
ar
X

iv
:1

30
8.

06
75

v1
  [

m
at

h.
C

O
] 

 3
 A

ug
 2

01
3

Switching Reconstruction of Digraphs

Brendan D. McKay, Pascal Schweitzer∗

Research School of Computer Science

The Australian National University

Canberra, ACT 0200, Australia

bdm@cs.anu.edu.au, Pascal.Schweitzer@anu.edu.au

October 30, 2018

Abstract

Switching about a vertex in a digraph means to reverse the direction of every edge inci-
dent with that vertex. Bondy and Mercier introduced the problem of whether a digraph can
be reconstructed up to isomorphism from the multiset of isomorphism types of digraphs ob-
tained by switching about each vertex. Since the largest known non-reconstructible oriented
graphs have 8 vertices, it is natural to ask whether there are any larger non-reconstructible
graphs. In this paper we continue the investigation of this question. We find that there
are exactly 44 non-reconstructible oriented graphs whose underlying undirected graphs have
maximum degree at most 2. We also determine the full set of switching-stable oriented
graphs, which are those graphs for which all switchings return a digraph isomorphic to the
original.

1 Introduction

In combinatorics, a reconstruction problem asks whether a combinatorial object can be recon-
structed from its “deck”, where the deck is a multi-set of objects that are slight modifications of
the original object. For example, in Kelly and Ulam’s reconstruction problem [5, 10] the deck
of an n-vertex graph G is the multiset of n graphs that are each obtained by deleting one vertex
of G. Kelly and Ulam conjectured that every graph on at least three vertices is reconstructible
from its vertex-deleted deck. Another way of stating this is that non-isomorphic graphs on at
least three vertices have different decks. Following their work, numerous other types of decks
and their associated reconstruction problems have been considered. Among them is Stanley’s
switching reconstruction problem [9], where the elements of the deck of a graph are obtained by
choosing a vertex v and then replacing all edges incident with v with non-edges and vice versa.
As with the previous reconstruction problem, it is conjectured that there are only finitely many
graphs that cannot be reconstructed from their deck. For an overview of the various reconstruc-
tion variants we refer the reader to the existing surveys [1, 2, 8].

Recently, Bondy and Mercier [3, 7] introduced further switching reconstruction problems. In
their context, the switching deck of a digraph contains all digraphs that are obtained by reversing
the orientation of all edges incident with a specified vertex. In their paper, Bondy and Mercier
observe that a subgraph-counting result of Ellingham and Royle [4] applies to switching of
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connected digraphs. They provide an alternative proof that also applies to disconnected graphs
and thereby show that for a digraph on n vertices the number of induced copies of any digraph
on k vertices is reconstructible whenever n is not of the form 4j for j ≤ ⌊k/2⌋.

Bondy and Mercier also list all decks of the oriented graphs on four vertices and, using
this, derive many sets of switching non-reconstructible digraphs on four and eight vertices. Our
computer search has shown that there are, in fact, 5559 non-reconstructible oriented graphs
on 8 vertices. They ask whether there exist non-reconstructible oriented graphs on more than
eight vertices, which, by their theorem, must have at least 12 vertices, since the number of
vertices must be divisible by four. They also ask which oriented graphs have the property that
all switchings are isomorphic. As examples of such digraphs they mention vertex transitive
digraphs and switching-stable digraphs, i.e., digraphs for which every switching is isomorphic
to the digraph itself.

Our results: By an oriented graph we mean a digraph without loops, parallel edges, or 2-
cycles. Ignoring the orientations of the edges of an oriented graph gives its underlying undirected
graph. When we refer to the degree of a vertex of an oriented graph, we always mean the degree
in the underlying undirected graph; otherwise we will write “in-degree” or “out-degree”.

In this paper we classify all switching-stable oriented graphs. We show that an oriented
graph is switching-stable if and only if each of its components has 1, 2, or 4 vertices and each
component on 4 vertices is isomorphic to the oriented cycle that has a unique directed path of
length 3.

We also determine all non-reconstructible oriented graphs with maximum degree at most 2.
There are exactly 44. They yield 29 sets {G,H} of non-isomorphic oriented graphs of maximum
degree at most 2 such that G and H have the same deck. To determine all these oriented graphs,
we prove with combinatorial arguments that there are none on more than 30 vertices and then
with an efficient enumeration algorithm using the computer determine all non-reconstructible
oriented graphs with at most 30 vertices.

Structure of the paper: We first formally define the digraph switching reconstruction prob-
lem and the related notions (Section 2). We then classify all switching-stable oriented graphs
(Section 3) and devise some properties of switching-stable sets (Section 4). To classify all
non-reconstructible oriented graphs of maximum degree at most 2 we determine all paths (Sec-
tion 5) and all cycles (Section 6) that are not reconstructible from their t-decks. An analysis
of disconnected non-reconstructible oriented graphs (Section 7) then allows us to assemble the
statements and determine all non-reconstructible oriented graphs of maximum degree at most 2
(Section 8).

2 Preliminaries

In this paper we consider labelled graphs which are mostly directed. For any graph G, we
denote by 〈G〉 the isomorphism class of G. The sign “=” means equality (never isomorphism).
The automorphism group of G, denoted Aut(G), acts on the vertex set of G, which we will
always denote as V . We denote by Sn the symmetric group on V . For γ, δ ∈ Sn, by vγ we
mean γ(v), by vγδ we mean (vγ)δ and by Gγ we mean the graph on the same vertices as G for
which vγ→wγ is an edge if and only if v→w is an edge of G.

