
ar
X

iv
:1

30
4.

30
00

v1
  [

m
at

h.
C

O
] 

 1
0 

A
pr

 2
01

3

Non-Vertex-Balanced Factors in Random

Graphs

Stefanie Gerke∗ Andrew McDowell∗†

June 4, 2018

Abstract

We prove part of a conjecture by Johansson, Kahn and Vu [6] re-
garding threshold functions for the existence of an H-factor in a ran-
dom graph G(n, p). We prove that the conjectured threshold function
is correct for any graph H which is not covered by its densest sub-
graphs. We also demonstrate that the main result of [6] generalises to
multigraphs, digraphs, and a multipartite model.
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1 Introduction

We will properly state our theorems later in the introduction, after introduc-
ing necessary notation and background. However, for readers already familiar
with the background or willing to momentarily gloss over the details, let us
immediately sketch our main results and methods. In a recent breakthrough
(winning a 2012 Fulkerson Prize), Johansson, Kahn, and Vu [6] determined
the threshold for a random graph G to be factorable by a strictly balanced
fixed graph H , and they conjectured the threshold for every H . Our main
result, Theorem 1.1, establishes their conjecture for ‘non-vertex-balanced’
graphs H , a class of graphs disjoint from strictly balanced ones. The pos-
itive side is the difficult one, and the main idea of the proof is, to cover a
fraction of G with copies of a densest subgraph of H , then contract that
subgraph to a point, extend the cover, and repeat. However, after the first
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step, two things have changed: the graph H may have become a multigraph
and, more significantly, we have committed to correspondences between some
vertices of G and H . We manage these difficulties through Theorem 1.2, as-
serting that, if the vertices of the random graph G are partitioned into classes
corresponding to vertices of H , then G almost surely has an H-factor which
respects the partitioning. Our proof follows the steps of the proof in [6]; it
is not especially inventive, but neither is it easy. Krivelevich [8] needed a
special case and verified it, but [8] does not include the proof. The result is
clearly useful, and it is therefore worth writing down the proof details. We
prove a similar result for directed graphs.

Formally, for graphs H and G, an H-factor of G is a collection of vertex-
disjoint copies of H in G that form a vertex cover of G. Clearly G can only
contain an H-factor if |V (H)| divides |V (G)|. We are mainly interested in
random graphs on n vertices and and we assume throughout the paper that
|V (H)| divides n.

We call a function f(n) a threshold for a graph propertyK if, for an Erdős-
Rényi random graph G(n, p), (that is, the graph on n vertices where each
edge is present with probability p independently of the absence or presence
of any other edge)

Pr(G(n, p) satisfies K) →

{

1 if p(n) = ω(f(n)), and

0 if p(n) = o(f(n)).

Since containing an H-factor is an increasing property (that is, adding
edges does not destroy any H-factor) it is well known that a threshold func-
tion exists, see for example [5]. Note that a threshold is unique up to multi-
plicative positive constants so we will use Θ notation and with slight abuse of
language we will speak of “the” threshold. The study of thresholds for vari-
ous classes of graphs H has attracted considerable interest. The distinctions
center around density properties of H . We define the density of a graph H
on at least two vertices, as

d(H) =
|E(H)|

|V (H)| − 1
.

Let m(H) be the maximum density of any subgraph of H , that is,

m(H) = max {d(H ′) : H ′ ⊆ H, |H ′| ≥ 2} .

A graph H is called balanced if m(H) = d(H), i.e., if no subgraph of H has
density greater than that of H , and strictly balanced if every proper subgraph
of H has density smaller than that of H .
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For any vertex v of H , define the local density at v to be the maximum
density restricted to subgraphs containing v,

m(v,H) = max {d(H ′) : H ′ ⊆ H, |H ′| ≥ 2, v ∈ V (H ′)} .

A graph H is vertex balanced if, for all v ∈ H , m(v,H) = m(H).
Note that if H is balanced then it is vertex balanced: a densest subgraph

of H is H itself, so m(v,H) and m(H) are both given by H ′ = H , for
m(v,H) = m(H) = d(H). Taking the contrapositive, if H is non-vertex
balanced then it is not balanced, and not strictly balanced. Graphs may
thus be partitioned into those that are non-vertex balanced, those that are
strictly balanced, and the rest (those that are vertex balanced but not strictly
balanced). An example of a non-vertex balanced graph is shown below.

The thresholds for H-factors for various fixed graph H have been of inter-
est for a long time. The case H = K2 is simply the threshold for G to have a
perfect matching which has been known since 1966 [3], see also [2] for a more
precise result. The next H-factor threshold result was for trees by  Luczak
and Rucinski [9]. Note that matchings and trees are vertex-balanced. For
sub-classes of non-vertex-balanced graphs, the threshold is known for graphs
H whose minimum degree is less than m(H) [1, 5]. In 2008 the seminal paper
by Johansson, Kahn, and Vu [6] determined the threshold for all strictly bal-
anced graphs (also resolving the so-called ‘Shamir’s problem’ on hypergraph
matchings). The special case of finding the threshold of an H-factor for the
strictly balanced graph H = K3 had been described by Janson,  Luczak and
Ruciński as one of the two ‘most challenging, unsolved problems in the the-
ory of random structures’ [5, p. 96] and was first posed by Ruciński in 1992
[11] (the second problem was ’Shamir’s problem’).

In their paper Johansson, Kahn and Vu conjecture thresholds for all
graphs H , depending on whether H is vertex-balanced or not. We restate this
formally as Conjecture 1 in Section 2. Our first main result establishes this
conjecture for all graphs in the second category. More precisely, let thH(n)
be the threshold function for G(n, p) to contain an H-factor. We prove the
following.

Theorem 1.1. If H is non-vertex-balanced,

thH(n) = Θ
(

n−1/m(H)
)

.
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The main idea of the proof is, first, to embed the dense subgraphs of H ,
giving a ‘partial factor’ covering a corresponding proportion of the vertices of
G(n, p). We then collapse each such subgraph of H to a single vertex, giving
a less dense strictly balanced graph (or possibly multigraph). Finally, we
extend the partial factor to a full factor using Theorem 1.2, a generalisation
to partitioned multigraphs of the strictly balanced result of [6].

To state Theorem 1.2 we need some more notation. Let eH = |E(H)|,
vH = |V (H)| and V (H) = {x1, x2, . . . , xvH}. Define the r-fold blowup
B(H, r) of H as an vH-partite graph with parts V1, V2, . . . , VvH , each of size
r, with an edge between vi ∈ Vi and vj ∈ Vj iff there is an edge between
xi and xj in H . In a slight abuse of notation, let H(n, p) be the random
subgraph of B(H, n/vH) obtained by retaining each edge with probability p.
Likewise, given a multigraph H, we define the random multigraph H(n, p):
the blowup B(H, n/vH) has as many edges between vi ∈ Vi and vj ∈ Vj as
there are edges between xi and xj in H, and again H(n, p) is the random
subgraph of B(H, n/vH) obtained by retaining each edge with probability p.

The setup suggests looking for a ‘restricted’ H-factor of H(n, p) where,
for each copy of H, each vertex belongs to the corresponding part of H(n, p).
We will not in fact assume this, but the following theorem shows that below
some threshold there is no factor, while above the threshold there is a factor
of the restricted form.

Theorem 1.2. Fix a multigraph H(which may be a simple graph H). If H
is strictly balanced, then the threshold for H(n, p) to contain an H-factor is

thH(n) = Θ
(

n−1/m(H)(logn)1/|E(H)|
)

,

while if H is not strictly balanced, the threshold satisfies

thH(n) = O(n−1/m(H)+o(1)).

In both cases, above the threshold there is w.h.p. an H-factor in which, in
every copy of H, each vertex is in the corresponding part of H(n, p).

We note that there is a key difference between the partitioned and usual
G(n, p) thresholds for non-strictly balanced graphs. In G(n, p), we show that
for non-vertex balanced H , the o(1) term can be completely eliminated, while
it remains in the form of a log term for strictly balanced H . In the partitioned
random graph however, there will always be a log term. This can be seen by
considering the graph consisting of a triangle and a single isolated vertex.
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In G(n, p), this graph is easy to embed, as it is equivalent to a partial
factor of triangles, taken over the whole graph, but only covering 3/4 of the
vertices. At this point, the remaining spare vertices immediately complete
the factor. In the partitioned case, by fixing the position of these triangles, we
are implying the existence of a full triangle factor over those corresponding
partitions, and as such, by the result for strictly balanced graphs, we will
require a log term, corresponding to the densest subgraphs.

Lastly we prove that the threshold for digraph factors coincides with
that for graphs which is an easy consequence of Theorem 1.2. We define
the random directed graph D(n, p) with vertex set V of size n, such that
for each pair of vertices u and v in V , there is an edge between them with
probability p independently of all other edges, and each such edge is either
(u, v) or (v, u), with probability half each. We can prove the threshold for
both strictly balanced and non-vertex-balanced digraphs, in D(n, p). Note
that for strictly balanced graphs we can also prove the partitioned form, i.e.,
the digraph form of Theorem 1.2 also holds.

Theorem 1.3. Fix a digraph H. If H is strictly balanced, then the threshold
function thH(n), for the random directed graph D(n, p) to contain an H-
factor is

thH(n) = Θ
(

n−1/m(H)(log n)1/eH
)

,

while if H is non-vertex-balanced,

thH(n) = Θ
(

n−1/m(H)
)

.

2 Preliminaries

We first note the following known results which we will need later.

Theorem 2.1. (Ruciński [11]) Let H be a graph with at least one edge, and
FH(ε, n) be threshold function for the property that G(n, p) contains a partial
H-factor covering all but at most εn vertices. Then for any fixed ε > 0 the
threshold function satisfies,

FH(ε, n) = Θ
(

n−1/m(H)
)

.

Theorem 2.2. (Alon, Yuster [1]) Let H be a graph with minimum degree
δ(H), satisfying δ(H) < m(H). Then

thH(n) = Θ
(

n−1/m(H)
)

.
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In their respective papers, stronger results than what is stated above are
actually proved, but we use threshold notation for consistency.

The following two results can be found as Theorem 2.1 and 2.2 in [6]. This
paper’s aim is to provide a generalisation of the first result, which allows for
improved bounds on the second.

Theorem 2.3. [6] Let H be a strictly balanced graph with eH edges. Then
the threshold function, thH(n) for G(n, p) to contain an H-factor satisfies

thH(n) = Θ(n−1/d(H)(log n)1/eH ).

