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Quasi-random oriented graphs

Simon Griffiths

IMPA, Est. Dona Castorina 110, Jardim Botânico, Rio de Janeiro, Brazil

Abstract

We show that a number of conditions on oriented graphs, all of which are satisfied with

high probability by randomly oriented graphs, are equivalent. These equivalences are similar to

those given by Chung, Graham and Wilson [5] in the case of unoriented graphs, and by Chung

and Graham [3] in the case of tournaments. Indeed, our main theorem extends to the case of

a general underlying graph G the main result of [3] which corresponds to the case that G is

complete.

One interesting aspect of these results is that exactly two of the four orientations of a four-

cycle can be used for a quasi-randomness condition, i.e., if the number of appearances they make

in D is close to the expected number in a random orientation of the same underlying graph,

then the same is true for every small oriented graph H .

1 Introduction

The concept of quasi-randomness (also known as pseudo-randomness) of graphs has been well-

studied since it was introduced by Thomason [13],[14]. Much work since has focused on demon-

strating that various concepts of quasi-randomness are equivalent. To this aim, Chung, Graham

and Wilson [5] listed no less than seven equivalent quasi-randomness conditions for graphs.

These included a condition on the number of four-cycles in the graph, conditions on the num-

ber of edges between large subsets and a condition on the eigenvalues of the graph. We call

these conditions quasi-randomness conditions as, in all these cases, they ask that a given graph

parameter (eg., number of four-cycles), is close to the value this parameter takes (with high

probability) in a random graph.

A little later Chung and Graham [3] continued this line of research by proving similar results

for tournaments (oriented graphs obtained by orienting a complete graph). Again the conditions

considered ask that a given parameter of the tournament be close to its expected value in

a random orientation. One way to think of the results of Chung and Graham is that the

underlying graph has been fixed (G = Kn) and we are concerned only with the properties of

the orientation. In this article we show that similar results may be proved relative to any fixed

underlying graph G.

With this concept of quasi-randomness a random orientationD of a complete bipartite graph

(for example) is very likely to have strong quasi-randomness properties. One might argue that

such an oriented graph should not be considered quasi-random as it does not contain close to
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the correct number of all small oriented graphs (for example, oriented triangles). Presumably

someone making this argument would prefer a stronger concept of quasi-randomness that did

guarantee a close to correct number of all small oriented graphs. Stronger quasi-randomness

conditions of this type may be easily obtained by combining one of our quasi-randomness con-

ditions with a quasi-randomness condition of Chung, Graham and Wilson [5] on the underlying

graph.1 (For example, if the number of homomorphic copies of Type II four cycles (see diagram

on page 2) in an oriented graph D is close to the number of copies in a random orientation of

G(n, 1/2) (i.e., ≈ n4/32) then the same is true for all small oriented graphs).

We remark that in addition to the extension to tournaments [3], Chung and Graham also

studied quasi-randomness conditions for set systems [4] and hypergraphs [2].

There have been a number of articles in recent years establishing the equivalence of other

quasi-randomness conditions for graphs, including [7], [10], [12], [11], [15]. We also mention that

Kalyanasundaram and Shapira [9] have recently established another quasi-randomness condition

for tournaments: for every fixed even integer k ≥ 4, if close to half of the k-cycles in a tournament

T are even (have an even number of anti-cyclic edges), then T must be quasi-random. Their

result confirms a conjecture of Chung and Graham [3], and (as they note) may be extended to

setting described here. For background on quasi-randomness we refer the reader to the survey

of Krivelevich and Sudakov [9] and the informative discussion of quasi-randomness given by

Gowers in the introduction of [6].

We now prepare to state the main theorem. While the statement will not be at all surprising

to those familiar with previous work on quasi-randomness we nonetheless require quite a lot of

notation. We introduce some notation immediately, so that Theorem 1.1 may, at least informally,

be understood; notation will be given in full in Section 2 and we encourage the reader to look

ahead if any clarification is required.

We begin by considering the four possible orientation of the four cycle. Consider the four-

cycle {12, 23, 34, 41}. There are 16 possible orientations of this four-cycle and they fall into four

equivalence classes.

