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TILING 3-UNIFORM HYPERGRAPHS WITH K3
4 − 2e

ANDRZEJ CZYGRINOW, LOUIS DEBIASIO, AND BRENDAN NAGLE

Abstract. Let K3

4 − 2e denote the hypergraph consisting of two triples on four points. For an
integer n, let t(n,K3

4 − 2e) denote the smallest integer d so that every 3-uniform hypergraph G
of order n with minimum pair-degree δ2(G) ≥ d contains ⌊n/4⌋ vertex-disjoint copies of K3

4 − 2e.
Kühn and Osthus [4] proved that t(n,K3

4 − 2e) = n

4
(1 + o(1)) holds for large integers n. Here, we

prove the exact counterpart, that for all sufficiently large integers n divisible by 4,

t(n,K3

4 − 2e) =

{

n

4
when n

4
is odd,

n

4
+ 1 when n

4
is even.

A main ingredient in our proof is the recent ‘absorption technique’ of Rödl, Ruciński and Szemerédi.

1. Introduction

For a fixed k-graph H0 of order m, we say that a given k-graph G of order n is H0-tileable if G
contains, as subhypergraphs, ⌊n/m⌋ vertex-disjoint copies of H0. Now, suppose G has vertex set

V , and for an integer 1 ≤ ℓ ≤ k, let U ∈
(

V
ℓ

)

be given. As is customary, let

N(U) = NG(U) =

{

W ∈
(

V

k − ℓ

)

: U ∪W ∈ E(G)

}

and δℓ(G) = min

{

|N(U)| : U ∈
(

V

ℓ

)}

denote, respectively, the neighborhood of U in G, and the ℓ-degree of G. Define tkℓ (n,H0) to be the
smallest integer d so that every k-graph G of order n for which δℓ(G) ≥ d holds is H0-tileable.

In the case of graphs (k = 2), t21(n,H0) is known, up to an additive constant, for every fixed graph
H0 (see [5]). Furthermore, there are some graphs H0 for which t21(n,H0) is known exactly. The
most celebrated such result is the Hajnal-Szemerédi theorem [2], which says that for the r-clique
H0 = Kr and for n divisible by r,

t21(n,Kr) =

(

1− 1

r

)

n.

A recent result of Wang [10] shows that for all integers n divisible by 4, t21(n,C4) =
n
2 . This result

is a special case of the well-known El-Zahar conjecture, and had been independently conjectured
by Erdős and Faudree.

In the case of hypergraphs (k ≥ 3), much less is known about tiling problems. For only the
k-edge H0 = Kk

k (the tiling of which is a perfect matching) is tkk−1(n,H0) known for all k ≥ 3. This
significant result is due to Rödl, Ruciński and Szemerédi [9], and asserts that for all sufficiently
large integers n divisible by k,

tkk−1(n,K
k
k ) =

n

2
− k + εk,n, where εk,n ∈

{

3

2
, 2,

5

2
, 3

}

is determined by explicit divisibility conditions on n and k.
We are interested in tilings when k = 3 and ℓ = 2, where some interesting results have recently

developed. (In what follows, we abbreviate t32(n,H0) to t(n,H0).) As usual, let K3
4 denote the

complete 3-graph on 4 vertices. Let K3
4 − e denote its subhypergraph consisting of 3 edges, and

The third author was partially supported by NSF grant DMS 1001781.
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let K3
4 − 2e denote its subhypergraph consisting of 2 edges. Kühn and Osthus [4] proved that

t(n,K3
4 − 2e) = (1 + o(1))n/4. Recently, Lo and Markström [6, 7] have shown that t(n,K3

4 − e) =
(1 + o(1))n/2 and that t(n,K3

4 ) = (1 + o(1))3n/4. Keevash and Mycroft [3] showed the exact
counterpart that, for sufficiently large integers n divisible by 4, t(n,K3

4 ) = (3n/4) − εn, where
εn = 2 if 8|n and εn = 1 otherwise. We shall prove the following exact result for K3

4 − 2e.

Theorem 1.1. For all sufficiently large integers n divisible by 4,

t(n,K3
4 − 2e) =

{

n
4 when n

4 is odd,
n
4 + 1 when n

4 is even.

The proof of Theorem 1.1 spans Sections 2 and 3. We mention that an essential ingredient in our
proof is the ‘absorption technique’ (see Section 3) of Rödl, Ruciński and Szemerédi.

In the remainder of this paper, we shall make the abbreviation D = K3
4−2e. (In the papers [4, 9],

D = K3
4 − 2e was abbreviated by C and C3,1

4 , respectively, since for those authors, K3
4 − 2e was

viewed as a type of cycle.) In the remainder of this introduction, we discuss the main concept used
in the proof of Theorem 1.1, that of an ‘ε-extremal’ 3-graph (for D = K3

4 − 2e).

