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Abstract

For a hypergraph G and a positive integer s, let x¢(G, s) be the minimum value of
[ such that G is L-colorable from every list L with |L(v)| = [ for each v € V(G) and
|L(u) N L(v)| < s for all u,v € e € E(G). This parameter was studied by Kratochvil,
Tuza and Voigt for various kinds of graphs. Using randomized constructions we find
the asymptotics of x¢(G, s) for balanced complete multipartite graphs and for complete
k-partite k-uniform hypergraphs.
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1 Introduction

Given a hypergraph G, a list L for G is an assignment to every v € V(G) of a set L(v) of
colors that may be used for the coloring of v. We say that G is L-colorable, if there exists
a proper coloring f of the vertices of G from L, i.e. if f(v) € L(v) for all v € V(G) and no
edge of G is monochromatic in f. A list L for a hypergraph G is a k-list if |L(v)| = k for
all v € V(G). An extensively studied parameter is the list chromatic number of G, x;(G),
introduced by Vizing [9] and Erdés, Rubin and Taylor [3]. For a hypergraph G, x;(G) is the
least k such that G is L-colorable for every k-list L. This parameter is also sometimes called
choice number, or choosability of G.

By definition, x,(G) > x(G) for any hypergraph G. Moreover, x,(G) may be much
larger than x(G). For example, x¢(K,,) has the order of logn (see, e.g., [1]), while, by
definition, x (K, ,) = 2. It is natural to ask what happens when the lists of adjacent vertices
in (hyper)graphs do not intersect too much.

For a positive integer s, a list L for a hypergraph G is s-separated if |L(u) N L(v)| < s
for all pairs {u,v} such that some edge of G contains both, u and v. If G is a graph, this
means that for each uv € E(G), L(u) and L(v) share at most s colors. Let x,(G, s) denote
the minimum k such that G is L-colorable from each s-separated k-list L. By definition, for
every 1 < 51 < 3o,

xe(G. 1) < XelG 52) < xu(G). (1)

Kratochvil, Tuza and Voigt [7] studied x¢(G,s) for various G and s. They showed the
following.

Theorem 1 ([7]). For positive integers s,n with s < n, \/%sn < xe( Ky, s) < V/2esn.

So the ratio of the upper and lower bounds is 2y/e ~ 3.29. In [4], the asymptotics of
Xe(Kp, s) for every fixed s was found.

Theorem 2 ([4]). For every fized s, lim,, % =1.

Since x¢(K,) = x(K,) = n, Theorems [l and 2lshow that for fixed s and large n, x¢(Ky, s)
is much less than x,(K,). In this paper, we study list colorings from s-separated lists of
balanced complete multipartite graphs and uniform hypergraphs. It turns out that even
for small s, x¢(Kp ., s) and x¢(K, ) are asymptotically the same. Let K (k,m) = Ky, m
denote the complete multipartite graph with k partite sets of size m. One of our main results
is

Theorem 3. For every fized k,
Xe(K(k,m), 1) = (L4 o(1))xe(K (k,m)) = (1 + o(1)) log, 1y m.

In view of (I), this means that for any s and any fixed k,

lim XZ(K(kv m)? 8)

=1.
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We also prove a result of similar nature for balanced complete k-uniform k-partite hy-
pergraphs. Recall that a hypergraph is k-partite if its vertex set can be partitioned into k

sets V1,...,V, so that each edge contains at most one vertex from each set. A k-partite
(hyper)graph is balanced if all parts have equal sizes.
Let K*(k,m) = K, .. denote the complete k-uniform k-partite hypergraph with

partite sets of size m. Our second main result is:

Theorem 4. For every fized k,
Xe(K*(k,m), 1) = (1 + o(1))xe(K*(k,m)) = (1 + o(1)) logy,m .

The upper bounds in Theorems [3] and 4] were known. To prove the lower bounds, we need
constructions of several uniform nearly disjoint hypergraphs on the same vertex set each
of which has small independence number. We show that such probabilistic constructions
are possible and present them in the next section. We think that these constructions are
of interest by themselves. Using these construction and the approach to list colorings used
in [3] and later in [6], we prove Theorems[Bland Mlin SectionsBland @] respectively. Although
we use only basic probabilistic tools, namely the first moment method, our asymptotics for
the nearly disjoint case are very close to the classical ones.

2 Nearly disjoint hypergraphs with small independence

number
Hypergraphs H, and H, are nearly disjoint if every edge of H; meets every edge of Hs in at
most one vertex. Hypergraphs Hy, Ho, - - - , H) are nearly disjoint if they are pairwise nearly
disjoint.

