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Abstract

We give a complete characterization of mixed unit interval graphs, the intersection

graphs of closed, open, and half-open unit intervals of the real line. This is a proper

superclass of the well known unit interval graphs. Our result solves a problem posed

by Dourado, Le, Protti, Rautenbach and Szwarcfiter (Mixed unit interval graphs,

Discrete Math. 312, 3357-3363 (2012)).
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1 Introduction

A graph G is an interval graph, if there is a function I from the vertex set of G to the set

of intervals of the real line such that two vertices are adjacent if and only if their assigned

intervals intersect. The function I is an interval representation of G. Interval graphs are

well known and investigated [4, 6, 8]. There are several different algorithms that decide,

if a given graph is an interval graph. See for example [2].

An important subclass of interval graphs are unit interval graphs. An interval graph

G is a unit interval graph, if there is an interval representation I of G such that I assigns

to every vertex a closed interval of unit length. This subclass is well understood and easy

to characterize structurally [10] as well as algorithmically [1].

Frankl and Maehara [5] showed that it does not matter, if we assign the vertices

of G only to closed intervals or only to open intervals of unit length. Rautenbach and

Szwarcfiter [9] characterized, by a finite list of forbidden induced subgraphs, all interval

graphs G such that there is an interval representation of G that uses only open and closed

unit intervals.

Dourado et al. [3] gave a characterization of all diamond-free interval graphs that have

an interval representation such that all vertices are assigned to unit intervals, where all

kinds of unit intervals are allowed and a diamond is a complete graph on four vertices

minus an edge. Furthermore, they made a conjecture concerning the general case. We

prove that their conjecture is not completely correct and give a complete characterization

of this class. Since the conjecture is rather technical and not given by a list of forbidden

1

http://arxiv.org/abs/1312.0729v2


subgraphs, we refer the reader to [3] for a detailed formulation of the conjecture, but

roughly speaking, they missed the class of forbidden subgraphs shown in Figure 6.

In Section 2 we introduce all definitions and relate our result to other work. In Section

3 we state and prove our results.

2 Preliminary Remarks

We only consider finite, undirected, and simple graphs. Let G be a graph. We denote by

V (G) and E(G) the vertex and edge set of G, respectively. If C is a set of vertices, then

we denote by G[C] the subgraph of G induced by C. Let M be a set of graphs. We say G

is M-free, if for every H ∈ M, the graph H is not an induced subgraph of G. For a vertex

v ∈ V (G), let the neighborhood NG(v) of v be the set of all vertices that are adjacent to

v and let the closed neighborhood NG[v] be defined by NG(v) ∪ {v}. Two distinct vertices

u and v are twins (in G) if NG[u] = NG[v]. If G contains no twins, then G is twin-free.

Let N be a family of sets. We say a graph G has an N -intersection representation, if

there is a function f : V (G) → N such that for any two distinct vertices u and v there

is an edge joining u and v if and only if f(u) ∩ f(v) 6= ∅. If there is an N -intersection

representation for G, then G is an N -graph. Let x, y ∈ R. We denote by

[x, y] = {z ∈ R : x ≤ z ≤ y}

the closed interval, by

(x, y) = {z ∈ R : x < z < y}

the open interval, by

(x, y] = {z ∈ R : x < z ≤ y}

the open-closed interval, and by

[x, y) = {z ∈ R : x ≤ z < y}

the closed-open interval of x and y. For an interval A, let ℓ(A) = inf{x ∈ R : x ∈ A} and

r(A) = sup{x ∈ R : x ∈ A}. If I is an interval representation of G and v ∈ V (G), then we

write ℓ(v) and r(v) instead of ℓ(I(v)) and r(I(v)), respectively, if there are no ambiguities.

Let I++ be the set of all closed intervals, I−− be the set of all open intervals, I−+ be

the set of all open-closed intervals, I+− be the set of all closed-open intervals, and I be

the set of all intervals. In addition, let U++ be the set of all closed unit intervals, U−− be

the set of all open unit intervals, U−+ be the set of all open-closed unit intervals, U+− be

the set of all closed-open unit intervals, and U be the set of all unit intervals. We call a

U -graph a mixed unit interval graph.

By a result of [3] and [9], every interval graph is an I++-graph. With our notation unit

interval graphs equals U++-graphs. An interval graph G is a proper interval graph if there

is an interval representation of G such that I(u) 6⊆ I(v) for every distinct u, v ∈ V (G).
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Figure 1: Forbidden induced subgraphs for twin-free U++ ∪ U−−-graphs.

Figure 2: A graph, which is a U -graph, but not a U++ ∪ U−−-graph.

The next result due to Roberts characterizes unit interval graphs.

Theorem 1 (Roberts [10]). The classes of unit interval graphs, proper interval graphs,

and K1,3-free interval graphs are the same.

The second result shows that several natural subclasses of mixed unit interval graphs

actually coincide with the class of unit interval graphs.

Theorem 2 (Dourado et al., Frankl and Maehara [3, 5]). The classes of U++-graphs,

U−−-graphs, U+−-graphs, U−+-graphs, and U+− ∪ U−+-graphs are the same.

A graph G is a mixed proper interval graph (respectively an almost proper interval

graph) if G has an interval representation I : V (G) → I (respectively I : V (G) →

I++ ∪ I−−) such that

• there are no two distinct vertices u and v of G with I(u), I(v) ∈ I++, I(u) ⊆ I(v),

and I(u) 6= I(v), and

• for every vertex u of G with I(u) /∈ I++, there is a vertex v of G with I(v) ∈ I++,

ℓ(u) = ℓ(v), and r(u) = r(v).

A natural class extending the class of unit interval graphs are U++ ∪ U−−-graphs.

These were characterized by Rautenbach and Szwarcfiter.

Theorem 3 (Rautenbach and Szwarcfiter [9]). For a twin-free graph G, the following

statements are equivalent.

• G is a {K1,4,K
∗
1,4,K

∗
2,3,K

∗
2,4}-free graph. (See Figure 1 for an illustration.)

• G is an almost proper interval graph.

• G is a U++ ∪ U−−-graph.
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R0 R1 R2

i triangles Ri

Figure 3: The class R.

Note that an interval representation can assign the same interval to twins and hence the

restriction to twin-free graphs does not weaken the statement but simplifies the description.

The next step is to allow all different types of unit intervals. The class of U -graphs is

a proper superclass of the U++ ∪U−−-graphs, because the graph illustrated in Figure 2 is

a U -graph, but not a U++ ∪U−−-graph (it contains a K∗
1,4). Dourado et al. already made

some progress in characterizing this class.

