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Abstract

We give a complete characterization of mixed unit interval graphs, the intersection
graphs of closed, open, and half-open unit intervals of the real line. This is a proper
superclass of the well known unit interval graphs. Our result solves a problem posed
by Dourado, Le, Protti, Rautenbach and Szwarcfiter (Mixed unit interval graphs,
Discrete Math. 312, 3357-3363 (2012)).

Keywords: unit interval graph; proper interval graph; intersection graph

1 Introduction

A graph G is an interval graph, if there is a function I from the vertex set of G to the set
of intervals of the real line such that two vertices are adjacent if and only if their assigned
intervals intersect. The function [ is an interval representation of G. Interval graphs are
well known and investigated [4, [6l [8]. There are several different algorithms that decide,
if a given graph is an interval graph. See for example [2].

An important subclass of interval graphs are unit interval graphs. An interval graph
G is a unit interval graph, if there is an interval representation I of G such that I assigns
to every vertex a closed interval of unit length. This subclass is well understood and easy
to characterize structurally [10] as well as algorithmically [I].

Frankl and Machara [5] showed that it does not matter, if we assign the vertices
of G only to closed intervals or only to open intervals of unit length. Rautenbach and
Szwarcfiter [9] characterized, by a finite list of forbidden induced subgraphs, all interval
graphs G such that there is an interval representation of G that uses only open and closed
unit intervals.

Dourado et al. [3] gave a characterization of all diamond-free interval graphs that have
an interval representation such that all vertices are assigned to unit intervals, where all
kinds of unit intervals are allowed and a diamond is a complete graph on four vertices
minus an edge. Furthermore, they made a conjecture concerning the general case. We
prove that their conjecture is not completely correct and give a complete characterization

of this class. Since the conjecture is rather technical and not given by a list of forbidden
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subgraphs, we refer the reader to [3] for a detailed formulation of the conjecture, but
roughly speaking, they missed the class of forbidden subgraphs shown in Figure [l
In Section 2 we introduce all definitions and relate our result to other work. In Section

3 we state and prove our results.

2 Preliminary Remarks

We only consider finite, undirected, and simple graphs. Let G be a graph. We denote by
V(G) and E(G) the vertex and edge set of G, respectively. If C is a set of vertices, then
we denote by G[C] the subgraph of G induced by C. Let M be a set of graphs. We say G
is M-free, if for every H € M, the graph H is not an induced subgraph of G. For a vertex
v € V(G), let the neighborhood N¢(v) of v be the set of all vertices that are adjacent to
v and let the closed neighborhood Ng[v] be defined by Ng(v) U{v}. Two distinct vertices
uw and v are twins (in G) if Ng[u] = Ng[v]. If G contains no twins, then G is twin-free.

Let N be a family of sets. We say a graph G has an N-intersection representation, if
there is a function f : V(G) — N such that for any two distinct vertices u and v there
is an edge joining v and v if and only if f(u) N f(v) # 0. If there is an N-intersection
representation for G, then G is an N-graph. Let z,y € R. We denote by

[,y ={z€eR:z<z<y}

the closed interval, by
(yy)={zeR:z<z<y}

the open interval, by
(x,y ={zeR:x <2<y}

the open-closed interval, and by
[r,y)={z€eR:z <2<y}

the closed-open interval of z and y. For an interval A, let ¢/(A) = inf{x € R: x € A} and
r(A) =sup{z € R:x € A}. If I is an interval representation of G and v € V(G), then we
write £(v) and r(v) instead of £(I(v)) and r(I(v)), respectively, if there are no ambiguities.
Let ZTT be the set of all closed intervals, Z~=~ be the set of all open intervals, Z=" be
the set of all open-closed intervals, ZT~ be the set of all closed-open intervals, and Z be
the set of all intervals. In addition, let 4" be the set of all closed unit intervals, /=~ be
the set of all open unit intervals, ./~ be the set of all open-closed unit intervals, ™~ be
the set of all closed-open unit intervals, and U be the set of all unit intervals. We call a
U-graph a mized unit interval graph.

By a result of [3] and [9], every interval graph is an Z*t-graph. With our notation unit
interval graphs equals &/ T -graphs. An interval graph G is a proper interval graph if there
is an interval representation of G such that I(u) € I(v) for every distinct u,v € V(G).
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Figure 1: Forbidden induced subgraphs for twin-free ™ U/~ -graphs.

Figure 2: A graph, which is a U-graph, but not a Y+ UU~"-graph.

The next result due to Roberts characterizes unit interval graphs.

Theorem 1 (Roberts [10]). The classes of unit interval graphs, proper interval graphs,

and K 3-free interval graphs are the same.

The second result shows that several natural subclasses of mixed unit interval graphs

actually coincide with the class of unit interval graphs.

Theorem 2 (Dourado et al., Frankl and Machara [3, B]). The classes of UTT-graphs,
U~ -graphs, UT~ -graphs, U~ -graphs, and UT— UU~ T -graphs are the same.

A graph G is a mized proper interval graph (respectively an almost proper interval
graph) if G has an interval representation I : V(G) — Z (respectively I : V(G) —
I+tTUZ ") such that

e there are no two distinct vertices u and v of G with I'(u),I(v) € ZTF, I(u) C I(v),
and I(u) # I(v), and

e for every vertex u of G with I(u) ¢ Z7, there is a vertex v of G with I(v) € Z7,
l(u) = £(v), and r(u) = r(v).