Theorem 2.4. [6] For H, an arbitrary fixed graph, the threshold function,
thH(n) for G(n, p) to contain a H-factor satisfies

thH(n) = O(n−1/m(H)+o(1)).

In [6], the authors define threshold functions th
[1]
H (n) and th

[2]
H (n), for a

given fixed graph H . Firstly, th
[1]
H (n) is defined as the threshold for every

vertex in G to be covered by at least one copy of H , while th
[2]
H (n) is the

threshold for the property of satisfying the following two conditions:

1. every vertex of G is covered by at least one copy of H , and

2. for each x ∈ V (H), there are at least n/vH vertices x′ of G for which
some isomorphism of H takes x to x′.

This threshold is clearly a lower bound for the threshold for finding a factor
thH(n) and the paper conjectures that they are, in fact, equal, and they prove
this for strictly balanced H . In this paper, we will show this conjecture also
holds for a large class of non-strictly balanced graphs.

The threshold th
[2]
H (n) is completely determined and stated without proof

in [6], for all graphs. For completeness we have included a proof below. Let
sv = min{e(H ′) : H ′ ⊆ H, v ∈ V (H ′), d(H ′) = m(v,H)} and let s be the
maximum over all sv. Clearly m(v,H) ≤ m(G) for all v, with equality for at
least one v. We are now ready to state and prove the following:

Lemma 2.5. If for all v ∈ V (H), m(v,H) = m(H) then

th
[2]
H (n) = Θ

(

n−1/m(H)(log(n))1/s
)

.

Otherwise
th

[2]
H (n) = Θ

(

n−1/m(H)
)

.
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Proof. We clearly have 4 cases to consider. Firstly we will look at vertex-
balanced graphs, i.e. those that satisfy, m(v,H) = m(H) for all v ∈ V (H).

Condition 1 of th
[2]
H (n), namely that each vertex of G is covered by at least

one copy of H , is well studied and exact thresholds can be found as Theorem
3.22 in [5] and follow from results proved by Spencer in [13], and, in this case
they are equal to our required bound.

Now we simply have to prove that condition 2 is also satisfied for p =
ω(n−1/m(H)(log(n))1/s). We note that we clearly have that Cp = ω(n−1/m(H))
for any constant C.

Let V (H) = {1, 2, . . . , vH}, our result will follow from partitioning the
edge set of G(n, p) into the union of random graphs G0, G1, . . . , GvH with
edge probability p′, where 1−p =

∏vH
i=0(1−p

′) = (1−p′)vH+1 and repeatedly
applying Theorem 2.1 to find partial factors of H . We first apply it in G0,
which has edge probability p′ > p/(vH +1) = ω

(

n−1/m(H)
)

, which is sufficient
to apply 2.1 with ε = 1/4. This gives us a partial H-factor covering 3n/4 of
the vertices of G(n, p) and hence (1− ε)n/vH = 3n/(4vH) vertices of G(n, p)
are covered by each vertex of H with high probability.

For each i = {1, 2, . . . , vH} we consider vertex i of H and the vertices of
G0, that we have already covered by copies of i, and then, the random graph
induced by the edges of Gi on the vertex set of G0, without those already
covered vertices. This leaves us with a set of n′ = (1 − 3/(4vH))n vertices in
each Gi, that have not already been covered by a copy of the vertex i of H ,
with an independent random edge set. We can consider this as equivalent
to the random graph G(n′, p′), where p′ > p/(vH + 1) = ω

(

(n′)−1/m(H)
)

(assuming |vH | > 2). This allows us to again, apply Theorem 2.1 to find
another set of partial factors on 3/4’s of the remaining vertices, giving us in
total (6/4vH − 9/16v2H)n > n/vH , for vH > 1, vertices covered by vertex i of
H as required.

We now consider graphs that are non-vertex-balanced and so do not sat-
isfy m(v,H) = m(H) for all v ∈ V (H). As before, the threshold for covering
is known, and is in fact lower than our required threshold here.

The same argument for proving condition 2 as above applies since we only
required p = ω(n−1/m(H)), so it follows that, for these graphs, both conditions
are satisfied for p = ω(n−1/m(H)). It only remains to show that the threshold
is not lower than this for such H . This follows from another result, proved
by Ruciński and Vince [12]. They prove, that for any vertex of G(n, p), the
threshold for it being covered by a particular vertex v of H is n−1/m(v,H).

With the result above in mind, we define the following; for a vertex
vG ∈ V (G(n, p)), we let XvG be the indicator variable for vG being covered
by a copy of v, where v ∈ V (H) satisfies m(v,H) = m(H), namely XvG = 0
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if it is not covered, and XvG = 1 if it is. Suppose that condition 2 is satisfied
with high probability. Therefore we have that

E(
∑

vG∈G(n,p)

XvG) =
∑

vG∈G(n,p)

E(XvG) > n/vH .

Suppose that p = o(n−1/m(v,H)). We know that for p in this range, XvG =
0, with high probability, and therefore E(XvG) = o(1). Since there are only n

such choices of vG, we have a contradiction. Therefore the threshold th
[2]
H (n)

is not o(n−1/m(H)), and so must be n−1/m(H), as required.

In [6], it is conjectured that th
[2]
H (n) = thH(n), so in light of the above,

this can be restated as the following

Conjecture 1. [6] If for all v ∈ V (H), m(v,H) = m(H), then

thH(n) = n−1/m(H)(log(n))1/s.

Otherwise
thH(n) = n−1/m(H).

3 Theorem 1.1

The first case of Conjecture 1 has been proved for strictly balanced H , and
now we will prove the second statement in its entirety, namely we prove that
the threshold for containing an H-factor is thH(n) = th

[2]
H (n) = n−1/m(H) for

graphs where m(v,H) < m(H) for some v ∈ V (H). We begin by demon-
strating that the result follows, assuming Theorem 1.2, and then in Section
4, we return to prove it.

In general terms, the main idea of this paper, is to ‘collapse’ dense sub-
graphs of H to get a new graph (or possibly multigraph) H, which we will
formally define later.

Since, we have m(v,H) < m(H) for some v, we know that at least one
vertex of H does not belong to any dense subgraphs of H . As a result, we
will only need to cover a linear fraction of the vertices of G(n, p) with these
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dense subgraphs, since our factor will contain at least n/vH vertices to be
covered by copies of these less dense vertices.

Once we have embedded the dense sub-graphs, we then use Theorem
1.2, treating these (collapsed in H) embedded graphs as single vertices and
finding a new, equally or less dense, H-factor on these collapsed vertices,
along with the remaining uncovered vertices of G(n, p). This will translate
to the required factor in our original graph.

To do this for the graph above, we would simply require a generalisation
that allows us to partition our vertices and choose which vertex of H will
‘cover’ the vertices of G(n, p) in our factor. However, in a more general case,
after collapsing vertices in H we may no longer be left with a graph, but a
multigraph, hence the required level of generalisation to use this method.

In this example, the densest subgraph is clearly the K5, so we would
collapse this to a single vertex. However, one vertex of H contains edges to
two vertices of this subgraph, leaving us with a multigraph. It is also worth
noting that the density of K5 is 2.5 and since every vertex has degree at least
3, this is an example of a non-balanced graph, that could not be solved by the
minimum degree result [1], and where we can provide the optimal threshold,
improved on that provided by Theorem 2.4.

To define our collapsing method formally, we begin with some observa-
tions on the effects of vertex collapsing on the density of H . We know that
m(v,H) = m(H) for some vertices v, and these are the vertices that we col-
lapse. For each such v, we, in turn, choose a subgraph H ′ such that v ∈ H ′

and d(H ′) = m(H). We now collapse all the vertices in H ′ into a single
vertex. Giving us a new (possibly multi) graph, which we will call H1, which
has the vertices of H\H ′, with an additional vertex v1, and an edge for each
edge of H with an endpoint in H\H ′. We continue this process, going from
Hi to Hi+1, at each stage, collapsing a subgraph of density m(H) until none
remain. The final graph which contains no subgraphs of density m(H), we
will call H. We prove the rigour of this statement in the following lemma.

Lemma 3.1. The collapsing process, described above, terminates after a fi-
nite number of steps, producing a unique multigraph H, with m(H) < m(H).
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Proof. Firstly note that the density of H1, defined in the same way for multi-
graphs as for graphs, is

d(H1) =
e(H1)

(v(H1) − 1)
=

e(H) − e(H ′)

v(H) − v(H ′) + 1 − 1
=

e(H) − e(H ′)

(v(H) − 1) − (v(H ′) − 1)
.

(1)
Noting that d(H) ≤ m(H) = d(H ′), we can see that the above gives us,
d(H1) ≤ d(H) ≤ m(H). If instead of H and H1, we consider any subgraph of
H containing the vertices we are going to collapse and the resulting subgraph
of H1, the same inequality shows that we have not created any subgraph in H1

of density greater than m(H). In fact, considering the following for positive
numbers a, b, c and d;

a− c

b− d
≥
a

b
⇐⇒

a

b
≥
c

d

(assuming b > d), and noting that we only have equality on one side if we
have it on both, it follows from (1) that any vertex that is in a subgraph of
density m(H) in Hi+1, must have also been in such a graph in Hi.

Since we are considering H such that, at least one vertex v, satisfies
m(v,H) < m(H), the above shows that the collapsing process will never
produce a subgraph of density m(H) containing these vertices and hence
they will never be collapsed. This ensures that once all subgraphs have been
collapsed, we will not be left with a single point, and that m(H) < m(H).

The above also demonstrates that while the choice of dense subgraph
to collapse will result in different Hi, ultimately, this process will always
terminate with the same final multigraph, which we call H. To see why
this follows, suppose a vertex lies in two different subgraphs, which we could
choose to collapse. By (1) applied to the subgraph induced by the union
of the two dense subgraphs, the new subgraph, formed by the collapsing
process, will still have density m(H) and so the remaining vertices will be
collapsed at a later stage to the same point.

It is clear that if we can embed the collapsed, dense subgraphs of H ,
required for a factor, and then embed the edges of H we will have our
required factor. Firstly, we prove that we can embed these dense subgraphs
as required. Consider the graph H ′ with vertex set V (H) and edge set
E(H) − E(H), (i.e. H ′ contains only those edges collapsed by the above
process). Let thH′(n) be the threshold for embedding a factor of H ′ into
G(n, p).
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Figure 1: An example of an H and its respective H and H ′ graphs

Lemma 3.2. For a non-vertex-balanced graph H, and the corresponding H ′

as defined above, the threshold for the existence of an H ′-factor satisfies;

thH′(n) = Θ
(

n−1/m(H)
)

.