For a hypergraph H, A(H) denotes the mazimum degree of the vertices in H, a(H)
denotes the independence number of H, i.e. the size of a largest subset of vertices of H not
containing edges of H, and 7(H) = |V(H)| — a(H) denotes the transversal number of H.
We are interested in constructing k nearly disjoint hypergraphs each of size m with small
independence numbers. We first cite two results and prove a lemma which we then use to
construct these nearly disjoint hypergraphs.

The following theorem is due to Erdds [2]. He proved it for the case when k = 2, but his
proof can easily be extended to any fixed k.

Theorem 5 ([2]). Let k > 2 be fized. For r sufficiently large, there ezists r-uniform
hypergraphs H on n = [%51r?] wertices with at most £r?k™'(k — 1)Ink edges such that
alH) <n/k.

The following theorem is a partial case of a more general result by Lovasz (Corollary 2
in [§]).

Theorem 6 ([8]). Let u be the minimum size of an edge in a hypergraph G with mazximum
degree A. Then
T(G) < (1 +1/2+ -+ 1/A)|V(G)|/u.



For a positive integer r and a real number b, the binomial coefficient (f) is defined as
Lo(b—1)---(b—r+1).

Let aq,...,a, be nonnegative integers and a = max; a;. If a > 0, then

£ (5) <t ()

i=1 i=1
We now prove our main lemma.

Lemma 1. For each 0 < a < 1 and integers t > 1,r > 2 and q > %, there exists an
r-uniform hypergraph H with tq vertices such that

(i) V(H) =Ty UTU,...,UT,, where |Ty| = ... = |T,| =t and disjoint,

(ii) every edge in H meets every T; in at most one vertex,

(i11) a(H) < atq,

(iv) |[E(H)| < (1/a)" - 4tq.

Proof. Let S = Ty UThU,...,UT,. To prove the lemma, we will construct an auxiliary
hypergraph H whose vertex set is

V(H) = U Ty X Ty x - x T

1<iy <ig-<ir<q

For every set X C S, we consider the set Ex of r-sets that are contained in X and members
of V(H). The sets Ex for every set X with | X| = [a|S|| will form the edges of H. A vertex
cover of this hypergraph H gives us a collection of r-subsets of S with the property that if
we take any set X C S with |X| > a|S|, then we get an r-set which is entirely contained
in X. A minimum vertex cover of H gives us our required hypergraph H with vertex set
V(H)=S5and |E(H)| = 7(H).

We first estimate the size of E'y. Let Ay denote the number of r-subsets of X that meet

some T; in at least two vertices. (Note that we may assume that ¢ > 2, since Ax = 0 if
t =1.) Then

BT OO )

where the second inequality is due to (2]) and the last inequality is by the choice of ¢, since

t—Drir—1)<(t-1)r*<alt—-1)g<atg—1<|X|-1.

|Ex| = ("f‘) —Ax > %(‘f')

Hence



Applying Theorem [0l for G = ‘H and u = min |Ex| we get,
[V(H)]

min |E|

(") 1
(1—|—lnA)§ (fl)(1+ln2 )S%(Qfl)
NSNS = 18] - (r— 1) 1y S| =i
=2(3) =gy P <@ I o

Here the last product is less than 2, since

51— (1-a)i (-aY.i _ 1-a
_ < exp =S :
H L; H <1+a\5\—i>_eXP r2—r+1 < exXp 2

0<i<r—1 |5] = a 0<i<r—1

T(H) <

N[

Hence
(M) < (1/a) - 4tq.

Construction: Iterative Method for constructing nearly disjoint hypergraphs:

Let an integer ¢ > % be fixed. We start with a ¢-vertex empty hypergraph. We use
Lemma [ and obtain a hypergraph Gi such that «(Gj) < a|V(Gi)|. After i — 1 more
iterations, we have hypergraphs Gf, G5, ..., G, where G is just ¢ vertex disjoint copies of
GZ' (where j < i) and G is obtained by taking ¢ copies of V(G;_}) and using Lemma [II
Note that we have the following:

1. Gi,, G} are nearly disjoint for all o # f3;

2. [V(GY)| = ¢ for all j < i

3. |E(GY)| < (1/a)"-4-¢" g = (1/a)" - 4q" for all j <i;
4. a(G%) < alV(GY)| for all j <.

Remark: Note that it the above construction we took a ¢-vertex empty hypergraph and
applied Lemma [ to it to get Gi. One can instead (for r sufficiently large) start with the
hypergraph G7 given in Theorem [f and slightly improve the result.

We have the following corollary from the above construction.

