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TILING 3-UNIFORM HYPERGRAPHS WITH K} — 2e
ANDRZEJ CZYGRINOW, LOUIS DEBIASIO, AND BRENDAN NAGLE

ABSTRACT. Let Ki — 2e denote the hypergraph consisting of two triples on four points. For an
integer n, let t(n, K3 — 2e) denote the smallest integer d so that every 3-uniform hypergraph G
of order n with minimum pair-degree d2(G) > d contains |n/4] vertex-disjoint copies of Kj — 2e.
Kiihn and Osthus [4] proved that t(n, K§ — 2e) = 2(1 + o(1)) holds for large integers n. Here, we
prove the exact counterpart, that for all sufficiently large integers n divisible by 4,

{ i when 7 is odd,

7+1 when 7 is even.

t(n, Ki — 2e) =

A main ingredient in our proof is the recent ‘absorption technique’ of R6dl, Rucinski and Szemerédi.

1. INTRODUCTION

For a fixed k-graph H( of order m, we say that a given k-graph G of order n is Hy-tileable if G
contains, as subhypergraphs, |[n/m| vertex-disjoint copies of Hy. Now, suppose G has vertex set
V, and for an integer 1 </ <k, let U € (‘2) be given. As is customary, let

N(U) = No(U) = {W e <k‘i£> LUUW € E(G)} and  0,(G) = min{|N(U)| U e (‘2)}

denote, respectively, the neighborhood of U in G, and the £-degree of GG. Define ti? (n, Hp) to be the
smallest integer d so that every k-graph G of order n for which dy(G) > d holds is Hy-tileable.

In the case of graphs (k = 2), t% (n, Hp) is known, up to an additive constant, for every fixed graph
Hy (see [5]). Furthermore, there are some graphs Hy for which t3(n, Hy) is known exactly. The
most celebrated such result is the Hajnal-Szemerédi theorem [2], which says that for the r-clique

Hy = K, and for n divisible by r,
1
t3(n,K,) = (1 - —> n.

r

A recent result of Wang [I0] shows that for all integers n divisible by 4, ¢(n, Cy) = Z. This result
is a special case of the well-known El-Zahar conjecture, and had been independently conjectured
by Erdés and Faudree.

In the case of hypergraphs (k > 3), much less is known about tiling problems. For only the
k-edge Hy = K ]{j (the tiling of which is a perfect matching) is t’g_l(n, Hj) known for all £ > 3. This
significant result is due to Rodl, Rucinski and Szemerédi [9], and asserts that for all sufficiently
large integers n divisible by k,

n
2
is determined by explicit divisibility conditions on n and k.

We are interested in tilings when k = 3 and ¢ = 2, where some interesting results have recently
developed. (In what follows, we abbreviate t3(n, Hy) to t(n, Hp).) As usual, let K denote the
complete 3-graph on 4 vertices. Let K} — e denote its subhypergraph consisting of 3 edges, and

t]lz—l(na Kllj) =

k+eéekn, where e, € {g, 2, g, 3}

The third author was partially supported by NSF grant DMS 1001781.
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let K3 — 2e denote its subhypergraph consisting of 2 edges. Kiihn and Osthus [4] proved that
t(n, K} — 2e) = (14 o(1))n/4. Recently, Lo and Markstrém [6] [7] have shown that t(n, K} — ¢) =
(1 + o(1))n/2 and that t(n,K3) = (1 + 0(1))3n/4. Keevash and Mycroft [3] showed the exact
counterpart that, for sufficiently large integers n divisible by 4, t(n, K}) = (3n/4) — &,, where
en = 2 if 8|n and &,, = 1 otherwise. We shall prove the following exact result for K ;Z’ — 2e.

Theorem 1.1. For all sufficiently large integers n divisible by 4,

{ 1 when 7 is odd,

3 [e— pr—
t(n, Ky — 2e) 241 when % is even.