1.1. Theorem 1.1 and ε-extremal 3-graphs. To motivate the concept of an ε-extremal 3-graph
(stated in the upcoming Definition 1.2), we first observe the following constructions for the lower
bounds of Theorem 1.1.

Let A be a set of n
4 − 1 vertices, and let B be a set of 3n

4 + 1 additional vertices. Define

G0 =
(

A∪B
3

)

\
(

B
3

)

, and note that δ2(G0) =
n
4 − 1. When n

4 is even, add any Steiner triple system1

on vertex set B to G0, and call this hypergraph G1, where we note that δ2(G1) =
n
4 . Since Gi[B],

i = 0, 1, is D-free, every copy of D in Gi contains at least one vertex of A, and so Gi is not
D-tileable.

Definition 1.2 (ε-extremal). Let ε > 0 be given, and suppose G is a 3-graph of order n. We say
G is ε-extremal if there exists S ⊂ V (G) of size |S| ≥ (1− ε)3n4 for which G[S] is D-free.

While the lower bound constructions for Theorem 1.1 motivate the concept of Definition 1.2, the
following fact indicates why we choose the terminology ‘extremal’.

Fact 1.3. Let G be a 3-graph on n vertices, where n is divisible by 4, satisfying

δ2(G) ≥
{

n
4 when n

4 is odd,
n
4 + 1 when n

4 is even.
(1)

Then any S ⊂ V (G) for which G[S] is D-free satisfies |S| ≤ 3
4n.

Proof. Since G[S] is D-free, when n
4 is even, we have n

4 + 1 ≤ δ2(G) ≤ n − (|S| − 1), and the

result follows. When n
4 is odd, suppose some S0 ⊂ V (G) exists of size 3n

4 + 1 for which G[S0] is

D-free. Since G[S0] is not an STS (since 3n
4 + 1 6≡ 1, 3 (mod 6)), some pair s, s′ ∈ S0 satisfies

N(s, s′) ∩ S0 = ∅, in which case n
4 ≤ |N(s, s′)| ≤ n− |S0|, and the result follows. �

Now, the upper bounds in Theorem 1.1 follow immediately from the following two statements.

Theorem 1.4 (Theorem 1.1 – extremal case). There exists ε0 > 0 so that, for all sufficiently large
integers n divisible by 4, the following holds. Whenever G is a 3-graph of order n satisfying (1)
and which is ε0-extremal, then G is D-tileable.

We prove Theorem 1.4 in Section 2.

1A Steiner triple system (STS) is a 3-graph H where δ2(H) = ∆2(H) = 1. It is well-known that an STS of order
m exists if, and only if, m ≡ 1, 3 (mod 6).
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Theorem 1.5 (Theorem 1.1 – non-extremal case). For every ε > 0 and for all sufficiently large
integers n divisible by 4, the following holds. Whenever G is a 3-graph of order n satisfying (1)
(see Remark 1.6), which is not ε-extremal, then G is D-tileable.

We prove Theorem 1.5 in Section 3.

Remark 1.6. We mention that Theorem 1.5 can be proved, for the same money, under a slightly
weaker hypothesis than (1). In particular, Theorem 1.5 remains valid if one only assumes that
δ2(G) ≥ (n/4)(1 − γ), for a constant γ > 0 sufficiently smaller than ε.

2. Proof of Theorem 1.4

We shall use the following theorem of Pikhurko [8], stated here in a less general form.

Theorem 2.1 ([8], Theorem 3). Let H be a 4-partite 4-graph with 4-partition V (H) = V1 ∪ V2 ∪
V3 ∪ V4, where |V1| = · · · = |V4| = m. Let δ(V1) = min{|N(v1)| : v1 ∈ V1} and

δ(V2, V3, V4) = min{|N(v2, v3, v4)| : v2 ∈ V2, v3 ∈ V3, v4 ∈ V4}.
For γ > 0 and a sufficiently large integer m, if

mδ(V1) +m3δ(V2, V3, V4) ≥ (1 + γ)m4,

then H contains a perfect matching.

To prove Theorem 1.4, it suffices to take ε0 = 10−18, and we shall take n sufficiently large,
whenever needed. We write n = 4k and α3 = ε0. Let G be a 3-graph of order n satisfying (1)
which is ε0-extremal. We prove that G is D-tileable, and will construct a D-tiling in stages. In
particular, we will build vertex-disjoint partial D-tilings Q, R, S and T whose union is a D-tiling
of G. To build these partial tilings, we need a few initial considerations.

