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Abstract

The rank of a graph is defined to be the rank of its adjacency matrix. A graph is called reduced

if it has no isolated vertices and no two vertices with the same set of neighbors. We determine the

maximum order of reduced triangle-free graphs with a given rank and characterize all such graphs

achieving the maximum order.
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1 Introduction

For a graph G, we denote by V (G) the vertex set of G. The order of G is defined as |V (G)|. Let

V (G) = {v1, . . . , vn}. The adjacency matrix of G is an n× n matrix A(G) whose (i, j)-entry is 1 if vi

is adjacent to vj and 0 otherwise. The rank of G, denoted by rank(G), is the rank of A(G).

For a vertex v of G, let N(v) denote the set of all vertices of G adjacent to v. The degree of v is

defined as |N(v)|. We say that G is reduced if it has no isolated vertex and no two vertices u, v with

N(u) = N(v). Indeed, adding an isolated vertex or introducing a new vertex with the same neighbor

set as an existing vertex does not change the rank. Let r > 2 be an integer. It is straightforward to

see that every reduced graph of rank r has at most 2r − 1 vertices [1]. Let m(r) be the maximum
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possible order of a reduced graph of rank r. Kotlov and Lovász [7] proved that there exists a constant

c such that m(r) 6 c · 2r/2 and for any r > 2 they constructed a graph of rank r and order

µ(r) =

{
2(r+2)/2 − 2 if r is even,

5 · 2(r−3)/2 − 2 if r > 1 is odd.

Akbari, Cameron and Khosrovshahi [1] conjectured that in fact m(r) = µ(r). Haemers and Peeters [4]

proved the conjecture for graphs containing an induced matching of size r/2 or an induced subgraph

consisting of a matching of size (r − 3)/2 and a cycle of length 3. Royle [8] proved that the rank of

every reduced graph containing no path of length 3 as an induced subgraph is equal to the order.

We proved in [3] that every reduced tree of rank r has at most t(r) = 3r/2 − 1 vertices and

characterized all reduced trees of rank r and order t(r). It was also shown that every reduced bipartite

graph of rank r has at most b(r) = 2r/2+r/2−1 vertices and all reduced bipartite graphs achieving this

bound were determined. Note that the rank of a bipartite graph is always even. In this article, we prove

that every reduced non-bipartite triangle-free graph of rank r has at most c(r) = 3 · 2br/2c−2 + br/2c
vertices and characterize all reduced non-bipartite triangle-free graphs of rank r and order c(r).

2 Preliminaries

For a graph G, a subset S of V (G) with |S| > 1 is called a duplication class of G if N(u) = N(v),

for every u, v ∈ S. For a subset X of V (G), the notation G−X represents the subgraph obtained by

removing the vertices in X from G.

Lemma 1. [6, 7] For any reduced graph G, the following hold.

(i) For every vertex v ∈ V (G), rank(G−N(v)) 6 rank(G)− 2.

(ii) For every non-adjacent vertices u, v ∈ V (G), rank(G− (N(u)4N(v))) 6 rank(G)− 2, where 4
denotes the symmetric difference.

The following lemma has a key role in our proofs.

Lemma 2. Let G be a reduced graph and H be an induced subgraph of G with the maximum possible

order subject to rank(H) < rank(G). Then rank(H) > rank(G) − 2 and the equality occurs if H is

not reduced. Moreover, the following properties hold.

(i) |V (G) \ V (H)| 6 min{|N(u)4N(v)| |u, v ∈ V (G)} ∪ {|N(u)| |u ∈ V (G)}.

(ii) If w is an isolated vertex of H, then N(w) = V (G) \ V (H).

(iii) Each duplication class of H has two elements and H has at most one isolated vertex.
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(iv) One may label the duplication classes of H, if any, as {v1, v′1}, . . . , {vs, v′s} so that there exist two

disjoint sets T1 and T2 such that V (G−H) = T1∪T2, T1 ⊆ N(vi)\N(v′i) and T2 ⊆ N(v′i)\N(vi),

for all i ∈ {1, . . . , s}.

Furthermore, if H is an induced subgraph of G with the maximum possible order subject to rank(H) 6
rank(G)− 2, then rank(H) > rank(G)− 3 and the properties (i)–(iv) also hold.

Proof. If H is an induced subgraph of G with the maximum possible order subject to rank(H) <

rank(G), then the statements (i)–(iv) can be found among the results of [6] and also [7]. In order to

prove the rest of the assertion, we let H be an induced subgraph of G with the maximum possible

order subject to rank(H) 6 rank(G)−2. We first establish that rank(H) > rank(G)−3. Assume that

H1 is an induced subgraph of G with the maximum possible order subject to rank(H1) < rank(G). If

rank(H1) = rank(G)− 2, then we clearly have rank(H) = rank(H1). Also, if rank(H1) = rank(G)− 1,

then by the first part of the lemma, H1 is reduced and so rank(H2) > rank(G) − 3, where H2 is an

induced subgraph of H1 with the maximum possible order subject to rank(H2) < rank(H1). It follows

that rank(H) > rank(G)− 3. By the definition of H and by Lemma 1, (i) and hence (ii) is valid . For

(iii), let H have a duplication class containing three distinct vertices x, y, z. Clearly, for every vertex

t ∈ V (G)\V (H), at least one of the three symmetric differences of N(x), N(y), N(z) does not contain

t. This contradicts (i). The second statement of (iii) follows from (ii), since G is reduced. For (iv),

note first that, by the definition of H, any vertex in V (G) \ V (H) is adjacent to exactly one vertex in

each duplication class, since for any duplication class {x, y} in H, we have N(x)4N(y) ⊆ H. If (iv)

does not hold, then A(G) contains 

x x y y ?