Theorem 4 (Dourado et al. [3]). For a graph G, the following two statements are equiv-

alent.

• G is a mixed proper interval graph.

• G is a mixed unit interval graph.

They also characterized diamond-free mixed unit interval graphs. There is another

approach by Le and Rautenbach [7] to understand the class of U -graphs by restricting

the ends of the unit intervals to integers. They found a infinite list of forbidden induced

subgraphs, which characterize these so-called integral U -graphs.

3 Results

In this section we state and prove our main results. We start by introducing a list of for-

bidden induced subgraphs. See Figures 3, 4, 5, and 6 for illustration. Let R =
⋃∞

i=0{Ri},

S =
⋃∞

i=1{Si}, S
′ =

⋃∞
i=1{S

′
i}, and T =

⋃

i≥j≥0{Ti,j}. For k ∈ N let the graph Qk arise

from the graph Rk by deleting two vertices of degree 1 that have a common neighbor. We

call the common neighbor of the two deleted vertices and its neighbor of degree 2 special

vertices of Qk. Note that if a graph G is twin-free, then the interval representation of G

is injective.

Lemma 5 (Dourado et al.[3]). Let k ∈ N.

(a) Every U-representation of the claw K1,3 arises by translation (replacing I by I + x

for some x ∈ R; that is, shifting all intervals by x) of the following U-representation

I : V (K1,3) → U of K1,3, where I(V (K1,3)) consists of the following intervals
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S1 S2 i triangles Si

Figure 4: The class S.

S′
2S′

1 i triangles S′
i

Figure 5: The class S ′.

• either [0, 1] or (0, 1],

• [1, 2] and (1, 2), and

• either [2, 3] or [2, 3).

(b) Every injective U-representation of Qk arises by translation and inversion (replacing

I by −I; that is, multiplying all endpoints of the intervals by −1) of one of the two

injective U-representations I : V (Qk) → U of Qk, where I(V (Qk)) consists of the

following intervals

• either [0, 1] or (0, 1],

• [1, 2] and (1, 2), and

• [i, i + 1] and [i, i + 1) for 2 ≤ i ≤ k + 1.

(c) The graphs in {T0,0} ∪ R are minimal forbidden subgraphs for the class of U-graphs

with respect to induced subgraphs.

(d) If G is a U-graph, then every induced subgraph H in G that is isomorphic to Qk and

every vertex u∗ ∈ V (G) \ V (H) such that u∗ is adjacent to exactly one of the two

special vertices x of H, the vertex u∗ has exactly one neighbor in V (H), namely x.

Lemma 6. If a graph G is a twin-free mixed unit interval graph, then G is {K∗
2,3} ∪R ∪

S ∪ S ′ ∪ T -free.

Proof of Lemma 6: It is easy to see that G is {K∗
2,3}-free. Lemma 5 (c) shows that G is

R-free and Lemma 5 (d) shows that G is S-free.

Let k ∈ N. Note that the graph S′
k arises from the graph Qk by adding a vertex z and

joining it to the two special vertices of Qk and the unique common neighbor of these two

vertices. For contradiction, we assume that S′
k has a U -representation I. By Lemma 5
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Figure 6: The class T .

(b) there are only two possibilities for the U -representation of Qk. Thus we assume that

the subgraph Qk of S′
k has the interval representation as described in Lemma 5 (b). In

both cases we conclude ℓ(z) = k + 1 and k + 1 ∈ I(z). Thus r(z) = k + 2 and hence

I(z) ∈ {[k+1, k+2], [k+1, k+2)}. Therefore, G is not twin-free, which is a contradiction.

This implies that G is S ′-free.

By Lemma 5 (c), G is T0,0-free. Let C be a claw with vertex set {c, a1, a2, a3}, where

c is the center vertex. Denote by vk and wk the special vertices of Qk. Note that Tk,0

arises by the disjoint union of the graph Qk and C, identifying vk and a1, and adding the

edges wkc and vka2. For contradiction, we assume that Tk,0 has a U -representation I. By

Lemma 5 (b), we assume without loss of generality that the induced subgraph Qk of Tk,0 is

represented by exactly the intervals described in Lemma 5 (b). Thus I(vk) = [k+1, k+2]

and I(wk) = [k + 1, k + 2), because vka2 ∈ E(Tk,0) but wka2 /∈ E(Tk,0). Since I(vk)

is not an open interval and by Lemma 5 (a), we obtain I(c) = [k + 2, k + 3] and hence

I(wk) ∩ I(c) = ∅. This is a contradiction, which implies that G is
⋃

i≥0{Ti,0}-free.

Let i, j ∈ N. Note that the graph Ti,j arises by the disjoint union of Qi and Qj and

adding three edges between the special vertices of Qi and Qj. We may assume that the

intervals of the subgraph Qi are exactly the intervals as described in Lemma 5 (b). Let wi

(respectively vi) be the vertex of Qi that has one (two) neighbor(s) in the subgraph Qj ;

that is, I(vi) = [i+1, i+2] and I(wi) = [i+1, i+2) because NTi,j
(wi) ⊂ NTi,j

(vi). Let wj

(respectively vj) be the vertex of Qj that has one (two) neighbor(s) in the subgraph Qi.

Since the subgraph Qj has also an interval representation as described in Lemma 5 (b) and

the vertices of Qi \ {vi, wi} and not joined by an edge to the vertices of Qj \ {vj , wj}, we

conclude that the intervals of the vertices of Qj arise by an inversion and a translation of

the interval representation as described in Lemma 5 (b). This implies that I(vj) = [x, x+1]

and I(wj) = (x, x + 1] for some x ∈ R. Obviously, x ∈ [i + 1, i + 2]. If x = i + 2, then

neither vi is adjacent to wj nor wi is adjacent to vi. If x ∈ [i+1, i+2), then the intervals

of wi and wj intersect, which is not possible. Therefore, G is T -free and this completes

the proof. �

We proceed to our main result.
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Theorem 7. A twin-free graph G is a mixed unit interval graph if and only if G is a

{K∗
2,3} ∪ R ∪ S ∪ S ′ ∪ T -free interval graph.

Proof of Theorem 7: We use a similar approach as in [9]. By Lemma 6, we know if G is a

twin-free mixed unit interval graph, then G is a {K∗
2,3}∪R∪S∪S ′∪T -free interval graph.

Let G be a twin-free {K∗
2,3} ∪ R ∪ S ∪ S ′ ∪ T -free interval graph. We show that G is a

mixed proper interval graph. By Theorem 4, this proves Theorem 7. Since G is an interval

graph, G has an I++-representation I. As in [9] we call a pair (u, v) of distinct vertices a

bad pair if I(u) ⊆ I(v). Let I be such that the number of bad pairs is as small as possible.