The proof of Theorem [[T] spans Sections 2l and Bl We mention that an essential ingredient in our
proof is the ‘absorption technique’ (see Section [B]) of Rédl, Rucinski and Szemerédi.

In the remainder of this paper, we shall make the abbreviation D = K3 —2e. (In the papers [4,[9],
D = K} — 2e was abbreviated by C and Ci”l, respectively, since for those authors, Ki — 2e was
viewed as a type of cycle.) In the remainder of this introduction, we discuss the main concept used
in the proof of Theorem [T} that of an ‘c-extremal’ 3-graph (for D = K} — 2e).

1.1. Theorem [I.1] and c-extremal 3-graphs. To motivate the concept of an e-extremal 3-graph
(stated in the upcoming Definition [[2]), we first observe the following constructions for the lower
bounds of Theorem [L.11

Let A be a set of 7 — 1 vertices, and let B be a set of 37" + 1 additional vertices. Define
Gy = (AEJB) \ (?), and note that 62(Go) = § — 1. When % is even, add any Steiner triple systenﬂ
on vertex set B to Gyo, and call this hypergraph G1, where we note that d2(G1) = §. Since G;[B],
i = 0,1, is D-free, every copy of D in G; contains at least one vertex of A, and so Gj; is not
D-tileable.

Definition 1.2 (e-extremal). Let € > 0 be given, and suppose G is a 3-graph of order n. We say
G is e-extremal if there exists S C V(G) of size |S| > (1 — )22 for which G[S] is D-free.

While the lower bound constructions for Theorem [Tl motivate the concept of Definition [[L.2] the
following fact indicates why we choose the terminology ‘extremal’.

Fact 1.3. Let G be a 3-graph on n vertices, where n is divisible by 4, satisfying
n

n hen % is odd
> 1 w 4 7
62(G) > { 2 +1 when ¥ is even. .

Then any S C V(G) for which G[S] is D-free satisfies |S| < 2n.

Proof. Since G[S] is D-free, when 7§ is even, we have & +1 < 62(G) < n — (|| — 1), and the
result follows. When 2 is odd, suppose some Sy C V(G) exists of size 2 + 1 for which G[So] is
D-free. Since G[Sy| is not an STS (since %T" + 1 # 1,3 (mod 6)), some pair s,s" € Sy satisfies
N(s,s") NSy =0, in which case § < [N(s,s)] <n —[Sp|, and the result follows. O

Now, the upper bounds in Theorem [Tl follow immediately from the following two statements.

Theorem 1.4 (Theorem [[LT]— extremal case). There exists g > 0 so that, for all sufficiently large
integers n divisible by 4, the following holds. Whenever G is a 3-graph of order n satisfying (1)
and which is eg-extremal, then G is D-tileable.

We prove Theorem [I.4] in Section

LA Steiner triple system (STS) is a 3-graph H where 82(H) = As(H) = 1. It is well-known that an STS of order
m exists if, and only if, m = 1,3 (mod 6).
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Theorem 1.5 (Theorem [T — non-extremal case). For every € > 0 and for all sufficiently large
integers n divisible by 4, the following holds. Whenever G is a 3-graph of order n satisfying (1)
(see Remark[1.0), which is not e-extremal, then G is D-tileable.

We prove Theorem [LL5] in Section Bl

Remark 1.6. We mention that Theorem can be proved, for the same money, under a slightly
weaker hypothesis than ({l). In particular, Theorem remains valid if one only assumes that
32(G) > (n/4)(1 — =), for a constant v > 0 sufficiently smaller than e.

2. PROOF OF THEOREM [I.4]

We shall use the following theorem of Pikhurko [§], stated here in a less general form.

Theorem 2.1 ([8], Theorem 3). Let H be a 4-partite 4-graph with 4-partition V(H) = V3 U Vo U
Vs U Vy, where |Vi| = -+ = |Vy| =m. Let 6(V}) = min{|N(v1)| : v1 € V1} and

0(Va, V3, Vy) = min{| N (ve,vs,v4)| : v2 € Vo, v3 € V3, vg € Vy}.
For v > 0 and a sufficiently large integer m, if
mé(Vi) +m?®6(Va, Va, Vi) = (1 +~)m’,
then H contains a perfect matching.

