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Abstract. We prove that for all k ≤ −1 an interval graph is −(k + 1)-Hamilton-connected if
and only if its scattering number is at most k. This complements a previously known fact that
an interval graph has a nonnegative scattering number if and only if it contains a Hamilton
cycle, as well as a characterization of interval graphs with positive scattering numbers in terms
of the minimum size of a path cover. We also give an O(n + m) time algorithm for computing
the scattering number of an interval graph with n vertices and m edges, which improves the
previously best-known O(n3) time bound for solving this problem. As a consequence of our two
results, the maximum k for which an interval graph is k-Hamilton-connected can be computed
in O(n+m) time.

1 Introduction

The Hamilton Cycle problem is that of testing whether a given graph has a Hamilton cycle,
i.e., a cycle passing through all the vertices. This problem is a notorious NP-complete prob-
lem, which remains NP-complete on many graph classes such as the classes of planar cubic
3-connected graphs [23], chordal bipartite graphs [37], and strongly chordal split graphs [37].
Bertossi and Bonucelli [6] proved that Hamilton Cycle is NP-complete for undirected path
graphs, double interval graphs and rectangle graphs, all three of which are classes of intersec-
tion graphs that contain the class of interval graphs. A graph G is an interval graph if it is the
intersection graph of a set of closed intervals on the real line, i.e., the vertices of G correspond
to the intervals and two vertices are adjacent in G if and only if their intervals have at least
one point in common. For interval graphs, Keil [29] showed in 1985 that Hamilton Cycle
can be solved in O(n + m) time, thereby strengthening an earlier result of Bertossi [5] for
proper interval graphs, which are interval graphs that have a closed interval representation,
in which no interval is properly contained in another one. The approach of Keil was later
extended by Damaschke [18] to an O(n5)-time algorithm for circular-arc graphs. By using
an algorithm that computes the so-called bump number of a graph, Deogun and Steiner [21]
proved that the Hamilton Cycle is solvable in polynomial time on cocomparability graphs.
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Recently, Corneil, Dalton and Habib [17] proved and further extended this result by using an
LexBFS search algorithm.

In this paper we examine whether the linear-time result of Keil [29] can be extended on
interval graphs to hold for other connectivity properties, which are NP-complete or coNP-
complete to verify in general. This line of research is well embedded in the literature. Before
surveying existing work for interval graphs and presenting our new results, we first give nec-
essary terminology, and in addition, we formally introduce the decision problems considered
(we also state their computational complexity for general graphs).

1.1 Connectivity Properties and Corresponding Decision Problems

We only consider undirected finite graphs with no self-loops and no multiple edges. We refer
to the textbook of Bondy and Murty [8] for any undefined graph terminology. Throughout
the paper we let n and m denote the number of vertices and edges, respectively, of the input
graph.

Let G = (V,E) be a graph. If G has a Hamilton cycle, i.e., a cycle containing all the
vertices of G, then G is hamiltonian. Recall that the corresponding NP-complete decision
problem is called Hamilton Cycle. If G contains a Hamilton path, i.e., a path containing
all the vertices of G, then G is traceable. In this case, the corresponding decision problem is
called the Hamilton Path problem, which is also well known to be NP-complete (cf. [22]).

The problems 1-Hamilton Path and 2-Hamilton Path are those of testing whether a
given graph has a Hamilton path that starts in some given vertex u or that is between two
given vertices u and v, respectively. The Longest Path problem is to compute the maximum
length of a path in a given graph. All three problems are NP-hard by a straightforward
reduction from Hamilton Path, the former two are indeed NP-complete.

Let G = (V,E) be a graph. If for each two distinct vertices s, t ∈ V there exists a Hamilton
path with end-vertices s and t, then G is Hamilton-connected . If G−S is Hamilton-connected
for every set S ⊂ V with |S| ≤ k for some integer k ≥ 0, then G is k-Hamilton-connected . Note
that a graph is Hamilton-connected if and only if it is 0-Hamilton-connected. The Hamilton
Connectivity problem is that of computing the maximum value of k for which a given
graph is k-Hamilton-connected. Dean [19] showed that already deciding whether k = 0 is
NP-complete. Kužel, Ryjáček and Vrána [31] proved this for k = 1. A straightforward gener-
alization of the latter result yields the same for any integer k ≥ 1. As an aside, the Hamilton
Connectivity problem has recently been studied by Kužel, Ryjáček and Vrána [31], who
showed that NP-completeness of the case k = 1 for line graphs would disprove the conjecture
of Thomassen that every 4-connected line graph is hamiltonian, unless P = NP.