If I has no bad pair, then we are done by Theorem 1. Hence we assume that there is at

least one bad pair. The strategy of the proof is as follows. Claim 1 to Claim 6 collect

properties of G and I, before we modify our interval representation of G to show that G

is a mixed proper interval graph. In Claim 7 to Claim 10 we prove that our modification

of the interval representation preserves all intersections and non-intersections. Claim 1 to

Claim 3 are similar to Claim 1 to Claim 3 in [9], respectively. For the sake of completeness

we state the proofs here.

Claim 1. If (u, v) is a bad pair, then there are vertices x and y such that ℓ(v) ≤ r(x) < ℓ(u)

and r(u) < ℓ(y) ≤ r(v).

Proof of Claim 1: For contradiction, we assume the existence of a bad pair (w, v) such that

there is no vertex x with ℓ(v) ≤ r(x) < ℓ(w). A symmetric argument implies the existence

of y. Let u be a vertex such that ℓ(u) is as small as possible with respect to I(u) ⊆ I(v).

By our assumption there is no vertex x such that ℓ(v) ≤ r(x) < ℓ(u). Let ǫ be the smallest

distance between two distinct endpoints of intervals of I. Let I ′ : V (G) → I++ be such that

I ′(u) = [ℓ(v)− ǫ/2, r(u)], I ′(v) = [ℓ(v), r(v) + ǫ/2], and I ′(z) = I(z) for z ∈ V (G) \ {u, v}.

By the choice of u and ǫ, we conclude that I ′ is an interval representation of G, but I ′

has less bad pairs than I, which is a contradiction to our choice of I. This completes the

proof. �

Let a1 and a2 be two distinct vertices. Claim 1 implies that ℓ(a1) 6= ℓ(a2) and r(a1) 6=

r(a2). Suppose ℓ(a1) < ℓ(a2). If r(a1) = ℓ(a2), then let ǫ be as in the proof of Claim

1 and I ′ : V (G) → I++ be such that I ′(a1) = [ℓ(a1), r(a1) + ǫ/2], and I ′(z) = I(z) for

z ∈ V (G) \ {a1}. By the choice of ǫ, we conclude that I ′ is an interval representation of

G with as many bad pairs as I. Therefore, we assume without loss of generality that we

chose I such that all endpoints of the intervals of I are distinct. Hence the inequalities in

Claim 1 are strict inequalities.

Claim 2. If (u,w) and (v,w) are bad pairs, then u = v, that is, no interval contains two

distinct intervals.

Proof of Claim 2: For contradiction, we assume that there are distinct vertices u′, v′ and

w such that (u′, w) and (v′, w) are bad pairs. Let u be a vertex such that (u,w) is a bad

pair and ℓ(u) is as small as possible. Let v be a vertex such that (v,w) is a bad pair

7



and r(v) is as large as possible. Claim 1 ensures two distinct vertices x and y such that

ℓ(w) < r(x) < ℓ(u) and r(v) < ℓ(y) < r(w).

If u 6= v and I(u) ∩ I(v) = ∅, then G[{w, x, u, v, y}] is isomorphic to R0, which is a

contradiction. If u 6= v and I(u)∩I(v) 6= ∅, then in the graph G[{w, x, u, v, y}] the vertices

u and v are twins. Since G is twin-free, u and v do not have the same closed neighborhood

in G and hence there is a vertex z, which is adjacent to say u (by symmetry) and not to

v. Since I(u) ⊂ I(w), z is adjacent to w. If z is not adjacent to x, then G[{w, x, z, v, y}]

is isomorphic to R0 and if z is adjacent to x, then G[{w, x, z, u, v, y}] is isomorphic to S1,

which is a contradiction.

If u = v, then there is a vertex z such that (z, u) is a bad pair because u′ or v′ is a

suitable choice. We choose z such that ℓ(z) is minimal. Claim 1 ensures the existence of

a vertex x′ such that ℓ(u) < r(x′) < ℓ(z). Note that the choice of u and z guarantees

ℓ(x′) < ℓ(w), so xx′ ∈ E(G). Therefore, G[{w, x, x′, u, z, y}] is isomorphic to S1, which is

a contradiction. This completes the proof of Claim 2. �

Claim 3. If (u, v) and (u,w) are bad pairs, then v = w, that is, no interval is contained

in two distinct intervals.

Proof of Claim 3: Claim 2 implies that neither (v,w) nor (w, v) is a bad pair. Thus we

may assume ℓ(w) < ℓ(v) < ℓ(u) and r(u) < r(w) < r(v). By Claim 1, there are vertices

x and y such that ℓ(v) < r(x) < ℓ(u) and r(u) < ℓ(y) < r(w). Now, G[{v,w, x, u, y}] is

isomorphic to K∗
2,3, which is a contradiction and completes the proof of Claim 3. �

A vertex x is to the left (respectively right) of a vertex y (in I), if r(x) < ℓ(y)

(respectively r(y) < ℓ(x)). Two adjacent vertices x and y are distinguishable by vertices

to the left (respectively right) of them, if there is a vertex z, which is adjacent to exactly

one of them and to the left (respectively right) of one of them. The vertex z distinguishes

x and y. Next, we show that for a bad pair (u, v) there is the structure as shown in Figure

7 in G. We introduce a positive integer ℓmax
u,v that, roughly speaking, indicates how large

this structure is.

For a bad pair (u, v) let v = X0
u,v and let X1

u,v be the set of vertices that are adjacent

to v and to the left of u. Let yu,v be a vertex to the right of u and adjacent to v. Claim

1 guarantees |X1
u,v| ≥ 1 and the existence of yu,v. If |X1

u,v| = 1, then let ℓmax
u,v = 1 and we

stop here. Suppose |X1
u,v| ≥ 2. Since G is R0-free, X

1
u,v is a clique and since G is S′

1-free,

we conclude |X1
u,v| = 2. Let {x, x′} = X1

u,v such that r(x) < r(x′). For contradiction, we

assume that there is a vertex z to the right of x that distinguishes x and x′. We conclude

ℓ(v) < ℓ(z). By Claim 2, r(v) < r(z). This implies that (u, z) is a bad pair, which

contradicts Claim 3. Thus z does not exist. In addition (x, x′) is not a bad pair, otherwise

Claim 1 guarantees a vertex z such that r(x) < ℓ(z) < r(x′), which is a contradiction. Thus

ℓ(x) < ℓ(x′) < r(x) < r(x′). Let x1u,v = x and x1u,v
′
= x′. Note that NG(x

1
u,v

′
) ⊂ NG(x

1
u,v).

