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Abstract

Let U5 be the tournament with vertices v1, . . . , v5 such that v2 → v1, and vi → vj
if j − i ≡ 1, 2 (mod 5) and {i, j} 6= {1, 2}. In this paper we describe the tournaments
which do not have U5 as a subtournament. Specifically, we show that if a tournament
G is “prime”—that is, if there is no subset X ⊆ V (G), 1 < |X| < |V (G)|, such that
for all v ∈ V (G) \X, either v → x for all x ∈ X or x → v for all x ∈ X—then G is
U5-free if and only if either G is a specific tournament Tn or V (G) can be partitioned
into sets X, Y , Z such that X ∪ Y , Y ∪ Z, and Z ∪X are transitive. From the prime
U5-free tournaments we can construct all the U5-free tournaments. We use the theorem
to show that every U5-free tournament with n vertices has a transitive subtournament
with at least nlog3 2 vertices, and that this bound is tight.

1 Introduction

A tournament G is a loopless directed graph such that for any two distinct vertices u, v ∈
V (G), there is exactly one edge with both ends in {u, v}. In this paper, all tournaments are
finite. A subtournament of a tournament G is a tournament induced on a subset of V (G). For
X ⊆ V (G), let G[X ] denote the subtournament of G induced on X . Given two tournaments
G and H , we say that G is H-free if G has no subtournament isomorphic to H ; otherwise, G
contains H . Given a tournament G and a vertex v ∈ V (G), let BG(v) = {u ∈ V (G) : u → v}
be the set of predecessors of v in G, and let AG(v) = {u ∈ V (G) : v → u} be the set of
successors of v in G. For two disjoint sets X , Y ⊆ V (G), we write X ⇒ Y if x → y for all
x ∈ X , y ∈ Y . We use v ⇒ X and X ⇒ v to mean {v} ⇒ X and X ⇒ {v}, respectively.
The dual of a tournament G is the tournament obtained by reversing all edges of G. A
cyclic triangle in a tournament G is a set {v1, v2, v3} ⊆ V (G) of three distinct vertices such
that v1 → v2 → v3 → v1. A transitive tournament is a tournament with no cyclic triangle;
a tournament G is transitive if and only if its vertices can be ordered v1, . . . , v|V (G)| such
that vi → vj if i < j. Let In denote the transitive tournament with n vertices. If the
subtournament induced on a subset X ⊆ V (G) is transitive, we say that X is transitive.
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Given a tournament G, a homogeneous set of G is a subset X ⊆ V (G) such that for
all vertices v ∈ V (G) \X , either v ⇒ X or X ⇒ v. A homogeneous set X ⊆ V (G) is
nontrivial if 1 < |X| < |V (G)|; otherwise it is trivial. A tournament is prime if all of its
homogeneous sets are trivial. Given a tournament G and a nonempty homogeneous set X
of G, let G/X denote the tournament isomorphic to G [(V (G) \X) ∪ {v}], where v is any
vertex in X . (Note that G/X is well-defined up to isomorphism.) Thus, if G has a nontrivial
homogeneous set X , we can express it as the combination of two tournaments G/X and G[X ]
each of which has less vertices than G. In addition, note that if H is a prime tournament,
then G is H-free if and only if G/X and G[X ] are both H-free.

Define U5 to be the tournament with vertices v1, . . . , v5 such that v2 → v1, and vi → vj if
j − i ≡ 1, 2 (mod 5) and {i, j} 6= {1, 2}. (Alternatively, U5 is the tournament with vertices
u1, . . . , u5 such that for any 1 ≤ i < j ≤ 5, we have ui → uj if i, j are not both odd, and
uj → ui otherwise.) The tournament U5 is prime. In this paper, we characterize the U5-free
tournaments. To do this, it suffices to characterize the prime U5-free tournaments, because
any tournament G with a nontrivial homogeneous set X is U5-free if and only if the strictly
smaller tournaments G/X and G[X ] are U5-free.

To state the main theorem, we define Tn for odd n ≥ 1 to be the tournament with vertices
v1, . . . , vn such that vi → vj if j − i ≡ 1, 2, . . . , (n − 1)/2 (mod n). The theorem is as
follows.

Theorem 1.1. Let G be a prime tournament. Then G is U5-free if and only if G is Tn for
some odd n ≥ 1 or V (G) can be partitioned into sets X, Y , Z such that X ∪ Y , Y ∪Z, and
Z ∪X are transitive.

The paper is organized as follows. In Section 2, we review some results on prime tour-
naments and introduce the “critical” tournaments. In Section 3, we give some examples of
prime U5-free tournaments and verify that they satisfy Theorem 1.1. In Section 4, we prove
several preliminary facts that will be used in the proof of the main theorem. Section 5 is
the proof of the main theorem. In Section 6, we use Theorem 1.1 to show that every U5-free
tournament with n vertices has a transitive subtournament with at least nlog3 2 vertices, and
that this bound is tight.

2 Prime tournaments

We list some properties of prime tournaments. First, note that each strong component of
a tournament is a homogeneous set. Thus, if a tournament is prime, either it is strongly
connected or all of its strong components have exactly one vertex. In the latter case, the
tournament is transitive, and a transitive tournament is prime if and only if it has at most
two vertices. Thus, every prime tournament with at least three vertices is strongly connected.

All tournaments with at most two vertices are prime. The only prime tournament with
three vertices is the tournament whose vertex set is a cyclic triangle. There are no prime
tournaments with four vertices. For five vertices, there are exactly three prime tournaments
T5, U5, and W5, drawn in Figure 1. Every prime tournament with at least five vertices
contains at least one of T5, U5, or W5 (Ehrenfeucht and Rozenberg [6]).
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(a) T5 (b) U5 (c) W5

Figure 1: The three five-vertex prime tournaments

The tournaments T5, U5, and W5 have the following generalizations to any odd number
of vertices.