To begin, let Z ⊂ V (G) be a maximal set for which G[Z] is D-free. Define

X =

{

x ∈ V (G) \ Z :

∣

∣

∣

∣

N(x) ∩
(

Z

2

)
∣

∣

∣

∣

≥ (1− α)

(|Z|
2

)}

, (2)

and Y = V (G) \ (X ∪ Z). We estimate each of the quantities in |X|+ |Y |+ |Z| = 4k = n:

k(1− 4α2) ≤ |X| ≤ k(1 + 3ε0), 0 ≤ |Y | ≤ 4α2k, 3k(1− ε0) ≤ |Z| ≤ 3k, (3)

i.e., |Y | is small, |X| is around n/4 and |Z| is around 3n/4. Indeed, the third estimate in (3) follows
from our hypothesis and Fact 1.3. To see the second estimate, for W ⊂ X ∪ Y , write G[Z,Z,W ]
for the collection of triples of G consisting of two vertices from Z and one vertex from W . Then,

(k − 1)

(|Z|
2

)

≤
∣

∣G[Z,Z,X ∪ Y ]
∣

∣ ≤ (1− α)

(|Z|
2

)

|Y |+
(|Z|

2

)

|X|,

so that k− 1+α|Y | ≤ |X|+ |Y |. The estimate on |Z| implies that |X|+ |Y | ≤ k+3ε0k, and so we
have the second estimate of (3). Finally, our bounds on |Y | and |Z| render the first estimate in (3).

Let us also check that (3) implies that

∀z1, z2 ∈ Z, |N(z1, z2) ∩X| ≥ (1− α)|X|. (4)

Indeed, since |N(z1, z2) ∩ Z| ≤ 1, we have

|N(z1, z2) ∩X| ≥ k − 1− |Y |
(3)

≥ (1− 5α2)k
(3)

≥ 1− 5α2

1 + 3ε0
|X| ≥ (1− α)|X|.

We now introduce the first of our partial D-tilings, namely, Q.
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The partial D-tiling Q. Let Q be a largest D-tiling in G for which each element D0 ∈ Q has
three vertices in Z and one vertex in Y . Write q = |Q|, write YQ ⊂ Y for the set of vertices of Y
covered by Q, and write ZQ ⊂ Z for the set of vertices of Z covered by Q. Clearly, |YQ| = q and
|ZQ| = 3q. Write ℓ = k − |X|, where we note from (3) that

− 3ε0k ≤ ℓ = k − |X| ≤ 4α2k. (5)

For future reference, we make the following two claims.

Claim 2.2. q ≥ ℓ = k − |X|.
Proof. If ℓ ≤ 0, there is nothing to show. If ℓ = 1, we have |Y ∪ Z| = 3k + 1, and thus Fact 1.3
implies that G[Y ∪ Z] contains a copy of D, which requires |Y | ≥ 1. Now, if q = 0, then we could
move a vertex from Y to Z, which contradicts the maximality of Z. Finally, suppose ℓ ≥ 2, and
observe that the quantity |G[Z,Z, Y ]| = |G[Z,Z, YQ]|+ |G[Z,Z, Y \ YQ]| satisfies that

(ℓ− 1)

(|Z|
2

)

≤ |G[Z,Z, Y ]| ≤ |YQ|(1− α)

(|Z|
2

)

+

( |Z| − |ZQ|
2

+ |ZQ||Z|
)

∣

∣Y \ YQ

∣

∣

= q(1− α)

(|Z|
2

)

+

( |Z| − 3q

2
+ 3q|Z|

)

(

|Y | − q
)

(3)

≤ q(1− α)

(|Z|
2

)

+ 16α2q|Z|k.

Now, if q ≤ ℓ− 1, then

1 ≤ 1− α+ 32
α2k

|Z| − 1

(3)

≤ 1− α+ 16α2,

a contradiction. �

Note that, on account of the claim above,

0 ≤ q − ℓ
(5)

≤ |Y |+ 3ε0k ≤ |Y |+ 4α2k
(3)

≤ 8α2k. (6)

Claim 2.3. For all y ∈ Y \ YQ and z ∈ Z \ ZQ, |N(y, z) ∩X| ≥ (1− α)|X|.
Proof. Fix y ∈ Y \YQ and z ∈ Z \ZQ. By the maximality of Q, we have |N(y, z)∩Z| ≤ |ZQ|+1 =
3q + 1. As such, since |Y | ≥ q, we have

|N(y, z) ∩X| ≥ k − (3q + 1)− (|Y | − 1) ≥ k − 4|Y |
(3)

≥ (1− 16α2)k
(3)

≥ 1− 16α2

1 + 3ε0
|X| ≥ (1− α)|X|.