Let X2
u,v = NG(x

1
u,v) \ NG(x

1
u,v

′
). Note that all vertices in X2

u,v are to the left of

x1u,v
′
. Since G is twin-free, |X2

u,v| ≥ 1. If |X2
u,v| = 1, then let ℓmax

u,v = 2 and we stop here.
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v

u

x1u,v

x1u,v
′

x
ℓmax

u,v −1
u,v

x
ℓmax
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u,v

′

x
ℓmax

u,v
u,v

y1u,v

y1u,v
′

y
rmax

u,v −1
u,v

y
rmax

u,v −1
u,v

′

y
rmax

u,v
u,v

X0
u,v

X1
u,vX

ℓmax

u,v −1
u,v

X
ℓmax

u,v
u,v

Y 1
u,v Y

rmax

u,v −1
u,v

Y
rmax

u,v
u,v

v

u

X1
u,v

X2
u,v

X3
u,v Y 1

u,v

Figure 7: The structure in G forced by a bad pair (u, v).

Suppose |X2
u,v| ≥ 2. Since G is R1-free, X

2
u,v is a clique and since G is S′

2-free, we conclude

|X2
u,v| = 2. Let {x, x′} = X2

u,v such that r(x) < r(x′). For contradiction, we assume that

there is a vertex z to the right of x that distinguishes x and x′. Since z /∈ X2
u,v, we conclude

ℓ(x1u,v
′
) < r(z). If r(z) < ℓ(v), then G[{z, x, x′, x1u,v, x

1
u,v

′
, v, u, yu,v}] is isomorphic to S2,

which is a contradiction. Thus ℓ(v) < r(z). If r(z) < ℓ(u), then |X1
u,v| = 3, which is a

contradiction. Thus ℓ(u) < r(z). If r(u) < r(z), then (u, v) and (u, z) are bad pairs, which

is a contradiction to Claim 3. Thus ℓ(u) < r(z) < r(u). Now G[{z, x′, x1u,v
′
, v, u, yu,v}] is

isomorphic to T0,0, which is the final contradiction.

Note that (x, x′) is not a bad pair, otherwise Claim 1 guarantees a vertex z such

that r(x) < ℓ(z) < r(x′), which is a contradiction. Thus ℓ(x) < ℓ(x′) < r(x) < r(x′). Let

x2u,v = x and x2u,v
′
= x′. Note that NG(x

2
u,v

′
) ⊂ NG(x

2
u,v). Let X

3
u,v = NG(x

2
u,v)\NG(x

2
u,v

′
).

Note that all vertices in X3
u,v are to the left of x2u,v

′
.

We assume that for k ≥ 3, i ∈ [k − 1] and j ∈ [k]

• we defined Xj
u,v,

• |Xi
u,v| = 2 holds,

• we defined xiu,v and xiu,v
′
,

• ℓ(xiu,v) < ℓ(xiu,v
′
) < r(xiu,v) < r(xiu,v

′
) holds,

• the vertices in Xi+1
u,v are to the left of xiu,v

′
, and

• the vertices in Xi
u,v are not distinguishable to the right.
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If |Xk
u,v| = 1, then let ℓmax

u,v = k and we stop here. Suppose |Xk
u,v| ≥ 2. Since G is

Rk−1-free, X
k
u,v is a clique and since G is S′

k-free, we obtain |Xk
u,v| = 2. Let {x, x′} = Xk

u,v

such that r(x) < r(x′). For contradiction, we assume that there is a vertex z to the

right of x that distinguishes x and x′. Since z /∈ Xk
u,v, we conclude ℓ(xk−1

u,v
′
) < r(z). If

r(z) < ℓ(xk−2
u,v ), then G[{z, x, x′, v, u, yu,v} ∪

⋃k−1
i=1 Xi

u,v] is isomorphic to Sk, which is a

contradiction. Thus ℓ(xk−2
u,v ) < r(z). If r(z) < ℓ(xk−2

u,v
′
), then |Xk−1

u,v | = 3, which is a

contradiction. Thus ℓ(xk−2
u,v

′
) < r(z). If r(z) < ℓ(xk−3

u,v ), then G[{z, x′, xk−1
u,v

′
, v, u, yu,v} ∪

⋃k−2
i=1 Xi

u,v] is isomorphic to Tk−3,0, which is a contradiction. Thus ℓ(xk−3
u,v ) < r(z). If

r(z) < r(xk−2
u,v ), then |Xk−2

u,v | = 3, which is a contradiction. Thus r(xk−2
u,v ) < r(z) and hence

(xk−1
u,v

′
, z) and (xk−2

u,v , z) are bad pairs, which is a contradiction to Claim 2. Thus x, x′ are

not distinguishable to the right. We obtain that (x, x′) is not a bad pair, otherwise Claim

1 guarantees a vertex z such that r(x) < ℓ(z) < r(x′), which is a contradiction. Thus

ℓ(x) < ℓ(x′) < r(x) < r(x′). Let xku,v = x and xku,v
′
= x′. Note that NG(x

k
u,v

′
) ⊂ NG(x

k
u,v).

Let Xk+1
u,v = NG(x

k
u,v) \NG(x

k
u,v

′
). Note that all vertices in Xk+1

u,v are to the left of xku,v
′
.

By induction this leads to the following properties.

Claim 4. If (u, v) is a bad pair, k ∈ [ℓmax
u,v − 1], then the following holds:

(a) |Xk
u,v| = 2.

(b) The vertices in Xk
u,v are not distinguishable by vertices to the right of them.

(c) We have ℓ(xiu,v) < ℓ(xiu,v
′
) < r(xiu,v) < r(xiu,v

′
), that is (xku,v, x

k
u,v

′
) and (xku,v

′
, xku,v)

are not bad pairs.

Note that ℓmax
u,v is the smallest integer k such that |Xk−1

u,v | = 2 and |Xk
u,v| = 1.

Claim 5. If (u, v) is a bad pair and k ∈ [ℓmax
u,v − 1], then the following holds.

(a) xku,v
′
is not contained in a bad pair.

(b) There is no vertex z ∈ V (G) such that (xku,v, z) is a bad pair.

Proof of Claim 5: (a): For contradiction, we assume that there is a vertex z ∈ V (G) such

that (xku,v
′
, z) is a bad pair. Trivially z /∈ {{v, y, u}∪

⋃ℓmax

u,v

i=1 Xi
u,v}. We have r(xku,v

′
) < r(z)

and ℓ(z) < ℓ(xku,v
′
). In addition ℓ(xku,v) < ℓ(z), otherwise (xku,v, z) is also a bad pair, which

contradicts Claim 2. Claim 1 implies the existence of a vertex a, such that ℓ(z) < r(a) <

ℓ(xku,v
′
).