Proof. H ′ is a subgraph of H , and so m(H ′) ≤ m(H), and since H ′ con-
tains copies of the collapsed subgraphs of density m(H), it must itself satisfy
m(H ′) = m(H). The edges of H ′ are exactly those that were collapsed in the
process that generated H, and hence, any vertices of H that were not col-
lapsed, will be isolated in H ′. In other words, these vertices will have degree
0 in H ′. Such vertices must exist, since we assumed that m(v,H) < m(H)
for some vertex v. Since we then have δ(H ′) < m(H ′), we can apply Theorem
2.2, completing the proof as required.

We now have anH-factor, without the edges from each copy ofH , that are
also present in H. To embed these final edges, we now use our generalisation
of 2.4, namely a specific application of Theorem 1.2 to find a factor of H,
with the collapsed subgraphs covered by the vertices we require from H .

As in [6], we work in (a multigraph generalised form of) G(n,M), the
graph chosen uniformly from all M-edge graphs on V (although we will use
a multigraph generalised form of G(n, p) to prove our results) and derive a
generalised form of 2.3. Since we will be operating with multigraphs and
partitioned vertex sets, we need to define some notation.

Let G be a graph on n vertices and let H be a fixed graph with vertex
set {x1, x2, x3, . . . , xvH}. Let H be the multigraph obtained by repeated
applications of vertex collapsing of subgraphs of H of density m(H), until no
such subgraphs remain. Let kH = |V (H)| and hH = |E(H)|. If H has vertex
set {y1, y2, . . . , ykH}, we use lemma 3.2 to find partial factors consisting of
n/vH copies of these collapsed subgraphs (or single vertices, for those that
were not collapsed) for each vertex in H.

We use the standard method of partitioning the edges of G(n, p) into
G(n, p′)∪G(n, p′) where there is an edge in G(n, p) if and only if there is an
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edge in at least one of the G(n, p′). Since we are only interested in threshold
functions, which are equivalent up to constant factors, and 1− p = (1− p′)2,
which implies that p′ > p/2, we can apply Lemma 3.2 without sacrificing
randomness of the edges between these embedded subgraphs. This leaves us
with kH separate classes of the vertices of G(n, p), each containing graphs of
density m(H) or isolated vertices, each corresponding to a vertex of H.

We now wish to find an H-factor between these partitioned sets, but
we are only interested in factors that connect the ‘correct’ vertices together
from each partition, and hence are not interested in the edges within each
partition, or those that are not the prescribed edges between the subgraphs
we have already embedded.

We can consider a random multigraph, which we call H(n, p), using the
edges of our second G(n, p′), such that if the required H-factor exists here, it
will translate into the required H-factor in G(n, p). Firstly, the vertex set of
H(n, p) consists of a single vertex for each of the isolated vertices and sub-
graphs of density m(H), that we have embedded into G(n, p). We maintain
the partition of these new vertices into equal sets of size n/vH , according to
the vertex of H, they correspond to in the initial embedding. Note that this
means that H(n, p) does not have n vertices, but rather kHn/vH , which is
however, a constant multiple of n.

For the edge set of H(n, p), we use the second edge partition G(n, p′),
to ensure randomness. We consider a pair of vertices, v1 and v2 in H(n, p),
noting that we can also consider v1 and v2 as sets of vertices of G(n, p),
and the mapping σ : v(H) → G(n, p) that describes the already embedded
subgraphs that form the vertices of H(n, p). For each x1 and x2 ∈ v(H), with
(x1, x2) ∈ e(H) and σ(x1) ∈ v1 and σ(x2) ∈ v2, if (σ(x1), σ(x2)) ∈ e(G(n, p)),
then we have an edge between v1 and v2 in H(n, p), noting that we consider
each such edge separately. In this way, any factor of H found in H(n, p) will
automatically translate into a factor of H in G(n, p).

H(n, p) can also be thought of as a random kH-partite multigraph with
kHn/vH vertices, and edges between vertices x and y with probability p for
each edge between their origin vertices in H , and 0 otherwise. Essentially, a
series of hH = e(H) bipartite graphs, in the same ‘shape’ as H. We will work
using this random graph model (and the corresponding H(n, p) model), to
prove our results.

It may be helpful for some readers to visualise this as a kH-partite ran-
dom graph with different edge probabilities for some of the edge partitions,
rather than a multigraph. For example, a single edge with probability p2,
rather than two edges, each with probability p between vertices. The varying
probabilities make this model cumbersome to work with, however, and the
multigraph notation is more convenient for use.
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For some choices of H it may simply be possible to set all edge probabil-
ities to the minimum of these values, and still find the factor, but our earlier
graph, containing a K5, is an example of a graph for which this method would
fail.

At this point, we have the exact set-up for Theorem 1.2. As we have shown
that m(H) < m(H), it implies that for p = ω(n−1/m(H)) > O(n−1/m(H)+o(1))
(or, if H is strictly balanced p > ω(n−1/m(H)(log n)1/|E(H)|)) such an H-factor,
a.a.s exists, and hence our H factor exists in our original G(n, p), as required.

4 Theorem 1.2

The proof of Theorem 1.2 largely follows the same steps as the original graph
result in [6]. To illustrate the key ideas, we outline the initial setup and
then draw out several of the key ideas of the proof. We begin the proof of
Theorem 1.2, with a multigraph generalised version of their Theorem 3.1.
This Theorem essentially shows that the number of factors in H(n, p) is close
to expectation, by demonstrating that the equivalent process of removing
edges from the complete graph, does not remove too many factors at each
step.

Theorem 4.1. Let kH = v(H) and hH = e(H). For p = p(n) = ω(n−1/m(H))
and M = M(n) = hH(n/vH)2p, and let Φ(G) be the number of the H-Factors
in a graph G, then

Pr(Φ(H(n, p)) ≥ (nkH−1phH)n/vHe−O(n)) ≥ 1 − n−ω(1).

Proof. The proof follows in the same steps as the original. Let T = hH(n/vH)2−
M , and let e1, e2, . . . , ehH(n/vH )2 be a random, uniform ordering of the com-
plete form of our multigraph (i.e H(n, p) with p = 1), which we shall call
KMn. Set Gi to be KMn − {e1, e2, . . . , ei}, so if we let F(G) be the set of
H factors on G, we define Fi := F(Gi). We then let ξi be the fraction of
members of Fi containing ei. Then, as for the standard graph case, we have

|Ft| = |F0|
|F1|

|F0|
. . .

|Ft|

|Ft−1|
= |F0|(1 − ξ1) . . . (1 − ξt),

and that therefore, we have

log |Ft| = log |F0| +

t
∑

i=1

log(1 − ξi). (2)

13



Here our sums start to differ somewhat from the standard graph case; we
have

log |F0| = log((n/vH)!)kH−1 =
kH − 1

vH
n logn−O(n).

Also, we have

E ξi =
hHn/vH

hH(n/vH)2 − i+ 1
=: γi = E[ξi|e1, . . . , ei−1]

for any choice of e1, . . . , ei−1.
Therefore we have

t
∑

i=1

Eξi =

t
∑

i=1

γi =
hHn

vH
log

hH(n/vH)2

hH(n/vH)2 − t
+ o(1)

provided that hH(n/vH)2 − t > ω(n). We use the same property as for the
standard graph case, namely At, which is the event that

{

log |Ft| > log |F0| −
t

∑

i=1

γi −O(n)

}

.

As before, we aim to show that with high probability At does not fail, i.e.

for t ≤ T,Pr(At) = n−ω(1). (3)

This implies our theorem, since we then, setting t = T , have

log Φ(H(n, p)) = log |Ft| >
kH − 1

vH
n logn +

hHn

vH
log p−O(n)

(since M = hH(n/vH)2 − T = hH(n/vH)2p). To prove (3), we use the same
methods as [6], namely an Azuma’s inequality, martingale argument. As
before, we will define two auxiliary properties Bi and Ri for i ≤ 1 ≤ T − 1,
that will allows us to establish control over the concentration of our variables.
We set our martingale to have a difference sequence of

Zi =

{

ξi − γi if Bi and Ri hold for all j < i
0 otherwise.

And so our martingale is Xt =
∑t

i=1 Zi. We leave the formal definitions
of Bi and Ri for Section 5.3, but in general terms, Ri states that each vertex
is in close to expectation, number of copies of H, along with a second tech-
nical condition, while Bi states that the maximum number of factors using
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a particular copy of H, is close to the average over all copies of H. For all
i ≤ t, we will have that Bi−1 and Ri−1 imply

ξi = o(log−1 n). (4)

Our martingale analysis, will give us that Pr(|Xt| > n) < n−ω(1) (i.e. |Xt| ≤
O(n)), and if we have Bi and Ri for i < t ≤ T , we will then have that
Xt =

∑t
i=1 ξi − γi and therefore

t
∑

i=1

ξi <
t

∑

i=1

γi + O(n) < O(n logn).

Using this, (2), (4) and the series expansion for log(1 − x) we get that

log |Ft| > log |F0| −
t

∑

i=1

(ξi + ξ2i ) > log |F0| −
t

∑

i=1

γi −O(n).

As in the graph case, we are left with three possibilities for the failure of this
to occur and hence,

Pr(At) <
∑

i<t

Pr(Ri) +
∑

i≤t

Pr(∧j<i(BjRj) ∧Ai) +
∑

i<t

Pr(AiRiBi).

The previously mentioned martingale analysis shows that the second term is
at most n−ω(1), and we follow the same processes as [6] in Section 5 to show
that for i ≤ T

Pr(Ri) < n−ω(1) (5)

and
Pr(AiRiBi) < n−ω(1). (6)

These three bounds give us the required result.

In the next sections we outline the generalisation of the various results
from the original factors paper, and include some notes on how we can apply
them to our multigraph situation. Rather than just present a slightly modi-
fied reproduction of [6], and to make this generalisation of more value to the
reader, we have first drawn out what Johansson, Kahn and Vu referred to as
‘the heart of the matter’ and presented it as a stand-alone result, with our
required generalisation and then continuing with the surrounding proofs.

As demonstrated above, the factor result follows from showing that

Pr(Ri) < n−ω(1)
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and
Pr(AiRiBi) < n−ω(1).

