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Induced decompositions of highly dense

graphs

N. Cohen ∗ Zs. Tuza †

Latest update on 2013–12–3

Abstract

Given two graphs F and G, an induced F -decomposition of G is a parti-

tion of E(G) into induced subgraphs isomorphic to F . Bondy and Szwarc-

fiter [J. Graph Theory, DOI: 10.1002/jgt.21654] defined the value ex∗(n, F )
as the maximum number of edges in a graph of order n admitting an induced

F -decomposition and determined the value of ex∗(n, F ) for some graphs

(and families of graphs). In this paper we prove that ex∗(n, F ) =
(

n
2

)

−o(n2)
is valid for all graphs F . We also present tighter asymptotic bounds for some

of the small graphs for which the exact value of ex∗ remains unknown. The

proofs are based on the heavy use of various classes of Kneser graphs and

hypergraphs.

1 Introduction

Given two graphs F and G, an F -decomposition of G is a partition of the edges

of G into subgraphs isomorphic to F . It is called an induced decomposition if the

subgraphs are induced copies of F . Starting from Section 2 we shall only deal

with the induced notion of these terms, and occasionally omit the word ‘induced’

hoping to not cause confusion.
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In [2], Bondy and Szwarcfiter defined the function ex∗(n, F ) as the maximum

number of edges in a graph on n vertices that admits an induced F -decomposition.

They determined the exact value of ex∗(n, F ) (with arithmetic restrictions on n in

some cases) when F is one of the following graphs: C4 (the cycle of length four),

K1 + K2 (the graph with three vertices and one edge), 2K1 + K2 (the graph

with four vertices and one edge), K1 + K1,2 (the graph with four vertices and

two intersecting edges), K1,k (a star), or a complete r-partite graph with the same

number k of vertices in each part. They also proved that ex∗(n,K−
4 ) ≤

(

n
2

)

− n
5

and ex∗(5n,K−
4 ) ≥

(

5n
2

)

− 10n, where K−
4 = K4 − e is the graph with four

vertices and five edges.

Besides those graphs, the value of ex∗(n, F ) is known for some values of n

when F is a complete graph. Indeed, as any complete subgraph is necessarily in-

duced, the equality ex∗(n,Kk) =
(

n
2

)

is equivalent to the existence of an (n, k, 1)
BIBD (see [5] for such values when k ≤ 9). In particular, for k = 3, the existence

of Steiner Triple Systems gives ex∗(n,K3) =
(

n
2

)

when n ≡ 1, 3 (mod 6). More

generally, a theorem of Wilson [18] implies that ex∗(n,Kk) =
(

n
2

)

−O(n).

Theorem 1 (Wilson [18]). For any integer k and sufficiently large integer n ≥ nk,

the complete graph Kn can be decomposed into edge-disjoint copies of Kk if and

only if
(

k
2

)

divides
(

n
2

)

and k − 1 divides n− 1.

For intermediate values of n, which violate the divisibility conditions, Chee et

al. [4] recently proved that the number of Kk subgraphs in a largest edge-disjoint

packing is at most an additive constant c = c(k) away from
⌊

n
k

⌊

n−1
k−1

⌋⌋

.

Another strong result of Wilson [17] deals with the F -decomposition of large

complete graphs; it is important to emphasize, however, that these decompositions

are not induced decompositions.

Theorem 2 (Wilson [17]). For any graph F and sufficiently large integer n, the

complete graph Kn can be decomposed into edge-disjoint copies of F if and only

if |E(F )| divides
(

n
2

)

and n− 1 is divisible by the greatest common divisor of the

degree sequence of F .

In sharp contrast to the classical extremal theory of Turán-type problems, we

prove that the asymptotic equality ex∗(n, F ) =
(

n
2

)

− o(n2) holds for all graphs

F as n → ∞ (Theorem 5). Moreover, for some small graphs F mentioned in [2]

for which the exact value of ex∗(n, F ) is not settled so far, we provide explicit

constructions of dense graphs admitting induced F -decompositions. Those F

include 2K2 (the perfect matching on 4 vertices — Theorem 3), K+
1,3 (the ‘paw’,
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i.e. a claw graph augmented with an edge), P3 (the path of length two) and C6 (the

cycle of length six), the latter three given in Corollary 1.