A path cover of a graph G is a set of mutually vertex-disjoint paths P1, . . . , Pk with
V (P1) ∪ · · · ∪ V (Pk) = V (G). The size of a smallest path cover is denoted by π(G). The
Path Cover problem is to compute this number, whereas the 1-Path Cover problem is to
compute the size of a smallest path cover that contains a path in which some given vertex u
is an end-vertex. Because a Hamilton path of a graph is a path cover of size 1, Path Cover
and 1-Path Cover are NP-hard via a reduction from Hamilton Path and 1-Hamilton
Path, respectively.

We denote the number of connected components of a graph G = (V,E) by c(G). A subset
S ⊂ V is a vertex cut of G if c(G−S) ≥ 2, and G is called k-connected if the size of a smallest
vertex cut of G is at least k. We say that G is t-tough if |S| ≥ t · c(G − S) for every vertex
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cut S of G. The toughness τ(G) of a graph G = (V,E) was defined by Chvátal [16] as

τ(G) = min
{ |S|
c(G−S) : S ⊂ V and c(G− S) ≥ 2

}
,

where τ(G) =∞ if G is a complete graph. Note that τ(G) ≥ 1 if G is hamiltonian; the reverse
statement does not hold in general (see [8]). The Toughness problem is to compute τ(G) for
a graph G. Bauer, Hakimi and Schmeichel [4] showed that already deciding whether τ(G) = 1
is coNP-complete.

The scattering number of a graph G = (V,E) was defined by Jung [28] as

sc(G) = max{c(G− S)− |S| : S ⊂ V and c(G− S) ≥ 2},

where sc(G) = −∞ if G is a complete graph. We call a set S on which sc(G) is attained a
scattering set. Note that sc(G) ≤ 0 if G is hamiltonian. Shih, Chern and Hsu [38] showed that
sc(G) ≤ π(G) for all graphs G. Hence, sc(G) ≤ 1 if G is traceable. The Scattering Number
problem is to compute sc(G) for a graph G. The observation that sc(G) = 0 if and only if
τ(G) = 1 combined with the aforementioned result of Bauer, Hakimi and Schmeichel [4]
implies that already deciding whether sc(G) = 0 is coNP-complete.

1.2 Known Results for Interval Graphs

We first briefly discuss the results on testing hamiltonicity properties for proper interval
graphs. Besides giving a linear-time algorithm for solving Hamilton Cycle on proper in-
terval graphs, Bertossi [5] also showed that a proper interval graph is traceable if and only if
it is connected. His work was extended by Chen, Chang and Chang [13] who showed that a
proper interval graph is hamiltonian if and only if it is 2-connected, and that a proper interval
graph is Hamilton-connected if and only if it is 3-connected. In addition, Chen and Chang [12]
showed that a proper interval graph has scattering number at most 2 − k if and only if it is
k-connected.

Below we survey the results on testing hamiltonicity properties for interval graphs that
appeared after Keil [29] solved the Hamilton Cycle problem on interval graphs.

Testing for Hamilton cycles and Hamilton paths. The O(n + m) time algorithm of Keil [29]
makes use of an interval representation. One can find such a representation by executing
the O(n + m) time interval recognition algorithm of Booth and Lueker [9]. If an interval
representation is already given, Manacher, Mankus and Smith [36] showed that Hamilton
Cycle and Hamilton Path can be solved in O(n log n) time. In the same paper, they ask
whether the time bound for these two problems can be improved to O(n) time if a so-called
sorted interval representation is given. Chang, Peng and Liaw [11] answered this question in
the affirmative. They showed that this even holds for Path Cover.

When no Hamilton path exists. In this case, Longest Path and Path Cover are natural
problems to consider. Ioannidou, Mertzios and Nikolopoulos [26] gave an O(n4) algorithm
for solving Longest Path on interval graphs. Arikati and Pandu Rangan [1] and also Dam-
aschke [18] showed that Path Cover can be solved in O(n+m) time on interval graphs.

Damaschke [18] posed the complexity status of 1-Hamilton Path and 2-Hamilton
Path on interval graphs as open questions. The latter question is still open, but Asdre and
Nikolopoulos [3] answered the former question by presenting an O(n3) time algorithm that
solves 1-Path Cover, and hence 1-Hamilton Path, on interval graphs. Li and Wu [32]
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announced an O(n + m) time algorithm for 1-Path Cover on interval graphs. Deogun,
Kratsch and Steiner [20] showed that for all k ≥ 1 any cocomparability graph has a path
cover of size at most k if and only if its scattering number is at most k.7 Because every
interval graph is cocomparability (see e.g. [10]), this result holds for interval graphs as well.
Deogun, Kratsch and Steiner also proved that a cocomparability graph G is hamiltonian if
and only if sc(G) ≤ 0. Recall that the latter condition is equivalent to τ(G) ≥ 1. As such,
this result restricted to interval graphs is known (see e.g. [15]) to be implicit already in Keil’s
algorithm [29]. Hung and Chang [25] gave an O(n+m) time algorithm that finds a scattering
set of an interval graph G if sc(G) ≥ 0.

