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Abstract

For given integers k, l we ask whether every large graph with a sufficiently small

number of k-cliques and k-anticliques must contain an induced copy of every l-vertex

graph. Here we prove this claim for k = l = 3 with a sharp bound. A similar phenomenon

is established as well for tournaments with k = l = 4.

1 Introduction

We start by recalling the notion of universality.

Definition 1.1. A graph (resp. tournament) is called l-universal if it contains every l-vertex

graph (tournament) as an induced subgraph (subtournament).

We next recall the celebrated Erdős-Hajnal conjecture [5] that we reformulate in a some-

what nonstandard form. As usual we denote by ω(G), α(G) the clique, resp. anticlique number

of the graph G.

Conjecture 1.2. [Erdős-Hajnal] For every integer l there is an ǫ > 0 such that every n-vertex

graph G with α(G), ω(G) < nǫ is l-universal.

The largest size of a transitive subtournament of the tournament T is denoted by tr(T ).

The Erdős-Hajnal conjecture for tournaments states:

Conjecture 1.3. For every integer l there is an ǫ > 0 such that every n-vertex tournament

T with tr(T ) < nǫ is l-universal.

∗School of Computer Science and engineering, The Hebrew University of Jerusalem, Jerusalem 91904,

Israel. Email: nati@cs.huji.ac.il. Research supported in part by the Israel Science Foundation and by a

USA-Israel BSF grant.
†Einstein Institute of mathematics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel. Email:

avraham.morgenstern@mail.huji.ac.il

1

http://arxiv.org/abs/1306.2020v3


As shown by Alon, Pach and Solymosi [2], these two conjectures are equivalent.

The Erdős-Hajnal conjecture in both its formulations posits that a graph (resp. a tour-

nament) which satisfies a rather mild upper bound on largest clique and anticlique (resp.

transitive set) must be l-universal. In this paper we ask the following

Problem 1.4. For given integers k, l is every large graph with few k-cliques and k-anticliques

necessarily l-universal? Similarly, is a large tournament with only few transitive subtourna-

ments of order k necessarily l-universal?

The answer for the graph problem with k = l = 3 turns out to be positive, and we derive

a sharp bound for this statement. For tournaments, the case of k = 3 is trivial, but the range

k ≥ 4 turns out rather interesting. We prove that an upper bound on the number of transitive

4-vertex subtournaments implies 4-universality. As explained in the last section, this line of

thought can be developed in numerous additional ways.

We need some definitions and notations which we state in the language of graphs. Their

counterparts for tournaments are obvious. For a fixed l-vertex graph H and an arbitrary

graph G we denote by p(H,G) the probability that a randomly chosen set of l vertices in G

induces a subgraph that is isomorphic to H . Given an integer l, we let Hl be the list of all

N = Nl isomorphism classes of l-vertex graphs. We refer to the vector πl(G) = (p(H,G))H∈Hl

as the l-th local profile of the graph G.

Below we use G to always denote a sequence of graphs Gn with |V (Gn)| → ∞. If the limit

limn λ(Gn) exists, where λ is some graph parameter, we denote this limit by λ(G). Likewise

λ̄(G) := lim supn λ(Gn) and λ(G) := lim infn λ(Gn).

For each i = 0, 1, 2, 3 there is exactly one graph Pi ∈ H3 that has i edges, and we denote

p(Pi,G) by pi(G), or simply by pi when G is clear from the context. We note that p0(G)

(resp. p1(G)) equals p3 (resp. p2) of its complement graph. For example, in our terminology,

Goodman’s well-known bound [9] takes the form:

Theorem 1.5. [Goodman] For every G there holds p0 + p3(G) ≥
1
4
.

Jacob Fox (personal communication) has observed that the answer to Problem 1.4 is

positive for some l = Ω(k). Namely, he found the following lemma whose proof appears in

Section 4.

Proposition 1.6. If both p(Kk,G) < 2−(
k

2)+ǫ and p(Kk,G) < 2−(
k

2)+ǫ then G is ck-universal,

where c > 0 is a universal constant.

We define Πl ⊂ R
N as the set of all points π ∈ R

N for which there exists a sequence of

graphs G with πl(G) = π. It is still a major open question to get a good description of these

sets Πl. In the present article we add some piece to what is known about Π3. At this writing

even Π3 is not yet fully understood (but see [11, 16]). The state of our knowledge of Πl for

l ≥ 4 is really very limited, though some work already exists, e.g., [7, 8, 12, 13, 17, 18, 19].