The small graphs are treated in Section 2, while the general Theorem 5 is

proved in Section 3.

It is important to note that several decades ago Frankl and Füredi [8] studied a

very general problem on hypergraph packing, which is strongly related to the one

investigated here. Given a family H of t-subsets of a k-set, they call a family F of

k-subsets of a v-set a (v, k,H)-packing if for each F ∈ F there is a copy HF of

H such that the t-element sets of F corresponding to HF are covered only by F .

The main result of [8] — proved by probabilistic methods — states that, for every

fixed k and H, the largest size of a (v, k,H)-packing is asymptotically
(

v
t

)

/|H| as

v → ∞.

2 Induced decompositions into some small graphs

In this section we give constructions of dense graphs decomposable into induced

copies of the graphs 2K2, K+
1,3, P3, and C6.

Our constructions begin with the Kneser graphs, which are good candidates for

2K2-decompositions. This approach is strong enough to verify the lower bound
(

n
2

)

− o(n2) on ex∗(n, 2K2), nevertheless the bound obtained will be improvable

by a refinement of the method. We use the standard notation [p] := {1, 2, . . . , p}.

Definition. The Kneser graph KG
p
k has the vertex set

V (KG
p
k) =

(

[p]

k

)

= {S : S ⊆ [p] such that |S| = k}

where two vertices S, S ′ are adjacent if and only if S ∩ S ′ = ∅.

Theorem 3. We have ex∗(n, 2K2) =
(

n
2

)

−O(n
5

3 ).

Proof. KG6
3 is a 1-regular graph with 10 edges, and therefore admits an induced

2K2-decomposition. More generally KG
p
3 is a

(

p−3
3

)

-regular graph with 1
2

(

p
6

)(

6
3

)

=
10
(

p
6

)

edges — an even number — and we are going to show that KG6
3 decom-

poses KG
p
3 for any p > 6, which will yield the result.

For any 6-subset S ⊆ [p], the graph KG
p
3[S] induced by the vertices of KG

p
3

whose representative set belongs to S is isomorphic to KG6
3. Besides, an edge

between two vertices u = {u1, u2, u3} and v = {v1, v2, v3} belongs to KG
p
3[S] if

and only if S = {u1, u2, u3, v1, v2, v3}. Hence, the
(

p
6

)

induced copies of KG6
3 are
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edge-disjoint, and as KG6
3 decomposes KG

p
3 we obtain by transitivity that 2K2

decomposes KG
p
3.

When
(

p
3

)

≤ n <
(

p+1
3

)

, we lower-bound ex∗(n, 2K2) with ex∗(
(

p
3

)

, 2K2),
which leads to the result.

Decomposition results for other small graphs like P3 or K+
1,3 seem to be not

obtainable using this family of graphs. While there may exist an instance of KG
p
3

admitting a decomposition into P3, what one would need is a way to ensure that

all of them — or most of them — do so when p grows large; but the technique

above does not work, as the copies of KG
p
3[S] would not be disjoint anymore.

We now give an alternative construction achieving precisely that, e.g. when F

is one of P3, C6, or K+
1,3.

Definition. The Bipartite Kneser Graph BKp1,p2 is defined over the set of p1p2
vertices 1

V (BKp1,p2) = {v : v = {v1, v2} with v1 ∈ [p1]1 and v2 ∈ [p2]2},

where [p1]1 and [p2]2 are disjoint copies of [p1] and [p2], and two vertices v, v′ are

adjacent if and only if v ∩ v′ = ∅.

Remark. The graph BKp1,p2 is isomorphic to L(Kp1,p2), the complement of the

line graph of a complete bipartite graph on p1 + p2 vertices.

We prove in Theorem 4 that a Bipartite Kneser Graph decomposes arbitrarily

larger ones. This will be sufficient to obtain that ex∗(n, F ) =
(

n
2

)

− O(n
3

2 ) holds

for F = 2K2, P3, C6, K
+
1,3, as these graphs decompose small Bipartite Kneser

Graphs. Indeed, 2K2
∼= BK2,2, P3 decomposes C6 and C6

∼= BK3,2, and K+
1,3

decomposes BK4,3 as will be shown in Lemma 1 below.