In proving the second equation, a second graph property C is introduced.
The following shows that the failure of C results in two sets differing by a
single vertex, such that the number of factors on the complement of these sets
(subject to some restrictions) vary significantly. The proof of this revolves
around the use of entropy results that we describe below, while in Section
5.6, concentration results are used to demonstrate that the event is unlikely
as required.

4.1 Entropy

We follow the results of chapter 6 of the factors paper but are left with a
modification to make to their Lemma 6.1. As in the original, we have H(X)
to be the base entropy of a discrete random variable X , i.e.,

H(X) =
∑

x

p(x) log
1

p(x)
,

where p(x) = Pr(x = X). Now, in our case, given a vertex y in a random
multigraph G, we use X(y,G) to be the copy of H in a randomly chosen
H-factor, and that h(y,G) = H(X(y,G)). We will require a slightly differ-
ent result, than in the original, as we will only be interested in vertices y
from a single partition set of our random multigraph. We suppose that our
multigraph has the same structure as H(n, p), i.e. any copy of H will contain
one vertex from each partition set of G. Given V1, a partition set of G, we
have the following

Lemma 4.2.
log Φ(G) ≤

∑

y∈V1

h(y,G).

Proof. This result follows in the same way as in the original, using a variant
statement of Shearer’s Lemma. This states that, given a random vector
Y = (Yi : i ∈ I), and S, a collection of subsets of I, with repeats allowed,
such that each element of I belongs to at least t members of S. For S ∈ S
let YS be the random vector Yi : i ∈ S. Then H(Y ) ≤ t−1

∑

S∈S H(YS). If we
let Y be the indicator for the random H-Factor, then I is the set of copies of
H in the complete form of our multigraph and S is the collection of sets Sx,
where Sx is the collection of copies of H containing a vertex x, taken only
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over x ∈ V1. We have, therefore, that each copy of H, belongs to exactly one
Sx in S, and so t = 1. It follows that;

H(Y ) =
∑

Φ(G)

1

Φ(G)
log(Φ(G)) = log(Φ(G))

and since H(YS) = h(y,G), the proof is complete.

The second entropy result of [6], namely Lemma 6.2, is not specific to
graphs, and hence requires no generalisation for our uses. We state it below
for reference.

We let S be a finite set, W : S → R+, and let X be the random variable
taking values in S with probability

Pr(X = x) = W (x)/W (S),

where, for a set A ⊆ S, W (A) is the sum of W over the members of A, i.e.
W (A) =

∑

x∈AW (x).

Lemma 4.3. If H(X) > log |S|−O(1), then there are a, b ∈ range(W ) with

a ≤ b < O(a)

such that for J = W−1[a, b] we have,

|J | = Ω(|S|)

and
W (J) > 0.7W (S).

4.2 The heart of the matter

We let Φ(G) be the number of H-factors on a partitioned multigraph G,
V0 be the set of vertex sets of size kH in H(n, p) with a vertex from each
partition set, and H(x,G) be the set of copies of H in G containing the
vertex x, again with each vertex from a separate partition set. We define
D(x,G) = |H(x,G)| to be the number of copies of H in G containing a
vertex x, while D(p) is the expectation of D(x,H(n, p)) in H(n, p) given a
randomly chosen x.

For Z, a disjoint union of elements of V0, we define w : V0 → R+ as
w(Z) = Φ(H(n, p) \Z), i.e. the number of partial H-factors in H(n, p) with
only the vertices in Z, not covered.

Lastly, fixing a set of vertices, Y of size kH − 1, taken from separate
partition sets and two vertices x and y, both from the remaining partition
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set in V (H(n, p) \ Y ) we define wx,y : H(x,H(n, p) − {Y ∪ {y}}) → R+ as
wx,y(K) = w(K ∪ Y ∪ {y}). In simple terms, wx,y can be thought of as the
number of H-factors on H(n, p) \ {Y ∪ {y}} that use K as the copy of H
containing x in the H-factor.

Definition 1. We say H(n, p) satisfies A(p) if the following holds

log(Φ(H(n, p))) >
kH − 1

vH
n logn +

hHn

vH
log p−O(n).

Definition 2. We say that H(n, p) satisfies Rb(p) if the following condition
holds.

For each x ∈ V , |D(x,H(n, p)) −D(p)| = o(D(p)).

Informally, A(p) says that the number of factors is close to expectation,
while Rb(p) says the same for the number of copies of H that each vertex of
H(n, p) is in.

For a kH− 1 subset of V (H(n, p)), as always with each vertex taken from
different partition sets; Y , let V0(Y ) be the set of kH subsets containing Y ,
with the final vertex taken from the remaining partition set.

Definition 3. We define C for H(n, p) as follows: H(n, p) satisfies C if for
all kH − 1 subsets of H(n, p), Y as above, we have the following:

maxw(V0(Y )) ≤ max{n−2(kH−1)Φ(H(n, p)), 2medw(V0(Y ))}

We prove the following Theorem;

Theorem 4.4. ARbC implies that there exists a set of vertices Y , each
taken from |Y | = vH − 1 different partition sets of H(n, p), and x, y in the
remaining partition set, such that we can find a collection J of elements
of H(y,H(n, p) − (Y ∪ {x})) and J ′ from H(x,H(n, p) − (Y ∪ {y})) with
|J | > Ω(|H(y,H(n, p) − (Y ∪ {x}))|), and w−1

y,x|J | = w−1
x,y|J

′| = [a, b] with
a ≤ b < O(a) satisfying

∑

X∈J

wy,x(X) > 0.7w(Y ∪ {x})

and
∑

X∈J ′

wx,y(X) ≤ 0.5w(Y ∪ {x})

Proof. Suppose that A, Rb hold but that C fails. Therefore we can find at
least one set Y at which C fails. We therefore know that there exists x, such
that w(Y ∪ {x}) is maximum for choices of x and satisfies

w(Y ∪ {x}) > n−2(kH−1)Φ(H(n, p)).
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We now choose y with w(Y ∪{y}) ≤ med w(V0(Y )), and h(y,H(n, p)− (Y ∪
{x})) maximal, given this constraint.

Given A, we know that

log(Φ(H(n, p))) >
kH − 1

vH
n logn +

hHn

vH
log p−O(n).

While the failure of C tells us that

w(Y ∪ {x}) = Φ(H(n, p) − (Y ∪ {x})) > n−2(kH−1)Φ(H(n, p)),

hence, combining the two we have,

log Φ(H(n, p) − (Y ∪ {x})) >
kH − 1

vH
n logn +

hHn

vH
log p−O(n). (7)

We use Lemma 4.2 and apply it to the graph H(n, p)−(Y ∪{x}). Letting
V1 be the partition set containing x and y, we have,

log Φ(H(n, p) − (Y ∪ {x})) ≤
∑

z∈V1

h(z,H(n, p) − (Y ∪ {x})). (8)

However, we know that we chose y to have maximal entropy, chosen from
a set of at least half of possible such z, and we also have that for any random
variable X , the entropy H(X) ≤ log(|range(X)|) (with equality only if the
variable is uniformly distributed).

The range of our random variable is contained in the set of copies of H
containing the fixed vertex z in H(n, p) − (Y ∪ {x}), which by definition, is
of size D(z,H(n, p) − (Y ∪ {x})) ≤ D(z,H(n, p)). We know from Rb that
this is less than (1 + o(1))D(p). Hence, we have that at least half the z’s
in (8) satisfy h(z,H(n, p) − (Y ∪ {x})) ≤ h(y,H(n, p) − (Y ∪ {x})) and the
remaining, n/2vH all satisfy h(z,H(n, p) − (Y ∪ {x}) ≤ log((1 + o(1))D(p)).
Therefore, (8) gives us,

log(Φ(H(n, p) − (Y ∪ {x}))) ≤
∑

z∈V1

h(z,H(n, p) − (Y ∪ {x}))

≤
n

2vH
(h(y,H(n, p) − (Y ∪ {x}) + log(1 + o(1))D(p)))

≤
n

2vH
(h(y,H(n, p) − (Y ∪ {x}) + (kH − 1) logn + hH log p).

Rearranging, to get h(y,H(n, p)−(Y ∪{x})) on the left, and substituting
from (7) we have,

h(y,H(n, p) − (Y ∪ {x})) ≥ (kH − 1) logn+ hH log p−O(1).
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By Rb we have that

log(D(y,H(n, p) − (Y ∪ {x}))) ≤ logD(y,H(n, p)) ≤ log((1 + o(1))D(p))

= (kH − 1) logn+ hH log p+ log(1 + o(1)),

and hence combining with the above, we have

h(y,H(n, p) − (Y ∪ {x})) > log(D(y,H(n, p) − (Y ∪ {x})) −O(1). (9)

We now use our functions wy,x and wx,y, previously defined as;

wy,x(K) = w(K ∪ Y ∪ {x}) and similarly wx,y(K) = w(K ∪ Y ∪ {y}).

With wy,x defined on H(y,H(n, p) − (Y ∪ {x})); the set of copies of H con-
taining y in H(n, p)−(Y ∪{x}), and similarly, wx,y defined on H(x,H(n, p)−
(Y ∪ {y})). Simply put, for a copy of H containing y in H(n, p)− (Y ∪{x}),
wy,x is the number of H-factors on this set, using that copy of H.

If we consider the random variable X(y,H(n, p) − (Y ∪ {x})), which is
the copy of H containing y in a uniformly at random chosen H-factor on
H(n, p)− (Y ∪{x}), we can see that the probability that X(y,H(n, p)− (Y ∪
{x})) = H′ for H′ ∈ H(y,H(n, p) − (Y ∪ {x}), is

wy,x(H′)/
∑

Z∈H(y,H(n,p)−(Y ∪{x}))

wy,x(Z).

Also note that the denominator is equal to w(H(n, p)− (Y ∪ {x})), since by
summing only over copies of H, we are counting each H-factor exactly once.

Similarly, X(x,H(n, p) − (Y ∪ {y})) is determined by wx,y, and the sum
∑

Z wx,y(Z) is equal to w((Y ∪ {y})).
By the above, we have the setup used for Lemma 4.3, with S = H(y,H(n, p)−

(Y ∪ {x})). Noting that |S| = D(y,H(n, p) − (Y ∪ {x})), (9) gives us the
required condition, and we are able to apply the result to wy,x. This implies
that there exist a and b ∈ range(wy,x), for which we can set J := w−1

y,x([a, b]),
and it will satisfy the following:

|J | > Ω(|H(y,H(n, p) − (Y ∪ {x}))|)

and
∑

z∈J

wy,x(Z) > 0.7
∑

z∈H(y,G−(Y ∪{x})

wy,x(Z) = 0.7w(Y ∪ {x}).