Let k = 1. If r(z) < ℓ(u), then z ∈ X1
u,v, which is a contradiction to |X1

u,v| = 2. Thus

ℓ(u) < r(z). If r(z) < r(u), then G[{a, z, xku,v
′
, u, v, y}] is isomorphic to T0,0, which is a

contradiction. Thus r(u) < r(z) and now (u, z) is a bad pair, which is a contradiction to

Claim 2.

Let k ≥ 2. If r(z) < ℓ(xk−1
u,v

′
), then z ∈ Xk

u,v, which is a contradiction to |Xk
u,v| =

2. Thus ℓ(xk−1
u,v

′
) < r(z). If r(z) < ℓ(xk−2

u,v ), then G[{a, z, xku,v
′
, v, u, y} ∪

⋃k−1
i=1 Xi

u,v] is

isomorphic to Tk−1,0. Thus ℓ(xk−2
u,v ) < r(z). If r(z) < r(xk−1

u,v ), then z ∈ Xk−1
u,v , which is a

10



contradiction to |Xk−1
u,v | = 2. Thus r(xk−1

u,v ) < r(z), but now (xk−1
u,v , z) is also a bad pair,

which is a contradiction to Claim 2 and completes this part of the proof.

For contradiction, we assume that there is a vertex z ∈ V (G) such that (z, xku,v
′
) is a

bad pair. By Claim 1, ℓ(xku,v
′
) < ℓ(z) and r(z) < r(xku,v

′
). By Claim 3, r(xku,v) < r(z).

Let yz be the vertex guaranteed by Claim 1 such that r(z) < ℓ(yz), but this contradicts

Claim 4 (b).

(b): For contradiction, we assume the existence of a vertex z ∈ V (G) such that (xku,v, z)

is a bad pair. Trivially z 6= xku,v
′
. If r(z) < r(xku,v

′
), then this contradicts Claim 4 (a), that

is |Xk
u,v| = 2 and if r(xku,v

′
) < r(z), then (xku,v

′
, z) is also a bad pair and this contradicts

Claim 2. This completes the proof of Claim 5. �

For a bad pair (u, v) define Y k
u,v as Xk

u,v by interchanging in the definition right by left.

Let rmax
u,v be the smallest integer k such that |Y k−1

u,v | = 2 and |Y k
u,v| = 1. By symmetry, one

can prove a “y”-version of Claim 4, Claim 5 and Claim 6 (a) and (b). Let {yku,v, y
k
u,v

′
} =

Y k
u,v such that NG(y

k
u,v

′
) ⊂ NG(y

k
u,v) for k ≤ rmax

u,v − 1.

Claim 6. Let (u, v) and (w, z) be bad pairs and k ∈ [ℓmax
u,v ].

(a) If Xk
u,v ∩X k̃

w,z 6= ∅, then xk−1
u,v = xk̃−1

w,z for k̃ ∈ [ℓmax
w,z ].

(b) If Xk
u,v ∩X k̃

w,z 6= ∅, then Xk
u,v = X k̃

w,z for k̃ ∈ [ℓmax
w,z ].

(c) If Xk
u,v ∩ Y k̃

w,z 6= ∅, then Xk
u,v ∩ Y k̃

w,z = xku,v = yk̃w,z for k̃ ∈ [rmax
w,z ]

Proof of Claim 6: (a): For contradiction we assume xk−1
u,v 6= xk̃−1

w,z . Without loss of

generality we assume ℓ(xk−1
u,v ) < ℓ(xk̃−1

w,z ). Note that xk̃−1
w,z is adjacent to the vertices in

Xk
u,v ∩X k̃

w,z. Since the vertices in Xk
u,v are not distinguishable to the right, we conclude

ℓ(xk̃−1
w,z ) < r(xku,v).

First, we suppose k = 1. Thus v = xk−1
u,v . If r(xk̃−1

w,z ) < r(v), then (xk̃−1
w,z , v) is a bad pair

and this contradicts Claim 2 and if r(xk̃−1
w,z ) > r(v), then (u, xk̃−1

w,z ) is a bad pair and this

contradicts Claim 3. Now we suppose k ≥ 2. If r(xk−1
u,v

′
) < r(xk̃−1

w,z ), then (xk−1
u,v

′
, xk̃−1

w,z ) is a

bad pair, which contradicts Claim 5 (a). Thus r(xk̃−1
w,z ) < r(xk−1

u,v

′
). If r(xk−1

u,v ) < r(xk̃−1
w,z ),

then xk̃−1
w,z ∈ Xk−1

u,v , which implies |Xk−1
u,v | = 3 and hence contradicts Claim 4 (a). Thus

r(xk̃−1
w,z ) < r(xk−1

u,v ). Therefore, (xk̃−1
w,z , x

k−1
u,v ) is a bad pair. Claim 1 implies the existence

of a vertex a which is to the left of xk̃−1
w,z and adjacent to xk−1

u,v . Thus a ∈ Xk
u,v. However,

r(a) < r(xku,v), which contradicts Claim 4 (c). This is the final contradiction and this

completes the proof of Claim 6 (a).

(b): If |Xk
u,v| = |X k̃

w,z| = 1, then there is nothing to show. Thus we assume, |Xk
u,v| = 2.

Note that by Claim 6 (a), xk−1
u,v = xk̃−1

w,z . If x
k
u,v

′
∈ X k̃

w,z, then xku,v ∈ X k̃
w,z and we are done.

Thus we assume xku,v
′
/∈ X k̃

w,z. Since Xk
u,v ∩X k̃

w,z 6= ∅, we conclude xku,v ∈ X k̃
w,z. Hence w

or xk̃−1
w,z

′
distinguishes the vertices in Xk

u,v to the right of them, which is a contradiction

to Claim 4 (b). This completes the proof.
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(c): If |Xk
u,v| = |Y k̃

w,z| = 1, then there is nothing to show. Thus we assume by symmetry

|Y k̃
w,z| = 2. First, we assume for contradiction yk̃w,z

′
= xku,v. Note that ℓ(yk̃−1

w,z ) < ℓ(yk̃w,z

′
)

and r(yk̃−1
w,z ) < r(yk̃w,z

′
).