Corollary 1. Let k> 2,r>2,0<a <1 and q = [%1 . There exist k nearly disjoint r-

uniform hypergraphs Hy, Hy, - - - H}, on the same vertex set with ¢* vertices each with L4qk(i)’"J
edges such that o(H;) < a|V (H;)|, for all 1 <i < k.

Proof. From the construction metioned above we see that we have nearly disjoint hyper-
graphs H; = G such that a(H;) < a|V(H;)| and |E(H;)| < 4¢°(2)", for all 1 < j < k. We
just need to show we can add edges in H; such that |E(H;)| = [4¢"(2)"]. It is in fact true
that at every iteration step ¢, one can have |E(G%)| < 4¢*(2)", for all 1 < j < i, since at step
i, we make ¢ copies of the vertex set with ¢'~! from the previous step and we have at least
(9)(¢"=1)" possibilites, which is much greater than 4¢*(2)". O
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Remark: We required the sizes of the hypergraphs in the above corollary to be equal since
the edges of these hypergraphs will form the list assignment for the vertices of a balanced
multipartite graph. But it is not necessary. We shall use Corollary [2] to generalize the result
to unbalanced multipartite graphs.

Corollary 2. Letk > 2,r > 2, 0<a <1 and q = [%1 . There exist k nearly disjoint
r-uniform hypergraphs Hy, Hy,--- Hy, on the same vertex set with ¢ vertices with |E(H;)|
obtaining any value in [4¢" (1), (%) "=V E=D] such that o(H;) < alV (H;)|, for alll < i < k.

T

Proof. Consider the hypergraph G% obtained at Step 4 in the construction. As we saw in
Corollary [, for every i, G% can have at most 4qi(%)’" edges. In fact, we can add all the
possible (Z) (qU=1)" edges. It is easy to see that we still maintain that the hypergraphs
obtained so far in the construction are nearly disjoint. Moreover, we also do not increase the
independence number of the hypergraphs by adding more edges. In the next k — ¢ steps of
the construction we just take ¢*~* copies of G% to obtain H; which has at most (%)q¢=1r+*=9
edges. O

3 Coloring complete multipartite graphs
with s-separated lists

Recall that K (k,m) = K, m,.m denotes the complete multipartite graph with & partite sets
of size m. We will use the ideas of [3] and [6] and the results of the previous section to prove
Theorem [3l For convenience, we restate it here.

Theorem 7. For every fixed k,
Xe(K (k,m), 1) = (14 0(1))xe(K(k,m)) = (14 o(1)) logy, /1y m.

Proof. Let G be a copy of K(k,m) with partite sets V;,...,Vi. Let L be an r-list for G.
Let C := Uvev(G) L(v). Then, since G is complete k-partite, G is L-colorable if and only
if we can partition C into sets C,...,C} so that for each ¢ = 1,...,k and each v € V,
C;N L(v) # 0. Let H= H(G, L) be the r-uniform hypergraph with the vertex set C' whose
edges are the lists of the vertices of GG. Since lists of some vertices in G may coincide, H
may have multiple edges. For i = 1,... k, let E; be the set of edges of H that correspond
to the lists of the vertices in V;. So, G is L-colorable if and only if

(*) we can color V(H) with k colors 1,... k so that for every i and every edge A € Ej,
A contains a vertex of color i.

To get the upper bound we show the following statement.

Let km < (ﬁ)r Then x,(K(k,m),1) < x,(K(k,m)) <. (3)

By the above, it is enough to prove that for m < (%)T, every r-uniform hypergraph H
with F(H) = E1 U...U Ey where |E;| =m for i = 1,...,m has a k-coloring satisfying (*).
We color each v € V(H) randomly: v gets color ¢ with probability 1/k independently from



all other vertices. An edge A € FE; is happy if some vertex of A gets color i, and unhappy
otherwise. For each A € F(H), the probability that A is unhappy is (1 — 1/k)". Thus the
expectation of the number of unhappy edges is at most km (%)T < 1. So, there exists a
coloring f such that every edge is happy. This proves (3]).

To prove the lower bound, observe that L is 1-separated if and only if the corresponding
hypergraphs H, = (V(H), E1),...,H, = (V(H), Ei) are nearly disjoint. Let ¢ := [(,fiﬂ
By Corollary [lfor a = (k—1)/k, there exist nearly disjoint r-uniform hypergraphs H, ..., Hy
on the same vertex set, say V', such that for every i =1,... k,

(a) |[B(H)| < 4(5)7d" < 4(GE)m28r2
(b) a(H;) < 52 |V].