�

The partial D-tiling R. We now use (4) and Claim 2.3 to build a collection R of |Y \ YQ|
vertex-disjoint copies of D, each with 1 vertex in Y \YQ, 1 vertex in X, and two vertices in Z \ZQ.
For sake of argument, assume |Y \ YQ| ≥ 1. Inductively, assume we have obtained 0 ≤ i < |Y \ YQ|
vertex-disjoint copies of D, each with 1 vertex in Y \YQ, 1 vertex in X, and two vertices in Z \ZQ.
Arbitrarily select an uncovered y′ ∈ Y \YQ and uncovered z′1, z

′
2 ∈ Z \ZQ, noting that the latter is

possible since at most |ZQ|+2i ≤ 5|Y | ≤ |Z|−2 (cf. (3)) vertices in Z are unavailable for selection.
Since |N(y′, z′1)∩N(z′1, z

′
2)∩X| ≥ (1−2α)|X|, we have at least (1−2α)|X|−i ≥ (1−2α)|X|−|Y | > 0

(cf. (3)) choices for an uncovered vertex x′ ∈ X, to complete the (i+ 1)st copy of D.
Note that all vertices of Y are covered by Q or R. Let ZQ,R ⊃ ZQ denote the set of vertices of

Z covered by Q or R, and let XR denote the set of vertices of X covered by R (no vertices of X
were covered by Q). Observe that

|X \XR| = |X| − (|Y | − |YQ|) = k − |Y |+ (q − ℓ), and

|Z \ ZQ,R| = |Z| − |ZQ| − 2(|Y | − |YQ|) = 3(k − |Y |)− (q − ℓ), (7)
4



where we used that |Z| = 4k − |X| − |Y | = 3k + ℓ− |Y |.

The partial D-tiling S. We now obtain a collection S of q − ℓ vertex-disjoint copies of D,
each with 2 vertices in X \ XR and 2 vertices in Z \ ZQ,R. Indeed, arbitrarily pick vertices
z1, z

′
1, . . . , zq−ℓ, z

′
q−ℓ ∈ Z \ ZQ,R, which is possible since

|Z \ ZQ,R| − 2(q − ℓ)
(7)
= 3(k − |Y | − (q − ℓ))

(3), (6)

≥ 3k(1 − 12α2) ≥ 2.

Inductively, assume we have covered 0 ≤ i < q − ℓ pairs z1, z
′
1, . . . , zi, z

′
i by vertex-disjoint copies

D1, . . . ,Di of D, where each Dj , 0 ≤ j ≤ i, has vertices {zj , z′j , xj , x′j}, where xj, x′j ∈ X \XR. We

infer from (4) that
∣

∣N(z1, z
′
1)∩

(

X\(XR∪{x1, x′1, . . . , xi, x′i})
)∣

∣ ≥ (1−α)|X|−|XR |−2i ≥ (1−α)|X|−|Y |−2(q−ℓ) ≥ 2,

where the last inequality holds on account of (3) and (6). We thus obtain the (i+ 1)st copy of D.
Let ZQ,R,S ⊃ ZQ,R denote the set of vertices of Z covered by Q, R or S, and let XR,S ⊃ XR

denote the set of vertices of X covered by R or S. Set m := |X \XR,S | and note that

m = |X \XR,S |
(7)
= k − |Y | − (q − ℓ) and |Z \ ZQ,R,S |

(7)
= 3

(

k − |Y | − (q − ℓ)
)

= 3m. (8)

We conclude the proof of Theorem 1.4 by building the remaining partial D-tiling T .

The partial D-tiling T . Arbitrarily partition Z \ ZQ,R,S = Z1 ∪ Z2 ∪ Z3 into three sets of size
m, and for simplicity of notation, write X0 = X \XR,S . Define the following auxiliary 4-partite 4-
graph H with 4-partition V (H) = X0∪Z1∪Z2∪Z3, obtained by including each {x, z1, z2, z3} ∈ H,
x ∈ X0, zi ∈ Zi for i = 1, 2, 3, if {x, z1, z2, z3} spans a copy of D in G. We claim that H satisfies
the hypothesis of Theorem 2.1 with γ = 1/2, and hence contains a perfect matching, which will
then define T and finish our proof of Theorem 1.4.

To bound δH(Z1, Z2, Z3), fix z1 ∈ Z1, z2 ∈ Z2, z3 ∈ Z3. We infer from (4) that

|NH(z1, z2, z3)| ≥
∣

∣NG(z1, z2) ∩NG(z1, z3) ∩X0

∣

∣ ≥ (1− 2α)|X| − |XR,S |

≥ (1− 2α)|X| − |Y | − 2(q − ℓ)
(3), (6)

≥ (1− 2α)|X| − 20α2k
(3)

≥
(

(1− 2α)((1 − 4α2)− 20α2
)

)k

(3)

≥ 1− 26α

1 + 3ε0
|X| ≥ (1− 27α)|X| ≥ (1− 27α)|X0| = (1− 27α)m.