Definition 2.1. Let n ≥ 1 be odd. The tournaments Tn, Un, and Wn are defined as follows.

• Tn is the tournament with vertices v1, . . . , vn such that vi → vj if j − i ≡ 1, 2, . . . ,
(n− 1)/2 (mod n).

• Un is the tournament obtained from Tn by reversing all edges which have both ends in
{v1, . . . , v(n−1)/2}.

• Wn is the tournament with vertices v, w1, . . . , wn−1 such that wi → wj if i < j, and
{wi : i even} ⇒ v ⇒ {wi : i odd}.

The tournaments Tn, Un, and Wn are prime for all odd n ≥ 1, and their only prime
subtournaments with at least three vertices are Tm, Um, and Wm, respectively, for odd
3 ≤ m < n. In addition, these tournaments are all isomorphic to their own duals. Finally,
note that T1, U1, and W1 are all the one-vertex tournament, and T3, U3, and W3 are all the
cyclic triangle tournament.

The tournaments Tn, Un, and Wn are known as the “critical tournaments” due to the
following theorem by Schmerl and Trotter.

Theorem 2.2 (Schmerl and Trotter [9]). If G is a prime tournament with |V (G)| ≥ 6, and
G is not Tn, Un, or Wn for any odd n, then G has a prime subtournament with |V (G)| − 1
vertices.

In [8], the author proved the following strengthening of Theorem 2.2.

Theorem 2.3 ([8]). Let G be a prime tournament which is not Tn, Un, or Wn for any odd
n, and let H be a prime subtournament of G with 5 ≤ |V (H)| < |V (G)|. Then there exists
a prime subtournament of G with |V (H)|+ 1 vertices that has a subtournament isomorphic
to H.

This theorem can be used to prove the following result, which appears with a different
proof in Belkhechine and Boudabbous [2].

Theorem 2.4 (Belkhechine and Boudabbous [2]). Let G be a prime tournament which
contains T5. Then either G is Tn for some odd n or G contains U5 and W5.
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Proof. Suppose G is not Tn for any n. In particular, since G contains T5, |V (G)| ≥ 6.
Since G contains T5, it is not Un or Wn for any n. So by Theorem 2.3, there exists a prime
subtournament H of G, |V (H)| = 6, that contains T5. Let V (H) = {u, v1, . . . , v5}, where
vi → vj if j − i ≡ 1 or 2 (mod 5).

Let B = BH(u) and A = AH(u). By taking the dual of G if necessary (we can do this
because T5, U5, and W5 are isomorphic to their own duals), we can assume |B| ≤ 2. If
|B| = 0, then u ⇒ V (H) \ {u}, so V (H) \ {u} is a homogeneous set in H , contradicting
the primeness of H . Suppose |B| = 1. Without loss of generality, assume v1 ∈ B and v2,
. . . , v5 ∈ A. Then the tournament induced on {v2, u, v4, v5, v1} is isomorphic to U5, and the
tournament induced on {v5, v1, u, v2, v3} is isomorphic to W5, as desired.

Finally, suppose |B| = 2. We either have vi, vi+1 ∈ B for some i or vi, vi+2 ∈ B for
some i, where the indices are taken modulo 5. Suppose we have the former case; without
loss of generality, assume i = 1. Then {u, v3} is a homogeneous set in H , which contradicts
the primeness of H . So we must have vi, vi+2 ∈ B for some i; without loss of generality,
assume i = 1. Then the tournament induced on {v2, v1, v3, u, v5} is isomorphic to U5, and
the tournament induced on {v2, v3, u, v4, v5} is isomorphic to W5.

Theorem 2.4 implies that to prove Theorem 1.1, it suffices to prove the following.

Theorem 2.5. Let G be a prime tournament. Then G is T5-free and U5-free if and only if
V (G) can be partitioned into sets X, Y , Z such that X ∪Y , Y ∪Z, and Z∪X are transitive.

To conclude this section, we state a forbidden-subtournament result different from ours.
In [7], Latka characterized all the W5-free tournaments. To state the theorem, we define Q7

to be the Paley tournament on 7 vertices; that is, the tournament with vertices v1, . . . , v7
such that vi → vj if j − i is a quadratic residue modulo 7. Let Q7 − v be the tournament
obtained from Q7 by deleting a vertex.

Theorem 2.6 (Latka [7]). A prime tournament is W5-free if and only if it is isomorphic to
one of I0, I2, Q7 − v, Q7, Tn, or Un for some some odd n ≥ 1.

3 Examples

We now give some examples of families of prime U5-free tournaments. First, we have that
Tn is U5-free for all odd n ≥ 1; this obviously agrees with Theorem 1.1.

The tournament Wn is U5-free for for all odd n ≥ 1. To see that this agrees with
Theorem 1.1, let V (Wn) = {v, w1, . . . , wn−1} as in Definition 2.1, and let X = {v}, Y =
{wi : i odd}, and Z = {wi : i even}. Then X , Y , and Z partition V (Wn), and X ∪Y , Y ∪Z,
and Z ∪X are transitive, as desired.

Finally, let Pn be the tournament with vertices v1, . . . , vn such that vi → vj if j − i ≥ 2,
and vi+1 → vi for all 1 ≤ i < n. Then Pn is prime for all n 6= 4, and Pn is U5-free for all n.
Let X = {vi : i ≡ 0 (mod 3)}, Y = {vi : i ≡ 1 (mod 3)}, and Z = {vi : i ≡ 2 (mod 3)}.
Then X , Y , and Z partition V (Pn), and X ∪ Y , Y ∪ Z, and Z ∪X are transitive.
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4 Preliminaries

Before proving the main theorem, we establish some facts that will aid us in the proof.