1 1

0 0

1 0

0 1

? ?

1 0 1 0 ?

1 0 0 1 ?

0 ?

? 0


(1)

as a principle submatrix, where the upper-left corner of (1) is A(H). This yields that rank(H) 6
rank(G)− 4, a contradiction. 2

For any graph G, a subset X of V (G) is called independent if the induced subgraph on X has no

edges. The maximum size of an independent set in a graph G is called the independence number of G

and is denoted by α(G). We will make use of the following lemma which is an immediate consequence

of the Plotkin bound [5, p. 58] from coding theory and was also established in [3] by a direct proof.

Lemma 3. Let G be a graph of order n and let S be an independent set in G with |S| > 2. Then

min
{
|N(u)4N(v)|

∣∣u, v ∈ S, u 6= v
}
6
|S|
(
n− |S|

)
2
(
|S| − 1

) .
3



In the following, we recall the Singleton bound [5, p. 71] from coding theory.

Theorem 4. Let n be a positive integer and Ω be the set of all (0, 1)-vectors of length n. Let C be

a subset of Ω so that every pair of the vectors in C differ in at least d positions. Then |C| 6 2n−d+1.

The equality occurs if and only if one of the following holds.

(i) C = Ω.

(ii) C is the set of all even weight vectors of Ω.

(iii) C is the set of all odd weight vectors of Ω.

(iv) C consists of two vectors which are different in all positions.

We will use j for the all one vector.

Lemma 5. Let C be a set of (0, 1)-vectors of length n > 5 such that every two distinct vectors in C

differ in at least 2 positions. Let M be the matrix whose columns are the vectors in C and suppose

that j is contained in the row space of M . Then |C| 6 5 · 2n−4.

Proof. Toward a contradiction, suppose that |C| > 5 · 2n−4. Let

(x1, . . . , xn)M = j, (2)

for some reals x1, . . . , xn. Let M ′ be the matrix constituted from the last n−2 rows of M and partition

the columns of M ′ such that equal columns belong to the same part. Since the number of parts in

the partition is at most 2n−2 and 5 · 2n−4 > 2n−2, there is a part of size at least 2. Since every two

distinct columns in M differ in at least 2 positions, we find two columns in M such that their entries

are the same at all positions except for the first and the second positions. It follows from (2) that

either x1 = x2 or x1 = −x2. By applying this argument to any pair of rows of M and a suitable

ordering of the rows of M , we find that x1 = · · · = xk = −xk+1 = · · · = −xn, for some k. Now, let

N be the matrix obtained from M by subtracting j from ith row of M , for all i ∈ {k + 1, . . . , n},
and leaving the first k rows intact. We have jN = (n − k + 1/x1)j. This means that the column

vectors of N have the same number of ones which in turn implies that |C| 6
(

n
bn/2c

)
. This contradicts

|C| > 5 · 2n−4 >
(

n
bn/2c

)
, for n > 5. 2

It is an interesting problem to determine the best upper bound for |C| in Lemma 5.

In [3], the maximum order of a reduced bipartite graph of rank r is determined. The graph

attaining the maximum order is unique and is described as follows. Let B be a set of size n and B be

a family of subsets of B. The incidence graph (B,B) is the bipartite graph with bipartition {B,B}
so that the vertices x ∈ B and X ∈ B are adjacent if and only if x ∈ X. If P(B) is the family of

all nonempty subsets of B, then we denote the incidence graph (B,P(B)) by Bn. It is routine to

verify that Bn is a reduced bipartite graph of rank 2n and order b(2n). Further, we denote by On the

incidence graph corresponding to the family of all subsets of B of odd size.
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Theorem 6. [3] The order of a reduced bipartite graph of rank r is at most b(r) = 2r/2 + r/2 − 1.

Moreover, every reduced bipartite graph of rank r and order b(r) is isomorphic to Br/2.

3 Bipartite graphs

For a bipartite graph G with bipartition {X,Y }, the submatrix of A(G) whose rows and columns

are respectively indexed by X and Y is called the bipartite adjacency matrix of G and is denoted by

B(G). To establish our main result, we need the following theorem. It is straightforward to see that

it generalizes Theorem 6. We recall again that the rank of a bipartite graph is always even.