1.3 Our Results

When a Hamilton path does exist. In this case, Hamilton Connectivity is a natural problem
to consider. Isaak [27] used a closely related variant of toughness called k-path toughness to
characterize interval graphs that contain the kth power of a Hamiltonian path. However, the
aforementioned results of Deogun, Kratsch and Steiner [20] suggest that trying to characterize
k-Hamilton-connectivity in terms of the scattering number of an interval graph may be more
appropriate than doing this in terms of its toughness. We confirm this by showing that for
all k ≥ 0 an interval graph is k-Hamilton-connected if and only if its scattering number is at
most −(k + 1). Together with the results of Deogun, Kratsch and Steiner [20], this leads to
the following theorem.

Theorem 1. Let G be an interval graph. Then sc(G) ≤ k if and only if

(i) G has a path cover of size at most k when k ≥ 1

(ii) G has a Hamilton cycle when k = 0

(iii) G is −(k + 1)-Hamilton-connected when k ≤ −1.

Moreover, we give an O(n+m) time algorithm for solving Scattering Number on interval
graphs that also produces a scattering set. This improves the O(n3) time bound of a previous
algorithm due to Kratsch, Kloks and Müller [30]. Combining our result with Theorem 1 yields
that Hamilton Connectivity can be solved in O(n+m) time on interval graphs.

For proper interval graphs we can express k-Hamilton-connectivity also in the following
way. Recall that a proper interval graph has scattering number at most 2− k if and only if it
is k-connected [12]. Combining this result with Theorem 1 yields that for all k ≥ 0, a proper
interval graph is k-Hamilton-connected if and only if it is (k + 3)-connected.

1.4 Our Proof Method

In order to explain our approach we first need to introduce some additional terminology. A set
of p internally vertex-disjoint paths P1, . . . , Pp, all of which have the same end-vertices u and v
of a graph G, is called a stave or p-stave of G, which is spanning if V (P1)∪· · ·∪V (Pp) = V (G).
A spanning p-stave between two vertices u and v is also called a spanning (p;u, v)-path-system
[14], a p∗-container between u and v [24,34] or a spanning p-trail [32]. We call a spanning
p-stave between two vertices u and v of a graph an optimal spanning stave between u and v
if there does not exist a spanning (p+ 1)-stave between u and v.

7 This has also been shown by Lehel in an unpublished manuscript [35].
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By Menger’s Theorem (Theorem 9.1 in [8]), a graph G is p-connected if and only if there
exists a p-stave between any pair of vertices of G. It is also well-known that the existence of
a p-stave between two given vertices can be decided in polynomial time (cf. [8]). However,
given an integer p ≥ 1 and two vertices u and v of a general input graph G, deciding whether
there exists a spanning p-stave between u and v is an NP-complete problem: for p = 1 the
problem is equivalent to the NP-complete problem 2-Hamilton Path; for p = 2 the problem
is equivalent to the NP-complete problem Hamilton Cycle; for p ≥ 3 NP-completeness
follows by induction and by considering the graph obtained after adding one vertex adjacent
to u and v.

Damaschke’s algorithm [18] for solving Path Cover on interval graphs, which is based
on the approach of Keil [29], actually solves the following problem in O(n + m) time: given
an interval graph G and an integer p, does G have a spanning p-stave between the vertex
u1 corresponding to the leftmost interval of an interval model of G and the vertex un corre-
sponding to the rightmost one? Here, the leftmost interval is the interval with the smallest
right end-point, and the rightmost interval is the interval with the largest left end-point. Note
that we may assume without loss of generality that these intervals are unique.

In Section 2 we present our O(n+m) time algorithm that solves Scattering Number on
interval graphs. Our approach is as follows. We extend Damaschke’s algorithm to an O(n+m)
time algorithm that takes as input only an interval graph G and finds an optimal spanning
stave of G between u1 and un, unless it detects that there does not exist a spanning stave
between u1 and un. In the latter case G it is not hamiltonian, and hence, sc(G) ≥ 1 as shown
by Deogun, Kratsch and Steiner [20]. Therefore, the O(n + m) time algorithm of Hung and
Chang [25] for computing a scattering set may be applied. In the case that there is an optimal
spanning stave between u1 and un, we show how this enables us to compute a scattering set
S of G in O(n + m) time. In fact we show a stronger relationship, namely that |S| ≥ 2− p∗
if p∗ is the size of an optimal spanning stave between u1 and un. We consequently obtain a
structural result, proved also in Section 2, which states that G contains a spanning p-stave
between u1 and un if and only if sc(G) ≤ 2− p.

In Section 3 we prove our contribution to Theorem 1 (iii), that is, the case when k ≤ −1.
In particular, for proving the subcase k = −1, we show that an interval graph G is Hamilton-
connected if it contains a spanning 3-stave between the vertex corresponding to the leftmost
interval of an interval model and the vertex corresponding to the rightmost one. We then
combine this claim with the structural result obtained in Section 2.