We claim that the hypergraph H := Ule H; does not satisfy (*). Indeed, suppose that
there is a k-coloring f such that for every i and every edge A € E;, f~1(i)N A # (). We may
assume that [f~1(1)] > ... > |f(k)|. Let B =V — f~(k). By our ordering, |B| > &1|V|.
So by (b), some edge of Hj, is contained in B, a contradiction to the choice of f. Thus if &
is fixed and positive integers r and m satisfy

m > () @),
- k-1

then x¢(K(k,m),1) > 1+ r. Since for fixed k,

In (4(%)7’(27’2)’“) = rln(k ﬁ 1) +2kInr + (k+2)In2 = r1In( )(1+0(1)),

—1 E—1

the theorem is proved. O

We now state an easy generalization of Theorem [7l for unbalanced multipartite graphs.
It follows easily from Corollary 2l and the proof of Theorem [

Theorem 8. Given positive integers k,mq, ma, - - -my such that my < mg < --- < my, letr

be the largest integer such that my > 4¢"(25)", where ¢ = [25r?].

If m; € [AgF ()7, (D) gt =+ ®=0] ) for all 1 < i < k, then Xo(Kpmy mg oy, 1) > 7

T

In other words X¢(Kmy ms,my, 1) = (1 — o(1))logy/_1) ma

Remark: One might want to show a matching upper bound or improve the lower bound
and give a new bound in terms of my, when m; is not too large compared to m;. A similar
result was shown about the the choice number y, of unbalanced multipartite graphs in [5].

4 Coloring complete k-uniform k-partite hypergraphs
with s-separated lists

Recall that K*(k,m) = K* denotes the complete k-uniform k-partite hypergraph with

m,m,...,m

k partite sets of size m. In this section, we prove Theorem 4l For convenience, we restate it
here.



Theorem 9. For every fized k,
Xe(E*(k,m), 1) = (1 4 o(1))xe(K"(k,m)) = (1 + o(1)) log, m .

Proof. Let G be a copy of K*(k, m) with partite sets Vi, ..., Vi. Let L be an r-list for G. Let
C = Uvev(G) L(v). Since G is complete k-uniform k-partite, a coloring of V(&) is proper
if and only if no color is present on each V;. Thus, G is L-colorable if and only if we can
partition C' into sets C,...,C) so that for each ¢ = 1,...,k and each v € V;, C; does not
contain L(v). As in the proof of Theorem [B] let H = H(G, L) be the r-uniform hypergraph
with the vertex set C' whose edges are the lists of the vertices of G. Fori=1,... k, let E;
be the set of edges of H that correspond to the lists of the vertices in V;. So, G is L-colorable
if and only if

(**) we can color V(H) with k colors 1,... k so that for every i and every edge A € Ej;,
A is not monochromatic of color i.

First we prove:

Let m < k™1 Then xo(K*(k,m),1) < xo(K*(k,m)) < r. (4)

It is enough to prove that for m < k"~!, every r-uniform hypergraph H with E(H) =
EyU...U Ej where |E;| = m for i = 1,...,m has a k-coloring satisfying (**). We color
each v € V(H) randomly: v gets color ¢ with probability 1/k independently from all other
vertices. An edge A € FE; is happy if some vertex of A gets color distinct from ¢, and
unhappy otherwise. For each A € FE(H), the probability that A is unhappy is k~". Thus
the expectation of the number of unhappy edges is at most kmk™" < 1. So, there exists a
coloring ¢ such that every edge is happy. This proves ().

Now we prove the lower bound. Recall that L is 1-separated if and only if the correspond-
ing hypergraphs H; = (V(H), Ey),..., H,, = (V(H), E;) are nearly disjoint. Let g := kr?.
By Corollary [l for a = 1/k, there exist nearly disjoint r-uniform hypergraphs Hy, ..., Hy on
the same vertex set, say V such that for every i =1,... k,

(a) [E(H;)| < 4k"q";
(b) a(H;) < ¢|V].

We claim that the hypergraph H := Ule H; does not satisfy (**). Indeed, suppose that
there is a k-coloring f such that for every i and every edge A € E;;, A € f~(i). We may
assume that |f~1(1)] > |V|/k. Then by (b), some edge of H; is contained in f~1(1), a
contradiction to the choice of f. Thus if k is fixed and positive integers r and m satisfy

m > 4k"(kr?)*,
then y,(K*(k,m),1) > 1+ r. Since for fixed k,
In (4k"(kr*)*) = (r + k) Ink + 2kInr + 2In2 = rIn k(1 + o(1)),

the theorem is proved. O
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