2



Much of the recent progress in this area was achieved using Razborov’s flag algebras method.

We say that G is l-universal if p(H,G) > 0 for every H ∈ Hl.

Our main result is

Theorem 1.7. There is a constant ρ = 0.159181... such that every G with p0(G), p3(G) < ρ

is 3-universal. The bound is tight.

The number ρ is defined as ρ = 6θ2(1 − 2θ) where θ = 0.427373... is the largest root of

θ3 + θ2 − θ + 1
6
= 0.

We prove this theorem in Section 2. In Section 3 we state and prove our results for

tournaments. In Section 4 we prove Proposition 1.6 and mention several open questions.

2 Proof of Theorem 1.7 for graphs

First, note that by Goodman’s theorem 1.5,

p0, p3 ≤ ρ <
1

4
=⇒ p0, p3 > 0.

It remains to prove that p1, p2 > 0. By the above-mentioned symmetry between p1 and p2, it

suffices to consider only p2.

By passing to a subsequence, if necessary, and arguing by contradiction, it suffices to

consider only sequences G with p2(G) = 0. By the graph removal lemma [1, 3], an n-vertex

graph G with p2(G) = o(1) can be made P2-free
1 by flipping only o(n2) edges2. Since this

changes p0(G) and p3(G) by only o(1), we may apply this removal step to allG ∈ G, and assume

that every G ∈ G is P2-free. But a graph is P2-free iff it is a union of vertex disjoint cliques, so

these are the only graphs we consider henceforth. Our goal is to prove that max(p0, p3) ≥ ρ

for such graphs.

We proceed with a series of reductions which allow us to make the following assumptions:

1. There is a bound on the number of cliques in all G ∈ G.

2. Both limits p0(G) and p3(G) exist.

3. p0(G) = p3(G).

Under these assumptions, the theorem follows from Lemma 2.1 below.

It suffices to consider n-vertex graphs G with only a bounded number of non-trivial cliques.

For let us fix some ǫ > 0 and remove all the edges from every clique of size < ǫn. This leaves

1Note that P2 is a 3-vertex path. This notation is not universally accepted, but hopefully no confusion is

created.
2Here o(1) means on(1). In general, little-oh terms are taken w.r.t. to the order of the graph that tends to

infinity.
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only < 1
ǫ
non-trivial cliques in G which now has the desired form. This changes the parameters

p0(G), p3(G) only by O(ǫ). By letting ǫ → 0 the reduction follows.

Our next reduction is to graphs G with |p0(G) − p3(G)| ≤ O( 1
n
). Given the additional

assumption that p0(G) exists, this will imply p0(G) = p3(G). Suppose that p0(G)−p3(G) ≫ 1
n

for G an n-vertex graph which is the union of vertex-disjoint cliques. We construct another

n-vertex graph G′ with p0(G) > p0(G
′), p3(G) < p3(G

′) and |p0(G
′)− p3(G

′)| ≤ O( 1
n
). This

G′ is also the disjoint union of vertex-disjoint cliques and has no more cliques than G.

To construct G′ we sequentially move vertices from the smallest clique3 in G to the largest

one, breaking ties arbitrarily, thereby changing p0 and p3 by at most O( 1
n
). We stop when

|p0 − p3| ≤ O( 1
n
).

The case p0(G) < p3(G) is similar, but even simpler. We sequentially isolate vertices until

|p0 − p3| ≤ O( 1
n
).

The last reduction is achieved by passing to a subsequence in which the limits p0 = p0(G)

and p3 = p3(G) exist and are equal.

By passing to a subsequence if necessary we can fix the bound r on the number of non-

trivial cliques and the relative sizes α1, α2, . . . , αr ≥ 0 of these cliques. In other words, we can

now restrict ourselves to a sequence G whose n-th graph is Gn = Kα1n⊔Kα2n⊔. . .⊔Kαrn⊔Kβn

where α1, α2, . . . , αr ≥ 0 and β = 1−
∑

αi ≥ 0. We ignore issues of rounding αjn to integral

values since this affects the relevant parameters by only an additive O( 1
n
) term 4. The next

lemma deals with graphs of this particular structure.

Lemma 2.1. Let α1, . . . , αr ≥ 0 and β = 1−
∑

αi ≥ 0. Let

p3 =
∑

α3
i and p0 = 6

∑

i<j<k

αiαjαk + 6β
∑

i<j

αiαj + 3β2
∑

αi + β3.