For a digraph G and a vertex v ∈ V , Gv is the switching of G at vertex v, that is, the
graph which equals G except that the direction of all edges incident with v is reversed. Gvw

means (Gv)w. Easy properties are: Gvv = G, Gvw = Gwv, and (Gv)
γ = (Gγ)vγ , for v,w ∈ V, γ ∈

Sn. For a multiset W = {w1, . . . , wk} where w1, . . . , wk ∈ V , GW means Gw1···wk
. Clearly,
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(a) The one-
vertex graph

(b) The edge. (c) The swit-
ching-stable
4-cycle.

Figure 1: All connected switching-stable oriented graphs.

GW depends only on the parity of the multiplicities of elements of W , and if W is a set (not
multiset) we have GV \W = GW . The property (Gv)

γ = (Gγ)vγ generalizes to (GW )γ = (Gγ)W γ

for W ⊆ V, γ ∈ Sn, from which it follows that GX = Gγ and GY = Gδ together imply
GY Xδ = Gγδ. Besides these easy properties, we also frequently need the following observations:

Lemma 1. If GW = Gδ then (Gv)Wvvδ = (Gv)
δ.

Proof. Using the fact that (Gv)
δ = (Gδ)vδ , we get (Gv)Wvvδ = (GW )vδ = (Gδ)vδ = (Gv)

δ.

Lemma 2. If G is a connected oriented graph and W,W ′ ⊆ V satisfy GW = GW ′, then W ′ = W
or W ′ = V \W .

Proof. Supposing otherwise, there are adjacent vertices v, v′ such that v ∈ W △W ′ and v′ /∈
W △W ′. Then GW and GW ′ differ in the orientation of the edge between v and v′.

The deck of a digraph G is the multiset C(G) = {〈Gv〉 | v ∈ V }. We say that the digraph G
is non-reconstructible if there is a digraph H, not isomorphic to G, such that C(H) = C(G),
and reconstructible otherwise. Since it will aid the proof of our main theorem, we generalize
this concept as follows. For t ∈ N, the t-deck of G, is the deck of G augmented by t copies
of 〈G〉. By counting the number of copies of 〈G〉 that occur in the t-decks of two non-isomorphic
digraphs G and H, we find that there is at most one t for which G and H have the same t-deck.

3 Switching-stable digraphs

Following [3], we call a digraph D switching-stable if Dv is isomorphic to D for all vertices v.
Examples of switching-stable digraphs are shown in Figure 1. The figure shows a graph on one
vertex, a graph on two vertices with one edge and a graph that has four vertices v1, v2, v3, v4 and
four edges v1v2, v2v3, v3v4, v1v4. In fact, as the following theorem shows, all switching-stable
oriented graphs are obtained from these graphs by forming disjoint unions.

Theorem 1. An oriented graph is switching-stable if and only if each of its components is either
an isolated vertex, an isolated edge, or the oriented 4-cycle that has a unique directed path of
length 3, i.e., all components are isomorphic to one of the graphs shown in Figure 1.

Proof. Since a digraph is switching-stable if and only if all of its components are switching-
stable, it is sufficient to consider connected oriented graphs. An easy search among the connected
oriented graphs with at most 4 vertices shows that only the three stated examples are switching-
stable. Thus, our task is to prove there are none that are larger.

Let D be a switching-stable oriented graph with n > 4 vertices and underlying undirected
graph G. Let Sn be the symmetric group on the vertex set V of G. Define

Γ (D) = {γ ∈ Sn | DW = Dγ for some W ⊆ V }.

3



Since Γ (D) is closed under composition (DX = Dγ and DY = Dδ imply DXδY = Dγδ), Γ (D)
is a group. Note that Γ (D) contains the automorphism group Aut(D).

If DX = DY for X,Y ⊆ V , then either X = Y or X = V \ Y , by Lemma 2. Therefore,
precisely 2n−1 different labelled oriented graphs arise by switching subsets of the vertices in D.
Furthermore, switching preserves the underlying undirected graph G, so we have

Aut(D) ≤ Γ (D) ≤ Aut(G), (1)

where Aut(D) has index 2n−1 in Γ (D).
The number 2n cannot divide n!, while 2n−1 divides n! only when n itself is a power of 2.

Thus we can assume n = 2k for some k and that Aut(G) contains a Sylow 2-subgroup of Sn,
say Λ. Every Sylow 2-subgroup of Sn is an iterated wreath product of Z2 with itself (that is,
the action on the leaves of a complete binary tree of the automorphism group of the tree). This
means that G belongs to a particularly simple class of graphs, which we now construct.

Consider the sequence of permutation groups S1 = Λ0, Λ1, . . . , Λk = Λ, where Λ0 acts on a
single point and, for 1 ≤ i ≤ k, Λi = Λi−1 ≀ Z2 is the standard permutation representation of
the wreath product on 2i points. That is, Λi is imprimitive with two blocks of size 2i−1 that
can be exchanged by an element of order 2 and whose block-wise stabilizer is Λi−1×Λi−1. This
structure of Λk ≤ Aut(G) implies that G consists of two disjoint copies of some graph on which
Λk−1 acts, with these two copies either joined by no edges or by all possible edges.

Applying this logic recursively we find that G = Gk where G0, G1, . . . , Gk is some sequence
of graphs constructed as follows.

(a) Graph G0 is the complete graph with one vertex, K1.
(b) For 1 ≤ i ≤ k, graph Gi is formed by taking two disjoint copies of Gi−1 and adding either
no more edges or all possible edges between the two copies. Note that Gi has 2i vertices and
Λi ≤ Aut(Gi).

Since we are assuming G to be connected, in the final step when Gk is made from two copies
of Gk−1 we must completely join the two copies. Thus G is a regular graph of degree d ≥ 1

2n
whose complement is disconnected.