To prove Theorem [[4] it suffices to take eg = 107'®, and we shall take n sufficiently large,
whenever needed. We write n = 4k and o® = p. Let G be a 3-graph of order n satisfying ()
which is gg-extremal. We prove that G is D-tileable, and will construct a D-tiling in stages. In
particular, we will build vertex-disjoint partial D-tilings O, R, S and T whose union is a D-tiling
of GG. To build these partial tilings, we need a few initial considerations.

To begin, let Z C V(G) be a maximal set for which G[Z] is D-free. Define

X:{meV(G)\Z:‘N(w)ﬂ(i)‘z(l—a)C?)}, (2)
and Y = V(G) \ (X UZ). We estimate each of the quantities in | X |+ Y|+ |Z| = 4k = n:

k(1 —40?) < |X| < k(1+3s), 0<|Y|<4a?k, 3k(1—eg) <|Z| < 3k, (3)

ie., |Y]is small, | X| is around n/4 and |Z] is around 3n /4. Indeed, the third estimate in (B]) follows
from our hypothesis and Fact To see the second estimate, for W C X UY, write G[Z, Z, W]
for the collection of triples of G consisting of two vertices from Z and one vertex from W. Then,

(k — 1)<‘§‘> <|GZ,Z,XUY]|<(1- a)<‘§‘>\Y] - <‘§‘>\X!,

so that k —1+a|Y| < |X|+4|Y|. The estimate on |Z| implies that | X|+ |Y| < k+ 320k, and so we
have the second estimate of ([B]). Finally, our bounds on |Y| and |Z| render the first estimate in (3]).
Let us also check that (3]) implies that

V21,29 € Z, |N(21,ZQ)QX| 2(1—(1)|X|. (4)
Indeed, since |N(z1,22) N Z| < 1, we have

@ 1 —5a2
> X| > (1-— X|.
S X 2 (-l

We now introduce the first of our partial D-tilings, namely, O.

5]
IN(z1,22) N X| > k—1— Y] > (1 502k
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The partial D-tiling Q. Let Q be a largest D-tiling in G for which each element Dy € O has
three vertices in Z and one vertex in Y. Write ¢ = |Q], write Yo C Y for the set of vertices of YV’
covered by Q, and write Zg C Z for the set of vertices of Z covered by Q. Clearly, |Yg| = ¢ and
|Zg| = 3q. Write ¢ = k — | X, where we note from (3] that

—3eok < L=k — |X| < 40’k. (5)
For future reference, we make the following two claims.

Claim 2.2. ¢ > /(=Fk — |X]|.

Proof. If £ < 0, there is nothing to show. If £ = 1, we have |Y U Z| = 3k + 1, and thus Fact [[.3]
implies that G[Y U Z| contains a copy of D, which requires |Y'| > 1. Now, if ¢ = 0, then we could
move a vertex from Y to Z, which contradicts the maximality of Z. Finally, suppose £ > 2, and
observe that the quantity |G[Z, Z,Y]| = |G[Z, Z,Yo|| + |G| Z, Z,Y \ Ypl| satisfies that

e-0('7) <iciz zvy <ol -7« (E5E jz0)121) v vol

2 2
Z Z|—3 @ VA
=q(1 — ) <’2 ’> + (HTQ + 3q|Z|> (|Y| — q) < q(l —a) <’2 ’> + 16a2q|Z|k‘.
Now, if ¢ < ¢ — 1, then
o’k @
1<1-— 2 <1—a+16a?
< a+3 Z—1 = a4+ 16a~,
a contradiction. ]
Note that, on account of the claim above,
® 2, @ 5
0<q—10<|Y|+ 30k <|Y|+4a"k < 8a’k. (6)

Claim 2.3. Forally€ Y \Yg and z € Z\ Zg, |[N(y,z) N X| > (1 — a)|X].