If p0 = p3 then

p0, p3 ≥ ρ = 0.159181...

This bound is tight.

Proof. We apply the Lagrange multipliers method to determine the smallest possible value of

max(p0, p3) under the constraints p0 = p3, αi ≥ 0,
∑

αi ≤ 1. (We eliminate the variable β by

substituting β = 1−
∑

αi). There are three cases to consider:

• The minimum is attained in the interior of this region. We calculate the partial deriva-

tives of the objective function ∂p3
∂αl

= 3α2
l and the derivatives of the constraint

∂(p3 − p0)

∂αl
= 3α2

l − 6
∑

i<j, i,j 6=l

αiαj − 6(1−
∑

i

αi)
∑

i 6=l

αi + 6
∑

i<j

αiαj − 3(1−
∑

i

αi)
2+

3If there is an isolated vertex in the graph, the corresponding clique gets eliminated, but this creates no

problem in the argument.
4To see this designate one vertex in each nontrivial clique as “special”. The difference between the calcu-

lations below and the exact values comes only from triples that contain a special vertex.
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6(1−
∑

i

αi)
∑

i

αi+3(1−
∑

i

αi)
2 = 3α2

l+6αl

∑

i 6=l

αi+6(1−
∑

αi)αl = 3αl(αl+2(1−αl)).

The Lagrange multipliers method implies that at a critical point there holds ∂p3
∂αl

=

λ
∂(p3−p0)

∂αl

, where λ is a Lagrange multiplier. Consequently αl = λ(2 − αl) for all l

(since we are working in the interior of our region, all αl are positive). This is a linear

equation, so all αl are equal. If r ≥ 3, then p3 ≤ 3(1
3
)3 = 1

9
, and p0 ≥ 1

4
− p3 > 0.13

(by Goodman’s theorem), hence p0 6= p3, a contradiction. If r = 1, p3 = α3
1 = p0 =

(1−α1)
3+3(1−α1)

2α1. The solution is α1 = 0.652704..., for which p0 = p3 = 0.278... > ρ.

If r = 2, p3 = 2α3
1 = p0 = (1− 2α1)

3 + 3(1− 2α1)
2 · 2α1 + 6(1− 2α1)α

2
1. The solution is

α1 = 0.442125..., and p0 = p3 = 0.172848... > ρ.

• The minimum is attained when αi = 0 for some i. This case is solved by removing this

αi using induction on r.

• The minimum is attained when ∀i αi > 0, and
∑

αi = 1. We add the constraint
∑

αi = 1 to our Lagrange multipliers equations. This gives α2
i = λ(2αi − α2

i ) + µ. All

αi satisfy this quadratic equation, so they all take at most two different values, say α1

appears s times and α2 appears t times with sα1+tα2 = 1. We can assume that s, t > 0,

and α1 > α2 > 0 since the case of equal α’s was already treated above.

If s ≥ 3 then p3 ≤
1
9
, and it follows (as before), that p0 6= p3, a contradiction.

If s = 1, p3 = α3
1 + tα3

2, p0 = 6
(

t
2

)

α1α
2
2 + 6

(

t
3

)

α3
2, and α1 = 1 − tα2. Denote x = tα2.

Here, 0 < x < t
t+1

. We have p3 = (1 − x)3 + x3

t2
and p0 = 3x2 − 2x3 − 3

t
x2 + 2

t2
x3. Let

τ(x) = p3 − p0. The value of x is determined by the equation τ(x) = 0. Note that

τ(0) > 0, and τ ′(x) < 0 for 0 < x < t
t+1

. Therefore, τ is decreasing, and there is a

unique solution for τ(x) = 0.

Now, τ(1
3
) = 1

27
+ 1

3t
− 1

27t2
> 0 implies that x > 1

3
. This implies that p0(x) > p0(

1
3
),

since, p′0 > 0. It remains to compute, for t ≥ 4, p0(
1
3
) > 7

27
− 1

3t
≥ 7

27
− 1

12
= 0.175... > ρ.

The case s = t = 1 is vacuous, since p3 > p0 = 0.

If s = 1, t = 2 the equation in x = 2α2 is 1 − 3x + 3
2
x2 + 3

4
x3 = 0 with root at

x = 0.469285..., and p0 = p3 = 0.1753... > ρ.