• // •

��
•

OO

•oo

• // •

��
•

OO

// •

• // •

•

OO

// •

OO • •oo

��
•

OO

// •

Type I Type II Type III Type IV

Number 2 8 4 2

Proportion 1
8

1
2

1
4

1
8

The above table includes a count of the number of ways each type can occur as an orientation

of our four-cycle, and, dividing by 16, the proportion of orientations of our four-cycle which result

in a cycle of this type. These proportions then also describe the proportion of each type one

would expect to find if one were to orient the edges of a graph at random. Thus, these proportions

are important to our discussion of quasi-randomness. We count the number of homomorphic

1In the case that the density is not equal to 1/2 then refer instead to the version of their result given by Simonovits
and Sós [11].

2



copies of cycles of a given type by summing the number of homomorphic copies of each of the

oriented four cycles of that type. We write homI(D), homII(D), homIII(D), homIV (D) for the

corresponding counts and hom(C4, D) for the number of homomorphic copies of an unoriented

four-cycle – equivalently the total number of homomorphic copies of the 16 orientations – so

that

hom(C4, D) = homI(D) + homII(D) + homIII(D) + homIV (D) . (1)

We denote by M the adjacency matrix of an oriented graph D and by λ1, . . . , λn the eigen-

values of M in order of decreasing absolute value.

We shall consider the class of partially oriented graphs, i.e., graphs in which some subset

of the edges are oriented. In a partially oriented graph D we denote by e(D) the number of

edges of D and by ~e(D) the number of oriented edges. Let Ok denote the set of oriented graphs

on k vertices, and Pk the set of partially oriented graphs on k vertices. We denote by D̄ the

underlying graph of a partially oriented graph D. We now state the main theorem.

Theorem 1.1. The following conditions on an oriented graph D are equivalent, in the sense

that any one of them, with any positive value of its parameter (α, β, δ,...) can be deduced from

any other, when the parameter of the latter is taken sufficiently small. When the same parameter

appears in both then the implied equality holds.

P1
∣

∣

∣
homIV (D)− 1

8 hom(C4, D)
∣

∣

∣
≤ αn4

P2
∣

∣

∣
homII(D)− 1

2 hom(C4, D)
∣

∣

∣
≤ δ

2n
4

P3
∣

∣

∣
hom(H,D)− 2−e(H) hom(H̄,D)

∣

∣

∣
≤ βnk for all H ∈ Ok (∀k ∈ N)

P4
∣

∣

∣
hom(H,D)− 2−~e(H) hom(H̄,D)

∣

∣

∣
≤ ηnk for all H ∈ Pk (∀k ∈ N)

P5
∑

x,x′,y,y′∈V MxyMxy′Mx′yMx′y′ ≤ δn4

P6 ~e(A,B)− ~e(B,A) ≤ γn2 for all A,B ⊂ V

P7 bias1−ε(D) ≤ εn2

P8
∑n

i=1 λ
4
i ≤ δn4

P9 |λ1| ≤ ζn

We remind the reader that any notation not already defined will be given in Section 2.

We remark that our quasi-randomness conditions (P1 – P9) are not in exact correspondence

with those given by Chung and Graham for the case of tournaments [3]. For example Condition

11 of Chung and Graham states that: there exists some ordering π [of the vertices of D] so

that [the graph consisting of edges ascending in that ordering] is quasi-random [in the sense of

Chung, Graham and Wilson]. To make the equivalent statement in our setting we would be

required to define a concept of quasi-randomness for two-colourings of a graph. This should

not be difficult to do and should be largely analogous to the present discussion of quasi-random
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orientations of graphs, but we choose not to investigate it further here.

The proof of Theorem 1.1 is very similar in spirit, and often in detail, to the proofs given

by Chung, Graham and Wilson [5] in the case of graphs and Chung and Graham [3] in the

case of tournaments. Indeed, many of our proofs are simply minor alterations of proofs given

in these articles. The author would also like to acknowledge the influence of the 2005 lecture

course of Gowers on “Quasirandomness”. The proof of Theorem 1.1 is given in Section 4. We

first introduce notation in Section 2 and establish some initial results concerning the various

orientations of a four-cycle in Section 3.

2 Notation

As mentioned above, we shall consider partially oriented graphs, graphs in which some subset of

the edges are oriented. In a partially oriented graphD both notations xy ∈ E(D) and ~xy ∈ E(D)

occur, the former being used in the case that the edge xy (either oriented or unoriented) is present

in D and the latter indicating that this edge is oriented from x to y. Since both (unoriented)

graphs and oriented graphs are contained within the category of partially oriented graphs we

need only define notation for partial oriented graphs D.