Thus, δH(Z1, Z2, Z3) ≥ (1− 27α)m.
To bound δH(X0), fix x ∈ X0, and for clarity of notation in what follows, write NG(x) = Gx.

By the definition of X, we have that |Gx[Z]| ≥ (1− α)
(

|Z|
2

)

, and so all but at most
√
α|Z| vertices

z ∈ Z satisfy that degGx[Z](z) ≥ (1−√
α)|Z|. For each such z ∈ Z and i = 1, 2, 3,

|NGx(z) ∩ Zi| ≥ (1−√
α)|Z| − |ZQ,R,S | − 2m

(8)
= m−√

α|Z| =
(

1−√
α
|Z|
m

)

m.

Since, by (3) and (8), we have

3m = |Z|−|ZQ,R,S| = |Z|−
(

3q+2(|Y |−q)+2(q−ℓ)
)

≥ |Z|−5|Y |+2ℓ
(3), (5)

≥ |Z|−26α2k
(3)

≥ |Z|
2

, (9)

we conclude that

|NGx(z) ∩ Zi| ≥ (1 − 6
√
α)m.

5



As such,

|NH(x)| ≥
∑

z1∈Z1

|NGx(z1) ∩ Z2||NGx(z1) ∩ Z3| ≥
(

m−√
α|Z|

) ((

1− 6
√
α
)

m
)2

(9)

≥
(

1− 6
√
α
)3

m3,

and so δH(X0) ≥ (1− 234
√
α)m3.

The obtained bounds on δH(Z1, Z2, Z3) and δH(X0) then implies

mδH(X0) +m3δH(Z1, Z3, Z3) ≥
(

2− 234
√
α− 27α

)

m4 ≥
(

2− 261
√
α
)

m4 >
3

2
m4

so that, as claimed, H satisfies the hypothesis of Theorem 2.1 with γ = 1/2.

3. Proof of Theorem 1.5

Our proof of Theorem 1.5 is based on the following two lemmas, the second of which mirrors an
‘absorption’ lemma of Rödl, Ruciński and Szemerédi [9].

Lemma 3.1. For all γ > 0 and sufficiently large integers m divisible by 4, the following holds. Let
H be a 3-graph of order m. If δ2(H) ≥

(

1
4 − γ

)

m and H is not (8γ)-extremal, then H admits a
D-tiling covering all but 50/γ vertices.

Lemma 3.2. For all α > 0 and sufficiently large integers n divisible by 4, the following holds. Let
G be a 3-graph of order n. If δ2(G) ≥ n/4, then there exists A ⊂ V (G) of size |A| ≤ αn so that, for
every W ⊂ V \A of size |W | ≤ 50/α for which |A ∪W | is divisible by 4, the hypergraph G[A ∪W ]
is D-tileable.

We defer the proofs of Lemmas 3.1 and 3.2 to Sections 3.1 and 3.2 respectively in favor of first
proving Theorem 1.5.

Proof of Theorem 1.5. Let ε > 0 be given, together with a sufficiently large integer n which is
divisible by 4. Let G be a 3-graph of order n satisfying (1) which is not ε-extremal. For α = ε/9,
let A ⊂ V (G) be the set given by Lemma 3.2. Set H = G[V \ A], and write m = n− |A|.

We claim that H satisfies the hypothesis of Lemma 3.1 with γ = α. Indeed, note that

δ2(H) ≥ n

4
− |A| ≥ n

4
− αn =

(

1

4
− α

)

n ≥
(

1

4
− α

)

m.

Observe, moreover, that H is not (8α)-extremal. Indeed, if S ⊂ V (H) satisfies that H[S] is D-free,
then G[S] is also D-free, and if

|S| ≥ (1− 8α)
3m

4
= (1− 8α)

3

4
(n− |A|) ≥ (1− 8α)(1 − α)

3n

4
≥ (1− 9α)

3n

4
= (1− ε)

3n

4
,

then G would be ε-extremal, a contradiction.
Lemma 3.1 implies that H admits a D-tiling covering all but 50/α vertices. Set W ⊂ V (H) to

be the set of vertices (if any) uncovered by this D-tiling. Since |V (H)\W | is divisible by 4, it must
be that |A∪W | is divisible by 4, and so Lemma 3.2 guarantees that G[A∪W ] is D-tileable. Thus,
G is D-tileable.

�
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3.1. Proof of Lemma 3.1. Let γ > 0 be given, and let m be a sufficiently large integer which
is divisible by 4. Let H be a 3-graph of order m, which is not (8γ)-extremal, and for which
δ2(H) ≥

(

1
4 − γ

)

m. We prove that H contains a D-tiling covering all but 50/γ vertices. To that
end, let M be a maximum D-tiling in H, but assume, on the contrary, that M leaves more than
50/γ vertices uncovered.