Proof. Fixy € Y \Yg and z € Z\ Zg. By the maximality of Q, we have |N(y,2)NZ| < |Zg|+1 =
3q + 1. As such, since |Y| > ¢, we have

(1231) 1 — 1602

©
IN(y,2) N X|>k—3g+1)— (Y| —-1) > k—4]Y]| > (1—160[2)]{3
14 3eg

[ X] = (1= a)lX].
O

The partial D-tiling R. We now use () and Claim 23] to build a collection R of |Y \ Yo
vertex-disjoint copies of D, each with 1 vertex in Y\ Yy, 1 vertex in X, and two vertices in Z \ Zg.
For sake of argument, assume |Y \ Yg| > 1. Inductively, assume we have obtained 0 < ¢ < |Y'\ Yo
vertex-disjoint copies of D, each with 1 vertex in Y\ Yg, 1 vertex in X, and two vertices in Z \ Zg.
Arbitrarily select an uncovered 3’ € Y\ Yo and uncovered z{, 25, € Z\ Zg, noting that the latter is
possible since at most |Zg|+2i < 5|Y| < |Z]—2 (cf. [B]) vertices in Z are unavailable for selection.
Since |[N(y, 21)NN (21, 25)NX| > (1—2a)| X |, we have at least (1—2a)|X|—i > (1—2a)|X|—]Y| >0
(cf. @) choices for an uncovered vertex 2’ € X, to complete the (i + 1)* copy of D.

Note that all vertices of Y are covered by Q or R. Let Zgr D Zg denote the set of vertices of
Z covered by Q or R, and let X% denote the set of vertices of X covered by R (no vertices of X
were covered by Q). Observe that

X\ Xz| = [X[ = (Y] = [Yol]) = k = [Y[+ (¢ — £), and

1Z\ Zorl = 12| = Zo| = 2(IY| = |Yol) = 3(k = [Y]) = (¢ = 1), (7)
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where we used that |Z| = 4k — | X| —|Y| =3k + ¢ —|Y|.

The partial D-tiling S. We now obtain a collection S of ¢ — ¢ vertex-disjoint copies of D,
each with 2 vertices in X \ Xz and 2 vertices in Z \ Zg . Indeed, arbitrarily pick vertices
21,20, 2t 2(’1_5 € Z\ Zg R, which is possible since

1Z\ Zor|—2(q—0) @ 3k — Y| = (¢—10) ('3]2@ 3k(1 — 120%) > 2.

Inductively, assume we have covered 0 < i < g — ¢ pairs 21, 2], ..., %, 2, by vertex-disjoint copies
Dy,..., D of D, where each D;, 0 < j <14, has vertices {zj, 2}, z;, 2}, where z;, 2" € X'\ Xr. We
infer from (4)) that

|N(z1,zi)ﬂ(X\(XRU{x1,x/1,...,xi,xg})ﬂ > (1—a)|X|—|Xr|-2i > 1—a)|X|—|Y|—-2(qg—¥) > 2,

where the last inequality holds on account of (B]) and (@). We thus obtain the (i 4+ 1)** copy of D.
Let ZgRr.s D Zgr denote the set of vertices of Z covered by Q, R or &, and let Xr s D Xz
denote the set of vertices of X covered by R or S. Set m := |X \ Xz s| and note that

m =X\ Xps| Dk Y|~ (g—0) and |2\ Zors| D3k -1V~ (a-0)=3m. (8
We conclude the proof of Theorem [[4] by building the remaining partial D-tiling 7.