2 Spanning Staves and the Scattering Number

In order to present our algorithm we start by giving the necessary terminology and notations.

Additional Terminology. A set D ⊆ V dominates a graph G = (V,E) if each vertex of G
belongs to D or has a neighbor in D. We will usually denote a path in a graph by its sequence
of distinct vertices such that consecutive vertices are adjacent. If P = u1 . . . un is a path, then
we denote its reverse by P−1 = un . . . u1. We may concatenate two paths P and P ′ whenever
they are vertex-disjoint except for the last vertex of P coinciding with the first vertex of P ′.
The resulting path is then denoted by P ◦ P ′.

A clique path of an interval graph G with vertices u1, . . . , un is a sequence C1, . . . , Cs of all
maximal cliques of G, such that each edge of G is present in some clique Ci and each vertex
of G appears in consecutive cliques only. It is well known that a graph is interval if and only
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if it has a clique path. We use the O(n + m) time recognition algorithm of interval graphs
due to Booth and Lueker [9], which produces a clique path C1, . . . , Cs when the input graph
is interval. Hence, in the remainder of this section, we let G denote an interval graph with
a clique path C1, . . . , Cs. The latter yields a specific interval model for G that we will also
use throughout the remainder of this paper: a vertex ui of G is represented by the interval
Iui = [`i, ri], where `i = min{j : ui ∈ Cj} and ri = max{j : ui ∈ Cj}, which are referred to
as the start point and the end point of ui, respectively. By definition, C1 and Cs are maximal
cliques. Hence both C1 and Cs contain at least one vertex that does not occur in any other
clique. We assume that u1 is such a vertex in C1, and hence it corresponds to the leftmost
interval defined earlier. Analogously, un, corresponding to the rightmost one, is such a vertex
in Cs. Note that Iu1 = [1, 1] and Iun = [s, s] are single points.

Keil [29] made the useful observation that any Hamilton path in an interval graph can be
reordered into a path with a special property that allows to build a greedy-like algorithm.
A path in an interval graph is monotone if every edge (u, v) can be assigned a point from
Iu ∩ Iv such that these points ordered in the appearance of the edges in the path form a
nondecreasing sequence (it is called “straight” in previous works [29,18]).

Lemma 1 ([29]). If the interval graph G contains a Hamilton path, then it contains a mono-
tone Hamilton path from u1 to un.

We use Lemma 1 to rearrange certain path systems in G into a single path as follows.
Let P be a path between u1 and un and let Q = (Q1, . . . , Qk) be a collection of paths, each
of which contains u1 or un as an end-vertex. Furthermore, P and all the paths of Q are
assumed to be vertex-disjoint except for possible intersections at u1 or un. Consider the path
Q1. By symmetry, it may be assumed to contain u1. We apply Lemma 1 to the subgraph
induced by the path P ◦ (Q1−un) and obtain a path P ′ between u1 and un containing all the
vertices of P ∪ Q1. Proceeding in a similar way for the paths Q2, . . . , Qk, we obtain a path
between u1 and un on the same vertex set as P ∪

⋃k
j=1Qj . We denote the resulting path by

merge(P,Q1, . . . , Qk) or simply by merge(P,Q).
Algorithm 1 is our O(n+m) time algorithm for finding an optimal spanning stave between

u1 and un if it exists. Similarly to the algorithm of Damaschke [18], it gradually builds up
a set P of internally disjoint monotone paths starting at u1 and passing through vertices of
Ct\Ct+1 before moving to Ct∩Ct+1 for t = 1, . . . , s−1. In contrast to Damaschke’s algorithm,
where the number of paths is fixed, our algorithm starts with the maximum possible number
of paths, i.e. the degree of the leftmost vertex u1. Intuitively, if some path cannot be further
extended, it is abandoned and the set of possible paths is reduced. At the final phase we clear
all abandoned paths by merging them with any path that reaches un.

It is convenient to consider all these paths ordered from u1 to their (temporary) end-
vertices that we call terminals, and to use the terms predecessor, successor, and descendant
of a fixed vertex v in one of the paths with the usual meaning of a vertex immediately before,
immediately after, and somewhere after v in one of these paths, respectively. For a path P
with end-vertex u and a vertex v /∈ V (P ), we say that P has been extended by attaching v,
if uv becomes the last edge of the resulting path, while all edges of P are preserved in the
resulting path too. By extending a path by attaching a set of vertices we mean attaching
vertices of the set one by one, in an arbitrary order.

We note that the path system P provided by Algorithm 1 is a valid stave. A routine check
confirms that the following loop invariant holds at line 6: the last vertices of paths from P
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Input: A clique-path C1, . . . , Cs in an interval graph G.
Output: An optimal spanning stave P between u1 and un, if it exists.