Proposition 4.1. Let G be a tournament, and let X, Y ⊆ V (G) be disjoint transitive
sets. Let X = {x1, . . . , xℓ} and Y = {y1, . . . , ym}, where xi → xj if i < j and yi → yj
if i < j. Suppose that for each xi ∈ X, there is an integer 1 ≤ si ≤ m + 1 such that
{yj : j < si} ⇒ xi ⇒ {yj : j ≥ si}. Then X∪Y is transitive if and only if s1 ≤ s2 ≤ . . . ≤ sℓ.

Proposition 4.1 is clear; we omit the proof.

Proposition 4.2. Let G be a strongly connected tournament, |V (G)| ≥ 3, such that V (G)
can be partitioned into sets X, Y , Z such that X ∪ Y , Y ∪ Z, and Z ∪ X are transitive.
Let X = {x1, . . . , xℓ}, Y = {y1, . . . , ym}, and Z = {z1, . . . , zn}, where xi → xj if i < j,
and similarly for Y and Z. Then there exists a sequence C1, C2, . . . , C|V (G)|−2 of cyclic
triangles such that C1 = {x1, y1, z1} and if Cr = {xi, yj, zk}, 1 ≤ r < |V (G)| − 2, then
Cr+1 = {xi+1, yj, zk}, {xi, yj+1, zk}, or {xi, yj, zk+1}.

Note that if C1, . . . , C|V (G)|−2 is such a sequence, then V (G) = C1 ∪ · · · ∪ C|V (G)|−2.

Proof. First, note that if any of X , Y , or Z are empty, then G is transitive, which contradicts
the fact that G is strongly connected since |V (G)| ≥ 3. So X , Y , and Z are all nonempty.

It suffices to show that {x1, y1, z1} is a cyclic triangle, and if {xi, yj, zk} is a cyclic triangle
and i+ j + k < |V (G)|, then one of {xi+1, yj, zk}, {xi, yj+1, zk}, or {xi, yj, zk+1} exists (e.g.,
{xi+1, yj, zk} exists if and only if i < ℓ) and is a cyclic triangle. First, suppose that {x1, y1, z1}
is not a cyclic triangle. Then one of the vertices in {x1, y1, z1} is a predecessor of the other
two; without loss of generality, assume x1 ⇒ {y1, z1}. Then since X ∪ Y and X ∪ Z are
transitive, we have x1 ⇒ V (G) \ {x}. This contradicts the strong connectivity of G. So
{x1, y1, z1} is a cyclic triangle.

Finally, suppose that {xi, yj, zk} is a cyclic triangle and i+ j+ k < |V (G)|. Without loss
of generality, assume xi → yj → zk → xi. Suppose that none of {xi+1, yj, zk}, {xi, yj+1, zk},
and {xi, yj, zk+1} are cyclic triangles (if they exist). If i < ℓ, then since zk → xi and Z ∪X is
transitive, we have zk → xi+1. Then since {xi+1, yj, zk} is not a cyclic triangle and yj → zk,
we have yj → xi+1 as well. So {xi, yj, zk} ⇒ {xi+1}. Since X ∪ Y and X ∪ Z are transitive,
we thus have

{xi′ : i
′ ≤ i} ∪ {yj′ : j

′ ≤ j} ∪ {zk′ : k
′ ≤ k} ⇒ {xi′ : i

′ > i}.

The above statement also holds if i = ℓ, since in that case the right side is empty.
Now, we similarly have {xi′ : i

′ ≤ i} ∪ {yj′ : j
′ ≤ j} ∪ {zk′ : k

′ ≤ k} ⇒ {yj′ : j
′ > j} and

{xi′ : i
′ ≤ i} ∪ {yj′ : j

′ ≤ j} ∪ {zk′ : k
′ ≤ k} ⇒ {zk′ : k

′ > k}. Thus,

{xi′ : i
′ ≤ i} ∪ {yj′ : j

′ ≤ j} ∪ {zk′ : k
′ ≤ k} ⇒ {xi′ : i

′ > i} ∪ {yj′ : j
′ > j} ∪ {zk′ : k

′ > k}.

Since i+ j+k < |V (G)|, the right side of the above statement is nonempty. This contradicts
the strong connectivity of G. Thus, one of {xi+1, yj, zk}, {xi, yj+1, zk}, or {xi, yj, zk+1} is a
cyclic triangle, completing the proof.
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Proposition 4.3. Let G be a tournament which is T5-free and U5-free, and let v ∈ V (G).
Let B = BG(v) and A = AG(v). Suppose that C = {x, y, z} ⊆ V (G) \ {v} is a cyclic triangle.
Then the following hold.

(a) If |C ∩A| = 1 and there is u ∈ V (G) \ {v} such that u ⇒ C, then u ∈ B.

(b) If |C ∩A| = 2 and there is u ∈ V (G) \ {v} such that C ⇒ u, then u ∈ A.

If in addition we have x′ ∈ V (G) \ {v, x, y, z} such that C ′ = {x′, y, z} is a cyclic triangle
and x → x′, then the following hold.

(c) If |C ∩A| > 0, then |C ′ ∩A| > 0.

(d) If |C ∩A| = 3, then |C ′ ∩A| = 3.

(e) If y → z and y ∈ B, z ∈ A, then x and x′ are either both in B or both in A.

Proof. Assume without loss of generality that x → y → z → x. For part (a), assume without
loss of generality that x ∈ A and y, z ∈ B. Suppose u ∈ V (G) \ {v} such that u ⇒ C. If
u ∈ A, then the tournament induced on {x, u, y, z, v} is U5, a contradiction. So u ∈ B. Part
(b) follows from (a) by taking the dual.