A natural class extending the class of unit interval graphs are U™+ U U~ -graphs.

These were characterized by Rautenbach and Szwarcfiter.

Theorem 3 (Rautenbach and Szwarcfiter [9]). For a twin-free graph G, the following

statements are equivalent.
o Gis a{Ki4, Ky, K53, K3 }-free graph. (See Figure[d for an illustration.)
o (G is an almost proper interval graph.

o GisaldtT UU " -graph.
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Figure 3: The class R.

Note that an interval representation can assign the same interval to twins and hence the
restriction to twin-free graphs does not weaken the statement but simplifies the description.
The next step is to allow all different types of unit intervals. The class of U-graphs is
a proper superclass of the U™ UU ™ -graphs, because the graph illustrated in Figure 2lis
a U-graph, but not a Ut UU~"-graph (it contains a Kf’4). Dourado et al. already made

some progress in characterizing this class.

Theorem 4 (Dourado et al. [3]). For a graph G, the following two statements are equiv-

alent.

e (G is a mixed proper interval graph.

o (G is a mized unit interval graph.

They also characterized diamond-free mixed unit interval graphs. There is another
approach by Le and Rautenbach [7] to understand the class of U-graphs by restricting
the ends of the unit intervals to integers. They found a infinite list of forbidden induced

subgraphs, which characterize these so-called integral U-graphs.

3 Results

In this section we state and prove our main results. We start by introducing a list of for-
bidden induced subgraphs. See Figures B 4 [, and [ for illustration. Let R = J;=o{R;}.
S=UZ {5} 8" =UZi{S} and T = U5 501735} For k € N let the graph @ arise
from the graph Ry by deleting two vertices of degree 1 that have a common neighbor. We
call the common neighbor of the two deleted vertices and its neighbor of degree 2 special
vertices of Q. Note that if a graph G is twin-free, then the interval representation of G
is injective.

Lemma 5 (Dourado et al.[3]). Let k € N.

(a) Every U-representation of the claw K3 arises by translation (replacing I by I + x
for some x € R; that is, shifting all intervals by x) of the following U-representation
I:V(Ki3) = U of K13, where I(V (K1 3)) consists of the following intervals
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Figure 4: The class S.

AL AN AALLL

S1 Sh 1 triangles S!

Figure 5: The class S'.

o cither [0,1] or (0,1],

e [1,2] and (1,2), and

o cither [2,3] or [2,3).
(b) Every injective U-representation of Qy arises by translation and inversion (replacing
I by —1I; that is, multiplying all endpoints of the intervals by —1) of one of the two
injective U-representations I : V(Qr) — U of Qi, where I(V(Qy)) consists of the

following intervals

e cither [0,1] or (0,1],
e [1,2] and (1,2), and
o [i,i+1] and [i,i+1) for2<i<k+1.

(c) The graphs in {Tpo} UR are minimal forbidden subgraphs for the class of U-graphs

with respect to induced subgraphs.

(d) If G is a U-graph, then every induced subgraph H in G that is isomorphic to Qi and
every verter v* € V(G) \ V(H) such that v* is adjacent to exactly one of the two

special vertices x of H, the vertex u* has exactly one neighbor in V(H), namely x.

Lemma 6. If a graph G is a twin-free mized unit interval graph, then G is {K5‘73} URU
SUS UT-free.

Proof of Lemma[@ 1t is easy to see that G is {KJ 5}-free. Lemma [l (c) shows that G is
R-free and Lemma [0 (d) shows that G is S-free.

Let k € N. Note that the graph S} arises from the graph @}, by adding a vertex z and
joining it to the two special vertices of ) and the unique common neighbor of these two

vertices. For contradiction, we assume that S}, has a U-representation I. By Lemma
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Figure 6: The class T.

(b) there are only two possibilities for the U-representation of Q. Thus we assume that
the subgraph Qj of S) has the interval representation as described in Lemma [l (b). In
both cases we conclude ¢(z) = k+ 1 and k+ 1 € I(z). Thus r(z) = k + 2 and hence
I(z) e {[k+1,k+2],[k+1,k+2)}. Therefore, G is not twin-free, which is a contradiction.
This implies that G is S’-free.

By Lemma [l (c), G is Tpo-free. Let C' be a claw with vertex set {c, a1, az,as}, where
c is the center vertex. Denote by vy and wy the special vertices of ;. Note that T} o
arises by the disjoint union of the graph @ and C, identifying vy and a1, and adding the
edges wyc and viaz. For contradiction, we assume that T} ¢ has a U-representation I. By
Lemmal[5l (b), we assume without loss of generality that the induced subgraph Qy, of T, o is
represented by exactly the intervals described in Lemmal[f (b). Thus I(vg) = [k+ 1,k + 2]
and I(wy) = [k + 1,k + 2), because vgas € E(To) but wras ¢ E(Tyo). Since I(vg)
is not an open interval and by Lemma [0l (a), we obtain I(c) = [k + 2,k + 3] and hence
I(wy) N I(c) = 0. This is a contradiction, which implies that G is (J;~o{ 7,0 }-free.