We use the following notation and terminology. Let VM denote the set of vertices of H covered
by M, and let W = V (H) \ VM. For a vertex v ∈ VM, write Hv[W ] for NH(v) ∩

(

W
2

)

, and say
that v ∈ VM is W -big if |Hv[W ]| ≥ 10|W |, and W -small otherwise. Observe that every element
D0 ∈ M contains at most one W -big vertex. Indeed, assuming otherwise, let u, v ∈ V (D0) both
be W -big vertices. Since |Hu[W ]| ≥ 10|W | > |W |/2, the graph Hu[W ] contains a path of length 2,
with vertices denoted by w1, w2, w3. The graph Hv[W \ {w1, w2, w3}] then has size

|Hv [W \ {w1, w2, w3}]| ≥ |Hv[W ]| − 3|W | ≥ 7|W | > |W |/2, (10)

and so Hv[W \{w1, w2, w3}] contains a path of length 2, with vertices denoted by w′
1, w

′
2, w

′
3. Then,

{u,w1, w2, w3} and {v,w′
1, w

′
2, w

′
3} span vertex-disjoint copies of D, which can replace D0 in M to

contradict that M was a maximum D-tiling in H.
Now, write B for the set of W -big vertices v ∈ VM, and write |B| = b. We now observe that

b ≥
(

1
4 − 2γ

)

m. Indeed, write H[W,W,VM] for the set of triples from H containing exactly two
vertices from W . From our definitions above, note that

|H[W,W,VM]| ≤ b

(

30|W |+
(|W |

2

))

+40(|M|−b)|W | ≤ b

(|W |
2

)

+40|M||W | ≤ b

(|W |
2

)

+10m|W |.

On the other hand, the maximality of M implies that H[W ] is D-free, and so

|H[W,W,VM]| ≥
((

1

4
− γ

)

m− 1

)(|W |
2

)

.

The inequalities above imply that

b ≥
(

1

4
− γ

)

m− 1− 20m

|W | − 1
≥

(

1

4
− γ

)

m− 1− 40m

|W | ,

and by our assumption that |W | > 50/γ, we infer that b ≥
(

1
4 − 2γ

)

m, as claimed.
Now, write MB ⊂ M for elements of M which contain a W -big vertex, and let VMB

denote the
set of vertices of H covered by MB . Then, SB = VMB

\B consists of W -small vertices and we have
|SB | = 3|B| ≥ (1 − 8γ)3m/4. Since H is not (8γ)-extremal, H[SB ] contains a copy D0 of D, say
with vertices v1, v2, v3, v4. Let u1, u2, u3, u4 denote the W -big vertices corresponding to v1, v2, v3, v4,
respectively, in MB . Among u1, . . . , u4, at least two and at most 4 are distinct, and so w.l.o.g.,
let u1, . . . , uj , for some j ∈ {2, 3, 4}, denote the distinct vertices of u1, . . . , u4. For 1 ≤ i ≤ j, let
Di ∈ MB be the element containing ui.

Similarly to (10), the definition of a W -big vertex will guarantee, for each 1 ≤ i ≤ j, the existence
of a 2-path P2(ui) ⊂ Hui

[W ] so that P2(u1), . . . , P2(uj) are each pair-wise vertex-disjoint. Indeed,
if we already have the desired 2-paths P2(u1), . . . , P2(ui−1), where 2 ≤ i ≤ j ≤ 4, then
∣

∣

∣
Hui

[

W\
(

V (P2(u1))∪· · ·∪V (P2(ui−1))
)

]
∣

∣

∣
≥ |Hui

[W ]|−3(i−1)|W | ≥ |Hui
[W ]|−9|W | ≥ |W | > |W |/2,

and so there exists a 2-path P2(ui) ⊂ Hui
[W ] which is vertex-disjoint from each of P2(u1), . . . , P2(ui−1).

Clearly, for each 1 ≤ i ≤ j, {ui} ∪ V (P2(ui)) spans a copy of D, which we shall denote as
Dui . Then, Du1 , . . . ,Duj are pair-wise vertex-disjoint copies of D, and so, deleting from M the
elements D1, . . . ,Dj and adding D0,D

u1 , . . . ,Duj contradicts that M was a maximum D-tiling.
This concludes the proof of Lemma 3.1.
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3.2. Proof of Lemma 3.2 – Absorption. We shall prove the following stronger form of Lemma 3.2,
which allows for a smaller co-degree and larger choices of subset W .