Suppose |Xk
u,v| = 1. If ℓ(xk−1

u,v ) < r(yk̃−1
w,z ), then yk̃−1

w,z ∈ Xk
u,v, which is a contradiction to

|Xk
u,v| = 1. Thus r(yk̃−1

w,z ) < ℓ(xk−1
u,v ). Note that ℓ(yk̃w,z

′
) < ℓ(yk̃w,z) < r(yk̃−1

w,z ) and r(yk̃w,z

′
) <

r(yk̃w,z). Suppose k = 1. If r(yk̃w,z) < ℓ(u), then yk̃w,z ∈ Xk
u,v, which is a contradiction

to |Xk
u,v| = 1. If ℓ(u) < r(yk̃w,z) < r(u), then G[{x1w,z, w, z, u, v, y

1
u,v} ∪

⋃k̃
i=1 Y

i
w,z] is

isomorphic to T
k̃,0, which is a contradiction. If r(u) < r(yk̃w,z), then (u, yk̃w,z) is a bad

pair, which is a contradiction to Claim 3. Now we suppose k ≥ 2. If r(yk̃w,z) < ℓ(xk−1
u,v

′
),

then yk̃w,z ∈ Xk
u,v, which is a contradiction to |Xk

u,v| = 1. If ℓ(xk−1
u,v

′
) < r(yk̃w,z) < ℓ(xk−2

u,v ),

then G[{x1w,z, w, z, u, v, y
1
u,v} ∪

⋃k̃
i=1 Y

i
w,z ∪

⋃k−1
i=1 Xi

u,v] is isomorphic to T
k̃,k−1, which is a

contradiction. If ℓ(xk−2
u,v ) < r(yk̃w,z) < ℓ(xk−1

u,v
′
), then yk̃w,z ∈ Xk−1

u,v and hence |Xk−1
u,v | = 3,

which is a contradiction to Claim 4 (a). If ℓ(xk−1
u,v

′
) < r(yk̃w,z), then (xk−1

u,v
′
, yk̃w,z) is a bad

pair, which is a contradiction to Claim 5 (a).

This shows |Xk
u,v| 6= 1 and thus we suppose |Xk

u,v| = 2. If ℓ(xk−1
u,v ) < r(yk̃−1

w,z ), then

yk̃−1
w,z ∈ Xk

u,v, which is a contradiction to |Xk
u,v| = 2. Thus r(yk̃−1

w,z ) < ℓ(xk−1
u,v ). Note that

ℓ(yk̃w,z

′
) < ℓ(yk̃w,z) < r(yk̃−1

w,z ) and r(yk̃w,z

′
) < r(yk̃w,z). If ℓ(x

k
u,v

′
) < r(yk̃−1

w,z ), then xku,v
′
= yk̃w,z.

Thus {xku,v
′
, xku,v} = Y k̃

w,z. By Claim 4 (b), these vertices are not distinguishable to the right

and to the left. Thus they are twins, which is a contradiction. Thus r(yk̃−1
w,z ) < ℓ(xku,v

′
).

Note that ℓ(yk̃w,z

′
) < ℓ(yk̃w,z) < r(yk̃−1

w,z ). If r(yk̃w,z) < r(xku,v
′
), then yk̃w,z ∈ Xk

u,v, which

is a contradiction to |Xk
u,v| = 2 and if r(xku,v

′
) < r(yk̃w,z), then (xku,v

′
, yk̃w,z) is a bad pair,

which is a contradiction to Claim 5 (a). This shows yk̃w,z

′
6= xku,v. A totally symmetric

argumentation shows yk̃w,z 6= xku,v
′
.

To complete the proof, we show that yk̃w,z

′
6= xku,v

′
. For contradiction, we assume

yk̃w,z

′
= xku,v

′
. If ℓ(xk−1

u,v ) < r(yk̃−1
w,z ), then xk−1

u,v = yk̃w,z. Thus G[{x1w,z, w, z, u, v, y
1
u,v} ∪

⋃k̃
i=1 Y

i
w,z ∪

⋃k−1
i=1 Xi

u,v] is isomorphic to R
k+k̃−1, which is a contradiction. Hence we as-

sume r(yk̃−1
w,z ) < ℓ(xk−1

u,v ). If ℓ(xku,v) < ℓ(yk̃−1
w,z ), then (yk̃−1

w,z , x
k
u,v) is a bad pair, which is

a contradiction to the “y”-version of Claim 5 (b). Hence we assume ℓ(yk̃−1
w,z ) < ℓ(xku,v).

If xku,v ∈ Y k̃
w,z, then this is a contradiction to the “y”-version of Claim 4 (a), because

ℓ(xku,v) < ℓ(yk̃w,z

′
). Suppose k̃ = 1. Since xku,v /∈ Y k̃

w,z, we conclude xku,vw ∈ E(G). If

ℓ(w) < ℓ(xku,v), then G[{x1w,z, w, z, u, v, y
1
u,v} ∪

⋃k
i=1 X

i
u,v] is isomorphic to Tk,0, which

is a contradiction. If ℓ(xku,v) < ℓ(w), then (w, xku,v) is a bad pair, which is a con-

tradiction to Claim 3. Hence we suppose k̃ ≥ 2. Note that ℓ(xku,v) < r(yk̃−1
w,z

′
). If

r(yk̃−2
w,z ) < ℓ(xku,v), then G[{x1w,z, w, z, u, v, y

1
u,v} ∪

⋃k̃−1
i=1 Y i

w,z ∪
⋃k

i=1 X
i
u,v] is isomorphic

to Tk̃−1,k. If ℓ(yk̃−1
w,z

′
) < ℓ(xku,v) < r(yk̃−2

w,z ), then xku,v ∈ Y k̃−1
w,z , which is a contradiction to

the “y”-version of Claim 4 (a). If ℓ(xku,v) < ℓ(yk̃−1
w,z

′
), then (yk̃−1

w,z

′
, xku,v) is a bad pair, which

is a contradiction to the “y”-version of Claim 5 (a). This completes the proof of Claim 6.

�

Next, we define step by step new interval representations of G as follows. First we
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shorten the intervals of Xk
u,v for every bad pair (u, v) and k ∈ [ℓmax

u,v ]. Let I ′ : V (G) → I++

be such that I ′(x) = [ℓ(x), ℓ(xk−1
u,v )] if x ∈ Xk

u,v for some bad pair (u, v) and I ′(x) =

I(x) otherwise. By Claim 6 (a), I ′ is well-defined; that is, if x ∈ Xk
u,v ∩ X k̃

w,z, then

ℓ(xk−1
u,v ) = ℓ(xk̃−1

w,z ). Let ℓ
′(x) and r′(x) be the left and right endpoint of the interval I ′(x)

for x ∈ V (G), respectively.

Claim 7. I ′ is an interval representation of G.