1 begin
2 let p = deg(u1);
3 let Ri = u1 for all i = 1, . . . , p;
4 let P = {R1, . . . , Rp};
5 let Q = ∅;
6 for t := 1 to s− 1 do
7 choose a P ∈ P whose terminal has the smallest end point among all terminals;
8 if Ct \ (Ct+1 ∪

⋃
(P ∪Q)) 6= ∅ then extend P by attaching vertices of Ct \ (Ct+1 ∪

⋃
(P ∪Q)) ;

9 for every path R ∈ P do
10 if the terminal of R is not in Ct+1 then
11 try to extend R by attaching a new vertex u from (Ct ∩ Ct+1) \

⋃
(P ∪Q) with the

smallest end point;
12 if such u does not exist then
13 remove R from P;
14 insert R into Q;
15 decrement p;
16 if p = 0 then report that G has no spanning 1-stave between u1 and un and quit

17 end

18 end

19 end

20 end
21 choose any P ∈ P;
22 extend P by attaching vertices of Cs \

⋃
(P ∪Q) ;

23 let P = merge(P,Q);
24 for every path R ∈ P \ P do extend R by attaching un;
25 report the optimal spanning p-stave P.

26 end

Algorithm 1: Finding an optimal spanning stave.

all belong to the clique Ct. This is guaranteed by the computations at lines 10–18. At line 20
it also holds that all vertices of Ct \ Ct+1 appear in the current P ∪ Q, as they have been
included at line 8. When the loop terminates, the remaining vertices are incorporated at line
22. Thus the resulting path system P is a spanning stave.

In Theorem 2 we show that no spanning stave may consist of more than 2− sc(G) paths.
On the other hand, we will also show that the p-stave found by Algorithm 1 can be supplied
with a scattering set witnessing that p ≥ 2−sc(G). In other words this is an optimal scattering
set whose existence also proves the optimality of the spanning stave. For this goal, we first
develop some auxiliary terminology related to our algorithm.

If vertex ui has been processed by the algorithm and attached to a path at lines 8 or 11 of
Algorithm 1, we say that ui has been activated at time ai, and we assign ai the current value
of the variable t. Thus, we think of time steps t = 1, . . . , t = s during the execution of the
algorithm. When at the same or at a later stage a vertex uj has been attached as a successor
of ui to a path, we say that ui has been deactivated at time di, and assign di = aj . Hence, as
soon as ai and di have been assigned values, we have `i ≤ ai ≤ di ≤ ri. Furthermore, any of
the implied inequalities holds whenever both of its sides are defined. Note that any of these
inequalities may be an equality; in particular, a vertex can be activated and deactivated at
the same time.

If the involved parameters have been assigned values, we consider the open (time) intervals
(`i, ai), (ai, di) and (di, ri), and we say that ui is free during (`i, ai) if this interval is nonempty,

7



active during (ai, di) if this interval is nonempty, and depleted during (di, ri) if this interval
is nonempty. In particular, note that the vertices that are attached to a path at line 8 (if
any) are from Ct \ Ct+1, so they satisfy ri = t and ai = t. Such vertices will not be active
or depleted during any (nonempty) time interval, but they are free during the time interval
(`i, ri) if this interval is nonempty.

For 1 ≤ j ≤ k ≤ s, we define Cj,k =
⋃k

i=j Ci.

The following lemma is crucial.

Lemma 2. Suppose that Algorithm 1 terminates at line 16 or finishes an iteration of the loop
at lines 6–20. Let the current value of the variable t be also denoted by t. If there is at least
one depleted vertex during the interval (t, t + 1), then there exists an integer t′ < t with the
following properties (see Fig. 1a for an illustration):

(i) Ct′+1,t \ (Ct′ ∪ Ct+1) 6= ∅,
(ii) a unique vertex ui ∈ Ct′ ∩ Ct+1 is active during (t′, t′ + 1) and is depleted during

(t, t+ 1),

(iii) all vertices that are active during (t, t+ 1) are also active during (t′, t′ + 1), with the
only possible exception of the last descendant of ui (which we denote by v) that can
be free during (t′, t′ + 1),

(iv) all vertices that are depleted during (t, t + 1) and distinct from ui are also depleted
during (t′, t′ + 1),

(v) all vertices that are active during (t′, t′ + 1) are also active during (t, t+ 1), with the
only exception of ui, and

(vi) all vertices that are free during (t′, t′ + 1) are also free during (t, t+ 1), with the only
possible exception of v if it is active during (t, t+ 1).