For parts (c) through (e), we have x′ → y → z → x′. For part (c), suppose that
|C ∩ A| > 0 and |C ′ ∩ A| = 0. Then we must have x ∈ A and x′, y, z ∈ B. But then
the tournament induced on {v, z, x, x′, y} is U5, a contradiction. This proves (c). Part (d)
follows from the contrapositive of (c) by taking the dual.

Finally, for part (e), suppose y ∈ B and z ∈ A. First, suppose that x ∈ B and x′ ∈ A.
Then the tournament induced on {x′, x, y, v, z} is U5, a contradiction. Now suppose that
x ∈ A and x′ ∈ B. Then the tournament induced on {x, x′, y, v, z} is T5, a contradiction. So
x and x′ are either both in B or both in A, as desired.

In particular, given a sequence C1, . . . , C|V (G)|−2 of cyclic triangles as in Proposition 4.2,
we can apply Proposition 4.3(c)-(e) to consecutive cyclic triangles Cr, Cr+1.

5 Proof of theorem

We now prove Theorem 1.1. Recall that by Theorem 2.4, it suffices to prove the following.

Theorem 2.5. Let G be a prime tournament. Then G is T5-free and U5-free if and only if
V (G) can be partitioned into sets X, Y , Z such that X ∪Y , Y ∪Z, and Z∪X are transitive.

Proof. We organize the proof into three steps.

Step 1. “If” direction

Suppose V (G) can be partitioned into sets X , Y , Z such that X ∪ Y , Y ∪Z, and Z ∪X
are transitive. Then for any five-vertex subtournament H of G, at least one of |V (H) ∩X|,
|V (H)∩ Y |, |V (H)∩Z| is at most 1, so at least one of |V (H)∩ (X ∪ Y )|, |V (H)∩ (Y ∪Z)|,
|V (H) ∩ (Z ∪ X)| is at least 4. Hence, H has a four-vertex transitive subtournament, and
thus cannot be T5 or U5. So G is T5-free and U5-free, proving one direction of the theorem.
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Step 2. Setting up the induction

We now prove the other direction. Suppose G is T5-free and U5-free. We wish to prove
that V (G) can be partitioned into sets X , Y , Z such that X ∪ Y , Y ∪ Z, and Z ∪ X are
transitive. We proceed by induction on |V (G)|. If |V (G)| ≤ 5, then since G is prime and
is T5-free and U5-free, we have either |V (G)| ≤ 2 or G is Wn for n = 3 or 5. In the former
case, let X = V (G) and Y , Z = ∅; in the latter case, let X = {v}, Y = {wi : i odd}, and
Z = {wi : i even}, where v, w1, . . . , wn are as in Definition 2.1. In either case, X ∪Y , Y ∪Z,
and Z ∪X are transitive, as desired.

Now, assume |V (G)| ≥ 6, and that the theorem holds for all prime tournaments G′

with |V (G′)| < |V (G)|. If G is Wn for some n, then we are done by setting X = {v},
Y = {wi : i odd}, and Z = {wi : i even} as before. Assume G is not Wn for any n. Since G
is T5-free and U5-free, it is not Tn or Un for any n. Thus, by Theorem 2.2, there is a prime
subtournament G′ of G with |V (G′)| = |V (G)| − 1. Now, G′ is T5-free and U5-free, so by the
inductive hypothesis we can partition V (G′) into sets X , Y , and Z such that X ∪ Y , Y ∪Z,
and Z∪X are transitive. Let X = {x1, . . . , xℓ}, Y = {y1, . . . , ym}, and Z = {z1, . . . , zn} such
that xi → xj if i < j, and similarly for Y and Z. Since G′ is strongly connected (because G′

is prime and |V (G′)| ≥ 5), there exists a sequence C1, C2, . . . , C|V (G′)|−2 of cyclic triangles
in G′ as in Theorem 4.2.

Let v be the vertex such that {v} = V (G) \ V (G′). For convenience, let B = BG(v) and
A = AG(v); thus, V (G′) = B ∪ A. Now, V (G′) = C1 ∪ · · · ∪ C|V (G′)|−2. Suppose that for
all 1 ≤ r ≤ |V (G)| − 2, we have either Cr ⊆ B or Cr ⊆ A. Then since Cr ∩ Cr+1 6= ∅

for all 1 ≤ r < |V (G′)| − 2, we must have either V (G′) ⊆ B or V (G′) ⊆ A. But then
V (G′) is a nontrivial homogeneous set of G, contradicting the primeness of G. Thus, there
is some 1 ≤ r ≤ |V (G′)| − 2 such that neither Cr ⊆ B nor Cr ⊆ A; i.e., there is some r
such that |Cr ∩ A| = 1 or 2. By taking the dual of G if necessary, we may assume there is
some r such that |Cr ∩A| = 2. Choose r0 to be the minimum r such that |Cr ∩A| = 2. Let
Cr0 = {xi0 , yj0, zk0}, and without loss of generality, assume

• xi0 → yj0 → zk0 → xi0 , and

• xi0 ∈ A, yj0 ∈ A, and zk0 ∈ B.

We set some final notation before proceeding.

• Let s be the smallest integer such that ys ∈ A (thus, s ≤ j0), and

• let t be the largest integer such that zt−1 ∈ B (thus, t ≥ k0 + 1).

In addition, since X ∪ Y and X ∪ Z are transitive, for each xi ∈ X

• let 1 ≤ si ≤ m+ 1 be the integer such that {yj : j < si} ⇒ xi ⇒ {yj : j ≥ si}, and

• let 1 ≤ ti ≤ n+ 1 be the integer such that {zk : k < ti} ⇒ xi ⇒ {zk : k ≥ ti}.

Note that s1 ≤ · · · ≤ sℓ and t1 ≤ · · · ≤ tℓ.