In simple terms, J is of the same magnitude in size as the whole pre-image
of wy,x, and its elements have overall weight at least a constant multiple of
that of the whole set.
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Equally we can set J ′ = w−1
x,y([a, b]), and we know that

∑

J ′

wx,y(Z) ≤ w(Y ∪ {y}) < 0.5w(Y ∪ {x})

The first inequality follows from simply summing over the full set containing
J ′, and the 2nd from our original definition of y and x. This completes the
proof.

Proving that this is a.a.s. unlikely to happen, requires a range of con-
centration and technical lemmas, demonstrated in the following sections. In
applying this result to Shamir’s problem, if instead of considering factors, a
matching of hyperedges is required, it has been shown that the proof follows
with much more ease using a union bound argument, reducing the technical
complexity of the proof considerably [4].

5 Generalisation of remaining results from

[6]

The generalisation to partitioned structures and multigraphs of the remaining
results and properties of [6], follow largely from careful consideration of sums
and bounds, and formulation of polynomials. The following sections follow
the structure of [6] closely, and are largely a technical exercise, that offer
little to those who have read the original paper.

To highlight why the generalisation should follow, we note that while
limiting the factors to these partitions appears to drastically limit the number
of possible copies of H , since each partition is of linear in n size, we still have
O(nkH) = O

(

n
kH

)

, possible choices of vertices for each H , as in the standard
case.

We also address the threshold required for applying Theorem 1.2 in ob-
taining Theorem 1.1. We are not guaranteed strict balance for the resulting
H, but regardless, the collapsing process, eliminates all subgraphs of density
m(H), and hence, m(H) < m(H) and so for p > n−1/m(H), we have a greater
probability than required within the proof and so with Theorem 4.1, applied
to H(n, p), on the partial factors already embedded during the collapsing
process, we have Theorem 1.1 as required.

Throughout the proofs, for clarity in understanding our main result, we
treat H, as the graph formed by the collapsing process on some H , and that
we have p > n−1/m(H) as in Theorem 1.1, but for proving Theorem 1.2 in
full generality, H may not necessarily be derived from some H , and we only
have p > n−1/m(H)+o(1) (or with a log term for the strictly balanced case).
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In this case the proof is unchanged, as throughout, as in [6], we only require
that if p = O(p−1/a), H contains no subgraphs of density equal to 1/a, and
that nkH−1phH = ω(logn), which follows immediately from the conditions in
Theorem 1.2, given that the o(1) term decreases sufficiently slowly.

5.1 Concentration Results

Firstly we address the usage of the various concentration results in Section
5 of [6]. These results are largely special cases of results by V. Vu that can
be found in [7] (with J.H.Kim), [14] and [15].

We will utilise the various polynomial results here without modification,
and hence will not repeat the proofs here again.

We will require some of the notation used in this section later, which
we outline now. We let f = f(t1, t2, . . . , tn), be a polynomial of degree d
with real coefficients. We say f is normal if its coefficients are positive, with
the maximum coefficient being 1, and we note that the results here are also
true for O(1) normal polynomials, which simply means that the polynomial’s
coefficients have some fixed bound.

We will consider polynomials that are multilinear which means we can
express f in the form f(t) =

∑

αU tU , where U ranges over subsets of [n] and
tU :=

∏

u∈U tu.
Lastly, we need that for a set L ⊆ [n], the partial derivative of order |L|

with respect to the variables indexed by L is
∑

U⊇L αU tU\L, and its expecta-
tion, denoted EL or ELf is

∑

{αU

∏

i∈U\L pi : U ⊇ L}, where ti ∼ Ber(pi).

Set Ejf = max|L|=j ELf . We write E
′

L = E
′

Lf for the expectation of the
non-constant part of the partial derivative of f , with respect to L, noting
that for homogeneous, f of degree d, and 0 < |L| < d, we have E

′

Lf = ELf .
We take the original example used to illustrate the usage of these results,

namely that we consider our polynomial f to be the number of copies of H
in our random multigraph H(n, p) containing a particular, fixed vertex x0.

We have that f =
∑

U tU where U runs over edge sets of copies of H in our
complete multigraph, containing our vertex x0. We have Ef = Θ(nkH−1phH),
while for any non empty subset L of edges from the complete graph, the
partial derivative will be ELf =

∑

U⊇L tU\L. This will be 0 for L that do
not satisfy our multigraph structure requirements (i.e. at most one edge
from each bipartite pairing forming the multigraph), in the same way that
choosing an L not forming a subgraph of H would do, in the standard graph
case.

In all theorems in the chapter we are interested in ensuring that the
maximum value of the derivative does not exceed a certain magnitude, and
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so in this sense, we are not interested in these cases, and so they cause no
issue in this generalisation.

Given that our choice of L does satisfy our structure requirements, (and
hence will be contained within at least one copy of H in the complete graph),
we can consider the graph formed by the edges of L, and the vertex end-points
of these edges. Letting k′H and h′H be the number of vertices and edges
respectively of L, then if L contains x0, we have ELf = O(nkH−k′

HphH−h′

H),
and O(nkH−k′

H
−1phH−h′

H) otherwise. Either way, we have,

Ef/ELf = Ω(nk′
H
−1ph

′

H).

While we do not have strict balance of H, we do have that it contains no
subgraphs of density m(H), and hence we have that h′H/(k

′
H−1) < m(H) and

recalling that p = ω(n−1/m(H)), we have that Ef = Ω(1) and that Ef/ELf ≥
nΩ(1), as is required for applying the results in the chapter.

For reference we include the results from the chapter below.

Theorem 5.1. The following holds for any fixed positive integer d and pos-
itive constant ǫ. Let f be a multilinear, homogeneous, normal polynomial of
degree d such that Ef ≥ nǫ max1≤j≤d Ejf . Then

Pr(|f − Ef | > ǫEf) = n−ω(1).

Theorem 5.2. The following holds for any fixed positive integer d and pos-
itive constant ǫ. Let f be a multilinear, normal, homogeneous polynomial of
degree d such that Ef = ω(logn) and max1≤j≤d−1 Ejf ≤ nǫ. Then

Pr(|f − Ef | > ǫEf) = n−ω(1).

Theorem 5.3. The following holds for any fixed positive integer d and pos-
itive constant ǫ. Let f be a multilinear, normal, homogeneous polynomial of
degree d such that Ef = ω(logn) and max1≤j≤d−1 Ejf ≤ nǫ

Ef . Then

Pr(|f − Ef | > ǫEf) = n−ω(1).

Corollary 5.4. The following holds for any fixed positive integer d and pos-
itive constant ǫ. Let f be a multilinear, normal, homogeneous polynomial of
degree d such that Ef ≤ A where A = A(n) satisfies

A ≥ ω(logn) + nǫ max
0<j<d

Ejf,

then

Pr(f > (1 + ǫ)A) ≤ n−ω(1).
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Theorem 5.5. The following holds for any fixed positive integer d and pos-
itive constant ǫ. Let f be a multilinear, normal polynomial of degree d with
Ef = ω(logn) and maxL 6=∅ E

′

Lf ≤ nǫ
Ef . Then

Pr(|f − Ef | > ǫEf) ≤ n−ω(1).

Corollary 5.6. The following holds for any fixed positive integer d and pos-
itive constant ǫ. Let f be a multilinear, normal polynomial of degree d such
that Ef ≤ A where A = A(n) satisfies

A ≥ ω(logn) + nǫ max
L 6=∅

E
′

Lf,

then

Pr(f > (1 + ǫ)A) ≤ n−ω(1).

Theorem 5.7. The following holds for any fixed positive integer d and pos-
itive constant ǫ. Let f be a multilinear, normal polynomial of degree d with
maxL E

′

Lf ≤ nǫ. Then for any β(n) = ω(1),

Pr(f > β(n)) = n−ω(1).

5.2 Martingale

The proof of the bound on the martingale follows exactly as that for the
original paper. We have all the same bounds, namely that |Zi| < ε := log−1 n,
and that

∑t
i=1 γi = O(n logn). and the proof makes no use of the graph

setting for the problem. We include the steps below for reference.
We let Xt = Z1 + · · · + Zt, and aim to show that

Pr(Xt ≥ n) < n−ω(1).

We have that Zi is a function of the random sequence e1, . . . , ei, but that
E(Zi|e1, . . . , ei−1) = 0 for any choice of the ej ’s. Using (4), it will follow from
the properties R and B, that |Zi| < ε := log−1 n. We can apply Markov’s
inequality to derive the following, for any positive h;

Pr(Xt ≥ n) = Pr(eh(Z1+···+Zt) ≥ ehn) ≤ E(eh(Z1+···+Zt))e−hn. (10)

Using Zi = ξi − γi, we have that E(ξi|e1, . . . , ei−1) = γi. Using 0 ≤ ξi ≤ ε
and the convexity of ex, we have

E(ehZi |e1, . . . , ei−1) ≤ e−hγi
((

1 −
γi
ε

)

+
γi
ǫ
ehε

)

.
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Taylor series expansions, show that the right hand side is at most eh
2ǫγi, for

any 0 ≤ h ≤ 1. Using induction on t we derive the following.

E(eh(Z1+···+Zt)) = E(E(eh(Z1+···+Zt)|e1, . . . , et−1))
= E(eh(Z1+···+Zt−1)E(ehZt |e1, . . . , et−1))

≤ E(eh(Z1+···+Zt−1)eh
2εγt)

≤ eh
2ε

∑
t

i=1
γi .

Combined with (10), we have

Pr(Xt ≥ n) ≤ eh
2ε

∑
t

i=1
γi−hn.

We have that
∑t

i=1 γi = O(n log n) and ε = log−1 n, and so setting h
to be a sufficiently small positive constant, leaves the right hand side as
e−Ω(n) = n−ω(1), as required.

5.3 The Properties B and R

We now define our slightly altered properties Bi and Ri. We note, as before
that in proving (5) and (6) we can operate in the random graph H(n, pi)
rather than Gi, where

pi = 1 −
i

hH(n/vH)2
.

We will define graph properties B and R(p) and then the event Bi will be
{Gi satisfies B} and Ri will be {Gi satisfies R(pi)}.