Theorem 7. Let G be a reduced bipartite graph of rank r > 6 and order n > c(r) = 3 · 2r/2−2 + r/2

with bipartition {X,Y }. Then min{|X|, |Y |} = r/2.

Proof. For simplicity, we set ρ = r/2. We proceed by induction on ρ. The assertion holds for

ρ = 3 by Theorem 6. So assume that ρ > 4. It is clear that rank(G) 6 2 min{|X|, |Y |} and hence

min{|X|, |Y |} > ρ. Towards a contradiction, suppose that min{|X|, |Y |} > ρ+ 1.

Let H be an induced subgraph of G with the maximum possible order such that rank(H) < rank(G)

and let t = n − |V (H)|. By Lemma 2 and since H is bipartite, rank(H) = r − 2. In view of

Lemma 2 (iii), suppose that {v1, v′1}, . . . , {vs, v′s} are the duplication classes of H, for some s > 0,

where the labeling of vertices comes from Lemma 2 (iv). For simplicity, set S = {v1, . . . , vs} and

S′ = {v′1, . . . , v′s}. We denote the number of isolated vertices of H by ε. Lemma 2 (iii) implies that

ε ∈ {0, 1}. Let K be the resulting graph after deleting the possible isolated vertex from H − S′ and

put k = |V (K)|. Clearly, rank(K) = rank(H) = r−2 and since K is reduced, k 6 b(r−2) by Theorem

6. Moreover, since α(G) > n/2, Lemma 2 (i) and Lemma 3 imply that t < (n+ 3)/4. It then follows

from n = k + s + t + ε > c(r) + 1 and k 6 b(r − 2) that s > 2ρ−4 − ρ/4 + 1. This means that s > 2.

Further, let T1 and T2 be the sets given in Lemma 2 (iv). We may assume that V (G) \ V (H) ⊆ X

and S ∪ S′ ⊆ Y . For this, assume with no loss of generality that T1 ∩X 6= ∅ and let x ∈ T1 ∩X. By

Lemma 2 (iv), x ∈ N(vi), for i = 1, . . . , s, meaning that S ⊆ Y . Since any vi has some neighbor in

X \ T and {vi, v′i} is a duplication class in H, we conclude that S′ ⊆ Y and thus V (G) \ V (H) ⊆ X.

Let P = Y ∩ V (K −S), Q = X ∩ V (K) and set p = |P |, q = |Q|. In Figure 1, we depict the structure

of G when ε = 0.

Since N(v1)4N(v2) ⊆ Q, Lemma 2 (i) yields that

t 6 q. (3)

If t > 3, then we may assume with no loss of generality that |T1| > 2. By Lemma 2 (iv), N(x)4N(y) ⊆
P , for two distinct vertices x, y ∈ T1 and so by Lemma 2 (i), t 6 p. So, in general, we have t 6 p+ 2.

From n > c(r) + 1 and k 6 b(r − 2), it follows that s + t = n − k − ε > 2ρ−2 + 3 − ε. Since the

symmetric difference of neighborhoods of any two vertices in S is contained in Q and has size at least

t by Lemma 2 (i), so Theorem 4 yields that

s 6 2q−t+1 (4)
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Figure 1: The structure of G concluded from Lemma 2 (The subgraphs K ⊂ H are shown with dotted

borders.)

and thus

2ρ−2 + 3− ε 6 s+ t 6 2q−t+1 + t. (5)

We claim that t = 2 and q = ρ− 1. To establish the claim, we consider the following two cases.

Case 1. k 6 (n+ ρ− 3)/2.

From n = k + s + t + ε and k = p + q + s, we have p + q 6 t + ρ + ε − 3. If t > 3, then as

we just showed, t 6 p and thus in view of (3), we have t 6 q 6 ρ + ε − 3. From (5), we find that

2ρ−2 + 2 6 2ρ−4 + ρ − 2, which is impossible. Therefore t 6 2. From p + q 6 t + ρ + ε − 3 and

q + t = |X| > ρ + 1, we obtain that ρ + 1 − t 6 q 6 ρ + t − 2 which in turn implies that t = 2 and

either q = ρ − 1 or q = ρ. To get a contradiction, assume that q = ρ. Then p + q 6 t + ρ + ε − 3

yields that ε = 1 and p = 0. Since P = ∅, if one of T1 or T2 is empty, then the other one will be a

duplication class of G by Lemma 2 (iv). Therefore both T1 and T2 are nonempty, since G is reduced.

Hence we see that

B(G) =

 B(K) B(K) 0

j 0 1

0 j 1

 .
Since rank(B(K)) = rank(K)/2 = ρ− 1, one can easily check that the rank of the row space of B(G)

is ρ + 1 which implies that rank(G) = r + 2, a contradiction. Therefore we must have q = ρ − 1, as

claimed.

Case 2. k > (n+ ρ− 3)/2.