The partial D-tiling 7. Arbitrarily partition Z \ Zgr.s = Z1 U Z2 U Z3 into three sets of size
m, and for simplicity of notation, write Xo = X \ Xr s. Define the following auxiliary 4-partite 4-
graph H with 4-partition V(H) = XoU Z; U ZyU Z3, obtained by including each {x, 21, 22, 23} € H,
x € Xo, z; € Z; for i = 1,2,3, if {x, 21, 29,23} spans a copy of D in G. We claim that H satisfies
the hypothesis of Theorem 2] with v = 1/2, and hence contains a perfect matching, which will
then define 7 and finish our proof of Theorem [[.4]

To bound §p (21, Z2, Z3), fix 21 € Z1, 29 € Zy, 23 € Z3. We infer from () that

INp (21,22, 23)| > [ Na(z1,22) N Na(z1,23) N Xo| > (1 - 20)|X| — | Xprs|

@), @ G
> (1-2a)X|—|Y|-2(¢—0) > (1-2a)|X|-20a’k > ((1-2a)((1 —4a?) - 20a?))k
® 1 - 26a
>
— 14 3¢9
Thus, 6H(Zla ZQ, Zg) > (1 — 27a)m.
To bound dg(Xy), fix x € Xo, and for clarity of notation in what follows, write Ng(z) = G,.

By the definition of X, we have that |G,[Z]| > (1 — oz)('%‘), and so all but at most \/a|Z| vertices
z € Z satisfy that degg, [7)(2) > (1 — V/@)|Z]. For each such 2 € Z and i = 1,2, 3,

| X| > (1 —27a)|X| > (1 —270)| Xo| = (1 — 27a)m.

Ne,(2) N Zi| > (1~ Va)|Z| ~ | Zor.s| —2m & m — valz| = <1 - \/5%’) m

Since, by ) and (&), we have

D |z|
>

@, @
3m =|Z|—|Zors| = |Z|-(3q+2(|Y|—q)+2(q—0)) > |Z|-5|Y|+2¢ > |Z| 2602k > 9)

we conclude that

|Ng, (2) N Zi| > (1 — 6/a)m.
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As such,

VB

Nu(@) = Y [No.(21) N Zol[No, (21) 0 Zs] = (m — ValZ]) (1 - 6v/a) m)® > (1 - 6va) m?,

Z1€21

and so 0y (Xg) > (1 — 234/a)m?.
The obtained bounds on dg(Z1, Z2, Z3) and d5(Xp) then implies

mdp(Xo) + m*oy(Z1, Z3, Z3) > (2 — 234y/a — 27a) m* > (2 — 261y/a) m* > gm4

so that, as claimed, H satisfies the hypothesis of Theorem 2. with v = 1/2.

3. PROOF OF THEOREM

Our proof of Theorem is based on the following two lemmas, the second of which mirrors an
‘absorption’ lemma of Rédl, Ruciriski and Szemerédi [9].

Lemma 3.1. For all v > 0 and sufficiently large integers m divisible by 4, the following holds. Let
H be a 3-graph of order m. If 5o(H) > (i - 7) m and H is not (87y)-extremal, then H admits a
D-tiling covering all but 50/~ vertices.

Lemma 3.2. For all « > 0 and sufficiently large integers n divisible by 4, the following holds. Let
G be a 3-graph of order n. If 62(G) > n/4, then there exists A C V(G) of size |A| < an so that, for
every W C V' \ A of size |W| < 50/a for which |AUW| is divisible by 4, the hypergraph G[AU W]
s D-tileable.

We defer the proofs of Lemmas [B.1] and to Sections B.1] and respectively in favor of first
proving Theorem

Proof of Theorem[I.d. Let € > 0 be given, together with a sufficiently large integer n which is
divisible by 4. Let G be a 3-graph of order n satisfying (Il) which is not e-extremal. For a = ¢/9,
let A C V(G) be the set given by Lemma B2l Set H = G[V \ A], and write m = n — |A|.

We claim that H satisfies the hypothesis of Lemma B.I] with v = «.. Indeed, note that

52(H)zg—\Alzg—om:<i—a>n2<%—a>m.