Let 4,5 € N. Note that the graph T; ; arises by the disjoint union of Q; and Q; and
adding three edges between the special vertices of @); and ;. We may assume that the
intervals of the subgraph @; are exactly the intervals as described in Lemma[5 (b). Let w;
(respectively v;) be the vertex of @; that has one (two) neighbor(s) in the subgraph Q;;
that is, I(v;) = [i+1,i+2] and I(w;) = [i +1,i+2) because Nt ;(w;) C Nt ;(v;). Let w;
(respectively v;) be the vertex of @; that has one (two) neighbor(s) in the subgraph Q;.
Since the subgraph @); has also an interval representation as described in Lemmal5l (b) and
the vertices of @Q; \ {v;,w;} and not joined by an edge to the vertices of Q; \ {v;j, w;}, we
conclude that the intervals of the vertices of (); arise by an inversion and a translation of
the interval representation as described in Lemmals](b). This implies that I(v;) = [z, x+1]
and I(w;) = (x,z + 1] for some z € R. Obviously, z € [i + 1,7+ 2]. If z = i + 2, then
neither v; is adjacent to w; nor w; is adjacent to v;. If € [i + 1,74 2), then the intervals
of w; and w; intersect, which is not possible. Therefore, G is T-free and this completes
the proof. I

We proceed to our main result.



Theorem 7. A twin-free graph G is a mized unit interval graph if and only if G is a
{K33} URUSUS UT-free interval graph.

Proof of Theorem [ We use a similar approach as in [9]. By Lemma[f, we know if G is a
twin-free mixed unit interval graph, then G is a { K3 3} URUSUS'UT-free interval graph.
Let G be a twin-free {K33} UR US US" U T-free interval graph. We show that G is a
mixed proper interval graph. By Theorem [l this proves Theorem[7l Since G is an interval
graph, G has an ZTt-representation I. As in [9] we call a pair (u,v) of distinct vertices a
bad pair if I(u) C I(v). Let I be such that the number of bad pairs is as small as possible.
If T has no bad pair, then we are done by Theorem [l Hence we assume that there is at
least one bad pair. The strategy of the proof is as follows. Claim [ to Claim [l collect
properties of G and I, before we modify our interval representation of G to show that G
is a mixed proper interval graph. In Claim [7] to Claim 10 we prove that our modification
of the interval representation preserves all intersections and non-intersections. Claim 1 to
Claim [J are similar to Claim 1 to Claim 3 in [9], respectively. For the sake of completeness

we state the proofs here.

Claim 1. If (u,v) is a bad pair, then there are vertices x and y such that £(v) < r(xz) < {(u)
and r(u) < l(y) < r(v).

Proof of Claim 1: For contradiction, we assume the existence of a bad pair (w, v) such that
there is no vertex z with ¢(v) < r(z) < f(w). A symmetric argument implies the existence
of y. Let u be a vertex such that ¢(u) is as small as possible with respect to I(u) C I(v).
By our assumption there is no vertex x such that ¢(v) < r(z) < £(u). Let € be the smallest
distance between two distinct endpoints of intervals of I. Let I’ : V(G) — Z1+ be such that
I'(u) = [l(v) —€/2,r(u)], I'(v) = [l(v),r(v) +€/2], and I'(2) = I(2) for z € V(G) \ {u,v}.
By the choice of u and €, we conclude that I’ is an interval representation of G, but I’
has less bad pairs than I, which is a contradiction to our choice of I. This completes the

proof. I

Let a; and a2 be two distinct vertices. Claim [l implies that ¢(a;) # £(a2) and r(a1) #
r(az). Suppose £(a1) < l(az). If r(a1) = £(az2), then let € be as in the proof of Claim
Mand I’ : V(G) — ZT be such that I'(a;) = [l(a1),7(a1) + €/2], and I'(z) = I(z) for
z € V(G) \ {a1}. By the choice of €, we conclude that I’ is an interval representation of
G with as many bad pairs as I. Therefore, we assume without loss of generality that we
chose I such that all endpoints of the intervals of I are distinct. Hence the inequalities in

Claim [I] are strict inequalities.

Claim 2. If (u,w) and (v,w) are bad pairs, then u = v, that is, no interval contains two

distinct intervals.

Proof of Claim[2: For contradiction, we assume that there are distinct vertices v/, v' and
w such that (u/,w) and (v',w) are bad pairs. Let u be a vertex such that (u,w) is a bad

pair and ¢(u) is as small as possible. Let v be a vertex such that (v,w) is a bad pair



and r(v) is as large as possible. Claim [I] ensures two distinct vertices z and y such that
l(w) < r(x) < l(u) and 7(v) < L(y) < r(w).

If w # v and I(u) N I(v) = 0, then G[{w,z,u,v,y}] is isomorphic to Ry, which is a
contradiction. If u # v and I(u)NI(v) # 0, then in the graph G[{w, z,u,v,y}] the vertices
u and v are twins. Since G is twin-free, u and v do not have the same closed neighborhood
in G and hence there is a vertex z, which is adjacent to say u (by symmetry) and not to
v. Since I(u) C I(w), z is adjacent to w. If z is not adjacent to z, then G[{w,z, z,v,y}]
is isomorphic to Ry and if z is adjacent to z, then G[{w, z, z,u,v,y}] is isomorphic to Sy,
which is a contradiction.

If w = v, then there is a vertex z such that (z,u) is a bad pair because u’ or v’ is a
suitable choice. We choose z such that ¢(z) is minimal. Claim [l ensures the existence of
a vertex x’ such that (u) < r(z') < £(z). Note that the choice of u and z guarantees
(2') < l(w), so za’ € E(G). Therefore, G[{w, z,2’, u, z,y}] is isomorphic to Sy, which is
a contradiction. This completes the proof of Claim 2l [

Claim 3. If (u,v) and (u,w) are bad pairs, then v = w, that is, no interval is contained

in two distinct intervals.