Since n > c(r) + 1, we have k > c(r − 2). By the induction hypothesis, min{p + s, q} = ρ − 1. If

p+ s = ρ− 1, then from p+ 2 > t, we find that

ρ− 1 = p+ s = n− k + p− t− ε > c(r) + 1− b(r − 2)− 2− ε > 2ρ−2

which is a contradiction to ρ > 4. Hence q = ρ− 1. Since q + t = |X| > ρ+ 1, we deduce that t > 2.

By (3), t 6 ρ− 1 and using (5), a straightforward calculation shows that t = 2, as claimed.
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As we proved that t = 2 and q = ρ− 1, it follows from (5) that ε = 1, implying that the equality

occurs in (4). This means that the equality occurs in Theorem 4 for n = ρ − 1 and d = 2. Since K

has no isolated vertex and ρ > 4, the cases (ii) and (iv) do not occur and so the induced subgraph on

Q ∪ S is isomorphic to Oρ−1. If both T1 and T2 are nonempty, then B(G) is of the form B(Oρ−1) B(Oρ−1) 0 ?

j 0 1 ?

0 j 1 ?

 .
Since rank(B(Oρ−1)) = ρ− 1, we find that rank(G) > r + 2, a contradiction. So we may assume that

T2 is empty. Since the induced subgraph on Q ∪ S is isomorphic to Oρ−1, there exists a vertex v ∈ S
such that |N(v)∩Q| = 1. If u is the isolated vertex of H, then |N(u)4N(v)| = 1 which is impossible

by Lemma 2 (i). This contradiction completes the proof. 2

4 Triangle-free graphs

In this section, we establish that every reduced non-bipartite triangle-free graph of rank r has at most

c(r) vertices. We also prove that there exists a unique reduced non-bipartite triangle-free graph of

rank r and order c(r).

Definition 8. For any integer r > 4, consider the graph Bbr/2c−1 with bipartition {B,P(B)} and let

x ∈ B. Let N = N(x) and M = P(B) \N . For even r, we duplicate x and M to produce x′ and M ′.

Now, introduce two new vertices y, z and join y to all vertices in {x, z} ∪M . For odd r, duplicate N

and call it N ′. Then introduce two new vertices y, z, join y to all vertices in {z} ∪N and join z to all

vertices in N ′. We denote the resulting graph by Cr. Clearly, the order of Cr is c(r). The graphs C8
and C9 are depicted in Figure 2.

Definition 7. For every integer r > 4, consider the graph Bbr/2c−1 with bipartition {B,P(B)}
and let x ∈ B. Let N = N(x) and M = P(B) \N . For even r, we duplicate x and M . Now,

introduce two new vertices y, z and join y to all vertices in {x, z} ∪M . For odd r, duplicate N

and call it N ′. Then introduce two new vertices y, z, join y to all vertices in {z} ∪N and join z

to all vertices in N ′. We denote the resulting graph by Cr. The graphs C8 and C9 are depicted

in Figure 1.

Figure 1: The graphs C8 (left) and C9 (right).

Notice that for r > 6, α(Cr) = 3 · 2br/2c−2 − 1 and Cr has a unique independent set of size

α(Cr). It is not hard to verify that one can define the graphs Cr recursively as follows. Let C4
and C5 be the path and the cycle on 5 vertices, respectively. For r = 6 (respectively, r = 7), let

A be a set of two vertices of distance 3 (respectively, 2) from each other in C4 (respectively, C5)
and for r > 8, let A be the maximum independent set of Cr−2. Now, duplicate each vertex in

A, introduce two new vertices u, v and join u to all vertices in {v} ∪A.

Using the above definition, it is easily seen that Cr is a reduced non-bipartite triangle-free

graph and rank(Cr) = rank(Cr−2) + 2. It follows that rank(Cr) = r, for r > 4.

Remark 8. Note that the bound c(r) given in Theorem 6 is the best possible. For every odd

r > 7, if one removes the edge {y, z} of Cr, then it is easily verified that the resulting graph

is a reduced bipartite graph with bipartition {X,Y } of rank r − 1 and order c(r − 1) where

min{|X|, |Y |} = (r + 1)/2.

Theorem 9. The order of a reduced non-bipartite triangle-free graph of rank r is at most c(r).

Moreover, every reduced non-bipartite triangle-free graph of rank r and order c(r) is isomorphic

to Cr.

Proof. Let G be a reduced non-bipartite triangle-free graph of rank r and order n > c(r). By

induction on r, we prove that G is isomorphic to Cr. We have checked the assertion for r 6 9

6

Figure 2: The graphs C8 (left) and C9 (right)

It is not hard to verify that one can define the graphs Cr recursively as follows. Let C4 and C5 be

the path and the cycle on 5 vertices, respectively. For r = 6 (respectively, r = 7), let A be a set of two

vertices of distance 3 (respectively, 2) from each other in C4 (respectively, C5) and for r > 8, let A be

7



the maximum independent set of Cr−2. Now, duplicate each vertex in A, introduce two new vertices

u, v and join u to all vertices in {v} ∪A.