Theorem 4. The graph BKp1,p2 admits an induced BKa1,a2-decomposition when-

ever Kp1 and Kp2 respectively admit a Ka1-decomposition and a Ka2-decompo-

sition.

Proof. Let S1 and S2 be respectively a subset of [p1]1 or cardinality a1 and a subset

of [p2]2 of cardinality a2, and let BKp1,p2 [S1, S2] denote the subgraph induced in

BKp1,p2 by the vertices {v = {v1, v2} ∈ BKp1,p2 : v1 ∈ S1, v2 ∈ S2}. For any

choice of sets S1 and S2, BK
p1,p2 [S1, S2] is isomorphic to BKa1,a2 .

1 Notation is meant to ensure that we can speak about {v1, v2} as a set rather than an ordered

pair or a vector of two components in [p1]× [p2].
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By assumption, there exists for i = 1, 2 a collection Ci of sets of size ai such

that any two elements vi, v
′
i of [pi]i appear together in exactly one element of Ci.

We can produce an induced BKa1,a2-decomposition of BKp1,p2 by considering

the collection {BKp1,p2 [S1, S2] : S1 ∈ C1, S2 ∈ C2}. Indeed, for each edge

between v = {v1, v2} and v′ = {v′1, v
′
2} there exists exactly one set S1 ∈ C1

containing both v1 and v′1, and one S2 ∈ C2 containing both v2 and v′2. Therefore,

the collection is the desired induced decomposition.

In particular, 2K2
∼= BK2,2 decomposes BKp1,p2 for any choice of p1, p2 ≥ 2.

Corollary 1. For every fixed p1 and p2 we have ex∗(n,BKp1,p2) =
(

n
2

)

−O(n3/2).

Moreover, by transitivity, ex∗(n, F ) =
(

n
2

)

−O(n3/2) for F = 2K2, P3, C6, K
+
1,3.

Proof. By Theorem 1, for i = 1, 2, there exists constants ci such that Kcik ad-

mits a Kai-decomposition for any integer k. Hence, BKc1k,c2k admits an induced

BKa1,a2-decomposition for any integer k. As k gets large, the number of non-

edges in BKc1k,c2k grows with n3/2 (where n = c1c2k
2), while the gap between

(c1k, c2k) and (c1(k + 1), c2(k + 1)) adds an error term of O(n) for intermediate

values of n.

Besides, we quote from Corollary 2 of [2] that ex∗(n, 2K2) ≤
(

n
2

)

−Θ(n3/2).
Since C6 decomposes into induced copies of 2K2, this upper bound implies

ex∗(n,C6) ≤
(

n
2

)

− Θ(n3/2), too. Hence, combining these inequalities with our

Corollary 1 we obtain:

Corollary 2. We have ex∗(n, 2K2) =
(

n
2

)

− Θ(n3/2) and ex∗(n,C6) =
(

n
2

)

−

Θ(n3/2).

At the end of this section we prove a lemma that completes the proof of Corol-

lary 1 for K+
1,3.

Lemma 1. The graph BK4,3 admits an induced K+
1,3-decomposition.

Proof. The following decomposition was obtained with the software Sage [16],

asked to compute a maximum independent set in the graph of all induced K+
1,3

subgraphs of BK4,3, two of them being adjacent when they share an edge. It pro-

duced a list of 9 edge-disjoint graphs with 4 edges, each of them being isomorphic

to K+
1,3, which partitions the 36 edges of BK4,3.
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Alternatively, if we label the columns with {a, b, c, d} and the rows with {1, 2, 3}
(1a being the bottom-left corner and 3d the top-right one), the decomposition is

given by the graphs induced by the following sets of vertices:

{1a, 2d, 3b, 3d} {1c, 2b, 3d, 2d} {2c, 1d, 3b, 3d}
{2a, 1d, 3c, 3d} {1a, 2b, 3c, 2c} {3a, 1b, 2c, 1c}
{1b, 2d, 3c, 3d} {2a, 1c, 3b, 1b} {3a, 1d, 2b, 2d}

3 Induced decomposition into general graphs

This section is devoted to the proof of the following general result.