If s = 1, t = 3 then x = 3α2 satisfies 1− 3x+ x2 + 8
9
x3 = 0 so that x = 0.409632..., and

p0 = p3 = 0.2134... > ρ.

This concludes the case s = 1, and the only remaining case to analyze is s = 2. Again,

x := tα2. Here, p3 = (1−x)3

4
+ x3

t2
and p0 = 3

2
x − 1

2
x3 − 3

t
x2 + 2

t2
x3. The range of x

is 0 < x < t
t+2

. We first consider the case t ≥ 3. Define τ(x) = p3(x) − p0(x) =
1
4
− 9

4
x+ 3

4
x2 + 1

4
x3 + 3

t
x2 − 1

t2
x3. Again, τ(0) > 0, and τ ′ < 0 for 0 < x < t

t+2
, hence τ

decreases. Also, p0 increases, since p′0 > 0.
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Let x0 = 0.115749... be the solution in [0, 1] of the equation 1
4
− 9

4
x + 3

4
x2 + 1

4
x3 = 0.

τ(x0) = 3
t
x2
0 −

1
t2
x3
0 > 0. Since τ decreases, the solution for τ = 0 is bigger than x0.

Since p0 increases, the optimal value of p0 is larger than p0(x0) = 0.172848...− 0.040193...
t

+
0.003102...

t2
≥ 0.159450... > ρ.

If s = 2, t = 1, then p0 = 6α2
1(1 − 2α1), and p3 = 2α3

1 + (1 − 2α1)
3. Solving for

p0 = p3 gives α1 = 0.234643... or α1 = 0.427373.... Since α1 > α2 = 1 − 2α1, we have

α1 = 0.427373..., and p0 = p3 = ρ. This example proves the tightness claim in the

lemma.

Finally, s = 2, t = 2 gives p0 = 6(2α2
1α2 + 2α1α

2
2) = 3α1(1− 2α1) and p3 = 2α3

1 + 2α3
2 =

1
4
− 3

2
α1 + 3α2

1. Solving for p0 = p3 with α1 > α2 gives α1 = 3+
√
5

12
= 0.436338..., and

p0 = p3 =
1
6
> ρ.

3 On 4-profiles of tournaments

As in the discussion above, we consider families T of tournaments of orders going to ∞ and

discuss their k-local profiles. Likewise we define the limit values sets πl(T ) and the limit

sets Πl of tournaments. The 3-profiles of tournaments are easy and completely understood.

There are just two 3-vertex tournaments, one transitive and one cyclic with frequencies t3

and c3 = 1 − t3 respectively. It is well-known and easy to prove that for every T there holds

t3(T ) ≥ 3
4
and this is all there is to 3-profiles of tournaments.

In this section we prove the analog of Theorem 1.7 for tournaments and k = 4. In addition

we derive some information on Π4(tournaments).

There are exactly four isomorphism types of 4-vertex tournaments, see figure 1. Their

names are as follows:

• T4 is the transitive 4-tournament.

• C4 is the (one and only) strongly connected 4-tournament.

• In W4 there is a cyclic triangle all three vertices of which arrow the fourth vertex.

• In L4 one vertex arrows all the three vertices of a cyclic triangle

We use the shorthand t4(T ), c4(T ), w4(T ), l4(T ) for p(T4, T ), etc., or even do not mention

T explicitly when clear from the context. Note that if the limits t4, c4, w4, l4 exist for some

family of tournaments T , then the limit fraction of cyclic triangles c3(T ) exists as well and

equals 2c4+w4+l4
4

.

We recall the class C = Cn of circular tournaments of odd order n. The n vertices of Cn

are equally spaced on the unit circle, with an edge x → y iff the clockwise arc from x to y is

shorter than the counter clockwise arc between them. We are now ready to state our theorem

for tournaments:

6



Figure 1: The four types of 4-vertex tournaments (in order): T4, C4,W4, L4.

Theorem 3.1. Every family of tournaments T for which t4(T ) < 1
2
is 4-universal. Moreover,

w4(T ), l4(T ) ≥ 1
2
− t4(T ). Also c4 ≥

1
6
when t4(T ) ≤ 1

2
.

The circular tournaments satisfy t4(C) =
1
2
and yet l4 = w4 = 0.

Remark 3.2. We do not know whether the inequality c4 ≥
1
6
is tight, and so we ask how small

c4(T ) can be when t4(T ) = 1
2
. A similar question is presented in remark 3.5.