Given a partially oriented graph D, we write e(D) for the total number of edges of D, Γ(x)

the set of neighbours of a vertex x, and d(x) the degree of x. While we write ~e(D) for the

number of arcs (oriented edges) of D, Γ+(x) and Γ−(x) for the out- and in- neighbourhoods of

x, and d+(x) and d−(x) for the cardinalities |Γ+(x)| and |Γ−(x)|. Recall that D̄ denotes the

underlying graph of D.

For sets A,B ⊆ V (D) denote by e(A,B) the number of edges between A to B, and by

~e(A,B) the number of arcs from A to B.

For x, y ∈ V (D), and a pair σ, τ ∈ {+,−}, we define στ joint degree dστ (x, y) = |Γσ(x) ∩

Γτ (y)|.

Given two partially oriented graphs D and H , a homomorphism from H to D is a function

f : V (H) → V (D) satisfying:

(i) ~f(x)f(y) is an arc of D for every arc ~xy of H .

(ii) f(x)f(y) is an edge of D̄ for every edge xy of H .

We denote by hom(H,D) the number of homomorphisms from H to D, i.e., the number of

homomorphic copies of H in D.

The adjacency matrix M of an oriented graph D on n vertices is the n by n matrix with

rows and columns indexed by V (D) and with entries described by

Mxy =







1 if ~xy ∈ E(D)

−1 if ~yx ∈ E(D)

0 otherwise

We denote by λ1, . . . , λn the eigenvalues of the adjacency matrix M of D, in the order

of decreasing absolute value. Since M is anti-symmetric and has real-valued entries, all its

eigenvalues are imaginary.

For ν ∈ (0, 1) and A,B ⊂ V (D), say that (A,B) is ν-biased if ~e(B,A) ≤ ν~e(A,B). Define

biasν(D) to be the maximum value of ~e(A,B) for a ν-biased pair (A,B), i.e.,

biasν(D) = max
{

~e(A,B) : A,B ⊂ V are such that ~e(B,A) ≤ ν~e(A,B)
}

.
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These parameters of oriented graphs were studied recently in [1].

3 Orientations of four-cycles

In this section we establish some very elementary inequalities that hold for all oriented graphs

D. The main result we establish states, in a sense, that cycles of Type IV can never be under-

represented and cycles of Type II can never be over-represented in any oriented graph D.

Proposition 3.1. The following inequalities hold for all oriented graphs D:
(i) homIV (D) ≥ 1

8 hom(C4, D)

(ii) homII(D) ≤ 1
2 hom(C4, D)

The proposition will follow easily from the following lemma that relates the counts of various

types of oriented four-cycles in an oriented graph D.

Lemma 3.2. The following inequalities hold for all oriented graphs D:
(i) 2 homIV (D) ≥ homIII(D)

(ii) homIII(D) ≥ 2 homI(D)

(iii) 2 homIV (D) + homIII(D) ≥ homII(D)

(iv) homIV (D) ≥ homI(D)

(v) 4 homIV (D) ≥ homII(D)

The results of the lemma are not deep, requiring only the fact that (s−t)2 is non-negative for

any s, t ∈ R. To reduce the proofs to such trivialities we must express the quantities hom •(D)

in a suitable form.

We begin with homI(D). Recall that homI(D) counts the number of homomorphic copies

in D of the two oriented graph { ~12, ~23, ~34, ~41} and { ~14, ~43, ~32, ~21}. A homomorphic copy of

{ ~12, ~23, ~34, ~41} consists of x1, x2, x3, x4 ∈ V (D) such that ~x1x2, ~x2x3, ~x3x4, ~x4x1 ∈ E(D). Thus,

for each pair x1, x3 ∈ V (D) the number of homomorphic copies in which they play the roles

of first and third vertex is exactly d+−(x1, x3)d
−+(x1, x3). A similar argument gives that

hom({ ~14, ~43, ~32, ~21}, D) =
∑

x1,x3∈V d−+(x1, x3)d
+−(x1, x3). Renaming x1 as x and x3 as x′,

we obtain

homI(D) = 2
∑

x,x′∈V

d+−(x, x′)d−+(x, x′) (2)