Proof of Claim[3: Claim [2] implies that neither (v,w) nor (w,v) is a bad pair. Thus we
may assume {(w) < {(v) < £(u) and r(u) < r(w) < r(v). By Claim [, there are vertices
x and y such that ¢(v) < r(z) < (u) and r(u) < (y) < r(w). Now, G[{v,w,x,u,y}] is

isomorphic to K3 3, which is a contradiction and completes the proof of Claim Bl U

A vertex x is to the left (respectively right) of a vertex y (in I), if r(z) < £(y)
(respectively r(y) < £(x)). Two adjacent vertices = and y are distinguishable by vertices
to the left (respectively right) of them, if there is a vertex z, which is adjacent to exactly
one of them and to the left (respectively right) of one of them. The vertex z distinguishes

x and y. Next, we show that for a bad pair (u, v) there is the structure as shown in Figure

max
u,v

[7in G. We introduce a positive integer ¢ that, roughly speaking, indicates how large
this structure is.

For a bad pair (u,v) let v = XS,U and let X}w be the set of vertices that are adjacent
to v and to the left of u. Let y,, be a vertex to the right of u and adjacent to v. Claim
@ guarantees | X, ,| > 1 and the existence of yy . If |X] | =1, then let /%% = 1 and we
stop here. Suppose ]Xiv] > 2. Since G is Ry-free, Xiv is a clique and since G is S}-free,
we conclude | X} | = 2. Let {z,2'} = X, , such that r(z) < r(z). For contradiction, we
assume that there is a vertex z to the right of x that distinguishes x and z’. We conclude
l(v) < £(z). By Claim 2 r(v) < r(z). This implies that (u,z) is a bad pair, which
contradicts Claim [Bl Thus z does not exist. In addition (z,2’) is not a bad pair, otherwise
Claim [ guarantees a vertex z such that r(z) < £(z) < r(z’), which is a contradiction. Thus
U(z) < L(a') <r(z) <r(z). Let 2y, = x and x}wl = 2’. Note that N(;(quwl) C Ng(z, ,)-

Let X2, = Ng(zy,) \ NG('CL‘llL,U/)‘ Note that all vertices in X2 are to the left of

zl . Since G is twin-free, |X2,l > 1 If X2 ,| =1, then let £7%% = 2 and we stop here.

u, U,V
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Figure 7: The structure in G forced by a bad pair (u,v).

Suppose |X5’U| > 2. Since G is R;-free, XS’U is a clique and since G is Si-free, we conclude
| X2l =2. Let {z,2'} = X7, such that r(z) < r(2). For contradiction, we assume that
there is a vertex z to the right of  that distinguishes z and 2/. Since z ¢ XS’U, we conclude
E(x}t,v/) < r(z). If r(z) < ¢(v), then G[{z,x,x’,x}t,v,x}w/,v,u,yuﬂ,}] is isomorphic to Ss,
which is a contradiction. Thus £(v) < 7(z). If r(z) < £(u), then |X; | = 3, which is a
contradiction. Thus £(u) < r(z). If r(u) < r(z), then (u,v) and (u, z) are bad pairs, which
is a contradiction to Claim Bl Thus ¢(u) < r(z) < 7(u). Now G[{z,x’,xiwl,v,u,yuw}] is
isomorphic to Tp o, which is the final contradiction.

Note that (x,z’) is not a bad pair, otherwise Claim 1 guarantees a vertex z such
that 7(z) < £(z) < r(z'), which is a contradiction. Thus £(z) < £(z) < r(z) < r(z’). Let
2, =z and x%w/ = 2/. Note that Ng(ﬂz%w/) C Ng(a2,). Let X3, = Ng(:c%,v)\Ng(:c%,vl).

Note that all vertices in X , are to the left of xfwl.
We assume that for £ > 3, i € [k — 1] and j € [K]

e we defined Xi,v,

| X% | =2 holds,

4 oy
3 3
we defined 7, ,, and zj, ,,

(at ) < L(at,) < r(zl,) <r(zi,) holds,

s !

uw » and

the vertices in Xf;t)l are to the left of =

the vertices in Xfw are not distinguishable to the right.



If [XF | = 1, then let £%* = k and we stop here. Suppose |XF [ > 2. Since G is
Rj—1-free, XF  is a clique and since G is S-free, we obtain |X¥ | =2. Let {z,2'} =
such that r(z) < r(z’). For contradiction, we assume that there is a vertex z to the
right of « that distinguishes « and 2’. Since z ¢ XF ., we conclude ((z¥ Y <r(z). I
r(z) < L(zF2), then G[{z, 2,2, v,u, Yy} U Uk 1XZ ] is isomorphic to Sk, which is
Contradiction. Thus /(x fwz) < r(2). I r(z) < £(aF72), then |Xk !| = 3, which is a

contradiction. Thus E(mﬁ;}y) <r(z). Ifr(z) < K(xﬁm ), then G[{z, 2/, zk=V U, U, Yy} U

up
Uf;lz Xfw] is isomorphic to T}z, which is a contradiction. Thus ¢(z873) < r(z). If
r(z) < r(af?), then | X} 2| = 3, which is a contradiction. Thus r(z}?) < r(z) and hence
(Cﬂﬁ,_vll, 2) and (z 5702, z) are bad pairs, which is a contradiction to Clalm 2 Thus z,z’ are
not distinguishable to the right. We obtain that (x, ') is not a bad pair, otherwise Claim
1 guarantees a vertex z such that r(x) < £(z) < r(a’), which is a contradiction. Thus
((z) < l(z') <r(z) <r(a'). Let 2k , = x and xﬁml = 2’. Note that Ng(ﬂzgm/) C Ne(zk ).
Let Xt = Ng(af )\ N(;(xﬁw,). Note that all vertices in X} 7! are to the left of xﬁwl.