Observe, moreover, that H is not (8«)-extremal. Indeed, if S C V(H) satisfies that H[S] is D-free,
then G[S] is also D-free, and if

‘S‘2(1_804)3%:(1_8(1)2(”_“‘4’)2(1—8a)(1—a)3n 3n . In

then G would be e-extremal, a contradiction.

Lemma [B.J] implies that H admits a D-tiling covering all but 50/« vertices. Set W C V(H) to
be the set of vertices (if any) uncovered by this D-tiling. Since |V (H)\ W/| is divisible by 4, it must
be that |AU W/| is divisible by 4, and so Lemma [3.2] guarantees that G[A U W] is D-tileable. Thus,
G is D-tileable.

]



3.1. Proof of Lemma [B.Il Let v > 0 be given, and let m be a sufficiently large integer which
is divisible by 4. Let H be a 3-graph of order m, which is not (8y)-extremal, and for which
do(H) > (% — ’y) m. We prove that H contains a D-tiling covering all but 50/~ vertices. To that
end, let M be a maximum D-tiling in H, but assume, on the contrary, that M leaves more than
50/~ vertices uncovered.

We use the following notation and terminology. Let V4 denote the set of vertices of H covered
by M, and let W = V(H) \ V. For a vertex v € Vg, write H,[W] for Ng(v) N (Vg), and say
that v € Vg is W-big if |H,[W]| > 10|W|, and W -small otherwise. Observe that every element
Dy € M contains at most one W-big vertex. Indeed, assuming otherwise, let u,v € V(Dy) both
be W-big vertices. Since |H,[W]| > 10|W| > |W|/2, the graph H,[W] contains a path of length 2,
with vertices denoted by wy,ws, ws. The graph H,[W \ {wi,ws, w3}] then has size

[Hy WA {wr, we, wa}]| > [Hy[W]| = 3[W[ = 7IW| > [W]/2, (10)

and so H,[W \ {w1, w2, ws}] contains a path of length 2, with vertices denoted by w}, w), wj. Then,
{u, wy,we, w3} and {v, w],wh, wh} span vertex-disjoint copies of D, which can replace Dy in M to
contradict that M was a maximum D-tiling in H.
Now, write B for the set of W-big vertices v € Vi, and write |B| = b. We now observe that
1

b > (Z — 27) m. Indeed, write H[W, W, V)] for the set of triples from H containing exactly two

vertices from W. From our definitions above, note that
W]
2

On the other hand, the maximality of M implies that H[W] is D-free, and so

[HW, W, V]| > <<i —’y) m— 1) <|V2V|>.

The inequalities above imply that

po (LN, 20m (1 dom
=\177 wi—1=\1 " Wl

and by our assumption that |[W| > 50/v, we infer that b > (1 —2v) m, as claimed.

Now, write Mp C M for elements of M which contain a W-big vertex, and let V), denote the
set of vertices of H covered by Mp. Then, Sp = Vi, \ B consists of W-small vertices and we have
|Sp| = 3|B| > (1 — 8y)3m/4. Since H is not (8y)-extremal, H[Sp| contains a copy Dy of D, say
with vertices vy, v9,v3,v4. Let uq, uo, ug, ug denote the W-big vertices corresponding to vy, ve, vz, vy,
respectively, in Mp. Among uq,...,uy, at least two and at most 4 are distinct, and so w.l.o.g.,
let wy,...,u;, for some j € {2,3,4}, denote the distinct vertices of uy,...,us. For 1 <i < j, let
D,; € Mp be the element containing wu;.