Theorem 5. We have ex∗(n, F ) =
(

n
2

)

− o(n2) for any graph F .

Let us begin with a preliminary remark. Although the family of Bipartite

Kneser Graphs is sufficient to obtain decomposition results for some graphs, it

cannot be hoped to provide a proof for all graphs. Indeed, Bipartite Kneser Graphs

are “complements of line graphs of bipartite graphs”, and for this reason none of

them contains e.g. the complement of the claw graph (i.e. the graph K1 +K3, cf.

Fig. 1) as an induced subgraph. The second drawback comes from the method

itself: in order to deduce anything on the value of the ex∗ function, we need to

prove that a graph decomposes a Bipartite Kneser Graph, an operation which we

have no specific tool for. We now enlarge the graph class once more, and prove

that any graph is an induced subgraph of some graph in this family (Lemma 2).
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Definition. The Multipartite Kneser Graph MKp1,...,pk is defined over the set of
∏k

i=1 pi vertices 2

V (MKp1,...,pk) = [p1]1 × · · · × [pk]k = {v = {v1, . . . , vk} : vi ∈ [pi]i}.

Two vertices of MKp1,...,pk are adjacent if and only if their corresponding sets of

size k are disjoint. We denote by MKp×k the graph MKp,...,p on pk vertices (see

Fig. 1).

Figure 1: A realization of K1 +K3 as an induced subgraph of MK3×3

Remark. As a generalization of the bipartite case, the graph MKp1,...,pk is iso-

morphic to L(K
(k)
p1,...,pk), the complement of the line graph (intersection graph)

of a complete k-partite hypergraph whose ith vertex class has pi vertices for

i = 1, 2, . . . , k.

Lemma 2. Any graph F is an induced subgraph of all MKp×k for sufficiently

large p and k.

Proof. We prove that it is already sufficient to chose p = |V (F )| and k = |E(F )|.
This implies that also any larger values of p and k satisfy the requirements. Let us

2 Notation here is analogous to that for bipartite Kneser graphs. The sets [p1]1 , . . . , [pk]k are

mutually disjoint copies of [p1], . . . , [pk], respectively. This allows us to view v = {v1, . . . , vk} as

a k-element set rather than a k-tuple or a vector of length k. For instance, v ∩ v′ then then simply

means intersection and not the more complicated notion of the set of coordinates in which two

k-tuples agree.
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note that usually much smaller values work, too.3

Assuming that V (F ) = {1, . . . , p} and E(F ) = {e1, . . . , ek} (the set of non-

edges of F ), we consider the set {v1, . . . , vp} of |V (F )| vertices of MKp×k, where

• If i is an endpoint of ej = ii′, we set the jth component vij of vertex vi to

min(i, i′) implying that vi and vi
′

are not disjoint sets.

• If i is not an endpoint of ej , the jth component vij of vertex vi is equal to i.

In such a family, two vertices vi and vi
′

correspond to disjoint sets if and only if

they are adjacent in F , ensuring that this collection of vertices induces a copy of

F in MKp×k.

Considering the symmetry properties of the MK graphs, one can already ex-

pect to find many disjoints instances of F inside of large instances. It is quite

unlikely, though, that for a fixed F all sufficiently large graphs MKp×k would ad-

mit an induced F -decomposition, if only because of arithmetical constraints. As

it is also increasingly difficult to produce F -decompositions of MK graphs when

F grows large, we change our proof’s methodology.

Indeed, if trying to decompose MKp×k into induced copies of a graph F may

be too ambitious, it is actually sufficient to be able to decompose a dense subgraph

of MKp×k into copies of F to obtain the desired result. Hence, we could be

satisfied with finding many edge-disjoint induced copies of F in MKp×k covering

most of the edges. The union of these copies is a perfectly valid example of a

dense graph admitting an induced F -decomposition.