Lemma 3.3 (Lemma 3.2 - strong form). For all α, δ > 0, there exists ω > 0 so that for all
sufficiently large integers n divisible by 4, the following holds. Let G be a 3-graph of order n. If
δ2(G) ≥ δn, then there exists A ⊂ V (G) of size |A| ≤ αn so that, for every W ⊂ V \ A of size
|W | ≤ ωn for which |A ∪W | is divisible by 4, the hypergraph G[A ∪W ] is D-tileable.

Our proof of Lemma 3.3 will be based on Proposition 3.5, for which we need the following
definition.

Definition 3.4. Suppose G is a 3-graph with vertex set V , and let U ∈
(

V
4

)

. We say that a set

S ∈
(

V \U
8

)

absorbs U if G[S] is D-tileable and G[S ∪ U ] is D-tileable.

Proposition 3.5. For all δ > 0, there exists σ > 0 so that for all sufficiently large integers n, the
following holds. Suppose G is a 3-graph with vertex set V of order |V | = n for which δ2(G) ≥ δn.

For each U ∈
(

V
4

)

, there are σn8 sets S ∈
(

V
8

)

which absorb U .

To prove Proposition 3.5, we require the following well-known ‘supersaturation’ result of Erdős [1]
(stated here only in special case form).

Theorem 3.6 (Erdős [1]). For all c1 > 0 there exists c2 > 0 so that for all sufficiently large integers
n, the following holds. If H is a 3-graph of order n and size |H| ≥ c1n

3, then H contains at least
c2n

9 copies of K3
3,3,3 (the balanced complete 3-partite 3-graph of order 9).

Proof of Proposition 3.5. Let δ > 0 be given. Let c1 = δ3/36, and let c2 > 0 be the constant
guaranteed by Theorem 3.6. We define σ = c2, and in all that follows, we take n to be a sufficiently
large integer. Let G be a 3-graph with vertex set V of order |V | = n for which δ2(G) ≥ δn. Fix

U = {u1, u2, u3, u4} ⊂ V . We prove there are σn8 sets S ∈
(

V
8

)

which absorb U .
To that end, define V1 = N(u1, u2), V2 = N(u3, u4) and

V3 =
⋃

{

N(v1, v2) : (v1, v2) ∈ V1 × V2

}

.

Note that V1∪V2∪V3 is not necessarily a partition, but it will not be difficult to find pairwise disjoint
subsets Wi ⊂ Vi, i = 1, 2, 3, for which |G[W1,W2,W3]| ≥ c1n

3. To that end, let W1 ⊂ V1 \ {u3, u4}
be any set of size (exactly) ⌈δn/3⌉ (recall |V1| ≥ δn). Let W2 ⊂ V2 \ (W1 ∪ {u1, u2}) be any set of
size (exactly) ⌈δn/3⌉ (recall |V2| ≥ δn). Now, set W3 = V3 \ (W1 ∪W2 ∪ {u1, u2, u3, u4}). Then,

|G[W1,W2,W3]| =
∑

(w1,w2)∈W1×W2

|N(w1, w2) ∩W3| ≥
⌈

δn

3

⌉2(

δn − 2

⌈

δn

3

⌉

− 4

)

≥ δ3n3

36
= c1n

3.

Now, set H = G[W1,W2,W3], which we view as a hypergraph of order n. Since H has size |H| ≥
c1n

3, Theorem 3.6 guarantees that H has at least c2n
9 = σn9 copies of K3

3,3,3. Note that each such
copy has exactly 3 vertices in each ofW1,W2,W3 and that, for some fixed w3 ∈ W3 (it doesn’t matter
which), at least σn8 such copies contain the vertex w3. Let {w1, w

′
1, w

′′
1 , w2, w

′
2, w

′′
2 , w3, w

′
3, w

′′
3}

denote the vertex set of such a copy, where wi, w
′
i, w

′′
i ∈ Wi, i = 1, 2, 3. We claim that

SU = SU (w3) = {w1, w
′
1, w

′′
1 , w2, w

′
2, w

′′
2 , w

′
3, w

′′
3}

absorbs the set U (see Figure 1). Indeed,

S1 :=
{

{w1, w2, w
′
3}, {w′

1, w2, w
′
3}
}

, S2 :=
{

{w′′
1 , w

′
2, w

′′
3}, {w′′

1 , w
′′
2 , w

′′
3}

}

is a D-tiling of G[SU ] and

T1 :=
{

{u1, u2, w1}, {u1, u2, w′
1}
}

, T2 :=
{

{u3, u4, w2}, {u3, u4, w′
2}
}

, T3 :=
{

{w′′
1 , w

′′
2 , w

′
3}, {w′′

1 , w
′′
2 , w

′′
3}
}
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w1

u2 u4

u1 u3

T1 T2

W1 W3 W2

w′′

3

S1

S2

T3

w2w′

1

w′

3

w′′

1

w′′

2

w′

2

Figure 1. Absorbing structure.

is a D-tiling of G[SU ∪ U ].
�

Finally we use Proposition 3.5 to prove Lemma 3.3.