Similarly to ({I0)), the definition of a W-big vertex will guarantee, for each 1 < i < j, the existence
of a 2-path Py(u;) C Hy,[W] so that Py(u1),...,P>(uj) are each pair-wise vertex-disjoint. Indeed,
if we already have the desired 2-paths Py(u1),..., Pa(u;—1), where 2 <i < j <4, then

|H[W, W, V]| < b <3oywy + ('2/|>>+40(\M\—b)\W\ < b< >+40\MHW! < b<|2/|>+10m\W\.

| H, [WA(V(Po(wn)) 0 --OV (Pawica)) ]| 2 1 H (W] =3G=DIW| = [H, W] -91W | = (W] > [W]/2,

and so there exists a 2-path Ps(u;) C H,,,[W] which is vertex-disjoint from each of Ps(uy), ..., Pa(ui—1).
Clearly, for each 1 < i < j, {u;} UV (P(u;)) spans a copy of D, which we shall denote as
DY, Then, D“' ... D% are pair-wise vertex-disjoint copies of D, and so, deleting from M the
elements D1,...,D; and adding Do, D“,..., D% contradicts that M was a maximum D-tiling.
This concludes the proof of Lemma B.11
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3.2. Proof of Lemmal[3.2]— Absorption. We shall prove the following stronger form of Lemma[3.2]
which allows for a smaller co-degree and larger choices of subset W.

Lemma 3.3 (Lemma - strong form). For all a,6 > 0, there exists w > 0 so that for all
sufficiently large integers n divisible by 4, the following holds. Let G be a 3-graph of order n. If
32(G) > on, then there exists A C V(G) of size |A| < an so that, for every W C V \ A of size
|W| < wn for which |AUW| is divisible by 4, the hypergraph G[A U W] is D-tileable.

Our proof of Lemma will be based on Proposition B.5] for which we need the following
definition.

Definition 3.4. Suppose G is a 3-graph with vertex set V', and let U € (Z) We say that a set

S e (VQU) absorbs U if G[S] is D-tileable and G[S U U] is D-tileable.

Proposition 3.5. For all § > 0, there exists o > 0 so that for all sufficiently large integers n, the
following holds. Suppose G is a 3-graph with vertex set V of order |V| = n for which d2(G) > n.
For each U € (Z), there are on® sets S € (‘g) which absorb U.

To prove Proposition B, we require the following well-known ‘supersaturation’ result of Erdés [1]
(stated here only in special case form).

Theorem 3.6 (Erdés [1]). For all ¢ > 0 there exists co > 0 so that for all sufficiently large integers
n, the following holds. If H is a 3-graph of order n and size |H| > cin3, then H contains at least
can? copies of K§’73’3 (the balanced complete 3-partite 3-graph of order 9).

Proof of Proposition[33. Let 6 > 0 be given. Let ¢; = /36, and let ¢ > 0 be the constant
guaranteed by Theorem [3.61 We define o = ¢o, and in all that follows, we take n to be a sufficiently
large integer. Let G be a 3-graph with vertex set V' of order |V| = n for which d3(G) > dn. Fix
U = {uy,us,u3,us} C V. We prove there are on® sets S € (‘8/) which absorb U.

To that end, define Vi = N (uy,u2), Vo = N(us,uy) and

Vs = U {N(Ul,vg) : (Ul,UQ) eV x Vg}.

Note that V3 UVoUV3 is not necessarily a partition, but it will not be difficult to find pairwise disjoint
subsets W; C V;, i = 1,2, 3, for which |G[Wy, Wy, W3]| > e1n3. To that end, let Wy C Vi \ {us, us}
be any set of size (exactly) [dn/3] (recall [Vi| > dn). Let Wy C Vo \ (W7 U {uq,u2}) be any set of
size (exactly) [dn/3] (recall [Va| > dn). Now, set W3 = V3 \ (W7 U Wa U {u1,us,us,us}). Then,
onl? on §3n3
G[Wy, Wy, W3]| = N(wy,w)) "Wy| > | —| [n—2]|=|—-4)>— =cn’.
|G[W1, Wa, W3]| > [N (w,ws2) 3|_{3-‘<n {3-‘ >_36 cn
(w1,w2)EW1 xWo
Now, set H = G[W1, Wa, W3], which we view as a hypergraph of order n. Since H has size |H| >
c1n?, Theorem guarantees that H has at least con® = on” copies of K§’7373. Note that each such
copy has exactly 3 vertices in each of W7y, Wy, W3 and that, for some fixed wg € W3 (it doesn’t matter
which), at least on® such copies contain the vertex ws. Let {wy,w],w/,ws, wh, wh, ws, wh, w}
denote the vertex set of such a copy, where w;, w;, w! € W;, i = 1,2,3. We claim that
SU = SU(ZUg) = {Ull, w/17 wll/v wa, wl27 wélv wé) w/3/