By induction this leads to the following properties.
Claim 4. If (u,v) is a bad pair, k € [(}5* — 1], then the following holds:

(a) X}, =2.

(b) The vertices in Xu are not distinguishable by vertices to the right of them.

v

(¢c) We have (al, ) < K(xfw/) < r(xl,) < r( ) that is (¥ 2% ") and (2% 2k )

uw U,V u,v P Uu,v

are not bad pairs.
Note that £33 is the smallest integer k such that |Xk '=2and [X} Fl=1.
Claim 5. If (u,v) is a bad pair and k € [(33* — 1], then the following holds.
(a) mﬁ,vl is not contained in a bad pair.
(b) There is no vertex z € V(G) such that (%, 2) is a bad pair.

Proof of Claz'm. (a): For contradiction, we assume that there is a vertex z € V(G) such
that («f ', 2) is a bad pair. Trivially z ¢ {{v, y,u}UU oy X! ,}. We have r(zk ) <r(z)
and £(z) < £(x* Ty "). In addition £(z uﬂ)) < {(z), otherwise ( 571}, z) is also a bad pair, which

contradicts Claim 21 Claim [Il implies the existence of a vertex a, such that £(z) < r(a) <

/
U(zhy)-
Let k = 1. If r(2) < £(u), then z € X, ,, which is a contradiction to | X} ,| = 2. Thus

l(u) < r(z). If r(z) < r(u), then G[{a,z,xﬁwl,u,v,y}] is isomorphic to Ty, which is a
contradiction. Thus r(u) < r(z) and now (u, z) is a bad pair, which is a contradiction to
Claim [2

Let k > 2. If r(z) < £(zh1), then z € X}, Xool =
2. Thus /(x 5_1}1/) < r(z). If 7’( ) < L(zF7?), then G[{a z 2k v u ) UUk IXZ o) 18
isomorphic to Tj—10. Thus ((z57?) < r(z ) If r(z) < r(af!), then z € X501 Wthh is a

u,v

1/ . . o e
which is a contradlctlon to |

u,v

10



contradiction to \X 1 = 2. Thus r(zf71) < r(2), but now (wﬁjjl,z) is also a bad pair,
which is a contradlctlon to Claim [2] and Completes this part of the proof.

For contradiction, we assume that there is a vertex z € V(@) such that (z,xﬁwl) is a
bad pair. By Claim [I], f(xﬁ,vl) < l(z) and r(z) < r(z uv’). By Claim B r(zf ) < r(2).
Let y, be the vertex guaranteed by Claim [l such that r(z) < ¢(y.), but this contradicts
Claim @] (b).

(b): For contradiction, we assume the existence of a vertex z € V(G) such that (zF 0 ?)
is a bad pair. Trivially z # xﬁ,vl. Ifr(z) <r(z kw/)’ then this contradicts Claim @ (a), that
is ]szv] = 2 and if r(mﬁv/) < r(z), then (x uv/, z) is also a bad pair and this contradicts
Claim 21 This completes the proof of Claim [Bl [J

For a bad pair (u,v) define Yu]fv as Xff’v by interchanging in the definition right by left.
Let r2* be the smallest integer k such that [Y,/![ =2 and |V} | = 1. By symmetry, one

(1S}

can prove a “y”-version of Claim [, Claim Bl and Claim [@] (a) and (b). Let {ygv,yﬁwl} =
Y, such that Ng(y57v/) C Na(yk ) for k < rpax—1.

Claim 6. Let (u,v) and (w, z) be bad pairs and k € [£;57].
(a) If Xk, N Xﬁ,z #0, then zf- 1 = a1 for ke o]
(b) If Xk, NXE_#0, then Xk, = Xk for k € [2%9).

(c) If X’Jw N Ylf,z # 0, then X{f,v N Ylﬁ,z = x’fw — yfv,z for k € [rmax]

Proof of Claim [@: (a): For contradiction we assume zF71 # xk L. Without loss of
generality we assume £(zF71) < {(x 1/221) Note that xﬁ} Zl is adJacent to the vertices in

Xff,v N X{iz Since the Vertlces in X{fv
U ) <r(al ).
First, we suppose k = 1. Thus v = xk L Ifr(zF!) < r(v), then (287} v) is a bad pair

2 wz7

and this contradicts Claim Bl and if 7(z*~!) > r(v), then (u, k- 1) is a bad pair and this
contradicts Claim Bl Now we suppose k > 2. If r(zk~ i ) ( ), then (27 v k- Disa

'lLU Y w,z

bad pair, which contradicts Claim [l (a). Thus r(zF~1) < r(zF=1). If r(ah71) < r(2F; k— el
then xk e XFUL which implies | X5t = 3 and hence contradicts Clann @ (a). Thus

u,v

are not distinguishable to the right, we conclude

r(zk ) < r(zk 1). Therefore, (z k-1 xk_l) is a bad pair. Claim [Il implies the existence

'LUZ’ u,v

of a Vertex a Wthh is to the left of zF~! and adjacent to ack 1. Thus a € X¥_ . However,

w,z
r(a) < r(z uv), which contradicts Claim @l (c). This is the final Contradlctlon and this
completes the proof of Claim [@ (a).

