

Two vertices u and v are 4-opposite if there is a face of degree 4 with boundary vertices

u, a, v, b in that order, where at least one of a, b has degree 4. Two vertices u and v are

4-adjacent if they are adjacent and the two faces incident with the edge uv have degree 4.

We now give some remarks about the set X3.

Observation 10 Every vertex v of degree 3 satisfying at least one of the following prop-

erties is in X3:

3.1 v is adjacent to a vertex of degree at most 3;

3.2 v is adjacent to a vertex of degree 4 having another neighbour of degree at most 3;

3.3 v is 4-opposite to a vertex of degree at most 4;

3.4 v is 4-opposite to a vertex of degree 5 having a neighbour of degree at most 3;

3.5 v is adjacent to a vertex w of degree 5 having three consecutive neighbours of degree

at most 3 (including v), and such that the middle vertex from these three neighbours of w

is 4-adjacent to w;

3.6 v is 4-adjacent to a vertex of degree 6 that is 4-adjacent to 6 vertices of degree at

most 3.

To see this, consider Figures 2, 3, and 4. In each figure, the strategy of the firefighters

is described in the same way we did for Figure 1 (for instance, the firestart v is the

squared vertex labelled 0). The degrees of the relevant vertices are indicated next to those

vertices. Note that the exact order of the neighbours around the vertex of degree 4 and 5 in

configurations 3.2 and 3.4, respectively, is not relevant and does not influence the strategy.

✷

Using these observations, we now derive some useful properties of the vertices in Y3. We

need a few more definitions. An element is a vertex or a face. An element is contiguous

with a vertex v, if it is either a face that is incident with v, or a vertex that is 4-opposite
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Figure 2: Configurations 3.1 (left) and 3.2 (right).
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Figure 3: Configurations 3.3 (left) and 3.4 (right).
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Figure 4: Configurations 3.5 (left and centre) and 3.6 (right).

or 4-adjacent to v. Two vertices u and v are 5-adjacent if they are adjacent and exactly

one of the two faces incident with the edge uv has degree 4.

Claim 11 For any v ∈ Y3, at least two elements of degree at least 5 are contiguous with v.

Moreover, if there are only two such elements, then v is 5-adjacent to two more vertices

of degree at least 5 and v is incident with at least one face of degree at least 5 and at least

one face of degree 4.

By 3.1 of Observation 10, all the neighbours of a vertex v ∈ Y3 have degree at least 4. If v

is adjacent to a vertex u of degree 4, then, by 3.3 of Observation 10, for each face f incident

with uv, either d(f) ≥ 5 or there exists a vertex w incident with f such that d(w) ≥ 5

and v and w are 4-opposite. So if v is incident to zero or three faces of degree 4, then v is

contiguous with at least three elements of degree at least 5, and the claim holds.

If v is incident to only one face of degree 4, then it is contiguous with two faces of

degree at least 5. Moreover, by the above, either v is 4-opposite (and so, contiguous) to a

vertex of degree at least 5, or it is 5-adjacent to two vertices of degree at least 5.

Finally, assume that v is incident to precisely two faces of degree 4. Then it is contiguous

with a face f of degree at least 5. Let u be the neighbour of v such that uv is not incident
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with f . By the above, if d(u) = 4, then v is 4-opposite to two vertices of degree at least 5.

So in this case it is contiguous with at least three elements of degree at least 5. If d(u) ≥ 5,

then, since u and v are 4-adjacent, v is contiguous with two elements of degree at least 5.

By the remark above, if no other element of degree at least 5 is contiguous with v, then

the two neighbours of v distinct from u must have degree at least 5, which completes the

proof of the claim. ✷

We denote by Y3,2 the vertices in Y3 that are only contiguous with two elements of degree

at least 5.

Claim 12 For any v ∈ Y5, at most three vertices of Y3 are contiguous with v. Moreover, if

three vertices of Y3 are contiguous with v, they consist of three non-consecutive neighbours

of v, and all the faces incident with v have degree 4.

We first observe that by 3.4 of Observation 10, a vertex v ∈ Y5 cannot be both adjacent

to a vertex u ∈ Y3 and 4-opposite to a vertex w ∈ Y3 (since otherwise w would be in X3

by definition). Assume that v is 4-opposite to two consecutive vertices x and y of Y3 (i.e.,

the faces that v shares with x and y are consecutive with respect to v). By 3.1 and 3.2 of

Observation 10, the common neighbour z of v, x, y cannot have degree less than 5, so the

two neighbours of v distinct from z, but adjacent to x or y, have degree 4. The situation,

together with a strategy for the firefighters in the case a fire starts at x, is depicted in

Figure 5. This contradicts x ∈ Y3. It follows that v cannot be 4-opposite to three vertices

2

v

5 1

4

1

z

3

4

33

0

3

x

4

3

y

4 2

2

15

4

Figure 5: A vertex v ∈ Y5 with two consecutive 4-opposite vertices x, y ∈ Y3.

of Y3. Assume now that v is adjacent to some vertices of Y3. By 3.5 of Observation 10,

there cannot be three vertices of Y3 that are 4-adjacent to v and consecutive around v.