absorbs the set U (see Figure[Il). Indeed,
Sl = {{wla wa, wg}7 {wi7 w3, wé}} ) S2 = {{w/{) w/27 wg}v {w/{) w/2,7 wg }
is a D-tiling of G[Sy] and

Tl = {{u17u27w1}7 {u17u27w/1}}7 T2 = {{U3,’LL4,’[U2}, {U3,U4,w/2}}, T3 = {{w,{’wg’wé}’ {w,1/7w/2,7wg }
8
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FIGURE 1. Absorbing structure.
is a D-tiling of G[Sy U U].

Finally we use Proposition to prove Lemma

Proof of Lemma- Let a,0 > 0 be given. Let 0 = o(§) > 0 be the constant guaranteed by
Proposition B35l We define
B ac? 1
W= 128 (11)
In all that follows, we take n to be a sufficiently large integer divisible by 4. Let G be a given
3-graph with vertex set V of order |V| = n for which d5(G) > dn. We prove that G admits a set
A C V described in the conclusion of Lemma B3l To produce the desired set A, we employ the
well-known deletion method in probabilistic combinatorics.
To begin, set p = (1/16)aon™7, and let H = H®) (n,p) be the binomial random 8-uniform
hypergraph with n-element vertex set V. We note several basic properties of H (due to the Chernoff
inequality, unless otherwise indicated):

(1) With probability 1 — exp{—n/logn},

1
H| <2 < -«
m<2(y) <3
(11) Let H® H = {(S1,52) € Hx H: Sy NSy # (0}. Then,

ny (1Y 9 L 5,
< < — .
E[|H ® H| _8<8> <7>p S gg¥on

As such, by the Markov inequality,

1 1
Pr|[H®H| > 2o%n| < 5
r[| ® H 280(0’71}_2,

(iii) For U € ( ) let A(U) be the collection of sets S € ( ) which absorb U. By Proposition 3]
|A(U)| > on®, and so with probability 1 — exp{—n/logn}, H satisfies that for every
Ue(y).

1 1,
[A(U) NH| > §p|A(U)| > 350 .

9



Let H be an instance of H for which properties (i)—(ii7) hold (and specifically, where |H ® H| <
a?0?n/128). Now,
(a) delete any S € H for which there exists S’ € H for which SN S’ # (). This deletes at most

0420'277, 0420'277,

2X 58 T Toa

elements S € H;
(b) delete any S € H for which no U € (Z) has S € A(U).

The resulting hypergraph is then, importantly, a (partial) matching M in V. Let m := |M]|,
{S1,...,8n} = M, and A :=J"| S; (the set of vertices covered by M). We now confirm that A
satisfies its claimed properties.

Observe from (7) that |A| = 8| M| < an, as promised. Now, let W C V' \ A have size 4t := |[W| <
wn (cf. (II) and then arbitrarily partition W into 4-sets {W1, Wa, ..., Wi} = W.

Note that by (iii), (a), and (1) we have that for all W; € W,

JAW,) N M| > 3%a02n — 6%10420271 > éaazn > %

So for each W; € W we can greedily choose some unique S, € A(W;) C M, which guarantees that
each of G[S]UW4],...,G[S;UW;] are D-tileable. Finally, since G[S] is D-tilable for all S € M (by
(b) and Definition 3.4]), and since {Sy,..., S, W1,...,W;} is a partition of AU W, we infer that
G[AU W] is D-tileable as desired.

> 1.

0
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