In defining B, we use the same notation for the functions W , namely that
for a finite set A and W : A→ [0,∞), set

W (A) = |A|−1
∑

a∈A

W (a),

maxW (A) = max
a∈A

W (a),

and lastly that,
maxr W (A) = W (A)−1 maxW (A),

with med W (A) the median of W on A.
For a multigraph G with our required partition structure, and vertex set

V , let Z be a choice of kH vertices from V , with each element taken from a
different vertex partition. We then let wG(Z) = Φ(G−Z). Therefore, wG(Z)
is the number of H-factors in the multigraph induced by G on the vertex set
V \Z.
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It could also be thought of as the number of H-factors in G, containing
Z as a copy of H, if all edges between the vertices of Z had been added in,
where they are not already present.

We also use wG(K) = wG(V (K)) for K ∈ H(G), the set of copies of H in
G (which will contain one vertex from each partition of G).

We now define property B, for a multigraph G as for the graph case,
namely

B(G) = {maxr wG(H(G))) = O(1)}. (11)

As in the graph case, B(G) states that no copy of H in G is contained in
much more than the average number of H-factors, for a copy of H.

We define R(p), for the most part, in the same manner as for a graph,
with two parts to the definition. For the first part, we use almost the same
set-up. We have G, our random multigraph and V its vertex set, and given
A ⊆ V (H), E ′ ⊆ E(H)\E(H[A]), an injection ψ, from A to V (mapping
vertices to the correct partition of V corresponding to their location in H).
We let X(G) be the number of injections φ : V (H) → V with

φ ≡ ψ on A (12)

and
xy ∈ E ′ ⇒ φ(x)φ(y) ∈ E(G).

We can write X(H(n, p)) in an obvious way, as a polynomial in variables
te = 1{e∈E(H(n,p))}, for e, an edge in the complete form of our multigraph:

X(H(n, p)) = q(t) =
∑

φ

tφ(E′),

where t is the indicator function for edges of the multigraph, and the sum is
over all injections φ satisfying (12).

As in the original paper, we have that this function q(t), is multilinear,
O(1)-normal and homogeneous of degree d = |E ′|. We use the same definition
for E

∗;
E
∗ = max{ELq : |L| < d}. (13)

We also use the same definition for D(p), using it as the expected number
of copies of H in H(n, p) using a given vertex x ∈ V , while D(x,G) is the
actual number of copies containing x in G. It is clear that

D(p) = (n/vH)kH−1phH = Θ(nkH−1phH).

We are now ready to define R(p), which is identical to the graph formulation,
not taking into account our slight changes to the above notation.
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Definition 4. We say that a random multigraph G satisfies R(p) if the
following two conditions hold.

(a) For A, E ′ and ψ (and associated notation) as above: if E∗ = n−Ω(1),
then for any β(n) = ω(1), X(G) < β(n) for large enough n; if E∗ ≥
n−o(1), then for any fixed ǫ > 0 and large enough n, X(G) < nǫ

E
∗.

(b) For each x ∈ V , |D(x,G) −D(p)| = o(D(p))

We can now prove that these conditions give the required bound on the
size of ξi. The proof follows in the same fashion as in the original paper:

Lemma 5.8. For i ≤ T = hH(n/vH)2−M as defined in Section 3, Bi−1 and
Ri−1 (i.e. that Gi−1 satisfies B and R(pi)) imply (4)

Proof. Write w for wGi−1
. We aim to show that Bi−1 and Ri−1 imply that,

for any K ∈ H(Gi−1),

w(K)/Φ(Gi−1) = O(1/D(pi−1)).

As before, the left hand side of this equation is the fraction of H-factors in
Gi−1 that use K, and we prove this result in the same fashion, since we have;

Φ(Gi−1) = vH
n
w(H(Gi−1))

= vH
n

Ω(|H(Gi−1)|maxw(H(Gi−1))
= Ω(D(pi−1)w(K)).

The first line follows, since each H-factor will be counted n/vH times by
summing the w function over all copies of H. The second line follows from
applying B, while the third comes from part (b) of Ri−1, and noting that
(kHn/vH)D(p) = kH|H(Gi−1)|.

We also have, using the same arguments as in the original, that part (a)
of Ri−1 implies that the number of K ∈ H(Gi−1), containing a given edge
e ∈ E(Gi−1) is at most β(n), satisfying β−1D(pi−1) = ω(logn). Here we also
use that D(pi−1) = nkH−1phH

i−1 = ω(logn), for i ≤ T .

Lastly we state the required ‘p-version’ of At:

A(p) =

{

log |F(G)| > log |F0| −
t

∑

i=1

γi −O(n)

}

,

where t = ⌈(1−p)hH(n/vH)2⌉. Recall from the end of Theorem 4.1, that our
required result will follow from the following lemmas
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Lemma 5.9. For p > ω(n−1/m(H)),

Pr(H(n, p) satisfies R(p)) = 1 − n−ω(1).

Lemma 5.10. For p > ω(n−1/m(H)),

Pr(H(n, p) satisfies A(p)R(p)B) = n−ω(1).

We prove these lemmas in the next subsections.

5.4 Regularity

We now prove Lemma 5.9, i.e. that with probability 1− n−ω(1), G = H(n, p)
satisfies both parts of the definition of R(p).

Part (a) follows easily in the same fashion as the original paper. There
are only nO(1) choice for each of A, E ′ and ψ, so we simply show that the
probability of one of these violating (a) is n−ω(1). As we noted earlier, we can
express the random variable as a polynomial, and since it is homogeneous,
multilinear, and O(1)-normal, we can apply the probability results from the
concentration chapter of [6] directly, which gives us the result as required.

Proving (b) requires only slightly more adaptation to our scenario. We
again express D(x,G) as a polynomial of degree hH = |E(H)|, in the vari-
ables te = 1e∈E(G), where e belongs to the complete form of our random
multigraph. Therefore we have,

D(x,G) = f(t) :=
∑

{tK : K ∈ H0(x)},

where H0(x) is the set of copies of of H, containing x, in the complete
multigraph, and tK =

∏

e∈K te.
As noted earlier, we have,

Ef = (n/vH)kH−1phH = Θ(nkH−1phH) = ω(logn).

We aim to use one of the concentration results from [6], namely Theorem 5.3,
which requires the above and that max1≤j≤d−1 Ejf ≤ n−ǫ

Ef . For L a subset
of the edges of the complete multigraph, with 1 ≤ |L| = l < hH, we have

ELf = phH−lN(L),

where N(L) is the number ofK ∈ H0(x) with L ⊆ E(K). Let I = V (L)∪{x},
V (L) being the set of vertices incident to the edges of L, and k′H = |I|. Then
N(L) = Θ(nkH−k′

H) if the graph H′ := (I, L) is isomorphic to a subgraph of

28



H, and zero otherwise. Therefore we have, recalling that p > n−1/m(H) and
d(H) = eH/(vH − 1),

Ef/ELf = Ω(nk′
H
−1pl) = Ω(n[(k′

H
−1)/l−1/m(H)]l)

= Ω(n[1/d(H′)−1/m(H)]l) = nΩ(1) .

Using the fact that H contains no subgraphs of density m(H) (or denser).
We therefore have the required conditions to use the concentration theorem
and the result follows, which provides us with part (b) of R as required.

5.5 Proof of Lemma 5.10

We now begin the proof of Lemma 5.10, continuing in the same vein as the
original paper, as there, we will prove that B is satisfied, using an auxiliary
event, C. Most of these results follow in an identical manner to the original,
but with small conditions on the choice of sets, and differing constant powers
in the equations (largely from use of kH rather than vH). We include these
modified results for completeness.

We write V0 to be the collection of kH-sets of V = V (H(n, p)), with a
single vertex from each partition of H(n, p). For a set Y ⊆ V , with |Y | ≤ kH
and at most one vertex from each partition, we write V0(Y ) for the set
{Z ∈ V0 : Z ⊇ Y }. We then extend our earlier weight function w = wH(n,p)

to these sets Y , by setting

w(Y ) =
∑

{w(Z) : Z ∈ V0(Y )}.

We define our new property C for H(n, p) as follows: H(n, p) satisfies C if for
all such Y , as defined above, with |Y | = kH − 1,

maxw(V0(Y )) ≤ max{n−2(kH−1)Φ(H(n, p)), 2med w(V0(Y )}

We will then prove Lemma 5.10, by proving the two following results.

Lemma 5.11. Pr(ARC) = n−ω(1).

Lemma 5.12. Pr(RCB) = n−ω(1).

We have already demonstrated the first part of the proof of Lemma 5.11
in Section 4.2. For clarity, to follow the arguments of the original paper,
we will first prove Lemma 5.12, before returning to Lemma 5.11 in the next
Section. We must firstly show that

|{K ∈ V0 : w(K) ≥ δmaxw(V0)}| = Ω(|V0|) (14)

29



Noting that |V0| = Ω(nkH), and that this implies max rw(V0) = O(1). We
now need another small modification of a lemma from the graph case. We
let ψ(X) = maxw(V0(X) and let B be a positive number, recall that V is
the vertex set of H(n, p), and is of size kHn/vH , with kH partitions of size
n/vH .

Lemma 5.13. Suppose that for each Y ⊆ V , satisfying |Y | = kH − 1 and
with at most one vertex from each partition of V , and ψ(Y ) ≥ B we have

∣

∣

∣

∣

{

Z ∈ V0(Y ) : w(Z) ≥
1

2
ψ(Y )

}
∣

∣

∣

∣

≥
n/vH − kH

2
.

Then for any X ⊆ V with |X| = kH − i, at most one vertex from each
partition and ψ(X) ≥ 2i−1B, we have

∣

∣

∣

∣

{

Z ∈ V0(X) : w(X) ≥
1

2i
ψ(X)

}
∣

∣

∣

∣

≥

(

n/vH − kH
2

)i
1

(i− 1)!
. (15)

Proof. We write Ni for the right hand side of the above equation, and proceed
by induction on i. The case i = 1 is the hypothesis of the lemma. We then
assume X as stated, and choose Z ∈ V0(X) with w(Z) = ψ(X) (i.e. Z such
that w is maximal). We let y ∈ Z\X and Y = X ∪ {y}. We then have
that |Y | = kH − (i − 1) and that ψ(Y ) = ψ(X) ≥ 2i−1B(≥ 2i−2B), and
so, by the inductive hypothesis there are at least Ni−1 sets Z ′ ∈ V0(Y ) with
w(Z ′) ≥ 2−(i−1)ψ(Y ). For each such Z ′, Z ′\{y} is a (kH − 1)-subset of V
with ψ(Z ′\{y}) ≥ w(Z ′) ≥ B. So then for each such Z ′, there are at least
(n/vH − kH)/2 sets Z ′′ ∈ V0(Z

′\{y}) with

w(Z ′′) ≥ ψ(Z ′\{y})/2 ≥ 2−iψ(X).