In order to obtain this decomposition, we will use a powerful theorem from

Pippenger and Spencer [13]. Their result being much more general, its content

below is specialized to suit our problem, and is similar to the version appearing

in [10] (see also [9, 1]). As a matter of fact, the version in [9] is already strong

enough for our purpose. For a hypergraph H we introduce the notation ∆2(H) :=
max

x,y∈V (H), x 6=y
|{e ∈ E(H) : x, y ∈ e}|, and call it the maximum co-degree of H.

Also, if H is regular, we denote by deg(H) the degree of regularity.

Theorem 6 (Pippenger, Spencer [13]). Let H be an infinite family of r-uniform

regular hypergraphs. If

∆2(H) ≪ deg(H)

3 It is for instance possible to chose k = ∆(F )+1 and use Vizing’s theorem, or to optimize on

both of p and k, or consider coverings of the edge set of F with subgraphs which are vertex-disjoint

unions of complete graphs. Finding the smallest integers is probably an interesting combinatorial

problem of its own.
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as |V (H)| gets large (for any increasing sequence of hypergraphs H ∈ H), then

there exists in H a set of mutually disjoint hyperedges missing at most o(|V (H)|)
vertices.

This theorem can let us find the desired set of edge-disjoint induced copies of

F in a large MKp×k if we can achieve a rephrasing of our problem in terms of a

maximum hypergraph matching (a matching in an hypergraph is a set of mutually

vertex-disjoint edges). What we need now is to define a hypergraph whose edges

are all the induced occurrences of F in MKp×k.

Definition. Let Hp×k be the hypergraph whose vertex set is the set E(MKp×k) of

all edges of MKp×k, and whose hyperedges are the edge sets of all the induced

subgraphs of MKp×k isomorphic to F .

We deduce from the edge-transitivity of MKp×k that the the hypergraph Hp×k

is vertex-transitive, hence regular. It is also |E(F )|-uniform. Besides, a matching

of Hp×k covering (1 − o(1))|V (MKp×k)| vertices corresponds to a collection of

induced edge-disjoint copies of F in MKp×k covering (1 − o(1))|E(MKp×k)|
edges, i.e. a dense subgraph of MKp×k admitting an induced F -decomposition.

Hence, to obtain Theorem 5 we need to ensure that the conditions of Theorem 6

are satisfied.

We will prove that ∆2(H
p×k) ≪ deg(Hp×k) holds for any fixed k > |E(F )|

when p grows large. To do so, we show that the number of induced copies of F

in MKp×k containing two given edges is negligible compared to the number of

copies containing exactly one of the two edges in question.

For the proof, let us consider two vertices of Hp×k, i.e. two edges v1v
′
1, v2v

′
2 in

MKp×k, corresponding to four sets of size k. By the definition of adjacencies in

MKp×k we have v1 ∩ v′1 = ∅ and v2 ∩ v′2 = ∅, but v1 ∪ v′1 and v2 ∪ v′2 may very

well intersect.

Recall that V (MKp1,...,pk) = [p1]1 × · · · × [pk]k ; we shall refer to the elements

of the components [pi]i (1 ≤ i ≤ k) as ‘points’. In our case p1 = · · · = pk = p

holds, that means V (MKp×k) = [p]
1
× · · · × [p]

k
. When k > |E(F )|, i.e. when

the size of the sets defining the vertices v1, v
′
1, v2, v

′
2 of MKp×k is large compared

to the number of non-edges of F , some of their points are not necessary to encode

the adjacencies of a copy of F . Let us now consider a copy F ∗ ⊆ MKp×k of

F containing the edges v1v
′
1, v2v

′
2. We are going to distinguish a set of necessary

points and modify this copy by playing with the other points.

According to the definitions, any non-edge of F ∗ is represented by two inter-

secting sets, which correspond to two vertices of MKp×k. If the intersection of

9



those two sets is contained in v1 ∪ v′1 ∪ v2 ∪ v′2, we mark one point in it. Hav-

ing marked (at most) one point for every non-edge of F ∗, each of our four sets

contains at least k − |E(F )| unmarked points.