Step 3. Completing the induction
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We claim that for the partition {X ∪ {v}, Y, Z} of V (G), the sets X∪{v}∪Y , X∪{v}∪Z,
and Y ∪ Z are transitive, which will prove the theorem. To prove this claim, it suffices (by
Proposition 4.1) to show the following.

(1) {xi : i < i0} ⇒ v ⇒ {xi : i ≥ i0}.

(2) {yj : j < s} ⇒ v ⇒ {yj : j ≥ s}.

(3) {zk : k < t} ⇒ v ⇒ {zk : k ≥ t}.

(4) si0−1 ≤ s ≤ si0 (if i0 = 1, only the right-hand inequality needs to be proved).

(5) ti0−1 ≤ t ≤ ti0 (if i0 = 1, only the right-hand inequality needs to be proved).

We prove these statements through a series of claims.

Claim 1. For all 1 ≤ r ≤ |V (G′)| − 2, if Cr = {xi, yj, zk}, then xi → yj → zk → xi.

This follows from the assumption xi0 → yj0 → zk0 → xi0 and the properties of the
sequence C1, . . . , C|V (G′)|−2.

Claim 2. Suppose Cr = {xi, yj, zk} for some r and xi ∈ B, yj ∈ A, and zk ∈ B. Then
si ≤ s and ti ≤ t.

Suppose si > s. Then by the definition of si, we have ys → xi. Since xi → yj and X ∪ Y
is transitive, we also have ys → yj. Then since yj → zk and Y ∪ Z is transitive, we have
ys → zk. So ys ⇒ Cr. But |Cr ∩ A| = 1, and by the definition of s, we have ys ∈ A. This
contradicts Proposition 4.3(a). So we must have si ≤ s.

Now suppose that ti > t. In particular, this means t ≤ ti − 1 ≤ n, so the vertex zt
exists. By the definition of ti, we have zt → xi. Also, since zk ∈ B, by the definition of t
we have k < t, so zk → zt. Finally, since yj → zk and Y ∪ Z is transitive, we have yj → zt.
Thus, {zk, xi, yj} and {zt, xi, yj} are cyclic triangles with zk → zt. However, xi ∈ B, yj ∈ A,
zk ∈ B, and by the definition of t, zt ∈ A. This contradicts Proposition 4.3(e). So ti ≤ t, as
desired.

Claim 3. Suppose Cr = {xi, yj, zk} for some r and xi ∈ A, yj ∈ A, and zk ∈ B. Then
si ≥ s and ti ≥ t.

Suppose si < s. In particular, we have s− 1 ≥ si ≥ 1, so the vertex ys−1 exists. By the
definition of si, xi → ys−1. Also, since yj ∈ A, by the definition of s we have s − 1 < j,
so ys−1 → yj. Finally, since yj → zk and Y ∪ Z is transitive, we have ys−1 → zk. Thus,
{ys−1, zk, xi} and {yj, zk, xi} are cyclic triangles with ys−1 → yj. However, zk ∈ B, xi ∈ A,
yj ∈ A, and by the definition of s, ys−1 ∈ B. This contradicts Proposition 4.3(e). So si ≥ s.

Now suppose ti < t. By the definition of ti, we have xi → zt−1. Since zk → xi and Z ∪X
is transitive, we also have zk → zt−1. Since yj → zk and Y ∪ Z is transitive, we then have
yj → zt−1. So Cr ⇒ zt−1. But |Cr ∩ A| = 2, and by the definition of t, we have zt−1 ∈ B.
This contradicts Proposition 4.3(b). So ti ≥ t, as desired.

Claim 4. If r0 > 1, then Cr0−1 = {xi0−1, yj0, zk0}, and xi0−1 ∈ B, yj0 ∈ A, and zk0 ∈ B.

Assume r0 > 1. Recall that by assumption, xi0 ∈ A, yj0 ∈ A, and zk0 ∈ B. By the
defintion of r0, we must have |Cr0−1| 6= 2. So one of the following holds.
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• Cr0−1 = {xi0−1, yj0, zk0} and xi0 ∈ B.

• Cr0−1 = {xi0 , yj0−1, zk0} and yj0−1 ∈ B.

• Cr0−1 = {xi0 , yj0, zk0−1} and zj0−1 ∈ A.

If we have the first case then we are done. The second case contradicts Proposition 4.3(e).
The third case contradicts Proposition 4.3(d). This proves the claim.

Claim 5. For all 1 ≤ r < r0, if Cr = {xi, yj, zk}, then xi ∈ B and zk ∈ B. In addition,
yj ∈ A if j ≥ s and yj ∈ B otherwise.

If r0 = 1, there is nothing to prove. So assume r0 > 1. We prove the claim by downward
induction on r. If r = r0−1, then the conclusion follows by Claim 4 and the fact that j0 ≥ s.
Now suppose the conclusion holds for some 2 ≤ r < r0. Let Cr = {xi, yj, zk}. First suppose
that j < s. Then |Cr ∩ A| = 0 by the inductive hypothesis. Thus, by Proposition 4.3(c) we
have |Cr−1 ∩A| = 0 as well, as desired.

Now suppose that j ≥ s. By the inductive hypothesis, xi ∈ B, yj ∈ A, and zk ∈ B. We
have three cases.

• Cr−1 = {xi−1, yj, zk}.

• Cr−1 = {xi, yj−1, zk}.

• Cr−1 = {xi, yj, zk−1}.

For the first case, since |Cr−1 ∩ A| 6= 2 by the definition of r0, we must have xi−1 ∈ B, as
desired. Similarly, in the third case we must have zk−1 ∈ B, as desired.