Ct′ Ct′+1 Ct Ct+1

Q

Iui

Iv

free

active

depleted

di

PlQ

Iw′

dh

R

Iu′′

Iuj
lj

Iuh

a)

b)

c)

rQ

Iw

Fig. 1. A path system as described in Lemma 2. The vertical arrows indicate successors in the paths and the
time of activation and deactivation.
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Proof. Assume that there is at least one depleted vertex during the interval (t, t+ 1), and let
ui be a vertex with the latest deactivation time among those that are depleted during (t, t+1).
To prove that this vertex is unique, we note that all but at most one of the vertices deactivated
during a given iteration of the loop on lines 6–20 (say, at time t) have end point equal to t
and hence cannot be depleted during a nonempty interval. The only possible exception is the
terminal of the path P chosen at line 7 (and only if it is deactivated due to attaching a vertex
to P at line 8).

We define Q to be the subpath of P formed by all descendants of ui, except that if the
last descendant v of ui is active during (t, t+ 1), we do not include v in Q. Observe that the
successor of ui has the same deactivation time as ui, hence it is distinct from v, and therefore
Q is nonempty. Let `Q be the smallest start point among intervals corresponding to vertices
of Q, and let rQ be the largest such end point.

If P has a vertex that is active during (t, t + 1), this vertex is v and it is not a vertex of
Q. Thus all vertices of Q are either depleted during (t, t+ 1) or their end point is less than or
equal to t. By the choice of ui, none of them belongs to Ct+1, and hence rQ ≤ t. We choose
t′ = `Q− 1. Notice that for uj ∈ V (Q), rj ≥ di. Thus if we let uq be the vertex of u such that
`q = `Q, then uq is free during (t′ + 1, di).

Observe that all vertices of Q are in Ct′+1,t \ (Ct′ ∪ Ct+1). Hence, this set is not empty
and property (i) is proved.

We prove (ii). Since the deactivation of ui happened when its successor uj was free, we
have di ≥ `j > t′. Hence, ui cannot be depleted during (t′, t′+ 1). Observe that ui 6= u1, as u1
is not depleted during (t − 1, t). Therefore, ui has a predecessor. Denote it by u′. If u′ were
adjacent to the vertex uq of Q, then the algorithm would choose uq as the successor of u′,
since ri > rQ ≥ rq. Consequently, the start point of u′ is less than or equal to t′, so ui is active
during (t′, t′ + 1). The uniqueness of ui will follow easily once we establish property (iv).

To show property (iii), assume that um is a vertex different from v that is active during
(t, t+ 1) but has been activated after t′. Since u1 is not active during (t, t+ 1), um 6= u1 and
um has a predecessor u′. We first suppose that um is active during (di − 1, di). The vertex
u′ is deactivated at some time t′′ such that t′ + 1 ≤ t′′ ≤ di − 1. Hence, it is adjacent to the
previously defined vertex uq of Q that is free during (t′ + 1, di). Since rq ≤ rQ < t+ 1 ≤ rm,
the successor of u′ should be uq rather than um, a contradiction.

It follows that um is not active during (di−1, di). The vertex um is included in some path
R ∈ P, R 6= P . This path contains a vertex w′ that is active during (di − 1, di) (see Fig. 1b),
where um is a descendant of w′. Observe that w′ is not active during (t, t+ 1) because um is.
Suppose that the end point of w′ is at least t+ 1. Then w′ is depleted during (t, t+ 1), so by
the choice of ui, w

′ is deactivated before time di and cannot be active during (di − 1, di), a
contradiction.

Thus, the end point of w′ is not larger than t. But then w′ should have been chosen at
line 7 of the algorithm instead of ui.

For (iv), assume that some uh 6= ui is depleted during (t, t + 1), but dh ≥ t′ + 1. By the
choice of ui, we have dh < di. Without loss of generality, assume that uh was chosen such that
dh is maximal. Let R be the path in P ∪ Q containing uh. Note that R 6= P . If R contains
a vertex w that is active during (t, t + 1), then by (iii), w is active during (t′, t′ + 1) and we
conclude that uh cannot be included in R; a contradiction.

It follows that no vertex of R is active during (t, t + 1) (see Fig. 1c). Moreover, by the
choice of uh, the end points of all its descendants are less than or equal to t, because if there
is a descendant uj of uh with rj ≥ t + 1, then w is depleted during (t, t + 1) and dj > dh,
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a contradiction. Recall that the vertex uq is free during (t′ + 1, di). Since the path R cannot
be terminated while a free vertex is available, it must contain a vertex that is active during
(di − 1, di). However, this vertex has a smaller end point than ui, contradicting the correct
execution of the algorithm at line 7.