Moreover, if three non-consecutive neighbours of v are 4-adjacent to v, then all the faces

incident with v have degree 4, which concludes the proof of Claim 12. ✷

We denote by Y5,3 the vertices in Y5 that are 4-adjacent to three vertices of Y3. By the

previous claim, we see that all the faces incident with a vertex of Y5,3 have degree 4, but a

vertex of Y3 cannot be 4-opposite to a vertex of Y5,3.

Claim 13 Every vertex in Y3 is 4-adjacent to at most one vertex of Y5,3.
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Assume the claim is false, and some vertex vinY3 is 4-adjacent to two vertices of Y5,3. By

Claim 12, only four cases need to be considered. In each of the cases, there is a strategy

for the firefighters for a fire that starts at one of the vertices from Y3 and saves at least

|V (G)| − 7 vertices; see Figure 6. But this contradicts the definition of a vertex in Y3.

✷
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Figure 6: A vertex v ∈ Y3 with two neighbours in Y5,3.

Claim 14 If v ∈ Y6, then at most six vertices of Y3 are contiguous with or 5-adjacent to v.

Moreover, if there are six such vertices, v is 5-adjacent to at least two of them.

By 3.1 of Observation 10, if v is 4-opposite to some vertex u ∈ Y3, then the (at least two)

common neighbours of v and u have degree at least 4, so they are not in Y3. Assume that

six or more vertices of Y3 are contiguous with or 5-adjacent to v. By the remark above,

this can only happen if either v is 4-opposite to six vertices of Y3, which contradicts 3.2 of

Observation 10, or v is 4-adjacent or 5-adjacent to six vertices of Y3. In the latter case,

by 3.6 of Observation 10, v is not allowed to be 4-adjacent to six vertices of Y3, so v must

be incident with a face of degree at least 5. Since not all faces can have degree at least 5

(since then v cannot be 4-adjacent or 5-adjacent to any vertex), v is 5-adjacent to at least

two vertices of Y3. ✷

The argument above involving 3.1 has the following consequence in general.

Claim 15 If v ∈ Yd with d ≥ 7, at most d vertices of Y3 are contiguous with or 5-adjacent

to v.

We finish this part with one observation regarding vertices in Y4.

Observation 16 For every vertex v ∈ Y4, there is a path of length at most 7 connecting v

and a vertex u such that either d(u) 6= 4, or a face incident with u and its neighbour on

the path has degree at least 5. Moreover, all the internal vertices on the path and the faces

incident with v or with two internal vertices have degree precisely 4.
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Figure 7: A strategy saving at least n− 18 vertices if the neighbourhood of the firestart is

a rectangular grid.

Assume this is not the case. Then the subgraph of G induced by the vertices at distance at

most 7 from v is the induced subgraph of a rectangular grid. In this case Fogarty [5] gave

a strategy saving all the vertices except at most 18 when the fire starts at v (see Figure 7).

This contradicts the fact that v ∈ Y4. ✷

We continue as in the proof of Theorem 5. We assign a charge ν1(v) = d(v) − 4 to each

vertex v ∈ V , and a charge ν1(f) = d(f) − 4 to each face f ∈ F . Euler’s formula gives
∑

v∈V

ν1(v) +
∑

f∈F

ν1(f) = −8. We redistribute this initial charge according to the following

rules. Here the values of α and β will be determined later.

(S1) A vertex in Y5,3 gives a charge of 1/3− β to each of its three neighbours from Y3.

(S2) A vertex of degree at least 5 not in Y5,3 gives a charge of 2/5−β to each vertex in Y3

it is contiguous with.

(S3) A vertex of degree at least 5 gives a charge of 1/10 − β to each vertex in Y3 it is

5-adjacent to.

(S4) Each face of degree at least 5 gives a charge of 1/2 − β to each vertex in Y3 it is

incident with.

(S5) For each vertex v ∈ Y4 we choose a vertex u with dist(v, u) ≤ 7 according to

Observation 16, such that dist(v, u) is minimal. If d(u) 6= 4, this vertex u gives a charge α

to v. Otherwise, u is incident to a face of degree at least 5, which is at distance at most 6

from v; in that case this face gives a charge α to v.

The charge obtained after applying rules (S1) – (S4) is denoted by ν2(x), x ∈ V ∪ F .