By following similar reasoning

homII(D) = 2
∑

x,x′∈V

(

d++(x, x′) + d−−(x, x′)
)(

d+−(x, x′) + d−+(x, x′)
)

(3)

homIII(D) = 4
∑

x,x′∈V

d++(x, x′)d−−(x, x′) (4)

= 2
∑

x,x′∈V

d+−(x, x′)2 + d−+(x, x′)2 (5)

homIV (D) =
∑

x,x′∈V

d++(x, x′)2 + d−−(x, x′)2 (6)

The proof of the lemma is now trivial using the inequality (s − t)2 ≥ 0. In the proof we

simply mention which expressions one is required to use.
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Proof of Lemma 3.2. (i) Use (4) and (6).

(ii) Use (2) and (5).

(iii) Use (3), (5) and (6).

(iv) follows from (i) and (ii).

(v) follows from (i) and (iii).

Proof of Proposition 3.1. (i) From parts (i), (iv) and (v) of Lemma 3.2 we have that 7 homIV (D) ≥

homI(D) + homII(D) + homIII(D). Combining this with the expression (1) for hom(C4, D) we

deduce that 8 homIV ≥ hom(C4, D), as required.

(ii) Writing a(x, x′) for d++(x, x′) + d−−(x, x′) and b(x, x′) for d+−(x, x′) + d−+(x, x′), our

expression for homII(D) becomes

homII(D) = 2
∑

x,x′∈V

a(x, x′)b(x, x′)

While hom(C4, D), the number of homomorphic copies of all four-cycles whatever their orien-

tation, may be expressed as

hom(C4, D) =
∑

x,x′∈V

(

a(x, x′) + b(x, x′)
)2

It is now easily observed that hom(C4, D)− 2 homII(D) ≥ 0.

The fact that Type IV cycles are never under-represented, and Type II cycles are never

over-represented is strongly linked to their utility in quasi-randomness conditions. Indeed, the

fact that Type I and Type III cycles are over-represented in some oriented graphs (eg. in blow

ups of a Type 1 cycle) and under-represented in others (eg. in blow ups of an arc), makes counts

of these types of cycle unsuitable as quasi-randomness conditions.

4 Proof of Theorem 1.1

We write Pi ⇒ Pj if Pi implies Pj in the sense required by Theorem 1.1. We prove Theorem 1.1

by proving the following implications:

P1 +3 P2 ks +3 P5 ks +3 P8 ks +3 P9

P3

KS

P4ks P6ks ks +3
��

P7

We remark that P2, P5 and P8 are equivalent in the stronger sense that they count exactly

the same thing. So the proofs that P2 ⇔ P5 and P5 ⇔ P8 simply rely on observing this fact.

Perhaps the most interesting aspect of Theorem 1.1 is that properties such as P1 and P2

(close to correct homomorphism counts of certain orientation of a four cycle) imply properties

such as P3 and P4 (close to correct homomorphism counts of all small oriented (or partially

oriented) graphs). Since P4 includes P3, P2 is easily deduced from P1 and P2 is equivalent to

P5, the real work is in proving the implications P5 ⇒ P6 and P6 ⇒ P4. The first implication

(P5 ⇒ P6) relies on two applications of the Cauchy-Schwarz inequality. The second implication

6



(P6 ⇒ P4), which states that if between any two large sets A,B ⊂ V (D) the number of arcs

in each direction is roughly equal then D contains a close to correct homomorphism count of

all small partially oriented graphs H , is proved inductively on the number of edges of H that

are oriented. The base case, where no edges are oriented, is trivial, while the induction step

relies on showing that approximately half of all homomorphic copies of H ′ (which is defined by

forgetting the orientation of one oriented edge of H) are in fact also homomorphic copies of H .

P1 ⇒ P2

It follows easily from Proposition 3.1 and parts (i) and (iv) of Lemma 3.2 that P1 with parameter

α implies P2 with δ = 8α.

P2 ⇔ P5

Define the set C ⊂ V 4 as follows:

C = {(x, x′, y, y′) : |MxyMxy′Mx′yMx′y′ | = 1} .

Define a partition C = C+∪C− by including in C+ the quadruples for whichMxyMxy′Mx′yMx′y′

takes the value +1. It is easily verified that

hom(C4, D) = |C| = |C+|+ |C−|

homII(D) = |C−|

and
∑

x,x′,y,y′ MxyMxy′Mx′yMx′y′ = |C+| − |C−| .