By switching about neighbours of a vertex v of D, we can achieve that v has any out-
degree in {0, 1, . . . , d} we choose. Since D is switching-stable, this implies that each of the
out-degrees 0, 1, . . . , d occurs in D. Let v0 be a vertex of out-degree 0. Switching about v0
changes the out-degree of v0 to d, and decreases the out-degrees of its neighbours by 1. The
only way this can fail to change the degree sequence of D is if the neighbours of v0 have
the distinct out-degrees 1, 2, . . . , d. Now suppose there is a second vertex v′0 of out-degree 0.
Since d ≥ 1

2n, v0 and v′0 have at least one common neighbour, but then switching about v′0
changes the set of out-degrees of the neighbours of v0, which we just proved is impossible. So v0
is the only vertex of out-degree 0. Similarly, D has exactly one vertex vd of out-degree d, and
its neighbours have out-degrees 0, 1, . . . , d− 1.

Now we divide the argument into two cases depending on whether or not v0 and vd lie in
the same component of the complement G. Recall that there are at least two such components.

First assume that v0 and vd lie in different components of G. Then every vertex of D is a
neighbour of either v0 or vd. Since Aut(D) fixes v0 and vd, and their respective neighbours have
unique out-degrees as we showed above, we have |Aut(D)| = 1. By (1), this implies Γ (D) = Λ.
As explained above, Λ has a block-system consisting of two blocks W0,W1 of the same size,
and all 1

4n
2 edges between W0 and W1 are present. Therefore, for any vertex v, Dv = Dγ(v)

where γ(v) ∈ Λ satisfies {W
γ(v)
0 ,W

γ(v)
1 } = {W0,W1}. Moreover, if e is the number of edges

of D directed from W0 to W1, then
1
4n

2 − e is the number of edges directed the other way.
Switching about a vertex must preserve the invariant {e, 14n

2 − e} consisting of the counts of
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edges directed from one side of the partition to the other. If v ∈ W0 has x out-neighbours
in W1, after switching about v there are e + 1

2n − 2x edges from W0 to W1, so we must have
e + 1

2n − 2x ∈ {e, 14n
2 − e}. Similarly, if w in W1 has x out-neighbours in W0, after switching

about w there are e− 1
2n+2x edges from W0 to W1, so we must have e− 1

2n+2x ∈ {e, 14n
2−e}.

These constraints only allow x to have the three values 1
4n,

1
4n + e − 1

8n
2 and 1

4n − e + 1
8n

2.
However for the vertex v0, any value for x from 0 to 1

2n can be achieved by switching about its
neighbours. Since n ≥ 8 (recall that n is a power of 2), this is a contradiction.

Finally, assume that v0 and vd lie in the same component of G, say the component induced
by vertex set X. If G has exactly two components, then Aut(G) preserves them as a blocks and
the counting argument we used in the previous paragraph applies. If the number of components
is greater than 2, it is still a power of 2 (by the construction of G) and Aut(G) preserves the
partition of V into those components. Switching about a vertex w not in X cannot create a
vertex of out-degree 0 or d outside X, since all vertices not in X are adjacent to v0 and to vd.
Therefore, the isomorphism that maps D to Dv preserves the set V \X, and so the subgraph
of D induced by V \X is switching-stable. However, it is connected and has an order which is
not a power of 2, which contradicts what we proved above.

4 Switching-stable sets of digraphs

A set M of digraphs is called switching-stable if every switching of a digraph in M is isomorphic
to a digraph in M . Examples of switching-stable sets are sets that only contain switching-
stable digraphs and sets that contain all orientations of an undirected graph. We now argue
that if a small switching-stable set consists of orientations of a large connected graph, then the
automorphism group of the graph must be large.

Lemma 3. Let M be a set of orientations of a connected graph G on n vertices. If M is
switching-stable then 2n−1 ≤ |M | |Aut(G)|.

Proof. Suppose m = |M |. Since M is switching-stable, by the pigeonhole principle there must
be digraphs D,D′ ∈ M (possibly equal) such that DW is isomorphic to D′ for at least 2n/m
sets W ⊆ V . Recalling that DW = DV \W , it follows that for any fixed v ∈ V there are 2n−1/m
sets W with v ∈ W such that DW is isomorphic to D′. Thus for each such W there is an
automorphism δW of G such that DW = (D′)δW . If for two such sets W and W ′ we have δW =
δW ′ then DW = DW ′ , which cannot happen by Lemma 2. Thus all automorphisms δW are
distinct, which proves the lemma.

Corollary 1. Let M be a set of orientations of a connected graph G on n vertices of maximum
degree at most 2. If M is switching-stable, then 2n−1 ≤ 2n |M |.

Proof. This follows from the previous lemma since every connected n-vertex graph of maximum
degree at most 2 has an automorphism group of size at most 2n.

5 Paths

In this section we consider only oriented graphs with an underlying graph that is a path. We
characterize all pairs of non-isomorphic oriented paths that have the same t-deck for some t ∈ N.
The reconstructibility of paths on more than four vertices from their decks was shown by
Mercier [7]. For our purposes, we need to extend this characterization to t-decks. Consequently
we cannot assume that the number of vertices of the paths are even and we require an alternative
proof. It turns out that the pairs we want to characterize can only consist of oriented paths
with three or four vertices.
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(a) Paths that have the same 1-decks.

(b) Paths that have the same decks. (c) Paths that have the same decks.

Figure 2: The three families of paths which have the same t-decks. The three paths in (a) have
the same 1-decks, the other two pairs of graphs have the same decks.

Theorem 2. Let t be a non-negative integer. If P1 and P2 are two oriented paths on at least 5
vertices that have the same t-deck, then P1 and P2 are isomorphic.