Proof of Lemma 3.3. Let α, δ > 0 be given. Let σ = σ(δ) > 0 be the constant guaranteed by
Proposition 3.5. We define

ω =
ασ2

128
. (11)

In all that follows, we take n to be a sufficiently large integer divisible by 4. Let G be a given
3-graph with vertex set V of order |V | = n for which δ2(G) ≥ δn. We prove that G admits a set
A ⊂ V described in the conclusion of Lemma 3.3. To produce the desired set A, we employ the
well-known deletion method in probabilistic combinatorics.

To begin, set p = (1/16)ασn−7, and let H = H
(8)(n, p) be the binomial random 8-uniform

hypergraph with n-element vertex set V . We note several basic properties of H (due to the Chernoff
inequality, unless otherwise indicated):

(i) With probability 1− exp{−n/ log n},

|H| ≤ 2p

(

n

8

)

≤ 1

8
αn;

(ii) Let H⊗H = {(S1, S2) ∈ H×H : S1 ∩ S2 6= ∅}. Then,

E [|H⊗H|] ≤ 8

(

n

8

)(

n

7

)

p2 ≤ 1

256
α2σ2n.

As such, by the Markov inequality,

Pr

[

|H⊗H| ≥ 1

128
α2σ2n

]

≤ 1

2
;

(iii) For U ∈
(

V
4

)

, letA(U) be the collection of sets S ∈
(

V
8

)

which absorb U . By Proposition 3.5,

|A(U)| ≥ σn8, and so with probability 1 − exp{−n/ log n}, H satisfies that for every

U ∈
(

V
4

)

,

|A(U) ∩H| ≥ 1

2
p|A(U)| ≥ 1

32
ασ2n.
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Let H be an instance of H for which properties (i)–(iii) hold (and specifically, where |H ⊗H| <
α2σ2n/128). Now,

(a) delete any S ∈ H for which there exists S′ ∈ H for which S ∩S′ 6= ∅. This deletes at most

2× α2σ2n

128
=

α2σ2n

64
elements S ∈ H;

(b) delete any S ∈ H for which no U ∈
(

V
4

)

has S ∈ A(U).

The resulting hypergraph is then, importantly, a (partial) matching M in V . Let m := |M |,
{S1, . . . , Sm} = M , and A :=

⋃m
i=1 Si (the set of vertices covered by M). We now confirm that A

satisfies its claimed properties.
Observe from (i) that |A| = 8|M | ≤ αn, as promised. Now, let W ⊂ V \A have size 4t := |W | ≤

ωn (cf. (11)) and then arbitrarily partition W into 4-sets {W1,W2, . . . ,Wt} =: W.
Note that by (iii), (a), and (11) we have that for all Wi ∈ W,

|A(Wi) ∩M | ≥ 1

32
ασ2n− 1

64
α2σ2n ≥ 1

64
ασ2n ≥ ωn

4
≥ t.

So for each Wi ∈ W we can greedily choose some unique S′
i ∈ A(Wi) ⊆ M , which guarantees that

each of G[S′
1 ∪W1], . . . , G[S′

t ∪Wt] are D-tileable. Finally, since G[S] is D-tilable for all S ∈ M (by
(b) and Definition 3.4), and since {S1, . . . , Sm,W1, . . . ,Wt} is a partition of A ∪W , we infer that
G[A ∪W ] is D-tileable as desired.

�
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[9] V. Rödl, A. Ruciński, and E. Szemerédi, Perfect matchings in large uniform hypergraphs with large minimum
collective degree, J. Combin. Theory Ser. A 116, no.3 (2009), 613–636.

[10] H. Wang, Proof of the Erdos-Faudree Conjecture on Quadrilaterals, Graphs and Comb. 26 (2010), 833-877.

School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85287, USA.

E-mail address: andrzej.czygrinow@asu.edu

Department of Mathematics, Miami University, Oxford, OH 45056, USA.

E-mail address: debiasld@muohio.edu

Department of Mathematics and Statistics, University of South Florida, 4202 E. Fowler Ave,

PHY 144, Tampa, FL 33620–5700, USA.

E-mail address: bnagle@usf.edu

10

http://arxiv.org/abs/1108.1757
http://arxiv.org/pdf/1111.5334v1.pdf
http://arxiv.org/pdf/1105.3411v1

	1. Introduction
	1.1. Theorem ?? and -extremal 3-graphs

	2. Proof of Theorem ??
	3. Proof of Theorem ??
	3.1. Proof of Lemma ??
	3.2. Proof of Lemma ?? – Absorption
	Acknowledgements

	References