Therefore the number of such pairs, (Z,Z ′′) is at least Ni−1(n/vH − kH)/2.
Equally, for each Z ′′, each corresponding Z ′ is Z ′′\{u} ∪ {y} for some u ∈
Z ′′\(X ∪ {y}). Therefore the number of such Z ′ is at most i − 1, providing
our factorial term. This completes the proof.

We now continue the proof of Lemma 5.12. We set δ = 2kH and then C im-
plies the hypothesis of the above lemma, with B = (2n)−(kH−1)Φ(H(n, p))(>
n−2(kH−1)Φ(H(n, p))). We also clearly have that

ψ(∅) ≥ n−(kH−1)Φ(H(n, p)) = 2kH−1B.

We also set γ = (2kH+1(kH − 1)!)−1, and using (15), we now have

|{K ∈ V0 : w(K) ≥ δmaxw(V0)}| > γnkH .
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We let J be the largest power of 2, not exceeding maxw and

Z = {Z ∈ V0 : w(Z) > δJ}.

In a sense, Z can be thought of as the vertex sets of size kH, whose com-
plement has a relatively large number of factors. For any set X ⊆ V with
|X| ≤ kH, with at most a single vertex from each partition, let Z(X) = {Z ∈
Z : X ⊂ Z}, and say such a set X is good if |Z(X)| > γnkH−|X|. In particular
we know that the empty set is good. We then fix an ordering a1, . . . , akH of
V (H). For distinct vertices, x1, . . . , xr ∈ H(n, p), we define S(x1, . . . , xr) to
be the collection of copies φ of H in the complete multigraph KMn, for which

φ(ai) = xi for i ∈ [r],

φ(ai)φ(aj) ∈ E(H(n, p)) whenever i, j ≥ r and aiaj ∈ E(H)

and that φ(V (H)) ∈ Z.
For each r ∈ {0, . . . , kH} let Nr = N(ar) ∩ {ar+1, . . . , akH}, and dr =

|Nr|, where N(ar), means the neighbourhood of ar (in H). We now let
Y(x1, . . . , xr) be the event

{|S(x1, . . . , xr)| = Ω(pdr+···+dkH−1nkH−r)}.

Note that in particular we have, dkH = 0, and, recalling that H(G), is the
set of copies of H in H(n, p),

S(∅) = {φ ∈ H(G) : w(φ(V (H))) > δJ}

and that Y(∅) is the event

{|S(∅)| = Ω(phHnkH)}.

Then, for v1, . . . , xr ∈ V , and from distinct partitions, let Q(x1, . . . , xr) be
the event

{{x1, . . . , xr} is good} ∧ Y(x1, . . . , xr)}.

Since we have shown that C implies that the empty set is good, we have that
BC ⊆ Q(∅) and therefore, we simply require to show that

Pr(RQ(∅)) = n−ω(1),

to prove Lemma 5.12, we continue (as always, in the same fashion as for
the graph case), by proving a slightly more general argument for induction
purposes, namely, that for any choice of r and vertices x1, . . . , xr,

Pr(RQ(x1, . . . , xr)) = n−ω(1). (16)
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Our induction is on kH−r, with our initial step r = kH, trivially following
since the definition of being good for subsets of size kH is to belong to Z.
For general r < kH, we set X = {x1, . . . , xr}. and then let P be the event

{y ∈ V \X,X ∪ {y} good ⇒ Y(x1, . . . , xr, y)}.

By the inductive hypothesis we know that Pr(RP) = n−ω(1), so we only need
to show

Pr(RPQ(x1, . . . , xr)) < n−ω(1).

We also note that if X is good then,

|y : X ∪ {y} good| = Ω(n). (17)

To ensure that the edges between xr and V \X are independent of the initial
conditioning, we use a relaxed form of R, RX , which we say is satisfied if it
satisfies part (a) of R, whenever A = {a1, . . . , ar}, ψ(ai) = xi (i ∈ [r]) and
E ′ ⊆ (H − A).

As for the graph case, if RP ∧ {X good} holds, but Y(x1, . . . , xr) does
not, then there must be some J = 2kH , with kH and integer not exceeding
n log n (the magnitude of the log of the number of H-Factors in the complete
multigraph), such that with Z good, we have the following, (noting that
throughout this chapter, wherever we choose sets of vertices from V −X , we
choose them from partitions that do not contain vertices of X),

(a) RX holds;

(b) There are at least Ω(n) y’s in V \X for which we have Y(x1, . . . , xr, y)
(by (17)), and lastly,

(c) Y(x1, . . . , xr) does not hold.

We note, that for a given J , the first two properties, depend only on
G′ := G−X . Since the number of possibilities for J is at most n logn, it is
enough to show that for any J and G′ satisfying (a) and (b) (with respect to
J),

Pr(Y(x1, . . . , xr)|G
′) = n−ω(1).

Given this fixed G′, we can express |S(x1, . . . , xr)| as a multilinear polynomial
in terms of the indicator variable for edges between xr and other vertices of
H(n, p), i.e.

tu := 1{xru∈E(H(n,p)} u ∈ V \X.

giving the polynomial,

|S(x1, . . . , xr)| = g(t) :=
∑

U

αU tU ,
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where U ranges over dr subsets of V \X , with the vertices taken from the
correct partitions, corresponding to the edges from ai = φ−1(xi) in H, and
αU is the number of copies ψ of K := H−{a1, . . . , ar} in G′ with the induced
subgraph,

ψ(Nr) = U

and
ψ({ar+1, . . . , akH}) ∪X ∈ Z.

We now apply a concentration result from Section 5.1, namely Theorem 5.3.
To apply this, we require a normal polynomial, so we normalise, and consider

f(t) = α−1g(t),

where α is the maximum of the αU ’s. The hypothesis requires that Ef =
ω(logn) and max1≤j≤d−1 Ejf ≤ n−ǫ

Ef , and will allow us to say that it is
close to expectation. We rewrite:

g(t) =
∑

y∈V \X

∑

{tφ(Nr) : φ ∈ S(x1, . . . , xr, y)}.

Since we know that the indicator variables, tu, u ∈ V \X , are independent
of G′, which determines our sets S(x1, . . . , xr, y), and using property (b) our
situation, we have

Eg = pdr
∑

y∈V \X

|S(x1, . . . , xr, y)| = Ω(pdr+···+dkH−1nkH−r). (18)

Noting that if dr = 0, then there are no random edges to consider, and we
have that |S(x1, . . . , xr)| will equal

∑

y∈V \X

|S(x1, . . . , xr, y)| = Ω(pdr+···+dkH−1nkH−r),

as required, we will now assume that dr > 0.
We now set H′ = H − {a1, . . . , ar−1}, and so dr + · · · + dkH−1 = e(H′)

and that kH − r = v(H′) − 1. This gives us that the right hand side of the
expectation of g, is Ω(pe(H

′)nv(H′)−1). Using that p > n−1/m(H) and that H
contains no subgraphs of density m(H), we have

Eg =

{

ω(logn) if r = 1
nΩ(1) if r > 1.

We will now show that for the normalised polynomial f(t), that

Ef = ω(logn) (19)
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and
max{ETf : T ⊆ V \X, 0 < |T | < dr} = n−Ω(1)

Ef. (20)

With these conditions, the concentration theorem will tell us that f , and
therefore g is close to its expectation, which implies Y , as required. To prove
the two conditions, we will find it easier to consider the partial derivatives
of g rather than f . We use te = 1e∈E(H(n,p)), tS =

∏

e∈S te and t = (te : e ∈
E(KMV \X)), where KMV \X is the multigraph induced by the ‘complete’
multigraph KMn on the the vertex set V \X .

Since we are only interested in establishing upper bounds on the partial
derivatives of g, we may now disregard the second requirement on αU , namely
ψ({ar+1, . . . , akH}) ∪X ∈ Z. Therefore we are left with

p−(dr−l)
ETg ≤ τ(t) :=

∑

φ

tφ(E(K)),

where we sum over φ, injections such that

φ : V (K) → V \X with φ(Nr) ⊇ T.

We set E∗, as before to be E∗ = max{ELτ : L ⊆ E(KMV \X), |L| <
|E(K)|}. We will show that there is a positive constant ε (depending only
on H), such that (for large enough n),

pdr−l
E
∗ < n−ǫ

Eg. (21)

This will give us the two requirements for our concentration theorem, as
follows. To prove (19), we need to show that

α−1
Eg = ω(logn).

We apply (21) with T = U , a dr-subset of V/X . We consider the two possible
conditions of RX , which gives two separate cases, firstly if Eg ≥ nε/2, (i.e.
E
∗ ≥ n−o(1)) then RX tells us that

αU = EUg < nε/4 max{1,E∗} ≤ n−ε/4
Ef.

In the other case we are left with E
∗ < n−ε/2, and hence E

∗ = n−Ω(1). We
know that Eg = ω(logn), and hence we choose our β(n) = ω(1) (from R)
such that β(n)−1

Eg = ω(logn). Since this does not depend on our choice of
U , we have (19) as required.

To prove the other requirement, we need ETg = n−Ω(1)
Eg for any T , as

we defined in (20). We again apply (21), noting that we can decrease the
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ε without violating the equation, and use this observation to assume that
ε < 1/m(H). This gives us

ETg < pdr−lnε/2 max{1,E∗} ≤ n−ε/2
Eg

as we required.
We now return to prove (21). We fix L ⊆ E(KMV \X) and let hl =

|E(K)| − |L|, (recalling that K = H − {a1, . . . , ar}). We know that ELτ =
phlNL, where again NL is the number of φ, as defined just before (21), with
φ(E(K)) ⊇ L. Each φ satisfies φ(V (K)) ⊇ I := T ∪ V (L), where as earlier,
V (L) ⊇ V \X is the set of vertices incident to the edges of L. We let I =
{i1, . . . , is}, then we have NL =

∑

NL(b1, . . . , bs), where (b1 . . . , bs) range
over s-tuples of distinct elements of V (K) and we sum over the number of
φ’s as above, with φ(bj) = ij for each 1 ≤ j ≤ s. We only have O(1) choices
for the bj ’s and hence the result will follow if we can show that for any such
choice,

pdr−l+hlNL(b1, . . . , bs) = n−Ω(1)
Eg.