Proof. Let t be a non-negative integer and let P be an oriented path on at least 5 vertices. We
first argue that in the t-deck of P we can identify the two cards corresponding to switchings
about the end vertices and that we can identify the two cards corresponding to switchings about
the penultimate vertices. To show this, we first identify the set M of cards corresponding to
switchings of P about one of the outer four vertices. We divide the cards into two groups
according to the parity of the number of end edges pointing outwards. If there is a card with
both end edges pointing outwards and a card with both end edges pointing inwards then M is
the group of parity 0. Otherwise M is the group of parity 1.

By a similar argument, considering only cards in M and the parity of the number of the
penultimate edges pointing outwards, we can distinguish the cards in M according to whether
an end vertex or a neighbour of an end vertex was switched. This implies that P ′, the induced
sub-path of P obtained by deleting the end vertices, is reconstructible.

Suppose P is a non-reconstructible oriented path on at least 5 vertices. By what we just
observed, we can identify a card in the deck of P in which no leaf and no vertex adjacent to a leaf
has been switched. Thus, we can reconstruct the number of end edges of P pointing outwards.
Since we can also identify a card in which an end vertex has been switched, this implies that
among the leafs of P there is one vertex with out-degree 0 and one with in-degree 0.

Since the oriented path P ′ obtained by deleting the end vertices has been determined, two
possible reconstructions remain (→P ′→ and ←P ′←). By considering the switchings about the
penultimate vertices, we see that these only have the same deck if P ′ is the same as its reverse,
in which case they are isomorphic.

The theorem says that for our purposes we only need to consider oriented paths on at
most 4 vertices. Figure 2 depicts all families of non-isomorphic oriented paths which have the
same t-deck for some t ∈ N.
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6 Cycles

In this section we consider only graphs whose underlying undirected graph is a cycle. We
determine all pairs of non-isomorphic oriented graphs of this type which have the same t-deck
for some t ∈ N. The automorphism group of an undirected cycle on n vertices is the dihedral
group Dn, which consists of n reflections and n rotations (the identity is a rotation).

Lemma 4. Suppose that for n ≥ 30, there are non-isomorphic oriented cycles G and H with
the same t-deck for some t. Then there is a set W ⊆ V of size 2 or 4 such that GW = Gγ for
some rotation γ of order at least 5.

Proof. For some labelling of G and H, the common t-deck of G and H can be indexed as
{〈J(i)〉 : 1 ≤ i ≤ n + t}, so that J(i) = H for i = 1, . . . , t, J(i) = G for i = n+1, . . . , n+t,
〈Gv〉 = 〈J(v)〉 for i = 1, . . . , n, and 〈Hv〉 = 〈J(v+t)〉 for i = 1, . . . , n.

We will first find 8 sets W ⊆ V of size 2 such that GW = Gγ(W ), where the permutations
γ(W ) are nontrivial and distinct. We do this in two cases, depending on whether t ≤ 4.

First suppose that t ≤ 4. For each v = t+1, . . . , n, there is some w such that Gvw ∈ 〈H〉. We
know that w 6= v sinceH is not isomorphic toG. Then there are at least n−t−2 vertices x ofGvw

other than v and w, such that for some y 6= x, Gvwxy ∈ 〈G〉. By Lemma 2, Gvwxy = Gγ(v,x) for
some nontrivial γ(v, x) ∈ Dn. We had (n− t)(n− t− 2) choices of (v, x), but the permutations
obtained might not be all different. By Lemma 2, γ(v, x) in fact depends injectively on which
elements of the multiset {v,w, x, y} occur an odd number of times. Any such multiset with
4 distinct elements can be obtained from at most 8 choices of (v, x). The other possibility is
that y = v or y = w, so that exactly two elements, say a, b, of the multiset {v,w, x, y} occur an
odd number of times. Any such set {a, b} can occur at most once for each value of v, that is,
at most n − t times. Finally, there are 2n − 1 nontrivial elements in Dn. If k is the number of
choices (v, x) for which we obtain a 2-set, we must have 8(2n−k−1)+(n−t)k ≥ (n−t)(n−t−2),
which implies k ≥ 9 when t ≤ 4 and n ≥ 30.

Next suppose that t ≥ 5. For v = 1, . . . , 5, Gv is isomorphic to H, then for each such v, there
are five values of w, corresponding to the vertices of H labelled n+1, . . . , n+5, for which Gvw

is isomorphic to G. Discounting the possibility v = w, and noting that Gvw = Gwv, we find 10
sets {v,w} such that Gvw = Gδ(v,w) for nontrivial distinct δ(v,w) ∈ Dn.

The proof so far shows that we have a set W of 8 distinct sets of size 2 such that for each
W ∈ W, GW = Gγ(W ), where the permutations γ(W ) ∈ Dn are nontrivial and distinct.

If, for some W ∈ W, γ(W ) is a rotation of order at least 5, we are done, so assume
that is not the case. We will find such a rotation by combining two sets U,W using the rule
GUγ(W )W = Gγ(U)γ(W ). However we need to avoid the case where Uγ(W ) = W , since we want
the symmetric difference of Uγ(W ) and W to have size 2 or 4. This means that for each W ∈ W,
there is at most one U ∈ W, namely W−γ(W ), excluded for this reason. We will call the product
γ(U)γ(W ) acceptable if U 6= W−γ(W ).

First suppose that W contains four rotations. If there is one, γ1, of order 2 or 4, and two
γ2, γ3, of order 3, then γ2γ1 and γ3γ1 have order 6 or 12 and at least one of them is acceptable.
The same argument holds if γ1 has order 3 and γ2, γ3 have order 2 or 4.