Proof. The theorem follows from the proposition below. In more detail, the positivity of t4, l4,

and w4 follows from items (2), (3), and (4) respectively. The lower bound on c4 follows by

combining (5) with the equality c3 =
1−t4+c4

4
.

Proposition 3.3. The following inequalities hold for every (t4, c4, w4, l4) ∈ Π4.

c4 ≤ t4 (1)

3

8
≤ t4 (2)

t4 + l4 ≥
1

2
(3)

t4 + w4 ≥
1

2
(4)

All the above inequalities are tight. In addition:

c4 ≥ 6c23. (5)

Remark 3.4. These inequalities, four linear and one quadratic, provide some information on

the set Π4. It would be interesting to derive a full description of Π4.

Remark 3.5. We still do not know how tight inequality (5) is and we ask how small c4(T )

can be, given c3(T ). It is not difficult to see that this question is equivalent to the problem

of minimizing t4(T ) given t3(T ), which is analogues to an interesting question about graphs:

Let 2 ≤ s < r, given p(Ks,G) how small can p(Kr,G) be? (This question is stated in its
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general form in [11] though it was probably posed earlier.) Razborov’s recent solution for

s = 2, r = 3 [16] was a major achievement in local graph theory. The problem was subsequently

solved for s = 2, r = 4 by Nikiforov [13], and for s = 2, and general r by Reiher [17]. To the

best of our knowledge, the problem remains open for s ≥ 3.

Proof of Proposition 3.3. Inequality (1): Recall that t3 ≥ 3
4
, and c3 ≤ 1

4
. The inequality

follows, since, c3 = 2c4+l4+w4

4
. This holds with equality for the circular tournaments C, for

which t4 = c4 =
1
2
, and l4 = w4 = 0.

Inequality (2) follows by applying the inequality t3 ≥ 3
4
to the out-set of every vertex. To

see that there are always at least 3
4

∑
(

d+(x)
3

)

transitive 4-vertex subtournaments, count for

each vertex x, the number of transitive triangles among the d+(x) out-neighbors of x. The

inequality follows now from the convexity of the function
(

t
3

)

. Equality holds, e.g., for random

tournaments.

Inequalities (3) and (4) are equivalent, of course. We prove the latter. Clearly
(

n
4

)

(t4 +w4) =
∑

x∈V
(

d+(x)
3

)

. Again a simple convexity argument yields the inequality and equality holds for

random tournaments.

Inequality (5): Note that two cyclic triangles sharing a common edge necessarily form a C4.

Let us denote by S the set of cyclic triangles in an n-vertex tournament T , and for an edge

e, Se = {s ∈ S : e ⊂ s}. Then c4
(

n
4

)

=
∑

e

(|Se|
2

)

≥
(

n
2

)(

∑
|Se|/(n2)

2

)

=
(

n
2

)(3c3(n3)/(
n

2)
2

)

=

(6 + o(1))c23
(

n
4

)

. The inequality follows.

4 Further directions and discussion

The following questions suggest themselves:

1. Is there some ǫ > 0 such that every graph family with p0, p3 < 1
8
+ ǫ is 4-universal?

As observed by Mykhaylo Tyomkyn (personal communication), no such condition yields

5-universality, see below.

2. Is there some ǫ > 0 such that every graph family G with p(K4,G), p(K4,G) <
1
64

+ ǫ is

l-universal for some values of l ≥ 3?

3. What are the triples k, l, r for which there exists an ǫ > 0 such that the conditions

p(Kk,G) < 2−(
k

2) + ǫ and p(Kr,G) < 2−(
r

2) + ǫ imply l-universality?

4. Is there some ǫ > 0 such that every tournaments family with t4 < 3
8
+ ǫ is necessarily

5-universal? What about l-universality for bigger l?

5. Does t5 <
5!
210

+ ǫ imply l-universality for some values of l ≥ 4?

8



6. For which integers k, l does there exist an ǫ > 0 such that every tournament satisfying

tk <
k!

2(
k

2)
+ ǫ is l-universal? (Here tk is the proportion of transitive k-vertex subtourna-

ments).

7. Jacob Fox has raised the question whether problem 1.4 can have a positive answer only

with l = O(k). As he pointed out, this would follow from the existence of a large

k-clique-free graph G with p(Kk, G) < 2−(
k

2) + o|G|(1). We note that it is an old and

intriguing problem how small p(Kk, G) can be for a large k-clique-free graph. See [4]

and the recent work [14].