(b): If |X’J7v| = |X{f),z| =1, then there is nothing to show. Thus we assume, |X’J7v| =2.

Note that by Claim[@ (a), xﬁf = CIfzk e XE  then zk e X’l‘C and we are done.

u,v w,z)
Thus we assume x]fw, ¢ Xz]fuz' Slnce X’Jw N Xk . # 0, we Conclude o= Xk Hence w
or mk 1 distinguishes the vertices in X{fw to the right of them, Wthh is a contradiction

to Clalrn [ (b). This completes the proof.
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(c): IF|XF,| = ]Yf .| = 1, then there is nothing to show. Thus we assume by symmetry
> > ! /
|Y£7 | = 2. First, we assume for contradiction yfw = xiv. Note that f(yw 1) < E(yw )

and r(yl) < r(vh,.)
Suppose [XF | = 1. If ¢(zF71) < r(ywz) then yk le Xk

u,v’

= =
IXE,| = 1. Thus r(y52") < (k). Note that £(y,.) < (k) < r(yhs) and r(yh ) <
r(yk ). Suppose k = 1. If r(yk ) < £(u), then y% = € XF . which is a contradiction
to |X57U =1 If l(u) < T(ywvz) < r(u), then G[{z} 2 W, 2, Uy v yuv} U UZ 1Yw . s
which is a contradiction. If r(u) < r(yw .), then (u,yf ) is a bad

which is a contradiction to

isomorphic to T} 0
pair, which is a contradiction to Claim B Now we suppose k > 2. If T(yw 2) < O(xk ),

then yw _ € XF . which is a contradiction to ]Xuv] = 1. If £(aF ) < r(yw L) < E( zi?),

u,v’

then G[{z,, ., w,z,u,v,y; ,} U UZ Y, Uk 1XZ o) 18 1somorph1(: to T, which is a
contradiction. If £(zf7?) < T(yw,z) < f( ) then ywz € Xkt and hence |X =3,

which is a contradiction to Claim @ (a). If 6( -1 < r(y;} .), then (x5~ Uk ) is a bad
pair, which is a contradiction to Claim [f] (a).
This shows | X% | # 1 and thus we suppose Xk, =2 Ife(akh) < r(ywz) then

yw 2 € X[, which is a contradiction to Xk, =2 Thus r(yw 1) <l h). Note that

) < H0k2) < i and 0 ) < rloh ) TE605,) < ), then )/ = o
Thus {z* o gm} = Y£7 .. By Claim[] (b), these vertices are not distinguishable to the rlght

and to the left. Thus they are twins, which is a contradiction. Thus r(yw ) < l(zk )
Note that f(ygz/) < f(yfw) < r(yfu ). If r(ygz) < r(zk I) then ywz € XrF., Whlch
is a contradiction to | X[ | =2 and if r(mﬁ,vl) < r(ysz,’z) then (zk "yk ) is a bad pair,
which is a contradiction to Claim [B] (a). This shows ymz # wuﬂ). A totally symmetric

. !/
argumentation shows yfv,z # xﬁ,v .

=
To complete the proof, we show that yz’j ., F xﬁ,v/. For contradiction, we assume

y{f} Z/ = xk LI (k) < T(y{f}_z) then zk7! = y{f} .- Thus G[{z,

1
u,v uv wzuvyuv}u

w,z?
UZ 1Y, Uk ! X7 ] is isomorphic to Ry j_y, which is a contradiction. Hence we as-
sume r(yz’f, 1) < Uk k- o). IE0(ak ) < (ykh), then (yz’f, L aF ) is a bad pair, which is

u,v
a contradiction to the “y”-version of Claim [l (b). Hence we assume f(yw ) < bz )
If ok, € v}

u,v w,z?
E(xﬁ’v) < E(yw Z/). Suppose k = 1. Since xuv ¢ Y, ., we conclude xﬁ,vw € E(G). If
((w) < Lk ), then G[{z) ,,w,z,u,v,y),} U UZ 1 X0 ,] is isomorphic to Ty, which

is a contradlctlon. If ¢(x uv) < l(w), then (w,xk ») 18 a bad pair, which is a con-

“ 7

then thls is a contradiction to the -version of Claim [ (a), because

’LUZ’

tradiction to Claim Bl Hence we suppose k& > 2. Note that £(z uv) < T(y{“v,_zll). If

(yﬁ, 2) < Uk ), then Glzy, .o w, z,u,0,y, , } U Uk 1YZ U UZ , X¢,] is isomorphic
to Ty, If K(yw = ) <l(zk ) < r(yw 2), then zf | € Yu’le, which is a contradiction to
the “y”-version of Claim [ (a ) If E(mum) < E(yw; ), then (yfu Zl , gm) is a bad pair, which
is a contradlctlon to the “y”-version of Claim [l (a). This completes the proof of Claim [G

g

Next, we define step by step new interval representations of G as follows. First we
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shorten the intervals of X% for every bad pair (u,v) and k € [(33¥]. Let I' : V(G) — I+
be such that I'(z) = [((z),0(zk )] if € XE, for some bad pair (u,v) and I'(z) =
I(z) otherwise. By Claim [ (a), I’ is well-defined; that is, if z € XF, X{f] ., then

f(xﬁ,_vl) = E(x{‘“v,_zl). Let ¢'(x) and r'(x) be the left and right endpoint of the interval I'(x)
for x € V(G), respectively.