If W does not contain four rotations, it has at least 5 reflections σ1, . . . , σ5. The product
σ1σ1 is trivial and therefore not acceptable. Thus, the four products γ2 = σ2σ1, . . . , γ5 = σ5σ1
are acceptable and in particular nontrivial. If one of the nontrivial rotations γ2, . . . , γ5 has order
at least 5, we are done, so assume that is not the case. By the same argument as before there
must be indices i, j, k ∈ {2, . . . , 5} with i 6= j such that γiγ

−1
k and γjγ

−1
k have order 6 or 12.

Noting that γiγ
−1
k = σiσ1σ1σk = σiσk and γjγ

−1
k = σjσ1σ1σk = σjσk we conclude that one of

the two products must be acceptable and has order at least 5.
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One of these two possibilities (4 rotations or 5 reflections) must happen if we have 8 distinct
nontrivial elements of Dn in W. This shows that there is a set W ⊆ V of size 2 or 4 such
that GW = Gγ for some rotation γ of order at least 5.

Let δ be a rotation. We define W (G, δ) to be the set W that satisfies GW = Gδ and |W | <
n/2, if it exists. Note that the set W is unique if it exists. Let dist(G, δ) be the set of pairwise
distances (lengths of shortest paths on the undirected cycle) between the elements of W (G, δ).
Note that |W (G, δ)| = |W (G, δ−1)| and dist(G, δ) = dist(G, δ−1), since W (G, δ−1) = W δ−1

.

Lemma 5. Let G be an oriented cycle and let δ be a nontrivial rotation such that GW = Gδ for
some W ⊆ V with n > 2|W |+ 8. Then W (Gv , δ) is well defined for each v ∈ V . Furthermore,
for any oriented cycle H that has an extended deck which is also an extended deck of G, the
set W (H, δ) is well defined and |W (H, δ)| = max

{

|W (Gv, δ)| − 2 | v ∈ V
}

= |W |.

Proof. The fact that W (Gv, δ) is well defined follows from Lemma 1. If H is an oriented cycle
that has an extended deck which is also an extended deck of G, then there is a vertex v such
that Gv = H or there are two not necessarily distinct vertices v,w such that Gvw = H. Thus,
by Lemma 1, HWvvδ = (Gv)Wvvδ = (Gv)

δ = Hδ or HWvvδwwδ = (Gvw)Wvvδwwδ = (Gvw)
δ = Hδ.

Since |W |+4 < n/2, in the first case, we have W ′ = W (H, δ) = W △{v, vδ}, and in the second
case we have W ′ = W (H, δ) = W △ {v, vδ} △ {w,wδ}. In either case W (H, δ) is well defined.

For all v it holds that |W ′| − 2 ≤ |W ′△ {v, vδ}| ≤ |W ′|+ 2. Since n > 2(|W |+ 4) ≥ 2|W ′|,
there exists a u such that W ′△ {u, uδ} has size |W ′| + 2. Thus |W ′| = max

{

|W (Gv, δ)| − 2 |
v ∈ V

}

.

Note that the fact that |W (Gv, δ)| = |W (Gv , δ
−1)| for all v ∈ V implies that the value

of max
{

|W (Gv , δ)| − 2 | v ∈ V
}

depends only on the deck. The previous lemma thus says in
other words that |W | can be reconstructed, for any particular δ.

Lemma 6. Let G be an oriented cycle. Suppose there exists a nontrivial rotation δ that is not
of order 2, such that for W = W (G, δ) we have |W | ≥ 2 and n > 4|W | + 4, then dist(G, δ) is
reconstructible from every extended deck.

Proof. Let r be the integer that is equal to the distance between a vertex and its image under δ.
Since |W | ≥ 2 and n > 4|W | + 4 together imply n > 2|W | + 8, Lemma 5 applies and |W | can
be reconstructed. First note that for any integer d the value of |{v | d ∈ dist(Gv , δ)}| depends
only on the deck.

• For d /∈ dist(G, δ) and d 6= r we have |{v | d ∈ dist(Gv , δ)}| ≤ 4|W |.

• For d ∈ dist(G, δ) and d 6= r we have |{v | d ∈ dist(Gv , δ)}| ≥ n− 4.

These inequalities remain true if the sets on the left hand side range over all cards in an
extended deck of G. Thus if 4|W | < n − 4, then we can decide whether d is in dist(G, δ),
for d 6= r. To show that it is also possible to decide r ∈ dist(G, δ), we note that r ∈ dist(G, δ)
if and only if there exist a vertex v ∈ V such that |W (Gv, δ)| = |W | − 2.

Lemma 7. Let G be an oriented cycle. Suppose there exists a nontrivial rotation δ that rotates
by r < n/2 positions, such that for W = W (G, δ) we have r /∈ dist(G, δ), |W | ≥ 2, and n >
4|W |+ 4. Then G is reconstructible from every extended deck.

Proof. The inequalities |W | ≥ 2 and n > 4|W | + 4 imply that n > 2|W | + 8. By Lemma 5,
for any oriented cycle H that has an extended deck which is also an extended deck of G we
have |W (H, δ)| = |W (G, δ)|. We show the existence of a vertex v′ such that
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1. v′, (v′)δ /∈W ,

2. v′ is not at distance r from any vertex in W , and

3. (v′)δ does not have distance r from any vertex in W .

We call such a vertex good. We count the number of vertices that violate one of the condi-
tions: There are |W | vertices in W and |W | vertices in W δ, thus there are at most 2|W | vertices
that violate Condition 1. There are at most |W | vertices that violate Condition 2 but do not
violate Condition 1. There are at most |W | vertices that violate Condition 3 but do not violate
Condition 1. Thus in total we conclude that at most 2|W |+ |W | + |W | vertices are not good.
Since n > 4|W |, there is a good vertex.