The equivalence of the conditions P2 and P5 now follows immediately from the observation that

hom(C4, D)− 2 homII(D) =
∑

x,x′,y,y′

MxyMxy′Mx′yMx′y′ .

P5 ⇔ P8

The sum of the fourth powers of the eigenvalues of a matrix is equal to the trace of the fourth

power of that matrix. Thus,

n
∑

i=1

λ4
i = trace(M4)

=
∑

x,x′,y,y′∈V

MxyMyx′Mx′y′My′x

=
∑

x,x′,y,y′∈V

MxyMxy′Mx′yMx′y′ .

P8⇔ P9

It is trivial to deduce P9 from P8. Indeed, if we assume P8(δ), then λ4
1 ≤

∑n
i=1 λ

4
i ≤ δn4 and

so λ1 ≤ δ1/4n.
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On the other hand, if λ1 ≤ ζn then, using the fact that the eigenvalues λi are imaginary, we

obtain the bound
n
∑

i=1

|λ2
i | = −

n
∑

i=1

λ2
i = −traceM2 = 2e(D) ≤ n2 .

Thus
n
∑

i=1

λ4
i ≤ |λ2

1|

n
∑

i=1

|λ2
i | ≤ ζ2n4 .

P5 ⇒ P6

We assume P5(δ). Let A,B be subsets of V and note that

~e(A,B)− ~e(B,A) =
∑

x∈A

∑

y∈B

Mxy .

We bound this quantity using two applications of the Cauchy-Schwarz inequality, for this reason

we shall in fact bound (~e(A,B) − ~e(B,A))4. We write by C-S to mark each application of the

Cauchy-Scwartz inequality, on these occasions we also use that |A|, |B| ≤ n.

(

~e(A,B)− ~e(B,A)
)4

=

(

(

∑

x∈A

∑

y∈B Mxy

)2
)2

≤

(

n
∑

x∈A

(

∑

y∈B Mxy

)2
)2

by C-S

≤ n2

(

∑

x∈V

(

∑

y∈B Mxy

)2
)2

= n2

(

∑

x∈V

∑

y,y′∈B MxyMxy′

)2

= n2

(

∑

y,y′∈B

∑

x∈V MxyMxy′

)2

≤ n2n2
∑

y,y′∈B

(

∑

x∈V MxyMxy′

)2

by C-S

≤ n4
∑

y,y′∈V

(

∑

x∈V MxyMxy′

)2

= n4
∑

y,y′∈V

∑

x,x′∈V MxyMxy′Mx′yMx′y′

≤ δn8 .

Thus ~e(A,B) − ~e(B,A) ≤ δ1/4n2. Hence P5(δ) implies P6(γ) with γ = δ1/4.
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P6 ⇒ P4

Our proof is by induction, for this reason we must state formally the result we shall prove. Note

that the proposition does indeed prove that P6(γ) implies P4(η) for η = γ.

Proposition 4.1. Let D be an oriented graph on n vertices satisfying P6(γ). Let H be a

partially oriented graph on k vertices. Then

∣

∣

∣

∣

∣

hom(H,D)−
hom(H̄,D)

2~e(H)

∣

∣

∣

∣

∣

≤ (1− 2−~e(H))γnk .

We shall use in the proof the following, equivalent, form of P6(γ):

~e(B,A) ≥
e(A,B)

2
−

γ

2
n2 for allA,B ⊂ V . (7)

Proof. We prove the proposition by induction on ~e(H). If ~e(H) = 0, then H = H̄ , and so

hom(H,D) = hom(H̄,D). For the general case, let H be an oriented graph on {1, ..., k} with

~e(H) ≥ 1. By relabelling if necessary (which does not affect the homomorphism count) we may

assume that ~12 is an arc ofH . LetH ′ be the partially oriented graph obtained by unorienting this

edge. We now relate the quantities hom(H ′, D) and hom(H,D). For each (x3, ..., xk) ∈ V k−2

let Hom(H ′, D; . , . , x3, ..., xk) denote the set of homomorphisms φ of H ′ into D for which

φ(i) = xi for all i = 3, ..., k. Similarly define Hom(H,D; . , . , x3, ..., xk). In fact, it is easy

to characterise the homomorphisms φ ∈ Hom(H ′, D; . , . , x3, ..., xk). A homomorphism φ ∈

Hom(H ′, D; . , . , x3, ..., xk) must have φ(i) = xi for i = 3, ..., k, and must pick values for φ(1)

and φ(2). Writing x1 for φ(1) we know x1 must join up appropriately to the vertices x3, ..., xk.