By the inductive definition of Cr, it is easily seen that Cr is a reduced non-bipartite triangle-free

graph and rank(Cr) = rank(Cr−2) + 2. It follows that rank(Cr) = r, for r > 4. Furthermore, we easily

find from the definition of Cr that

α(Cr) = 3 · 2br/2c−2 − 1, (6)

for r > 6, and Cr has a unique independent set of size α(Cr).

Remark 9. Note that in Theorem 7, the hypothesis that n > c(r) cannot be weakened. For any odd

r > 7, if one removes the edge {y, z} of Cr, then the resulting graph, say H, is a reduced bipartite

graph. Consider the graph H − {z}. Removing y from that results in the graph B(r−3)/2 with the

neighborhood of x duplicated. So, rank(H −{y, z}) = r− 3 and clearly rank(H −{z}) 6 r− 1. Since

H − {z} is reduced, we must have from Lemma 1 (ii) that rank(H − {y, z}) 6 rank(H − {z})− 2 and

so rank(H − {z}) = r − 1. The sum of the row vectors corresponding to z and y in A(H) is equal to

that of x, so rank(H) = rank(H − {z}). Therefore, H is a reduced bipartite graph with bipartition

{X,Y } of rank r − 1 and order c(r − 1) where min{|X|, |Y |} = (r + 1)/2.

Theorem 10. The order of a reduced non-bipartite triangle-free graph of rank r is at most c(r) =

3 ·2br/2c−2 + br/2c. Moreover, every reduced non-bipartite triangle-free graph of rank r and order c(r)

is isomorphic to Cr.

Proof. Let G be a reduced non-bipartite triangle-free graph of rank r and order n > c(r). By

induction on r, we prove that G is isomorphic to Cr. In [1, 2], an algorithm is given to construct

all reduced graphs of a given rank. We employed the algorithm and verified that the assertion

holds for r 6 9. The source code of our program can be found at http://math.ipm.ac.ir/~

tayfeh-r/Trianglefree.htm. Hence let r > 10. For simplicity, we set ρ = br/2c. Let T be a

subset of V (G) with the minimum possible size such that rank(G−T ) 6 rank(G)−2. Put H = G−T
and t = |T |. We show that t < (n+ 3)/3. If the minimum degree of G is less than (n+ 3)/3, then we

are done by Lemma 2 (i). Otherwise, since G is triangle-free, α(G) > (n + 3)/3 and by Lemma 2 (i)

and Lemma 3, we have

t 6
n+3
3

(
n− n+3

3

)
2
(
n+3
3 − 1

) <
n+ 3

3
,

as required. In view of Lemma 2 (iii), suppose that {v1, v′1}, . . . , {vs, v′s} are the duplication classes

of H, for some s > 0, where the labeling of vertices comes from Lemma 2 (iv). For simplicity, put

S = {v1, . . . , vs} and S′ = {v′1, . . . , v′s}. Since G is triangle-free, by Lemma 2 (iv), S ∪ S′ is an

independent set. Denote the number of isolated vertices of H by ε. By Lemma 2 (iii), ε ∈ {0, 1}. Let

K be the resulting graph after deleting the possible isolated vertices from H −S′ and set k = |V (K)|.
By Lemma 2, we have rank(K) > r− 3. Set P = V (K) \S and p = |P |. Further, let T1 and T2 be the

sets given in Lemma 2 (iv) with sizes t1 and t2, respectively. With no loss of generality, we assume

that t1 > t2. We consider the following two cases.

8
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Case 1. k 6 c(r − 2).

Let P1 be the set of vertices in P which have a neighbor in S. Set p1 = |P1| and p2 = |P \P1|. For

the structure of G when ε = 0, see Figure 3. Since G is triangle-free, there is no edge between P1 and
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Figure 3: The structure of G in Case 1

T1. We have

s+ t = n− k − ε > 3 · 2ρ−3 + 1− ε. (7)

From k = p+ s 6 c(r − 2) and (7), we see that

3 · 2ρ−3 + 1− ε− t 6 s 6 3 · 2ρ−3 + ρ− 1− p

which implies that

p 6 t+ ρ+ ε− 2. (8)

From t < (n+ 3)/3, n > c(r) and k 6 c(r− 2), we find that s = n− k− t− ε > 2ρ−3 − ρ/3− 1 and so

s > 2. Now, since N(v1)4N(v2) ⊆ P1,

t 6 p1. (9)

By (7), Lemma 2 (i) and Theorem 4, we have

3 · 2ρ−3 + 1− ε 6 s+ t 6 2p1−t+1 + t. (10)

Towards a contradiction, suppose that t1 > 2. Then t 6 |N(u)4N(v)| 6 t2 + p2, for each pair

u, v ∈ T1, and thus t1 6 p2. If ε = 0, then by (8) and (9), t/2 6 t1 6 p2 6 ρ− 2 and hence t 6 2ρ− 4.

Moreover, it follows from (8) and 2 6 t1 6 p2 that p1 6 t + ρ − 4. From (10), we conclude that

3 · 2ρ−3 + 1 6 2ρ−3 + 2ρ− 4, a contradiction. Therefore ε = 1. By Lemma 2 (ii), N(u)4N(v) ⊆ P \P1,

for any vertices u, v ∈ T1, and hence t 6 p2. Also, it follows from (8) and t 6 p2 that p1 6 ρ − 1.