Finally, suppose we have the second case. We wish to prove that yj−1 ∈ B if j = s, and
yj−1 ∈ A if j > s. If j = s, then by the definition of s we must have yj−1 ∈ B, as desired.
Now suppose j > s. Suppose yj−1 ∈ B. Then |Cr−1 ∩ A| = 0, so by Proposition 4.3(c) and
downward induction, we have |Cr′ ∩ A| = 0 for all r′ ≤ r − 1. However, then yj′ ∈ B for all
j′ ≤ j − 1, and in particular ys ∈ B since j > s. This contradicts the fact that ys ∈ A by
the definition of s. Thus, yj−1 ∈ A, as desired.

Claim 6. For all r0 ≤ r ≤ |V (G′)| − 2, if Cr = {xi, yj, zk}, then xi ∈ A and yj ∈ A. In
addition, zk ∈ B if k < t and zk ∈ A otherwise.

We induct upwards on r. If r = r0, the conclusion holds by assumption and the fact
that k0 + 1 ≤ t. Now suppose the conclusion holds for some r0 ≤ r ≤ |V (G′)| − 3. Let
Cr = {xi, yj, zk}. First suppose k ≥ t. Then |Cr ∩A| = 3 by the inductive hypothesis, so by
Proposition 4.3(d), we have |Cr+1 ∩ A| = 3, as desired.

Now suppose that k < t. By the inductive hypothesis, xi ∈ A, yj ∈ A, and zk ∈ B. We
have three cases.

• Cr+1 = {xi+1, yj, zk}.

• Cr+1 = {xi, yj+1, zk}.

• Cr+1 = {xi, yj, zk+1}.
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For the second case, by Proposition 4.3(e) we must have yj+1 ∈ A, as desired. Now suppose
we have the third case. We wish to prove that zk+1 ∈ A if k = t − 1, and zk+1 ∈ B if
k < t−1. If k = t−1, then by the definition of t we have zk+1 ∈ A, as desired. Now suppose
k < t − 1, and suppose that zk+1 ∈ A. Then |Cr+1 ∩ A| = 3, so by Proposition 4.3(d) and
upward induction, we have |Cr′ ∩ A| = 3 for all r′ ≥ r + 1. Then zk′ ∈ A for all k′ ≥ k + 1,
so in particular zt−1 ∈ A since k < t − 1. This contradicts the fact that zt−1 ∈ B by the
definition of t. Thus, zk+1 ∈ B, as desired.

Finally, suppose we have the first case. We wish to prove xi+1 ∈ A. Suppose that
xi+1 ∈ B. Applying Claim 2 to Cr+1, we have si+1 ≤ s and ti+1 ≤ t. However, applying
Claim 3 to Cr, we have si ≥ s and ti ≥ t. Since si ≤ si+1 and ti ≤ ti+1 by Proposition 4.1,
we must therefore have si = si+1 = s and ti = ti+1 = t. It follows that

{xi′ : i
′ < i} ⇒ {xi, xi+1} ⇒ {xi′ : i

′ > i+ 1},

{yj′ : j
′ < s} ⇒ {xi, xi+1} ⇒ {yj′ : j

′ ≥ s},

{zk′ : k
′ < t} ⇒ {xi, xi+1} ⇒ {zk′ : k

′ ≥ t}

and hence {xi, xi+1} is a homogeneous set in G′. This contradicts the fact that G′ is prime.
So we must have xi+1 ∈ A, as desired.

Claim 7. (1) through (5) hold.

(1), (2), and (3) follow by Claims 5 and 6. For i0 > 1, the lower bounds of (4) and
(5) follow by Claims 4 and 2. The upper bounds of (4) and (5) follow by Claim 3. This
completes the proof of the theorem.

6 Large transitive subtournaments

The tournament version of the Erdős-Hajnal conjecture states that for every tournament
H , there exists a constant ε > 0 such that every H-free tournament with n vertices has a
transitive subtournament with at least nε vertices. (This conjecture was stated in [1] and
proven there to be equivalent to the original undirected graph version of the conjecture.)
Berger, Choromanski, and Chudnovsky proved in [3] that every tournament with at most
five vertices satisfies the Erdős-Hajnal conjecture. Here, we give a precise result for U5.

Theorem 6.1. If G is a U5-free tournament, then G has a transitive subtournament with
at least |V (G)|log3 2 vertices. In addition, there are infinitely many U5-free tournaments G
which have no transitive subtournament with more than |V (G)|log3 2 vertices.

Remark. For a tournament H , let ξ(H) denote the supremum of all ε for which there exists
c > 0 such that every H-free tournament G has a transitive subtournament with at least
c|V (G)|ε vertices. Then Theorem 6.1 implies that ξ(U5) = log3 2. In [4] and [5], all the
tournaments H with ξ(H) = 1 were characterized, and it was shown that there are no
tournaments H with 5/6 < ξ(H) < 1.

Before proving Theorem 6.1, we introduce the following terminology.
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Definition 6.2. Let G′ be a tournament, and fix an ordering (v1, . . . , vm) of its vertices.
Then for non-null tournaments H1, . . . , Hm, let G′(H1, . . . , Hm) denote the tournament
with vertex set V1 ∪ · · · ∪ Vm such that

• V1, . . . , Vm are pairwise disjoint,

• for all i, the subtournament of G′(H1, . . . , Hm) induced on Vi is isomorphic to Hi, and

• Vi ⇒ Vj in G′(H1, . . . , Hm) if vi → vj in G′.

Every tournament G with |V (G)| > 1 can be written as G′(H1, . . . , Hm) for some prime
tournament G′ with |V (G′)| > 1. Moreover, ifH is a prime tournament, then G′(H1, . . . , Hm)
is H-free if and only if G′, H1, . . . , Hm are all H-free.

Our proof of Theorem 6.1 will rely on the classical Karamata’s inequality for concave
functions, which we state below for convenience.