Specifically
(i) ~x1xi is an arc of D, for every arc ~1i : i ≥ 3 in H .

(ii) ~xix1 is an arc of D, for every arc ~i1 : i ≥ 3 in H .

(iii) x1xi is an edge of D̄, for every edge 1i : i ≥ 3 in H̄ .

Equivalently, we require x1 ∈
⋂

i≥3:~1i∈E(H) Γ
−(xi)∩

⋂

i≥3:~i1∈E(H) Γ
+(xi)∩

⋂

i≥3:1i∈E(H̄) Γ(xi).

We denote this set A. Similarly, writing x2 for φ(2), there are similar restrictions on x2, which

again are equivalent to demanding that x2 belongs to a certain set, we denote this set B. Since

H ′ has an unoriented edge between 1 and 2, we have a final condition - the condition that x1x2

is an edge of D̄. Hence for certain sets A and B, we have a one-to-one correspondence between

homomorphisms φ ∈ Hom(H ′, D; . , . , x3, ..., xk) and edges of D̄ between A and B.

Similarly, we may characterise the homomorphisms φ ∈ Hom(H,D; . , . , x3, ..., xk). Again

we write x1 and x2 for φ(1) and φ(2). The restrictions x1 ∈ A and x2 ∈ B remain. However, on

this occasion we require not only that there is some edge between x1 and x2, we require that

there is an oriented edge from x1 to x2. Thus, there is a one-to-one correspondence between

homomorphisms φ ∈ Hom(H,D; . , . , x3, ..., xk) and edges from A to B.

Thus |Hom(H ′, D; . , . , x3, ..., xk)| and |Hom(H,D; . , . , x3, ..., xk)| are e(A,B) and ~e(A,B)

respectively, for some pair of subsets A,B ⊂ V . From our condition (7) we obtain that

∣

∣

∣

∣

∣

|Hom(H,D; . , . , x3, ..., xk)| −
|Hom(H ′, D; . , . , x3, ..., xk)|

2

∣

∣

∣

∣

∣

≤
γ

2
n2 .
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Since hom(H,D) is the sum over (x3, ..., xk) ∈ V k−2 of |Hom(H,D; . , . , x3, ..., xk)|, and simi-

larly hom(H ′, D), we have that

∣

∣

∣

∣

∣

hom(H,D)−
hom(H ′, D)

2

∣

∣

∣

∣

∣

≤
γ

2
nk .

Having obtained this relation between hom(H,D) and hom(H ′, D) we require only an applica-

tion of the induction hypothesis. As ~e(H ′) = ~e(H)−1, an application of the induction hypothesis

to H ′ gives | hom(H ′, D) − hom(H̄,D)/2~e(H)−1| ≤ (1 − 21−~e(H))γnk. Combining this with the

inequality proved above

∣

∣

∣

∣

∣

hom(H,D)−
hom(H̄,D)

2~e(H)−1

∣

∣

∣

∣

∣

≤
γ

2
nk +

1

2
(1− 21−~e(H))γnk = (1− 2−~e(H))γnk .

P4 ⇒ P3 ⇒ P1

It is trivial that P4 implies P3. While P3 with parameter β implies P1 with parameter α = 2β, as

homIV (D) is simply the sum of the number of homomorphic copies of two particular orientations

of the four-cycle.

P6 ⇔ P7

Suppose that P6(γ) holds and let A,B be a pair with ~e(B,A) ≤ (1− ε)~e(A,B). Then

ε~e(A,B) ≤ ~e(A,B) − ~e(B,A) ≤ γn2

and so ~e(A,B) ≤ ε−1γn2. Thus P6(γ) implies P7(ε) where ε = γ1/2.

On the other hand, if we assume P7(ε) then ~e(A,B) − ~e(B,A) ≤ ~e(A,B) ≤ εn2 for all pair

A,B with ~e(B,A) ≤ (1− ε)n2 and ~e(A,B)−~e(B,A) ≤ ε~e(A,B) ≤ εn2 for all other pairs. Thus

P7(ε) implies P6(γ) where γ = ε.
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