Combining this with (9) gives t 6 ρ− 1, while combining with (10) gives 3 · 2ρ−3 6 2ρ−t + t which is

a contradiction to ρ > 5. Thus t1 = 1 and so t2 6 1. Now we have

p1 > ρ− 1, (11)

since if p1 6 ρ − 2, then by (10), 3 · 2ρ−3 6 2p1 + 2 6 2ρ−2 + 2 which is impossible for ρ > 5. We

proceed to show that t2 = 0. For this, we first establish the following property of K.
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We show that if K is a bipartite graph with bipartition {K1,K2}, then S is contained in one of

K1 or K2. With no loss of generality, assume that ` = |P1 ∩K1| 6 p1/2. If ` = 0, then P1 ⊆ K2, so

that every vertex in S, begin adjacent to a vertex in P1, must be in K1. Suppose ` > 1. In order to

get a contradiction, we first claim that ` = 1. By Theorem 4, we obtain that

|K1 ∩ S| 6 2p1−`−t+1 and |K2 ∩ S| 6 2`−t+1. (12)

By (8), p1 6 t− p2 + ρ− 1 and so ` 6 (ρ+ 1)/2. Using (7), (8) and (12), we find that

3 · 2ρ−3 − t 6 s 6 2p1−`−t+1 + 2`−t+1 6 2ρ−p2−` + 2`. (13)

If p2 + ` > 3 and ρ > 6, then by (13),

3 · 2ρ−3 − 2 6 2ρ−p2−` + 2` 6 2ρ−3 + 2(ρ+1)/2 < 2ρ−3 + 2ρ−2 − 2,

a contradiction. If p2 + ` = 2 and ρ > 6, then 3 · 2ρ−3 − 2 6 2ρ−p2−` + 2` 6 2ρ−2 + 4 which is again

impossible. This implies that if ρ > 6, then ` = 1. Now, assume that ρ = 5. By (13), we have

12− t 6 s 6 2p1−`−t+1 + 2`−t+1. (14)

Meanwhile, (8) gives

p1 + p2 6 t+ 4. (15)

If ` > 3, then by ` 6 p1/2, t 6 2 and (15), we have p1 = 6, p2 = 0 and t = 2 which violate (14).

Hence ` 6 2. If ` = 2 and t = 1, then by (14) and (15), we see p1 = 5, p2 = 0 and the equality

occurs in one of the inequalities of (12). By Theorem 4 (i), K has an isolated vertex, a contradiction.

Further, if ` = t = 2, then by (14) and (15), we have p1 = 6, p2 = 0 and the equality occurs in

both of the inequalities of (12). Since K is reduced, from Theorem 4 (iii), one can deduce that the

resulting graph after deleting all edges whose endpoints are in P1 is isomorphic to the disjoint union

of O2 and O4. Since O2 is disjoint union of two edges and rank(O4) = 8, it is easily seen that

rank(K) > 12 which contradicts rank(K) 6 r − 2 6 9. So we conclude that ` = 1 and this completes

the proof of the claim. Note that for any vertex u ∈ K2 ∩ S, we have N(u) ∩ V (K) ⊆ P1 ∩ K1.

Since K is reduced and ` = |P1 ∩ K1| = 1, it follows that K2 ∩ S has one element, say y. Letting

{x} = P1 ∩ K1, every duplication class of K − {x, y} is contained in K2, since K is reduced and

N(y) ∩ V (K) = {x}. Also, every duplication class of K − {x, y} has at most two elements, since

otherwise, if u1, u2, u3 belong to a duplication class, then at least two of them would be duplicates

in K, a contradiction. If K ′ is the reduced graph corresponding to K − {x, y}, then by Lemma 1 (i)

we obtain that rank(K ′) 6 rank(K) − 2 6 r − 4. Since rank(K ′) is even, rank(K ′) 6 2ρ − 4. By

(11), we have |P1 ∩ V (K ′)| > (ρ − 2)/2 and therefore, using (7) and Theorem 6, we obtain that

(ρ− 2)/2 + 3 · 2ρ−3 − 3 6 |V (K ′)| 6 b(2ρ− 4) which is a contradiction to ρ > 5. This establishes the

desired property of K.

Working towards a contradiction, suppose that t2 = 1. By (10),

3 · 2ρ−3 − 1− ε 6 s 6 2p1−1 (16)
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which yields that ρ 6 p1. Meanwhile, by (8), we have p1 6 ρ+ ε− p2. It follows that either p1 = ρ or

p1 = ρ+ 1. First, assume that p1 = ρ. The matrix A(G) contains



S S′ P1 P2 T1 T2

S 0 0 B> 0 j> 0

S′ 0 0 B> 0 0 j>

P1 B B ? ? ? ?

P2 0 0 ? ? ? ?

T1 j 0 ? ? ? ?