Let v′ be a good vertex. We show that for all v′′ 6= v′ the set W (Gv′v′′ , δ) = W△{v′, (v′)δ}△
{v′′, (v′′)δ} is not of size |W |. Since v′ is good, the set W △ {v′, (v′)δ} = W ∪ {v′, (v′)δ} is of
size |W |+2. Furthermore, since v′ is good and the distance r is not in dist(G, δ), the only two
vertices in W ∪ {v′, (v′)δ} that are distance r apart are v′ and (v′)δ . Since r 6= n/2, for v′′ 6= v′

the set {v′, (v′)δ} is not equal to the set {v′′, (v′′)δ}. This shows that W△{v′, (v′)δ}△{v′′, (v′′)δ}
is not of size |W |.

Let H be an oriented cycle that has an extended deck which is also an extended deck of G.
Consider the card Gv′ in this extended deck. Since |W (H, δ)| = |W |, we conclude that H 6= Gv′

and that H 6= (Gv′)v′′ for all v
′′ 6= v′. Thus H = (Gv′)v′ = G.

Lemma 8. Let G be an oriented cycle on n > 28 vertices. If there is a nontrivial rotation δ
which is not of order 2, such that |W (G, δ)| = 4 then G is reconstructible from every extended
deck.

Proof. Let r be the integer that is equal to the distance between a vertex and its image under δ.
Define D = dist(G, δ). By the previous lemma, we may assume that r ∈ D. The conditions
on W = W (G, δ) imply that n > 2|W |+8 and n > 4|W |+4. Thus, by Lemmas 5 and 6, for any
graph H that has an extended deck which is also an extended deck of G, we have |W (H, δ)| = 4
and dist(H, δ) = D.

We show the existence of a vertex v′ ∈ V such that

1. v′, (v′)δ /∈W ,

2. v′ is not at distance r from any vertex in W , and

3. for at least three distinct vertices x1, x2, x3 ∈W the distance from v′ to xi is not contained
in D.

We call such a vertex good. We count the number of vertices that violate one of the condi-
tions: There are 4 vertices in W and 4 vertices in W δ. However, since r ∈ D, one vertex lies
in W ∩W δ, thus there are at most 7 vertices that violate Condition 1. Since r ∈ D, there are
at most 3 vertices that violate Condition 2 but do not violate Condition 1. We now bound the
number of vertices for which at least 2 of the distances to vertices in W are contained in D. We
double count the ordered pairs (x, u) with x ∈ W , u ∈ V , where u doesn’t satisfy Condition 1
or 2 and the distance between x and u is in D. There are at most |D| · 2 · 4 − 4 · 3 such pairs,
since there are 4 ·3 pairs (x, u) with x, u ∈W . Thus there are at most (8|D|−12)/2 vertices not
in W with two or less distances to vertices in W not contained in D. Thus in total we conclude
that at most 7 + 3 + 4|D| − 6 ≤ 28 vertices are not good. Since n > 28, there is a good vertex.

Let v′ be a good vertex. Since v′ is good, the set W △ {v′, (v′)δ} = W ∪ {v′, (v′)δ} is of
size |W |+ 2. We now show that for all v′′ 6= v′ the set W ′′ = W △ {v′, (v′)δ} △ {v′′, (v′′)δ} has
two vertices of a distance not contained in D, or the set |W ′′| is not of size |W |.
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Case 1: If (v′′)δ = v′ then v′′ /∈W △{(v′), (v′)δ}, since with the exception of (v′)δ no vertex
in W ∪ {(v′), (v′)δ} has distance r from v′ and r 6= n/2. Thus |W ′′| 6= |W |.

Case 2: If v′′ 6= v′ and (v′′)δ 6= v′, then v′ ∈W ′′. Three of the vertices in W are at a distance
to v′ which is not contained in D. At least one of these vertices is contained in W ′′.

Let H be a graph that has an extended deck which is also an extended deck of G. Consider
the card Gv′ in this extended deck. Since |W (H, δ)| = 4 and D = dist(H, δ), we conclude
that H 6= Gv′ and that H 6= (Gv′)v′′ for all v

′′ 6= v′. Thus H = (Gv′ )v′ = G.

Lemma 9. Let W = W (G, δ) where δ is a nontrivial rotation of order at least 5 rotating by r
positions. If |W | = 2, n > 12 and r ∈ dist(G, δ), then G is reconstructible from every extended
deck.

Proof. The assumptions |W | = 2 and n > 12 imply that n > 2|W |+ 8.
For the sake of contradiction we assume G is not reconstructible. By the assumptions, W

is of the form W = {w1, w2} with w2 = wδ
1. Define w0 = wδ−1

1 and w3 = wδ
2.

Since W (Gv, δ) = {w1, w2} △ {v, v
δ} for any vertex v, it holds that |W (Gv, δ)| = 2 if and

only if v ∈ {w0, w2}. Since Gw1w2 = Gδ, we have (Gw0)
δ = (Gw0)w1w2w0w1 = Gw2 . Thus, all

cards Gv with |W (Gv , δ)| = 2 are isomorphic. We can therefore identify the isomorphism type
of the card Gw2 from the deck. Note that W (Gw2 , δ) = {w1, w3}.