Given a fixed choice of bi’s, let H′′ = H[{ar, b1, . . . , bs}]. We know that
NL(b1, . . . , bs) < nkH−r−s = nkH−r−(v(H′′)−1), and that hl ≥ l + dr+1 + · · · +
dkH−1−e(H

′′), since |E(K)| = dr+1 + · · ·+dkH−1 and E(H′′) contains φ−1(L)
and at least l edges joining ar to V (K). Therefore we have

pdr−l−hlNL(b1, . . . , bs) < pdr+···+dkH−1nkH−r[nv(H′′)−1pe(H
′′)]−1.

Noting that since p > n−1/m(H) and that H contains no subgraphs of density
m(H), we have that the expression in the square brackets is nΩ(1). Combined
with our earlier bound on Eg, from (18), we have the bound required above
and hence (21), completing the Lemma.

5.6 Proof of Lemma 5.11

We now begin the final step of the proof, namely that Pr(ARC) = n−ω(1). We
maintain our use of notation from the previous chapter with G = H(n, p), and
R and A. In Section 4.2, we have shown that ARC results in the following;

There exist x and y; vertices in the same partition set of G = H(n, p)
and a set Y with a single vertex from each of the remaining partitions, such
that there exist, a, b ∈ range(wy)(= range(w′)), such that J := w−1

y ([a, b])
satisfies

|J | > Ω(|H(y,G−R)),

and
wy(J) > 0.7wy(H(y,G− R)) = 0.7w(R).
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With, J ′ = w−1
x ([a, b]), we also have,

wy(J) > 0.7w(R),

and
wx(J ′) ≤ w(S) < 0.5w(R).

All that remains is to show that the probability of this event is n−ω(1).
Once again, we can express wy(J) and wx(J ′) as evaluations of a multi-

linear polynomial in variables {tu : u ∈ W}, once we have conditioned on the
value of G[W ], in the following way. Given a set U ⊆ W with |U | ≤ kH − 1
and at most one vertex from each partition, let G∗

U be the graph obtained
from G[W ] by adjoining a vertex w∗ say, with neighbourhood U . We let KU

be the set of copies of H in G∗
U , containing {w∗ : u ∈ U}, and

αU =
∑

{w′(V (K)\{w∗}) : K ∈ KU , w
′(V (K)\{w∗}) ∈ [a, b]}.

Our polynomial now becomes,

g(t) =
∑

U⊆W

αU tU ,

and wy(J) and wx(J ′) are simply g evaluated at the point t′ := 1{z∈W :yz∈E(G)}

and t′′ := 1{z∈W :xz∈E(G)}.
R tells us that DG(y) = Θ(nkH−1phH) and therefore, considering that at

most o(nkH−1phH) copies of H lie in G and contain y and meet R, we have
|H(y,G− R)| = Θ(nkH−1phH) = ω(logn).

We know from our conditioning of J , that it satisfies

|J | = Θ(nkH−1phH),

and
wy(J) = Θ(bnkH−1phH). (22)

We now apply a concentration result, namely Corollary 5.6. To apply it, we
require a bound on the expectation of f , namely, that if Ef ≤ A, where

A ≥ ω(logn) + nǫ max
l 6=∅

E ′
Lf.

then the corollary gives us Pr(f > (1 + ǫ)A) = n−ω(1). We fix T ⊆ W , with
|T | = l < kH, and as always, each vertex from a different partition set.
For d = l, . . . , kH − 1,, and t as t = (te : e ∈ E(KMW )), we consider the
polynomial,

hd(t) =
∑

z

∑

φ

tφ(E(H−z)),
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Where z ranges over vertices of H of degree d and φ over the injections
V (H)\{z} →W with φ(Nz) ⊇ T. Then we know that

αT ≤ b hl(t).

Since hl(t) is the number of such sets, and we know that their values are
bounded by b, this also gives us

E
′
T g ≤ b

∑

d>l

pd−lhd(t),

where E
′
T is the non-constant part of the partial derivative.

We let

E
∗
d = max{ELhd : L ⊆ E(KMW ), |L| < hH − d}.

As in the previous chapter, similarly to (21) we can assert that there is
positive constant ǫ dependent only on H, such that, for each d,

pd−l
E
∗
d < n−ǫnkH−1phH.

This follows from the proof of (21) in the previous chapter, by noting that
in our definition of hd, there are only finitely many z, and the inner sum, is
bounded by the polynomial τ , used in (21), with r = 1, a1 = z and hence
dr = d.

We are now able to apply the concentration results we require. We con-
sider the polynomial f = α−1g, where α = maxU αU . Then we have, using
(22),

f(t′) = α−1wy(J) = Θ(α−1bnkH−1phH)

and using the same arguments as we used at the end of the previous chapter,
we can show

f(t′) = ω(logn)

and
max{E′

Tf : T ⊆W,T 6= ∅} = n−Ω(1)f(t′).

For the final step, we first summarise that we have shown ARC implies that
there exist Y, x, y and a, b ∈ range(w′) for which we have the above two
conditions, and

f(t′′) < 0.8f(t′).

However, we know that for any given choice of Y, x, y, a, and b, f depends
only onG[W ]. Equally, if G[W ] is fixed, then t and t′ are independent random
variables, with ‘law’ Bin(W, p) (i.e. t = (tw : w ∈ W ) has ‘law Bin(W, p)’
if each tw is an independent Bernoulli with mean p.) We finish with the
final claim of [6], which can be applied directly to our result here, without
generalisation, and completes the proof.
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Claim 1. For any ǫ > 0 and d the following holds. If f is a multilinear,
normal polynomial of degree at most d in n variables, ζ(n) = ω(logn), and
t′, t′′ are independent , each with law Bin([n], p), then

Pr(f(t′) > max{ζ(n), nǫ max
T 6=∅

E
′

Tf, (1 + ǫ)f(t′′)}) = n−ǫ.

Because there are only polynomially many possibilities for Y, x, y, a and b,
this gives us Lemma 5.11.

Proof of claim. Set

A =
1

2
max

{

ζ(n), nǫ max
T 6=∅

E
′

T f.

}

.

If Ef ≤ A then Corollary 5.6 gives

Pr(f(t′) > A) = n−ω(1);

otherwise, by Theorem 5.5,

Pr(f(t′) > (1+ǫ)f(t′′)) < Pr(max{|f(t′)−Ef |, |f(t′′)−Ef |} > (ǫ/3)Ef) = n−ω(1).

6 Theorems 1.2 and 1.3

To prove Theorem 1.2, we note that our proof of Theorem 1.2 does not require
the collapsed graph to be a multigraph. Throughout, we only require that
the graph does not contain any subgraphs of density m(H), and this follows,
in our main result, from the vertex collapsing technique, but as in [6], it can
also follow from strict balance of H, or equivalently H . Since our partitions
were fixed only by the partial embedding of subgraphs of density m(H), in
the strictly balanced case, we can simply choose our vertex partitions freely,
and then continue with the proof.

Lastly, to prove 1.3, we use Theorem 1.2. Partition the vertices of G(n, p)
as usual into vH equal sets, either as a result of vertex collapsing dense sub-
graphs, or freely in the strictly balanced case. In the former case, embedding
the partial factors of dense directed subgraphs, requires a simple modifica-
tion of Theorem 2.1, which follows the same arguments as the original but
for directed graphs. A proof of which will appear in [10]. We again consider
the edges between the partitions, only where they correspond to edges in
H . Now however, we can consider only the edges that are in the direction
we require, which are distributed uniformly and independently at random,
but with edge probability p/2, since we discount those edges in the wrong
direction. At this point, the random digraph is equivalent to H(n, p/2), and
we apply 1.2 directly, providing the directed factor as required.
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7 Conclusion

With these results, Conjecture 1 is now proven for both strictly balanced
graphs, and all non-vertex balanced graphs. The methods used here also can
be used to prove that the conjecture holds for a wide range of vertex-balanced
H .

We can prove a threshold for a variety of ‘necklace’ and related graphs
formed of copies of a dense graph linked by a ‘supergraph’ of equal or lower
density.

As an example, in the above case, the threshold for finding a copy of this
‘triangle necklace’ must be at least that of a triangle factor, and Conjecture 1
suggests it should be equal. We prove this by first embedding a triangle
factor, and then use 1.2 to embed the dotted edges that form a less dense
cycle in the supergraph. Provided the resulting graph or multigraph from
the collapsing process is less dense than m(H), we will always be able to
apply Theorem 1.2 to find this.

The supergraph cannot ever be denser than m(H), as this implies a sub-
graph of density greater than m(H), which is a contradiction. So, all that
remains to consider are graphs where we will be left with a supergraph of
equal density, after collapsing all subgraphs. We know this must be strictly
balanced, or we would have continued to collapse its subgraphs and so we
can apply Theorem 1.2. However, the supergraph may have fewer edges
than each of the collapsed subgraphs, and certainly has fewer than the orig-
inal graph. This may force it to require a higher threshold, by a constant
power of log to embed, and so will not prove the conjecture.

For the above graph, the conjectured threshold is n−2/3(log n)1/5, but us-
ing the methods within this paper, we are only able to embed it at p =
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O(n−2/3(logn)1/3), since collapsing the triangle will leave us with another
triangle, requiring the higher log term to embed.

In light of this, we see that we can prove Conjecture 1 for all H , except
for those mentioned above, for which we are still within a constant power of
log of the conjectured bound.
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der, Random graphs ’83 (Poznań, 1983), North-Holland Math. Stud.,
vol. 118, North-Holland, Amsterdam, 1985, pp. 47–97. MR 860586
(87k:05137)
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[12] Andrzej Ruciński and Andrew Vince, Balanced extensions of graphs and
hypergraphs, Combinatorica 8 (1988), no. 3, 279–291.

[13] Joel H. Spencer, Threshold functions for extension statements, J. Comb.
Theory, Ser. A 53 (1990), no. 2, 286–305.

[14] Van Vu, On the concentration of multivariate polynomials with small
expectation, Random Struct. Algorithms 16 (2000), 344–363.

[15] Van. Vu, Concentration of non-Lipschitz functions and applications,
Random Structures. Algorithms 20 (2002), no. 3, 262–316.

41


	1 Introduction
	2 Preliminaries
	3 Theorem ??
	4 Theorem ??
	4.1 Entropy
	4.2 The heart of the matter

	5 Generalisation of remaining results from JKV
	5.1 Concentration Results
	5.2 Martingale
	5.3 The Properties B and R
	5.4 Regularity
	5.5 Proof of Lemma ??
	5.6 Proof of Lemma ??

	6 Theorems ?? and ??
	7 Conclusion