T2 0 j ? ? ? ?


(17)

as a principal submatrix. Since rank(K) > r − 3, the upper-left 4 × 4 block submatrix of (17) has

rank at least r − 3. If j is not contained in the row space of B, then the rank of (17) would be

at least r + 1, a contradiction. Now, applying Lemma 5 to the column vectors of B, we find that

s 6 5 · 2ρ−4. If ρ > 6, this is less that 3 · 2ρ−3 − 3, contradicting (16). If ρ = 5, then r > 10, s = 10,

ε = 1. Hence, 2s + p1 + p2 + ε + t = n > c(r) > c(10) = 29 and p2 6 ε. This gives p2 = 1 and

k = s+ p1 + p2 = 16 = c(8) = c(9). Thus K is isomorphic to either C8 or C9. However, K contains the

independent set S of size 10 in which |N(u)4N(v)| > 2 for every distinct u, v ∈ S while neither C8
nor C9 has such an independent set. Therefore p1 = ρ+ 1, p2 = 0 and ε = 1. Note that from (7) and

k = s + p1 6 c(r − 2), we have s = 3 · 2ρ−3 − 2 and thus k = c(r − 2). By the preceding paragraph,

K is not bipartite, since otherwise G would be bipartite. Applying the induction hypothesis, K is

isomorphic to either Cr−2 if rank(K) = r−2 or Cr−3 if r is odd and rank(K) = r−3. Hence, in view of

(6), S is a maximal independent set of size α(K)− 1 in K. To arrive at a contradiction, we show that

Cm has no maximal independent set of size α(Cm)− 1, for every integer m > 8. This can be directly

checked when m = 8 or m = 9. For m > 10, we see that the degree of any vertex of Cm not contained in

the unique maximum independent set is at least 2bm/2c−2. Thus every independent set not contained

in the unique maximum independent set is of size at most c(m) − 2bm/2c−2 < α(Cm) − 1. Therefore

every independent set of size α(Cm) − 1 in Cm is contained in the unique maximum independent set

which means that Cm has no maximal independent set of size α(Cm)− 1, as desired.

Therefore t2 = 0. Again K is not bipartite, since otherwise G would be bipartite. It follows

from (11) and k = s + p1 + p2 6 c(r − 2) that s 6 3 · 2ρ−3 − p2. If s = 3 · 2ρ−3, then p2 = 0,

requiring that k = c(r − 2). By the induction hypothesis, K is isomorphic to either Cr−2 or Cr−3 and

so α(K) = 3 · 2ρ−3− 1 which contradicts s = 3 · 2ρ−3. Hence (7) yields that s = 3 · 2ρ−3− 1 and ε = 1.

Then from n > c(r), we have p > ρ which in turn by (8) gives p = ρ and so k = s + p = c(r − 2).

By the induction hypothesis, K is isomorphic to either Cr−2 or Cr−3 and so α(K) = 3 · 2ρ−3 − 1. This

implies that p2 = 0 and so p1 = ρ. Now, the inductive definition of Cr shows that G is isomorphic to

Cr.
Case 2. k > c(r − 2).

By the induction hypothesis, K is a bipartite graph with bipartition, say {P1∪S1, P2∪S2}, where

P = P1 ∪ P2 and S = S1 ∪ S2. Set pi = |Pi| and si = |Si|, for i = 1, 2. With no loss of generality, we
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may assume that s1 + p1 6 s2 + p2. Since rank(K) = 2ρ− 2, Theorem 7 implies that

s1 + p1 = ρ− 1. (18)

Let S′i = {v′j | vj ∈ Si, 1 6 j 6 s} for i = 1, 2. For the structure of G when ε = 0, see Figure 4.

    

 

 

 

 
   

 

Figure 4: The structure of G in Case 2

Working towards a contradiction, suppose that s2 6 1. We claim that t 6 2ρ − 2. Assume that

s1 > 1. Since K is reduced, there exists a vertex u ∈ P2 with a neighbor in S1. Since G is triangle-free,

N(u) ⊆ S1 ∪S′1 ∪P1 and so by Lemma 2 (i), we deduce that t 6 2s1 + p1 6 2ρ− 2, as desired. Assume

that s1 = 0 and s2 = 1. It is easily seen that the minimum degree among all vertices in S2 ∪ S′2 does

not exceed t2 + p1. By Lemma 2 (i), we find that t 6 t/2 + ρ− 1 and so t 6 2ρ− 2, as required. Now,

assume that s1 = s2 = 0. From t < (n+ 3)/3, we find that

α(G) > p2 + ε

= n− t− p1
> n−

(
n
3 + 1

)
− (ρ− 1)

> 2ρ−1 − ρ
3 .