We first show that for every vertex v′ /∈ {w1, w2} the set W (Gw2v′ , δ) = {w1, w3}△{v
′, v′δ}

is either not of size 2, or it is of size two, but its two vertices are not at distance r: Indeed,
whenever v′ /∈ {w0, w1, w2, w3}, then {w1, w3} △ {v

′, (v′)δ} is not of size two. If v′ ∈ {w0, w3}
then {w1, w3} △ {v

′, (v′)δ} is of the form {u, uδ
3
} for some vertex u ∈ V and thus, since δ is of

order at least 5, does not contain two vertices at distance r.
Since (w1)

δ = w2, we know that ((Gw2)w1)
δ = G = (Gw2)w2 . Let H be a graph that

has an extended deck which is also an extended deck of G. For all v′ /∈ {w1, w2} we have
that |W (Gw2v′ , δ)| 6= 2 or r /∈ W (Gw2v′ , δ). Thus, for all v′ /∈ {w1, w2}, H 6= Gw2v′ . Since δ
is not of order 3, dist(G, δ) 6= dist(Gw2 , δ) and thus H 6= Gw2 . For all v′ ∈ {w1, w2} the
graph Gw2v′ is isomorphic to G. Therefore H is isomorphic to G. In any case we obtain a
contradiction.

Theorem 3. Every oriented cycle on at least 30 vertices is reconstructible from each of its
extended decks.

Proof. Suppose G is an oriented cycle on n ≥ 30 vertices that is not reconstructible from one of
its extended decks. By Lemma 4 there is a set W ⊆ V of size 2 or 4 such that GW = Gγ for some
rotation δ of order at least 5. Suppose δ operates by rotating G by r positions. If r /∈ dist(G, δ)
then G is reconstructible by Lemma 7. If r ∈ dist(G, δ), then G is reconstructible by Lemma 9
if |W | = 2 and by Lemma 8 if |W | = 4.

Figures 3–8 show families of non-isomorphic oriented cycles which have the same t-deck
for some t ∈ Z. In fact Figure 6 shows two graphs which have the same (−1)-decks, where
the (−1)-deck of graph D is obtained from the deck of D by deleting 〈D〉. All graphs have been
computed using the graph generation package nauty [6] developed by the first author. Together
with Theorem 3, this computation also demonstrates that there are no other examples.

7 Disconnected graphs

In this section we consider disconnected digraphs. For a digraph C and a digraph G let nC(G)
be the number of components of G that are isomorphic to C. We call two components of a
digraph switching adjacent if one can be obtained from the other by switching about a vertex.
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Figure 3: The 3-cycles that have the
same 1-decks.

Figure 4: The 4-cycles that have the
same decks.

Figure 5: The 7-cycles that have the
same 1-decks.

Figure 6: The 5-cycles that have the
same (−1)-decks.

Figure 7: The three families of 6-cycles which have the same 2-decks.

Figure 8: The six families of 8-cycles which have the same decks.
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Lemma 10. If a digraph G contains at least two non-isomorphic switching adjacent components,
then G is reconstructible.

Proof. Suppose G contains the non-isomorphic switching adjacent components A and B. Let H
be a digraph that has the same deck as G. Since the deck contains a card that has at least two A
components, one of the components of H is A. By symmetry B is also a component of H. Thus,
the number nA(H) of A components of H is the maximum number of A components appearing
in a card minus 1 and thus depends only on the deck. By symmetry the number nB(H) of B
components in H also only depends on the deck. There is a card X with nA(H)+1 components
isomorphic to A and nB(H)− 1 components isomorphic to B. The graph H, and thus also the
graph G, must be isomorphic to the graph obtained from the card X by replacing a component
isomorphic to A with a component isomorphic to B.

Lemma 11. If a digraph G contains at least three components of which at least two are not
switching-stable, then G is reconstructible.

Proof. Let H be a digraph that has the same deck as G. By the previous lemma we may
assume that all non-isomorphic components of G are not switching adjacent, and similarly
for H. Let A and B be components of G that are not switching-stable. Then there is card
containing both of them, so at least one, say A, is a component of H. Consider a card X with
the fewest components isomorphic to A. Since A is not switching-stable, this card corresponds
to switching G about a vertex in A, and similarly for H. Since A is not switching adjacent to
any component of G or H that is not isomorphic to A, both G and H are the graph obtained
by replacing the unique component of X switching adjacent to A by a copy of A. That is, G
and H are isomorphic.

For a digraph G, a possible component is a connected digraph that appears as some com-
ponent in some digraph H that has the same deck as G. A definite component is a connected
digraph that appears as a component in every digraph that has the same deck as G.

Lemma 12. If a digraph G contains exactly two components of different sizes of which the
smaller one is not switching-stable, then G is reconstructible.

Proof. Suppose the components are A and B and A is of smaller size. Then A appears in more
than half the cards and is thus definite. Since A is not switching-stable, there is a card CB
with C non-isomorphic to A. Since A is definite and B cannot be a switching of A this implies
that B is definite.

Lemma 13. If G is a digraph that consists of two components with the same number of vertices
then G is reconstructible or the possible components form a switching-stable set of size at most 4.

Proof. Suppose G = A+B. By Lemma 10 we may assume that A and B are not simultaneously
non-isomorphic and switching adjacent.

We observe that every possible component appears at least n/2 times in the deck. Moreover
every switching of a possible component is in the deck. We distinguish cases according to the
number of possible components of G.

4 possible components: If G has exactly 4 non-isomorphic possible components, then they
form a switching-stable set.

3 possible components: If G has exactly 3 non-isomorphic possible components then two of
them must be adjacent. If there is a reconstruction that has two isomorphic components, then
this component appears n times in the deck. The other two possible components appear n/2
times, so the three components form a switching-stable set. Suppose now G does not have
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isomorphic components. Since G does not have adjacent components and does not have iso-
morphic components, it is not the case that all 3 possible components are adjacent. If one of
the 3 possible components is adjacent to both other components, then G must be the graph
that consists of the non-adjacent components. Otherwise suppose A and B are adjacent and C
is not adjacent to either of them. Since A and B both appear at least n/2 times and C cannot
switch to A or B, A must always switch to B and B must always switch to A. Thus if A appears
in the deck then G = B + C. Otherwise G = A+ C. In any case G is reconstructible.