8. What are the possible values of tk(T ), given the value of tl(T )? Here T is a family

of tournaments and k > l ≥ 3 are integers. The first interesting (and open) case is

k = 4, l = 3.

9. In this article we discuss how the paucity of small homogeneous sets implies universality

in graphs and in tournaments. It is conceivable that these two problem sets can be

connected, perhaps in the spirit of Alon, Pach and Solymosi [2], but we do not know

how or whether this can be done. Specifically, can some connection can be established

between items 3 (say, with k = r) and 6 above?

We now present Jacob Fox’s proof of Proposition 1.6 which uses the following result of

Prömel and Rödl. For a simpler proof of the results from [15] with improved constants see [6].

Proposition 4.1. For every a > 0 there is a b > 0 such that every n-vertex graph G with

α(G), ω(G) < a logn is b logn-universal.

Proof of Proposition 1.6. Let G ∈ G, be an n-vertex graph. Select H as a random subgraph

of G with m = 2k/4 vertices. The expected number of k-cliques and k-anticliques in H is at

most
(

m
k

)

(p(Kk, G)+p(Kk, G)) ≤ mk ·2 · (2−(
k

2) + ǫ+ on(1)) which can be made smaller than 1

by making k large enough. Therefore, such an H exists with α(H), ω(H) < k. Proposition 4.1

implies thatH is ck-universal, where c is a constant. This clearly implies thatG is ck-universal,

as claimed.

Two comments are in order here: (i) The above argument applies, with some minor mod-

ifications to item 3 above and yields that if r and k are of the same order, then l could be of

the same order as well. (ii) Jacob Fox has pointed out that the methods of [6] can be adapted

to yield an analogue of the simple proof for Proposition 4.1 for tournaments, namely

Proposition 4.2. For every a > 0 there is a b > 0 such that every n-vertex tournament T

with tr(T ) < a logn is b log n-universal.

From this we can easily deduce:

9



Lemma 4.3. Every family of tournaments T for which tk(T ) < k!2−(
k

2) + ǫ is ck-universal

for some absolute c > 0.

Proof. Apply the above proof of Proposition 1.6 to an arbitrary large T ∈ T . It shows that

a random subset S of 2k/4 vertices in T contains no transitive k-vertex subtournament. By

Proposition 4.2 the tournament induced on S, and therefore the whole of T is ck universal.

Mykhaylo Tyomkyn (personal communication) found the following recursive construction

which is not 5-universal even though p0, p3 ≤ 1
8
. Let G1 = C5 be the pentagon graph. To

construct Gn, take 5 blocks each being a copy of Gn−1 and connect every two consecutive

(modulo 5) copies by a complete bipartite graph. It is easy to see that the graph Gn is self-

complementary, and p3(Gn) =
1
25
p3(Gn−1) +

6
25
e(Gn−1) where e(Gn−1) =

1
2
is the edge density

of Gn−1. It follows that limn p3(Gn) = 1
8
= limn p0(Gn). On the other hand, this family of

graphs is not 5-universal. We prove by induction that Gn has no induced copy of a 5-vertex

path x1, . . . , x5. By induction not all 5 vertices are in the same block. Also, if they all reside in

different blocks then x1 and x5 are adjacent which is impossible. So let xu, xv with u < v reside

in the same block and xw be in a neighboring block. Then necessarily u = w − 1, v = w + 1.

But at least one of xu, xv has a nighbor other than xw and this vertex cannot be fit into any

of the blocks.

Notes added in proof:

1. In a follow up paper, Hefetz and Tyomkin [10] settle Problem 1 in the above list and

make several additional interesting contributions to this area.

2. We have recently made some progress on Problem 8 above. We intend to publish our

results soon.

5 acknowledgement

We are grateful to Jacob Fox and Mykhaylo Tyomkyn for generously sharing their insights

with us.

References

[1] N. Alon, E. Fischer, M. Krivelevich and M. Szegedy, Efficient testing of large graphs.

Combinatorica 20 (2000), 451-476.

[2] N. Alon, J. Pach, and J. Solymosi, Ramsey-type theorems with forbidden subgraphs.

Combinatorica 21 (2001), 155-170.

10



[3] D. Conlon and J. Fox, Bounds for graph regularity and removal lemmas. Geom. Funct.

Anal. 22 (2012), 1192-1256.
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