Therefore, α(G) > 15. From n − α(G) 6 t + p1 = t + ρ − 1, Lemma 2 (i) and Lemma 3, we deduce

that t 6 15
13(ρ− 1). This establishes the claim. Now, by Theorem 6,

c(r) 6 n = k + t+ s1 + s2 + ε 6 b(2ρ− 2) + 3(ρ− 1) + 2

which implies that ρ = 5 and so s2 = n− k − s1 − t− ε > 10− s1 − t− ε. Hence

s1 + t+ ε > 9. (19)

First assume that s1 = 0. Since t 6 2ρ− 2 = 8, we conclude that t = 8, ε = 1 and s2 = 1. By Lemma

2, the vertices in S2 ∪ S′2 have degree at least 8. On the other hand, the degree of any vertex of S2

and S′2 is at most p1 + t1 and p1 + t2, respectively. By (18), p1 = 4 and as t1 + t2 = 8, we conclude

that t1 = t2 = 4 and every vertex in P1 is adjacent to every vertex in S2 ∪ S′2. This shows that there

is no edge between P1 and T which in turn implies that G is bipartite, a contradiction. Now, suppose
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that s1 > 1. If p1 = 0, then s2 = 0 and so there is no edge between P2 and T which again implies that

G is bipartite, a contradiction. Hence p1 > 1 and so by (18), s1 6 3. This, in view of (19), implies

that t > 5. There is a vertex v ∈ P2 of degree 2 in K with a neighbor in S1. To see this, note that

K is reduced and so we can view the vertices of S2 ∪ P2 as distinct nonempty subsets of S1 ∪ P1. If

there does not exist such a vertex v, then |S2 ∪ P2| 6 12 implying that k 6 16 which is impossible as

k > c(8) = 16. Since v has a neighbor in S1 and G is triangle-free, we deduce that N(v) ⊆ S1∪S′1∪P1.

It follows from Lemma 2 (i) that t 6 4, contradicting (19). This contradiction establishes that s2 > 2.

Since n > c(r) and k 6 b(2ρ− 2), we obtain that

s+ t = n− k − ε > 2ρ−2 + 2− ε. (20)

For any pair u, v ∈ S2, we have t 6 |N(u)4N(v)| 6 p1. By (20) and Theorem 4,

2ρ−2 + 2− ε 6 s+ t

= ρ− 1− p1 + s2 + t

6 ρ− 1 + s2

6 ρ− 1 + 2p1−t+1

= ρ− 1 + 2ρ−s1−t.

Since ρ > 5, we have s1 + t 6 2. Towards a contradiction, assume that t = 2. Then s1 = 0, so that

p1 = ρ−1 by (18). If some v ∈ P1 has a neighbor in T , then, since G is triangle-free, the neighborhood

of each vertex in S2 is a subset of P1 \{v} and hence has size at most p1−1 = ρ−2. Thus by Theorem

4, s2 6 2ρ−3 which contradicts (20). So there is no edge between T and P1. Since G is not bipartite,

there is an edge with endpoints in T . Since G is triangle-free, Lemma 2 (ii) implies that ε = 0. From

(20) and Theorem 4, we obtain that s2 = 2ρ−2. Since n > c(r) and k 6 b(2ρ − 2), we obtain that

p2 = 2ρ−2 − 1. By Theorem 4, the neighborhoods of vertices of P2 (respectively, S2) in P1 correspond

to odd-size (respectively, even-size) subsets of P1. Let T = {a1, a2}. Since G is triangle-free and

there is an edge in T , we may assume that T1 = {a1} and T2 = {a2}. If a2 is adjacent to a vertex

x ∈ P2, then Theorem 4 (iii) implies that there exists a vertex y ∈ S′2 such that |N(x)4N(y)| = 1

which is impossible by Lemma 2 (i). Therefore N(a2) = S′2. Now G− (S′2 ∪ {a2}) is a bipartite graph

with bipartition {P1 ∪ {a1}, S2 ∪ P2}, and is reduced by Theorem 4. Since the number of vertices of

G− (S′2 ∪ {a2}) is larger than b(2ρ− 2), Theorem 6 implies that 2ρ 6 rank(G− (S′2 ∪ {a2})). On the

other hand, by Lemma 1 (i), rank(G− (S′2∪{a2})) 6 r−2. These give 2ρ 6 r−2 which is impossible.

Therefore t = 1. From s1 + t 6 2, we have s1 6 1. Suppose that s1 = 0. As G is not bipartite,

there must be an edge between T and P1. So there is a vertex in P1 with no neighbor in S2. Now,

Theorem 4 and (20) imply that s2 = 2ρ−2. This is impossible since K is reduced. Hence s1 = 1,

so by (18), p1 = ρ − 2 and as K is reduced, we clearly have s2 6 2ρ−2 − 1. Also, by (20), we have

2ρ−2 − ε 6 s2. Therefore, s2 = 2ρ−2 − 1 and ε = 1. Since n > c(r) and k 6 b(2ρ − 2), we have

p2 = 2ρ−2, n = c(r) and k = b(2ρ− 2). Thus, by Theorem 6, K is isomorphic to Bρ−1. As t = ε = 1,

it is obvious that rank(G) = rank(K) + 2. Therefore r is even and the definition of Cr shows that G

is isomorphic to Cr. 2
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