Claim 7. I’ is an interval representation of G.

Proof of Claim[7: Trivially, if two intervals do not intersect in I, then they do not intersect
in I’. For contradiction, we assume that there are two vertices a,b € V(G) such that
I(a) N I(b) # 0 and I'(a) N I'(b) = 0. At least one interval is shortened by changing
the interval representation. Say a € X}, for some bad pair (u,v) and k € [£;5%]. Hence
b # xk Land ¢(zF21) < £(b) and by Claim @ (b), £(b) < r(xk ). We conclude that (b, xlz )
is not a bad pair, otherwise Claim [ implies the existence of a vertex z € X/ k » to the left
of b, but z ¢ {xuv, Ty "}, which is a contradiction to Claim H (a). Thus r(zF71) < 7(b).
If Kk =1, then (u,b) is also a bad pair, which is a contradiction to Claim B Thus k> 2.
Since £(b) < T(ﬂ:ﬁ ) we obtain £(b) < {(z k_ll) Since (z lfwl ,b) is not a bad pair by Claim

(a), r(b) < r(zh Y. Thus b € X*-1, which is a contradiction to Xk =20

u,v

Claim 8. The change of the interval representation of G from I to I' creates no new bad
pair (a,b) such that {a,b} # X[, for some k € [(22%] and some bad pair (u,v).

Proof of Claim[8: For contradiction, we assume that (a,b) is a new bad pair and {a, b} #
X{f,v. Since (a,b) is a new bad pair, I’(a) is a proper subset of I(a). Thus let a € X{f,v and
bé¢ Xk, Ifae Xl and |X}F | =2, then ((b) < {(x uvl) and r'(a) = £(zhl) < r(b) <
r(xq]j,vl), because of Claim [ (a). Thus b € X* | which is a contradiction. If a € Xk,v and

'lL v
which

| XF,| =1, then £(b) < £(z% ) and /(a) = (k1) < r(b) < r(zk,). Thusbe X

u,v’

is the final contradiction. [J

In a second step, we shorten the intervals of Yuim for every bad pair (u,v) and i € [rll'a¥]

u,v 1°
Let I" : V(G) — Z™* be such that I"(y) = [r/(yh21),r'(y)] if y € V¥, for some bad pair
(u,v) and I"(y) = I'(y) otherwise. Note that bad pairs are only referred to the interval
representation I. Let ¢’(x) and 7”(x) be the left and right endpoints of the interval I”(x)
for z € V(G), respectively.

Claim 9. I” is an interval representation of G.

Proof of Claim [d: Again, two intervals do not intersect in I” if they do not intersect in
I’ (and in I). For contradiction, we assume that there are two vertices a,b € V(G) such
that I(a)NI(b) # 0 and I"(a)NI"(b) = 0. Again at least one interval is shortened by the

change of the 1nterval representation. Say a € Y,’, for some bad pair (u,v) and k € [r}}2*

U’U ]

Suppose a € X . for some bad pair (w,z) and ke [Cps —1]. By Claim [@ (c), we

have a = ﬂ:fu L=k o 1 y ﬁle, then we did not change the interval of a. Thus we
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assume yh ! £ xk“. Now £(yk ) < r(b) < r(yk3'). The rest of the proof is similar to a
symmetric version of the proof of Claim [7

If a ¢ X11 5> then 7(b) < r(yh>t) and E(y{jml) < r(b), if yivl exists, otherwise £(yf ) <

r(b). I £(yh=t) < £(b), then by Claim[, (b, y%7!) is a bad pair and by Claim[Bl I(b) = I'(b).

?_version of Claim

Thus Claim [limplies the existence of a vertex, which contradicts the “y
M (a) and (b) and hence we suppose £(b) < E(yuw ). Thus k > 2, otherwise (u',b) is
a bad pair, which contradicts Claim Bl If ¢(b) < E(yfj;}ll), then (yﬁ;ll,b) is a bad pair,
which contradicts the “y”-version of Claim [ (a). Therefore, K(yfj;)l/) < £(b), which implies

beYF-l butb¢ {yqu vl, Y Ul }, which contradicts the “y”-version of Claim [ (a). O

u, v

Claim 10. The change of the interval representation of G from I to I" creates no new bad
pair (a,b) such that {a,b} # X% for some k € [(33] or {a,b} # Y., for some i € [r2]

and some bad pair (u,v).

Proof of Claim 10: For contradiction, we assume that (a,b) is a new bad pair and Yuim #*
{a,b} # ff’v. ThusaEXfooraEYi andb§§ uvorb§§ v
a € XF, and |XF | = 2, then ((b) < {(k "y and ((x wh < r(b) < r(ak ). Thus
b € X, which is a contradiction. If @ € X}, and |X} | = 1, then £(b) < {(z

u,v? u,v
(b t) < r(b) <r(ah,). Thus b€ XF . which is a contradiction. If a € Y}, the proof is

u,v?

respectively. If

U’ uv

uv) and

almost exactly the same. [J

Now we are in a position to blow up some intervals to open or half-open intervals to

get a mixed proper interval graph. Let I* : V(G) — Z be such that

(6(v),r(v)), if (x,v) is a bad pair,
(Ell(l“k o), (@k ), if e =ak for some bad pair (u,v) and k € [('5* — 1],

U

I*(2) =

max — 1], and

[ () " (o), i x = yu,v for some bad pair (u,v) and i € [r};
[f"( ), (x)], else.