To obtain (v), assume that w 6= ui is active during (t′, t′+1) but not active during (t, t+1).
The vertex w is included in some path R ∈ P ∪ Q, R 6= P . If one of the descendants of w is
active during (t, t+ 1), then by (iii), this vertex is active during (t′, t′ + 1) contradicting the
activeness of w at the same time. Similarly, if w or one of its descendants is depleted during
(t, t + 1), then by (iv), this vertex is depleted during (t′, t′ + 1) and w cannot be active. It
follows that the end points of w and its descendants are less than or equal to t. If di = t′+ 1,
then R has a vertex that is active during (di−1, di). If di > t′+1, then we use the observation
that the vertex uq is free during (t′ + 1, di), and again conclude that R has an active vertex
during (di − 1, di). Then this vertex should be selected by the algorithm in line 7 instead of
ui; a contradiction.

It remains to prove (vi). Let w be a vertex that is free during (t′, t′+1) and not free during
(t, t+ 1). Moreover, we assume that w 6= v if v is active during (t, t+ 1). Our algorithm does
not terminate until time t. Therefore, w is included in some path R ∈ P ∪ Q, R 6= P . This
path has a vertex that is active during (t′, t′ + 1). By (v), this vertex remains active until
t+ 1, but it means that w is not included in R. ut

Now we are ready to state and prove the main structural result.

Theorem 2. A non-complete interval graph G contains a spanning p-stave between u1 and
un if and only if sc(G) ≤ 2− p.

Proof. Let us first assume that P = (R1 . . . , Rp) is a spanning p-stave between u1 and un. If
G is complete, then the claim is trivial. Otherwise, let S ⊂ V (G) be a scattering set of G.
We claim that u1, un /∈ S. Suppose the contrary. Since u1 is simplicial, i.e., its neighborhood
induces a clique, we get that c(G − S) ≤ c(G − (S − {u1})) and therefore c(G − S) − |S| <
c(G− (S − {u1}))− |S − {u1}|, a contradiction with the choice of S. The argument for un is
symmetric.

Since each path in P connects u1 and un, the union of intervals corresponding to the
internal vertices of such a path is the interval [1, s]. In other words, the internal vertices of
each path in P dominate G. Hence the set S, which is a vertex cut by definition, contains an
internal vertex from each path of P. From each path Ri of P, we choose a vertex si ∈ S. We
let S′ = {s1, . . . , sp}.

Consider the spanning subgraph G′ of G induced by the edges of P. Observe that G′−S′
has two components. If we remove the remaining vertices of S \S′ one by one, then with each
vertex we remove, the number of components of the remaining graph can increase by at most
one, as u1, un /∈ S. Hence c(G−S) ≤ c(G′−S) ≤ 2+ |S|−p, which means that sc(G) ≤ 2−p,
as S is a scattering set of G. This proves the forward implication of the statement.

For the other direction, let us assume that G does not have a spanning p-stave between u1
and un. If deg(u1) < p, then let S be the set of neighbors of u1. Because G is not a complete
graph, un /∈ S, i.e., S is a vertex cut and c(G − S) ≥ 2. Then sc(G) ≥ c(G − S) − |S| ≥
2− |S| > 2− p. Otherwise, if deg(u1) ≥ p, then during the execution of Algorithm 1, at some
stage the value set at line 15 becomes smaller than p. Suppose t1 is the value of the variable
t at this moment. We will complete the proof by constructing a scattering set S, for which
we show that c(G− S)− |S| > 2− p.
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We repeatedly use Lemma 2 and find a finite sequence t1, t2, . . . , tk, such that ti+1 = (ti)
′

as long as there are depleted vertices during (ti, ti + 1) for i < k. Note that this sequence is
decreasing, as we analyze the execution of the algorithm backwards, that is, we first analyze
what happened before t1, then what happened before t2, and so on. As the sequence is limited
to positive integers, this process stops at some moment. In particular, we have no depleted
vertices during (tk, tk + 1). In the utmost case this might be the time interval (1, 2), where no
vertex is depleted.

We choose S =
⋃k

i=1(Cti ∩Cti+1) and prove that G−S has at least |S|−p+3 components.

The subgraphsG[C1,tk ]−S andG[Ct1+1,s]−S contain u1 and un, respectively; in particular,
they have at least one component each. By property (i) in Lemma 2, G[Cti+1+1,ti ] − S has
at least one component for each i ∈ {1, . . . , k − 1}. Since all these components are distinct
components of G− S, the graph G− S has at least k + 1 components.