Note that we have
∑

v∈V

ν2(v) +
∑

f∈F

ν2(f) =
∑

v∈V

ν1(v) +
∑

f∈F

ν1(f) = −8.

Claim 17 Let α = 1/360720 and β = 2186α. Then for every v ∈ X we have ν2(v) ≥

−2− β; for every v ∈ Y we have ν2(v) ≥ α; and for every face f , ν2(f) ≥ 0.
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To prove the claim, we first estimate how often a vertex v with d(v) 6= 4 can give a charge α

according to (S5). As a very crude upper bound, this is at most the number of paths of

length at most 7, starting in v, and whose internal vertices all have degree exactly 4. This

number is clearly at most d(v) · (1 + 3 + 32 + · · ·+ 36) = 1093 d(v). Hence, each vertex of

degree d gives at most 1093 d α = 1

2
d β according to (S5).

It follows that a vertex v of degree 2 satisfies ν2(v) ≥ ν1(v) − β = −2 − β. Similarly,

for a vertex v ∈ X3 we have ν2(v) ≥ −1 − 3

2
β ≥ −2 − β, since β ≤ 2. And for v ∈ X4 we

have ν2(v) = ν1(v) = 0.

Let v ∈ Y3. Suppose first that v is contiguous with three elements of degree at least 5.

By Claim 13, at most one of them is in Y5,3, so v receives at least 1/3 + 2 × 2/5 − 3 β =

17/15 − 3 β by rules (S1), and (S2). Otherwise, by Claim 11, v is only contiguous with

two elements of degree at least 5, i.e., v ∈ Y3,2. In this case we know that v is incident to

a face f of degree at least 5 and 5-adjacent to two vertices of degree at least 5. Hence v

receives at least 1/2+ 1/3− 2 β from f and the second element of degree at least five it is

contiguous with (by rules (S4), and (S1) or (S2)), and at least 2× (1/10− β) by rule (S3).

So, in both cases v receives at least 31/30 − 4 β. Since it gives at most 3

2
β according

to (S5), we obtain ν2(v) ≥ 1/30 − 11

2
β. Using that α = 1/360720 and β = 2186α, this

implies ν2(v) ≥ α.

From rule (S5) it follows that if v ∈ Y4, then ν2(v) = ν1(v) + α = α.

Next consider a vertex v ∈ Y5,3. This gives three times a charge 1/3 − β according

to (S1), no charge according to (S3) by Claim 12, and at most 5 × 1

2
β according to (S5).

Since ν1(v) = 1, we find ν2(v) ≥ 1− 3× (1/3− β)− 5

2
β = 1

2
β.

Consider now a vertex v ∈ Y5 \ Y5,3. By Claim 12, v is contiguous with at most two

vertices from Y3. Recall that by 3.4 of Observation 10, v cannot be 4-opposite to a vertex

of Y3 and adjacent to a vertex of Y3. If v is not contiguous with any vertex of degree at

least 5, it gives at most 5× (1/10−β) according to (S3). If v is contiguous with one vertex

of Y3, then it gives 2/5−β according to (S2) and at most 4× (1/10−β) according to (S3).

Suppose now that v is contiguous with exactly two vertices from Y3, say u and w. If one

of them in 4-opposite to v, then v gives 2 × (2/5 − β) only. Otherwise, v is 4-adjacent

with u and w. If v is 5-adjacent to its three other neighbours, then we end up with

configuration 3.5 of Observation 10, a contradiction. Hence v can only be 5-adjacent to

two more vertices, and it gives 2× (2/5− β) according to (S2) and at most 2× (1/10− β)

according to (S3). In all cases, v gives at most 1 − 4 β. Since v gives at most 5 × 1

2
β

according to (S5), we have ν2(v) ≥ 1− (1− 4 β)− 5

2
β = 3

2
β.

For a vertex v ∈ Y6, we have by Claim 14 that it gives at most five times a charge

according to (S2). Moreover, if it gives precisely 5 × (2/5 − β), then it is not 5-adjacent

to any vertex of Y3. Otherwise, it gives at most 4 × (2/5 − β) + 2 × (1/10 − β). Hence,

v gives at most max{2 − 5 β, 9/5 − 6 β} = 2 − 5 β. Finally, v also gives at most 6 × 1

2
β

according to (S5). As ν1(v) = 2, we obtain ν2(v) ≥ 2− (2− 5 β)− 3 β = 2 β.
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For a vertex v with d(v) ≥ 7, we can estimate, using Claim 15 and the observations

above:

ν2(v) ≥ (d(v)− 4)− d(v) · (2/5− β)− d(v) · 1

2
β = d(v) · (3/5 + 1

2
β) ≥ 7

2
β.

We now estimate how often a face f can give a charge α according to (S5). This is at

most the number of paths of length at most 6, starting at a vertex u of degree 4 incident

with f , and whose internal vertices (and faces incident with them) all have degree exactly 4.