Note that I* is well-defined by Claim[Bland Claim [t that is, the four cases in the definition
of I induces a partition of the vertex set of G. Moreover, the interval representation I*
defines a mixed proper interval graph. As a final step, we prove that I” and I* define the
same graph. Since we make every interval bigger, we show that for every two vertices a, b
such that I”(a) N I"(b) = 0, we still have I*(a) N I*(b) = (). For contradiction, we assume
the opposite. Let a, b be two vertices such that I”(a) N I"(b) = 0 and I*(a) N I*(b) # 0. Tt
follows by our approach and definition of our interval representation I”, that both a and
b are blown up intervals.

First we suppose a and b are intervals that are blown up to open intervals, that is, there
are distinct vertices @ and b such that (a,a) and (b,b) are bad pairs. Furthermore, the
intervals of @ and b intersect not only in one point. By Claim P and B, we assume without
loss of generality, that ¢/(a) < £”(b) < "(a) < r"(b). Therefore, by the construction of

I”, we obtain a is adjacent to b and @ is adjacent to b, and in addition they intersect
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in one point, respectively. Now, G[{x;a,a,&,b, l;,y;j)}] is isomorphic to Ty, which is a
contradiction.

Now we suppose a is blown up to an open interval and b is blown up to an open-
closed interval (the case closed-open is exactly symmetric). Let a be the vertex such that
(a,d) is a bad pair. Let b,u,v € V(G) and k € N such that {b,b} = X% ,. We suppose
a # b. We conclude ¢"(a) < £"(b) < r"(a) < r"(b). As above, we conclude a is adjacent
to b and @ is adjacent to b, and in addition they intersect in one point, respectively.
Thus G[{xa @y 50, U, Yy P U UZ 1 X4») induces a T}, g, which is a contradiction. Now we
suppose @ = b. We conclude that G[{xaa,a v, U, Yy} U UZ , X&) is isomorphic to Ry,
which is a contradiction.

It is easy to see that a and b cannot be both blown up to closed-open or both open-
closed intervals, because G is Ry-free for k > 0 and the definition of I”.

Therefore, we consider finally the case that a is blown up to a closed-open and b to an
open-closed interval. Let @,b,u,v,w,z € V(G) and k,k € N such that {a,a} = Yqﬁv and
{b,b} = Xf,’z. First we suppose @ # b. Again, we obtain ¢/(a) < ¢"(b) < r"(a) < r"(b)
and a is adjacent to b and @ is adjacent to b, and furthermore they intersect in one
point, respectively. Thus G[{zy, ,,u,v,w,z,y,, .} U UZ L Yi U UZ P Z] is isomorphic to

T, - Next we suppose a = b and hence Gl{xg,u,v,w, 2,5, Z} UUZ 1Y UUZ VXL s

isomorphic to R, ;. This is the final contradiction and completes the proof of Theorem

[ O

In Theorem [7 we only consider twin-free U-graphs to reduce the number of case dis-

tinctions in the proof. In Corollary [8l we resolve this technical condition. See Figure [§ and

[ for illustration. Let " = (J;=,{S/}.

Corollary 8. A graph G is a mized unit interval graph if and only if G is a {G1} UR U
SUS" UT-free interval graph.
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Proof of Corollary[& We first show that {G1}URUSUS” UT is the set of all twin-free
graphs that contain all graphs of {K§,3} URUSUS UT and are minimal with subject
to induced subgraphs. We leave it as an exercise to show that G is the only minimal
twin-free and Ro-free graph that contains K3 3. Since all graphs in RUSUT are twin-free
graphs, there is nothing to show.

Let now G € &', that is G = 5, for some k € N. With the notation as in the proof of
Theorem [T, G can be interpreted as a bad pair (u, v) together with {y}w}UUf:l X, , such
that | X}, | = 2ifi < k and |X’J7v| = 3. Note that Claim [ (b) of Theorem/[Tis still true even
if G is not &'-free. Therefore, we know that the vertices in Xfw cannot be distinguished
by vertices from the right. Thus the vertices that distinguish the vertices in X{f,v are
only adjacent to szv. Clearly, there are at least two of them, say a,b. Without loss of
generality a and b they do not have the same neighborhood on X{f,v. We conclude either
NG[X{f’U}(a) C NG[X{f’U}(b) or NG[X{f’U}(b) C NG[XS,U](Q)' We assume the first possibility.
Since 0 < \NG[X%} (z) N XF,| < 3 for z € {a,b}, it follows ’NG[X’;U}(@) NXE,=1and
|NG[X{§,U](b) N X{f’v| = 2. Since G is Ry-free, a and b are adjacent. Now G[Ui?:l Xfw U
{a,b,u,v, y}w}] is isomorphic to Sy, ;. This completes this part of the proof.

Let G be an interval graph. The relation ~, where u ~ v if and only if v and v
are twins, defines an equivalence relation on V(G). Let U C V(G) such that there is
exactly one vertex of every equivalence class in U. Therefore, G[U] is a twin-free graph.
Furthermore, G contains an induced subgraph in {G;}URUSUS”UT if and only if G[U]
contains an induced subgraph in {K3 3} URUSUS UT. In addition, G[U] is a twin-free
U-graph if and only if G is a U-graph. By Theorem [7 this completes the proof. O
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