Proof of Claim 7: Trivially, if two intervals do not intersect in I, then they do not intersect

in I ′. For contradiction, we assume that there are two vertices a, b ∈ V (G) such that

I(a) ∩ I(b) 6= ∅ and I ′(a) ∩ I ′(b) = ∅. At least one interval is shortened by changing

the interval representation. Say a ∈ Xk
u,v for some bad pair (u, v) and k ∈ [ℓmax

u,v ]. Hence

b 6= xk−1
u,v and ℓ(xk−1

u,v ) < ℓ(b) and by Claim 4 (b), ℓ(b) < r(xku,v). We conclude that (b, xk−1
u,v )

is not a bad pair, otherwise Claim 1 implies the existence of a vertex z ∈ Xk
u,v to the left

of b, but z /∈ {xku,v, x
k
u,v

′
}, which is a contradiction to Claim 4 (a). Thus r(xk−1

u,v ) < r(b).

If k = 1, then (u, b) is also a bad pair, which is a contradiction to Claim 3. Thus k ≥ 2.

Since ℓ(b) < r(xku,v), we obtain ℓ(b) < ℓ(xk−1
u,v

′
). Since (xk−1

u,v
′
, b) is not a bad pair by Claim

5 (a), r(b) < r(xk−1
u,v

′
). Thus b ∈ Xk−1

u,v , which is a contradiction to |Xk−1
u,v | = 2. �

Claim 8. The change of the interval representation of G from I to I ′ creates no new bad

pair (a, b) such that {a, b} 6= Xk
u,v for some k ∈ [ℓmax

u,v ] and some bad pair (u, v).

Proof of Claim 8: For contradiction, we assume that (a, b) is a new bad pair and {a, b} 6=

Xk
u,v. Since (a, b) is a new bad pair, I ′(a) is a proper subset of I(a). Thus let a ∈ Xk

u,v and

b /∈ Xk
u,v. If a ∈ Xk

u,v and |Xk
u,v| = 2, then ℓ(b) < ℓ(xku,v

′
) and r′(a) = ℓ(xk−1

u,v ) < r(b) <

r(xku,v
′
), because of Claim 5 (a). Thus b ∈ Xk

u,v, which is a contradiction. If a ∈ Xk
u,v and

|Xk
u,v| = 1, then ℓ(b) < ℓ(xku,v) and r′(a) = ℓ(xk−1

u,v ) < r(b) < r(xku,v). Thus b ∈ Xk
u,v, which

is the final contradiction. �

In a second step, we shorten the intervals of Y i
u,v for every bad pair (u, v) and i ∈ [rmax

u,v ].

Let I ′′ : V (G) → I++ be such that I ′′(y) = [r′(yk−1
u,v ), r′(y)] if y ∈ Y k

u,v for some bad pair

(u, v) and I ′′(y) = I ′(y) otherwise. Note that bad pairs are only referred to the interval

representation I. Let ℓ′′(x) and r′′(x) be the left and right endpoints of the interval I ′′(x)

for x ∈ V (G), respectively.

Claim 9. I ′′ is an interval representation of G.

Proof of Claim 9: Again, two intervals do not intersect in I ′′ if they do not intersect in

I ′ (and in I). For contradiction, we assume that there are two vertices a, b ∈ V (G) such

that I(a)∩ I(b) 6= ∅ and I ′′(a)∩ I ′′(b) = ∅. Again, at least one interval is shortened by the

change of the interval representation. Say a ∈ Y k
u,v for some bad pair (u, v) and k ∈ [rmax

u,v ].

Suppose a ∈ X k̃
w,z for some bad pair (w, z) and k̃ ∈ [ℓmax

w,z − 1]. By Claim 6 (c), we

have a = xk̃w,z = yku,v. If yk−1
u,v = xk̃+1

w,z , then we did not change the interval of a. Thus we

13



assume yk−1
u,v 6= xk̃+1

w,z . Now ℓ(yku,v) < r(b) < r(yk−1
u,v ). The rest of the proof is similar to a

symmetric version of the proof of Claim 7.

If a /∈ X k̃
ũ,ṽ, then r(b) < r(yk−1

u,v ) and ℓ(yku,v
′
) < r(b), if yku,v

′
exists, otherwise ℓ(yku,v) <

r(b). If ℓ(yk−1
u,v ) < ℓ(b), then by Claim 8, (b, yk−1

u,v ) is a bad pair and by Claim 5, I(b) = I ′(b).

Thus Claim 1 implies the existence of a vertex, which contradicts the “y”-version of Claim

4 (a) and (b) and hence we suppose ℓ(b) ≤ ℓ(yk−1
u,v ). Thus k ≥ 2, otherwise (u′, b) is

a bad pair, which contradicts Claim 3. If ℓ(b) ≤ ℓ(yk−1
u,v

′
), then (yk−1

u,v
′
, b) is a bad pair,

which contradicts the “y”-version of Claim 5 (a). Therefore, ℓ(yk−1
u,v

′
) < ℓ(b), which implies

b ∈ Y k−1
u,v , but b /∈ {yk−1

u,v , yk−1
u,v

′
}, which contradicts the “y”-version of Claim 4 (a). �

Claim 10. The change of the interval representation of G from I to I ′′ creates no new bad

pair (a, b) such that {a, b} 6= Xk
u,v for some k ∈ [ℓmax

u,v ] or {a, b} 6= Y i
u,v for some i ∈ [rmax

u,v ]

and some bad pair (u, v).

Proof of Claim 10: For contradiction, we assume that (a, b) is a new bad pair and Y i
u,v 6=

{a, b} 6= Xk
u,v. Thus a ∈ Xk

u,v or a ∈ Y i
u,v and b /∈ Xk

u,v or b /∈ Y i
u,v, respectively. If

a ∈ Xk
u,v and |Xk

u,v| = 2, then ℓ(b) < ℓ(xku,v
′
) and ℓ(xk−1

u,v ) < r(b) < r(xku,v
′
). Thus

b ∈ Xk
u,v, which is a contradiction. If a ∈ Xk

u,v and |Xk
u,v| = 1, then ℓ(b) < ℓ(xku,v) and

ℓ(xk−1
u,v ) < r(b) < r(xku,v). Thus b ∈ Xk

u,v, which is a contradiction. If a ∈ Y i
u,v the proof is

almost exactly the same. �

Now we are in a position to blow up some intervals to open or half-open intervals to

get a mixed proper interval graph. Let I∗ : V (G) → I be such that

I∗(x) =























(ℓ(v), r(v)), if (x, v) is a bad pair,

(ℓ′′(xku,v), r
′′(xku,v)], if x = xku,v

′
for some bad pair (u, v) and k ∈ [ℓmax

u,v − 1],
[

ℓ′′(yiu,v), r
′′(yiu,v)

)

, if x = yiu,v
′
for some bad pair (u, v) and i ∈ [rmax

u,v − 1], and

[ℓ′′(x), r′′(x)] , else.