This number is at most 2 d(f) · (1+3+32+ · · · 35) = 728 d(f), since such a vertex u has at

most two neighbours such that the faces incident with those neighbours all have degree 4.

Using that β = 2186α, this implies that each face of degree d gives at most 728 d α ≤ 2

5
d β

according to (S5).

By 3.1 of Observation 10, a face f has at most
⌊

1

2
d(f)

⌋

vertices of Y3 on its boundary.

Hence, for a face f of degree 5, we have ν2(f) ≥ 1 − 2 × (1/2 − β) − 5 × 2

5
β = 0. For a

face f of degree at least 6, we obtain

ν2(f) ≥ (d(f)− 4)− 1

2
d(f) · (1/2− β)− d(f) · 2

5
β = d(f) · (3/4 + 1

10
β)− 4 ≥ 3

5
β.

Finally, for a face f of degree 4, we have ν2(f) = ν1(f) = 0.

Putting the inequalities together, we see that ν2(v) ≥ −2 − β for all v ∈ X ; ν2(v) ≥

min{α, 1
2
β} = α for all v ∈ Y ; and ν2(f) ≥ 0 for any face f , completing the proof of the

claim. ✷

The claim means that −8 =
∑

v∈V

ν2(v) +
∑

f∈F

ν2(f) ≥ (−2 − β) |X| + α |Y |. This gives

|Y | < (2186 + 2/α) |X| = 723626 |X|. So the surviving rate of a graph on n = |X| + |Y |

vertices with this strategy is at least

n− 18

n
·

|X|

|X|+ |Y |
>

n− 18

n
·

|X|

723627 |X|
=

n− 18

723627n
.

So if n ≥ 1447272, the surviving rate is at least 1/723636. On the other hand, if 2 ≤ n <

1447272, then we still can save at least min{2, n− 1} vertices, hence the surviving rate in

that case is still at least 2/1447272 = 1/723636.

Again, we have made no attempts to optimise the constants, in order to concentrate on

making the exposition as clear as possible. For instance, the estimates for the number

of times a vertex or a face gives a charge α according to rules (S5) can be improved

significantly with a more careful analysis.

Theorem 9 together with the graph K2,n imply Theorem 2 (2).
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4 Conclusion

Regarding the firefighter number of planar graphs, we conjecture the following.

Conjecture 18

For the class P of planar graphs, we have ff (P) = 2.

We believe that the proof of Theorem 5 can be modified to prove that for some ǫ > 0, every

planar graph G satisfies ρ3(G) ≥ ǫ, which would give ff (P5) ≤ 3. The only difference with

our setting is that only three firefighters are available at the first round (instead of four 1).

The main consequence is that not only Y4 is not empty, but also the structure of Y5 is more

complicated. However, the argument concerning Y6 will run smoothly using a strategy of

Fogarty [5] in hexagonal grids.

Nevertheless, we feel the proof technique is too local to lead to a proof of ff (P) = 2.

For instance, the fact that only a constant number of steps are considered does not allow to

design a good strategy (saving a linear number of vertices in average) with two firefighters

in a very large hexagonal grid.

Wang et al. [8] proved that ff (P9) = 1. The ideas of the proof of Theorem 9 can be

adapted to prove that ff (P8) = 1, since it is not hard to show that a worst case scenario in

this case is if locally, every face close to the firestart has size 8, and around the boundary

of these faces the vertices alternatingly have degree 2 and 4. (In other words, locally the

graph looks like a subdivided rectangular grid.) In this case, a strategy similar to the

strategy of Fogarty described in Section 3 will save at least n − 63 vertices. We omit

details here, since we believe that such a result would still be far from optimal. Indeed, we

conjecture the following.

Conjecture 19

For the class P5 of planar graphs of girth at least 5, we have ff (P5) = 1.

We finish with a remark on the connection between separators and firefighters. For some

constant ǫ > 0, an ǫ-separator S in a connected graph G is a set of vertices whose removal

yields at least two components of size at least ǫ|V (G)|. If for ǫ|V (G)| vertices v of G,

there is an ǫ-separator Sv whose cardinality is at most the distance between v and Sv, then

ρ1(G) > ǫ2: by the time a fire starting at v reaches Sv, the single firefighter can protect all

the vertices of Sv, so a (linear-sized) component of G \ Sv not containing v will be saved.

1 It was pointed out by one of the referees that adding one firefighter at the first round can have

significant implications in terms of complexity. In the usual setting (only one firefighter at each round),

deciding whether a given number of vertices of a rooted subcubic tree can be saved if the fire starts at the

root is NP-complete [3]. If a second firefighter is available at the first round only, the problem becomes

trivially polynomial.
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