2 possible components: If G has exactly 2 non-isomorphic possible components A and B,
then G is isomorphic to A+ B if they are not adjacent. We can thus assume that G 6= A+ B
by Lemma 10. Thus, G = A+A or G = B+B. Either the set {A,B} is switching-stable or the
deck contains a card of the form A+C or a card of the form B+C with C /∈ {A,B}, implying
that one of the components A or B is definite.

1 possible component: If G has exactly 1 non-isomorphic possible component then G is
isomorphic to the disjoint union of this component with itself.

Theorem 4. If G and H are disconnected non-isomorphic digraphs with the same deck, then

1. G and H each have exactly two components, and the possible components of G and H are
of the same size and form a switching-stable set of size at most 4, or

2. G and H each have exactly one component that is not switching-stable, and these two
components have the same t-deck for some t ∈ N.

Proof. We first argue that if G and H both have exactly one component that is not switching-
stable then the two non-switching-stable components in G and H have the same t-deck for
some t ∈ N. The number of switching-stable components of each isomorphism type in every
card of a deck is invariant over all cards and the same for the original graph. Let t be the
number of vertices contained in switching-stable components of G. This implies that t is also
the number of vertices contained in switching-stable components of H. The multi-set of non-
switching-stable components in cards of G is equal to the t-deck of G. The analogous statements
holds for H which shows that the two non-switching-stable components in G and H have the
same t-deck.

If G and H have more than 3 components then by Lemma 11 they both have exactly one
component that is not switching-stable, showing that the second option holds.

If G and H have 2 components, then either by Lemma 12 the second option holds or by
Lemma 13 the possible components of G form a switching-stable set of size at most 4. By
definition, all components of H are possible components of G.

We now describe all oriented graphs with maximum degree at most 2 that satisfy Property 1
from the previous theorem. Let G and H be a pair of such oriented graphs. Let c be the size of a
largest possible component of G then by Corollary 1 we have 2c−1 ≤ 4 ·c ·2, which implies c ≤ 6.

Note that every oriented path on n vertices can be switched into every other oriented path
on n vertices. Since there are more than 4 oriented paths on 5 vertices, an oriented path
contained in a switching-stable set of size at most 4 has at most 4 vertices. Figure 9 shows the
unions of oriented paths that have Property 1 from the previous theorem.

Checking which pairs of cycles of length up to 6 are non-reconstructible can be done by
hand or by a computer search. Figures 9 and 10 show all pairs of oriented graphs of maximum
degree at most 2 that satisfy Property 1 from the previous theorem.
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Figure 9: Disjoint unions of paths which
have the same decks.

Figure 10: Disjoint unions of cycles which
have the same decks.

8 Non-reconstructible graphs of maximum degree at most 2

We assemble the results from the previous sections to characterize all non-reconstructible graphs
with an underlying graph of maximum degree at most 2.

Lemma 14. Let G and H be two digraphs. Let G′ ∪̇SG and H ′ ∪̇SH be the decomposition of the
graphs obtained by splitting off the parts SG and SH that contain all switching-stable connected
components. Then G and H have the same deck if and only if SG and SH are isomorphic graphs
on t vertices say, and G′ and H ′ have the same t-deck.

Proof. The lemma follows directly from the observation that the t-decks of G′ and H ′ are
obtained by removing all switching-stable components in each card in the deck of G and H,
respectively.

Theorem 5. The pairs {G,H} of non-isomorphic oriented graphs with maximum degree at
most 2 which have the same deck are exactly the following.

1. The oriented graphs obtained from paths in Figure 2 (a) by adding an isolated vertex.

2. Two oriented paths on 4 vertices that are in one of the two families in Figure 2 (b) and (c).

3. The oriented graphs obtained from the two 3-cycles shown in Figure 3 by adding an isolated
vertices.

4. The two oriented 4-cycles in Figure 4.

5. The oriented graphs obtained from the two 6-cycles that are in one of the three pairs in
Figure 7 by adding either two isolated vertices or an isolated edge.

6. The oriented graphs obtained from the two 7-cycles shown in Figure 5 by adding an isolated
vertex.

7. Two oriented 8-cycles that are in one of the six families of Figure 8.

8. The oriented forests shown in Figure 9.

9. The unions of oriented cycles shown in Figure 10.

In summary, on 4 vertices there are 4 families of size 2 and 1 family of size 3. On 8 vertices
there are 13 families of size 2, 1 family of size 3, and 1 family of size 4.

9 Concluding remarks

As we mentioned earlier, all pairs of non-isomorphic oriented graphs with the same deck have
an order which is a multiple of 4, and the largest known have 8 vertices [3]. These include 20
families of 2 tournaments, 4 families of 3 tournaments, and 2 families of 4 tournaments with
the same deck. One of the latter families is shown in Figure 11.
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Figure 11: A family of four 8-vertex tournaments that have the same decks.

Figure 12: These 12-cycles contain 2-gons, depicted as two headed arrows. They have the same
decks.

It is too expensive to test by exhaustive enumeration whether all 12-vertex oriented graphs
are determined by their decks. However, we performed a partial search on that size, finding that
all 154,108,311,168 tournaments, all 506,454,795 orientations of graphs with maximum degree
at most 3, and all 16,895,298,180 orientations of quartic graphs are determined by their decks.

In this paper we have restricted ourselves to oriented graphs, since a cycle of length 2 is
not changed by a switching. Nevertheless, Figure 12 shows that new, structurally different
reconstruction problems emerge when 2-cycles are allowed. The two graphs shown have the
same deck. No similar pairs of cycles occur on 13–20 vertices.
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