Theorem 6.3 (Karamata). Let f be a real-valued, concave function defined on an interval
I ⊆ R. Suppose x1, . . . , xn, y1, . . . , yn ∈ I such that

• x1 ≥ · · · ≥ xn and y1 ≥ · · · ≥ yn,

• x1 + · · ·+ xi ≤ y1 + · · ·+ yi for all 1 ≤ i < n,

• x1 + · · ·+ xn = y1 + · · ·+ yn.

Then
f(x1) + · · ·+ f(xn) ≥ f(y1) + · · ·+ f(yn).

We use this inequality to prove the following.

Proposition 6.4. Let γ = log3 2. If a, b, c are nonnegative real numbers with c = min(a, b, c)
and a + b+ c = n, then

aγ + bγ ≥ nγ .

Proof. Note that the function f(x) = xγ is concave on the interval [0,∞). Now, we have
a, b ≥ c and a + b+ c = n, and hence a, b ≤ n− 2c. So applying Karamata’s inequality to
the function f , we have

aγ + bγ ≥ (n− 2c)γ + cγ .

Let g(x) = (n−2x)γ +xγ . Since the functions (n−2x)γ and xγ are both concave on [0, n/3],
we have that g is concave on this interval. Hence, the minimum value of g on [0, n/3] occurs
at x = 0 or x = n/3. We have g(0) = g(n/3) = nγ, so the minimum of g on [0, n/3] is nγ .
We have c ∈ [0, n/3], so

(n− 2c)γ + cγ ≥ nγ

which gives the desired inequality.

We are now ready to prove Theorem 6.1.
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Proof of Theorem 6.1. For convenience, let γ = log3 2.
We first show that the bound nγ is tight. For n ≥ 1, define the tournaments Gn induc-

tively by G1 = T3, and Gn+1 = T3(Gn, Gn, Gn). Then Gn has 3n vertices, and is U5-free
(since T3 is U5-free and by induction, Gn−1 is U5-free). We claim that Gn has no transitive
subtournament with more than 2n vertices, which will prove the claim of tightness.

We proceed by induction on n. For n = 1, G1 is T3, which has no transitive subtournament
with more than 2 vertices. Suppose n ≥ 2, and that Gn−1 has no transitive subtournament
with more than 2n−1 vertices. Write Gn = T3(Gn−1, Gn−1, Gn−1), and let V (Gn) = V1∪V2∪V3

as in Definition 6.2. Suppose I is a transitive subset of V (Gn). Then I ∩ Vi must be empty
for some i = 1, 2, or 3, because otherwise I would contain a cyclic triangle. Without loss of
generality, assume I ∩ V3 = ∅. Now, by the inductive hypothesis, |I ∩ V1|, |I ∩ V2| ≤ 2n−1.
Thus, |I| ≤ 2n−1 + 2n−1 = 2n, as desired.

We now prove the first part of the theorem. Let G be a U5-free tournament. We wish
to show that G has a transitive subtournament with at least |V (G)|γ vertices. We proceed
by induction on |V (G)|. The theorem clearly holds if |V (G)| ≤ 1. Now, let |V (G)| = n ≥ 2,
and assume the theorem holds for all tournaments H with |V (H)| < n.

Since |V (G)| > 1, there exists a prime tournament G′, |V (G′)| > 1, along with an
ordering (v1, . . . , vm) of the vertices of G′, such that G = G′(H1, . . . , Hm) for some non-null
H1, . . . , Hm. Then H1, . . . , Hm are all U5-free, and each has less than n vertices (since
m > 1). Thus, by the inductive hypothesis, each Hi has a transitive subtournament with at
least |V (Hi)|

γ vertices. Hence, letting V (G) = V1 ∪ · · · ∪ Vm as in Definition 6.2, we have
that for each i, the set Vi has a transitive subset with at least |Vi|

γ vertices.
Now, since G′ is prime and U5-free, by Theorem 1.1 either G′ is Tm for some odd n or

V (G′) can be partitioned into sets X , Y , and Z such that X ∪ Y , Y ∪ Z, and Z ∪ X are
transitive. We consider the two cases separately.

First, suppose that V (G′) can be partitioned into sets X , Y , and Z such that X ∪ Y ,
Y ∪ Z, and Z ∪X are transitive. For each subset S ⊆ V (G′), define SG ⊆ V (G) by

SG =
⋃

vi∈S

Vi.

(Recall that (v1, . . . , vm) was the ordering of V (G′) we used to define G′(H1, . . . , Hm), and
hence vi corresponds to Vi.) In particular, XG, Y G, and ZG partition V (G). Without loss
of generality, assume |ZG| = min(|XG|, |Y G|, |ZG|).

Now, since X ∪Y is transitive, and each Vi contains a transitive subset with at least |Vi|
γ

vertices, it follows that G[(X ∪ Y )G] has a transitive subtournament with at least

∑

vi∈X∪Y

|Vi|
γ

vertices. We have ∑

vi∈X∪Y

|Vi|
γ =

∑

vi∈X

|Vi|
γ +

∑

vi∈Y

|Vi|
γ,
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and by Karamata’s inequality applied to the concave function f(x) = xγ on [0,∞), we have

∑

vi∈X

|Vi|
γ ≥

(
∑

vi∈X

|Vi|

)γ

= |XG|γ,

∑

vi∈Y

|Vi|
γ ≥

(
∑

vi∈Y

|Vi|

)γ

= |Y G|γ.

Hence, G[(X ∪ Y )G] has a transitive subtournament with at least |XG|γ + |Y G|γ vertices.
Since |ZG| = min(|XG|, |Y G|, |ZG|) and |XG|+ |Y G|+ |ZG| = n, it follows by Proposition 6.4
that

|XG|γ + |Y G|γ ≥ nγ ,

and hence G[(X ∪Y )G] has a transitive subtournament with at least nγ vertices, which is as
desired.