Note that I∗ is well-defined by Claim 5 and Claim 6; that is, the four cases in the definition

of I∗ induces a partition of the vertex set of G. Moreover, the interval representation I∗

defines a mixed proper interval graph. As a final step, we prove that I ′′ and I∗ define the

same graph. Since we make every interval bigger, we show that for every two vertices a, b

such that I ′′(a) ∩ I ′′(b) = ∅, we still have I∗(a) ∩ I∗(b) = ∅. For contradiction, we assume

the opposite. Let a, b be two vertices such that I ′′(a)∩ I ′′(b) = ∅ and I∗(a)∩ I∗(b) 6= ∅. It

follows by our approach and definition of our interval representation I ′′, that both a and

b are blown up intervals.

First we suppose a and b are intervals that are blown up to open intervals, that is, there

are distinct vertices ã and b̃ such that (a, ã) and (b, b̃) are bad pairs. Furthermore, the

intervals of ã and b̃ intersect not only in one point. By Claim 2 and 3, we assume without

loss of generality, that ℓ′′(ã) < ℓ′′(b̃) < r′′(ã) < r′′(b̃). Therefore, by the construction of

I ′′, we obtain a is adjacent to b̃ and ã is adjacent to b, and in addition they intersect

14
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Figure 8: The class S ′′
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Figure 9: The graph G1.

in one point, respectively. Now, G[{x1a,ã, a, ã, b, b̃, y
1
b,b̃
}] is isomorphic to T0,0, which is a

contradiction.

Now we suppose a is blown up to an open interval and b is blown up to an open-

closed interval (the case closed-open is exactly symmetric). Let ã be the vertex such that

(a, ã) is a bad pair. Let b̃, u, v ∈ V (G) and k ∈ N such that {b, b̃} = Xk
u,v. We suppose

ã 6= b̃. We conclude ℓ′′(ã) < ℓ′′(b̃) < r′′(ã) < r′′(b̃). As above, we conclude a is adjacent

to b̃ and ã is adjacent to b, and in addition they intersect in one point, respectively.

Thus G[{x1a,ã, a, ã, v, u, y
1
u,v}∪

⋃k
i=1X

i
u,v] induces a Tk,0, which is a contradiction. Now we

suppose ã = b̃. We conclude that G[{x1a,ã, a, v, u, y
1
u,v} ∪

⋃k
i=1X

i
u,v] is isomorphic to Rk,

which is a contradiction.

It is easy to see that a and b cannot be both blown up to closed-open or both open-

closed intervals, because G is Rk-free for k ≥ 0 and the definition of I ′′.

Therefore, we consider finally the case that a is blown up to a closed-open and b to an

open-closed interval. Let ã, b̃, u, v, w, z ∈ V (G) and k, k̃ ∈ N such that {a, ã} = Y k
u,v and

{b, b̃} = X k̃
w,z. First we suppose ã 6= b̃. Again, we obtain ℓ′′(ã) < ℓ′′(b̃) < r′′(ã) < r′′(b̃)

and a is adjacent to b̃ and ã is adjacent to b, and furthermore they intersect in one

point, respectively. Thus G[{x1u,v , u, v, w, z, y
1
w,z}∪

⋃k
i=1 Y

i
u,v ∪

⋃k̃
i=1 X

i
w,z] is isomorphic to

T
k,k̃

. Next we suppose ã = b̃ and hence G[{x1u,v , u, v, w, z, y
1
w,z} ∪

⋃k
i=1 Y

i
u,v ∪

⋃k̃
i=1X

i
w,z] is

isomorphic to R
k+k̃

. This is the final contradiction and completes the proof of Theorem

7. �

In Theorem 7 we only consider twin-free U -graphs to reduce the number of case dis-

tinctions in the proof. In Corollary 8 we resolve this technical condition. See Figure 8 and

9 for illustration. Let S ′′ =
⋃∞

i=2{S
′′
i }.

Corollary 8. A graph G is a mixed unit interval graph if and only if G is a {G1} ∪ R ∪

S ∪ S ′′ ∪ T -free interval graph.

15



Proof of Corollary 8: We first show that {G1} ∪R ∪ S ∪ S ′′ ∪ T is the set of all twin-free

graphs that contain all graphs of {K∗
2,3} ∪ R ∪ S ∪ S ′ ∪ T and are minimal with subject

to induced subgraphs. We leave it as an exercise to show that G1 is the only minimal

twin-free and R0-free graph that contains K∗
2,3. Since all graphs in R∪S ∪T are twin-free

graphs, there is nothing to show.

Let now G ∈ S ′, that is G = S′
k for some k ∈ N. With the notation as in the proof of

Theorem 7, G can be interpreted as a bad pair (u, v) together with {y1u,v}∪
⋃k

i=1X
i
u,v such

that |Xi
u,v| = 2 if i < k and |Xk

u,v| = 3. Note that Claim 4 (b) of Theorem 7 is still true even

if G is not S ′-free. Therefore, we know that the vertices in Xi
u,v cannot be distinguished

by vertices from the right. Thus the vertices that distinguish the vertices in Xk
u,v are

only adjacent to Xk
u,v. Clearly, there are at least two of them, say a, b. Without loss of

generality a and b they do not have the same neighborhood on Xk
u,v. We conclude either

NG[Xk
u,v]

(a) ⊂ NG[Xk
u,v]

(b) or NG[Xk
u,v]

(b) ⊂ NG[Xk
u,v]

(a). We assume the first possibility.

Since 0 < |NG[Xk
u,v]

(x) ∩Xk
u,v| < 3 for x ∈ {a, b}, it follows |NG[Xk

u,v]
(a) ∩ Xk

u,v| = 1 and

|NG[Xk
u,v]

(b) ∩ Xk
u,v| = 2. Since G is Rk-free, a and b are adjacent. Now G[

⋃k
i=1X

i
u,v ∪

{a, b, u, v, y1u,v}] is isomorphic to S′′
k+1. This completes this part of the proof.

Let G be an interval graph. The relation ∼, where u ∼ v if and only if u and v

are twins, defines an equivalence relation on V (G). Let U ⊆ V (G) such that there is

exactly one vertex of every equivalence class in U . Therefore, G[U ] is a twin-free graph.

Furthermore, G contains an induced subgraph in {G1}∪R∪S ∪S ′′∪T if and only if G[U ]

contains an induced subgraph in {K∗
2,3} ∪R∪S ∪ S ′ ∪T . In addition, G[U ] is a twin-free

U -graph if and only if G is a U -graph. By Theorem 7 this completes the proof. �
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