The unmarked points of v1 and v′1 are not actually relevant to the adjacency

properties of these sets with the other sets of the copy of F . Since v1 6= v′1, v2, v
′
2,

we can obtain a different induced copy of F containing v2v
′
2 but avoiding v1v

′
1 by

replacing in v1 these unmarked points by any other point not contained in F ∗, i.e.

at least p− |V (F )| alternatives for each of the k − |E(F )| unmarked points.

As a conclusion, one can associate to any copy F ∗ containing the edges v1v
′
1

and v2v
′
2 a set f(F ∗) of at least (p − |V (F )|)k−|E(F )| copies of F using v2v

′
2 but

not v1v
′
1 (and differing from F ∗ only by the content of v1). Furthermore, at most

cF choices of F ∗ can produce a given alternative copy of F , where cF is a constant

depending on F but not on p. (To reverse the operation, it is enough to identify

one set of the copy and replace it with v1 or v′1.)

We deduce that in Hp×k the degree of a vertex is at least Θ(pk−|E(F )|) ≥ Θ(p)
times more than the co-degree of the pair v1v

′
1, v2v

′
2 (chosen arbitrarily), yielding

∆2(H
p×k) ≪ deg(Hp×k) as p grows large. Thus, Theorem 6 implies the existence

of a family of edge-disjoint induced copies of F in MKp×k covering almost all

edges of MKp×k as p gets large. Now the proof is completed by the observation

that MKp×k has pk vertices and is regular of degree (p− 1)k = pk −O(pk−1) —

the number of sets disjoint from a given set in [p]
1
×· · ·× [p]

k
— therefore almost

all vertex pairs are adjacent in MKp×k. �

4 Conclusion

We have proved that the largest graphs of order n admitting an edge decomposition

into induced copies of a given non-edgeless graph F have
(

n
2

)

− o(n2) edges

for each graph F as n gets large. This result solves the problem of Bondy and

Szwarcfiter completely in the asymptotic sense. Viewing it from the other side,

however, it just opens the field for a new track of studies:

Problem 1. Given a graph F , determine the exact or asymptotic value of

(

n

2

)

− ex∗(n, F )

as a function of n.
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This question also appears as Problem 2 in [2]. Some of our results also give a

tight answer, apart from a multiplicative constant, to this formulation, exhibiting

graphs F with
(

n
2

)

− ex∗(n, F ) = Θ(n3/2). Some more cases are settled in the

recent paper [11], solving Problem 1 of [2] as a corollary. Substantially different

examples, with linear growth, are K−
4 , the stars, C4 and more generally the com-

plete equipartite graphs in [2], and further infinite families in [11] and [3]. It is

worth noting that, although the order of magnitude of
(

n
2

)

− ex∗(n, F ) is deter-

mined in those cases, still there are very few graphs for which the exact value (as

a function of n) is known.

Many problems of interest remain open. Some have been raised at the end

of [2]; here we mention further ones.

Conjecture 1. For every F there exist positive reals c1, c2 and a rational α (1 <

α ≤ 2) such that

c1n
α ≤

(

n

2

)

− ex∗(n, F ) ≤ c2n
α

holds for all n ≥ |V (F )|.

Conjecture 2. For every F , with the value α defined in Conjecture 1, the sequence
((

n
2

)

− ex∗(n, F )
)

/nα has only finitely many limit points.

Note that more than one limit point can exist; for example if F = C4 then

there are two of them, one for n even and one for n odd.

Problem 2. What is the expected asymptotic growth ft(n) of
(

n
2

)

−ex∗(n, F ) as a

function of n if F is chosen at random from the graphs on t vertices while n ≫ t

but the parameter t also gets large?

An upper bound can be derived from the principles of our construction. One

can observe that the value k in the multipartite Kneser graph MKp×k does not

need to be larger than 1 plus the minimum k′ such that the edge set of the comple-

ment F of F can be covered with k′ complete subgraphs.

In the case where F is a complete graph, Problem 1 asks exactly about the

smallest possible size of the leave graph of a partial Steiner system. Several re-

lated results are available for triple systems. The smallest leave of an STS(n) was

determined by Schönheim [14] and Spencer [15]. Further relatively small graphs

which are leave graphs of some STS(n) were described in [6, 12]. For a wealthy

collection of results on leave graphs, we refer to Section 9 of [7].
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