Now, suppose that G′ is Tm for some odd m. Since |V (G′)| > 1, we have m ≥ 3. Choose
(v1, . . . , vm) to be an ordering of V (G′) such that vi → vj if j − i ≡ 1, 2, . . . , (m − 1)/2
(mod m). Without loss of generality, assume

|V1| = max
i

|Vi|.

By taking the dual if necessary, we may also assume that

|V2|+ · · ·+ |V(m+1)/2| ≥ |V(m+3)/2|+ · · ·+ |Vm|.

Now, we consider two cases: |V1| ≥ n/3 and |V1| < n/3.

Case 1. |V1| ≥ n/3

Since {v1, . . . , v(m+1)/2} is a transitive set in G′, and each Vi has a transitive subset with
at least |Vi|

γ vertices, it follows that G[V1 ∪ · · · ∪ V(m+1)/2] has a transitive subtournament
with at least

|V1|
γ + |V2|

γ + · · ·+ |V(m+1)/2|
γ

vertices. Applying Karamata’s inequality, we have

|V2|
γ + · · ·+ |V(m+1)/2|

γ ≥
(
|V2|+ · · ·+ |V(m+1)/2|

)γ

and hence

|V1|
γ + |V2|

γ + · · ·+ |V(m+1)/2|
γ ≥ |V1|

γ +
(
|V2|+ · · ·+ |V(m+1)/2|

)γ
.

We will show that the right side of this inequality is at least nγ, which will complete the
proof for this case. Since |V1| ≥ n/3, we have |V2| + · · · + |Vm| ≤ 2n/3. Then since
|V2|+ · · ·+ |V(m+1)/2| ≥ |V(m+3)/2|+ · · ·+ |Vm|, we have

|V(m+3)/2|+ · · ·+ |Vm| ≤ n/3.

Hence, we have both

|V1| ≥ n/3 ≥ |V(m+3)/2|+ · · ·+ |Vm| and |V2|+ · · ·+ |V(m+1)/2| ≥ |V(m+3)/2|+ · · ·+ |Vm|.

13



Since
|V1|+

(
|V2|+ · · ·+ |V(m+1)/2|

)
+
(
|V(m+3)/2|+ · · ·+ |Vm|

)
= n,

we thus have by Proposition 6.4 that

|V1|
γ +

(
|V2|+ · · ·+ |V(m+1)/2|

)γ
≥ nγ

as desired.

Case 2. |V1| < n/3

As in the previous case, G[V1 ∪ · · · ∪ V(m+1)/2] has a transitive subtournament with at
least

|V1|
γ + |V2|

γ + · · ·+ |V(m+1)/2|
γ (1)

vertices. Let |V1| = a. Let |V2|+ · · ·+ |V(m+1)/2| = qa+r, where q, r are nonnegative integers
and 0 ≤ r < a. Since |V1| = maxi |Vi|, we have |Vi| ≤ a for all i. Hence, by Karamata’s
inequality, we have

|V2|
γ + · · ·+ |V(m+1)/2|

γ ≥ aγ + · · ·+ aγ
︸ ︷︷ ︸

q times

+rγ.

We claim that rγ ≥ raγ−1. Indeed, it holds for r = 0, and if r > 0, then since γ − 1 < 0 and
r < a, we have rγ−1 ≥ aγ−1, and hence rγ ≥ raγ−1 as desired. Thus, we have

|V2|
γ + · · ·+ |V(m+1)/2|

γ ≥ aγ + · · ·+ aγ
︸ ︷︷ ︸

q times

+rγ

≥ qaγ + raγ−1

= aγ−1(qa+ r)

= aγ−1
(
|V2|+ · · ·+ |V(m+1)/2|

)
.

Now, since |V2|+ · · ·+ |Vm| = n− a and |V2|+ · · ·+ |V(m+1)/2| ≥ |V(m+3)/2|+ · · ·+ |Vm|, we
have |V2|+ · · ·+ |V(m+1)/2| ≥ (n− a)/2. Thus,

|V2|
γ + · · ·+ |V(m+1)/2|

γ ≥ aγ−1
(
|V2|+ · · ·+ |V(m+1)/2|

)

≥ aγ−1

(
n− a

2

)

.

Recalling expression (1), it follows that G[V1∪· · ·∪V(m+1)/2] has a transitive subtournament
with at least

|V1|
γ + |V2|

γ + · · ·+ |V(m+1)/2|
γ ≥ aγ + aγ−1

(
n− a

2

)

=
1

2

(
aγ + naγ−1

)

vertices.
We claim that (1/2)(aγ + naγ−1) ≥ nγ , which will complete the proof. Let

g(x) =
1

2

(
xγ + nxγ−1

)
.
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Then

g′(x) =
1

2

(
γxγ−1 + n(γ − 1)xγ−2

)

=
1

2
xγ−2 (γx+ n(γ − 1)) .

For x < n(1− γ)/γ, we have γx+n(γ− 1) < 0. Hence, g′(x) < 0 for all 0 < x < n(1− γ)/γ,
so g is decreasing on (0, n(1− γ)/γ). Now,

n(1− γ)

γ
=

n(1− log3 2)

log3 2
>

n

3
.

Thus, (0, n/3] ⊆ (0, n(1−γ)/γ), so the minimum value of g on (0, n/3] is g(n/3) = nγ . Since
a ∈ (0, n/3] by assumption, we have (1/2)(aγ + naγ−1) ≥ nγ, as desired.

Remark. Using Theorem 2.6 and arguments similar to the ones in this proof, one can show
that every W5-free tournament with n vertices has a transitive subtournament with at least
nlog7 3 vertices. This bound is tight, as can be seen by considering the tournaments Gn

defined by G1 = Q7 and Gn+1 = Q7(Gn, Gn, . . . , Gn).
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