By properties (ii), (v) and (vi) in Lemma 2, (Cti+1 ∩ Cti+1+1) \ (Cti ∩ Cti+1) contains
only vertices that are depleted during (ti+1, ti+1 + 1) for each i ∈ {1, . . . , k − 1}. Further,
Ct1 ∩ Ct1+1 has no vertices that are free during (t, t + 1), because at least one path is not
extendable at time t1. Also this set has at most p− 1 vertices that are active during (t, t+ 1).
Hence, the remaining vertices are depleted. By properties (ii) and (iv) in Lemma 2, for each
i ∈ {1, . . . , k − 1}, exactly one vertex that is depleted during (ti, ti+1) has a different status
during (ti+1, ti+1 + 1) and is active. It follows that |S| ≤ (p − 1) + (k − 1) = k + p − 2 as
required. ut

We will now discuss how to compute a scattering set of G in O(n + m) time. We apply
Algorithm 1. This takes O(n + m) time; the only operation whose time complexity has not
been discussed is merge(P,Q) at line 23, and we refer to Damaschke’s proof of Lemma 1 to
verify that this line can be implemented in O(n+m) time. If Algorithm 1 outputs that there
is no spanning stave between u1 and un, then G it is not hamiltonian. Recall that in that
case sc(G) ≥ 1 [20] and that we then may apply the O(n + m) time algorithm of Hung and
Chang [25] for computing a scattering set. Otherwise, Algorithm 1 finds an optimal spanning
stave. Our proof of Theorem 2 provides a construction of a scattering set of G that can be
straightforwardly implemented in O(n+m) time.

Corollary 1. A scattering set of an interval graph can be computed in O(n+m) time.

3 Hamilton-connectivity

In this section we prove our contribution to Theorem 1, which is the following.

Theorem 3. For all k ≥ 0, an interval graph G is k-Hamilton-connected if and only if
sc(G) ≤ −(k + 1).

Proof. Let k ≥ 0 and G be an interval graph with leftmost and rightmost vertices u1 and un
as defined before. The statement of Theorem 3 is readily seen to hold when G is a complete
graph. Hence we may assume without loss of generality that G is not complete.

First suppose that G is k-Hamilton-connected. Then G has at least k + 3 vertices. We
claim that G − R is traceable for every subset R ⊂ V (G) with |R| ≤ k + 2. In order to see
this, suppose that R ⊆ V (G) with |R| ≤ k + 2. We may assume without loss of generality
that |R| = k + 2. Let s and t be two vertices of R. By definition, G∗ = G− (R \ {s, t}) has a
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Hamilton path with end-vertices s and t. Hence G − R = G∗ − {s, t} is traceable. Below we
apply this claim twice.

Because G is not complete, G has a scattering set S. By definition, S is a vertex cut.
Hence S = {s1, . . . , s`} for some ` ≥ k + 3, as otherwise G− S would be traceable, and thus
connected, due to our claim. Let T = {s1, . . . , sk+2} and let U = {sk+3, . . . , s`}. By our claim,
G′ = G−T is traceable implying that sc(G′) ≤ 1 [38]. Because c(G′−U) = c(G−S) ≥ 2, we
find that U is a vertex cut of G′. We use these two facts to derive that

1 ≥ sc(G′)

≥ c(G′ − U)− |U |
= c(G− T − U)− |T | − |U |+ |T |
= c(G− S)− |S|+ |T |
= sc(G) + |T |
= sc(G) + k + 2,

implying that sc(G) ≤ 1− (k + 2) = −(k + 1), as required.
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w w
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w w
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Fig. 2. The essential cases in the proof of Theorem 3 for k = 0.

Now suppose that sc(G) ≤ −(k+1). First let k = 0. By Theorem 2, there exists a spanning
3-stave P = (P,Q,R) between u1 and un. Let v, w be an arbitrary pair of vertices of G. We
distinguish four cases in order to find a Hamilton path between v and w; see Fig. 2 for an
illustration.

Case 1: v = u1 and w = un. In this case, merge(P,Q,R) is the desired Hamilton path.

Case 2: v = u1 and w 6= un. Assume without loss of generality that w ∈ R. We split R before
w into the subpaths R1 and R2, i.e., w becomes the first vertex of R2 and it does not belong
to R1. Then merge(P,Q,R1) ◦ R−12 is the desired path. The case with v 6= u1 and w = un is
symmetric.
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Case 3: v 6= u1 and w 6= un belong to different paths, say v ∈ Q and w ∈ R. We split Q after
v into Q1 and Q2, and we also split R before w, as above. Then Q−11 ◦merge(P,Q2, R1) ◦R−12

is the desired path.

Case 4: v 6= u1 and w 6= un belong to the same path, say Q. Without loss of generality,
assume that both v 6= u1 and w 6= un appear in this order on Q. We split Q after v and before
w into three subpaths Q1, Q2, Q3. If v and w are consecutive on Q, i.e., when Q2 is empty,
then Q−11 ◦merge(P,R) ◦Q−13 is the desired path. Otherwise, let z be any vertex on R that
is a neighbor of the first vertex of Q2. Such z exists since the path R dominates G. We split
R after z into R1 and R2. By the choice of z, R1 and Q2 can be combined through z into a
valid path R′ containing exactly the same vertices as R1 and Q2 and starting at u1. Then we
choose Q−11 ◦merge(P,R′, R2) ◦Q−13 .

Now let k ≥ 1. Let S be a set of vertices with |S| ≤ k. We need to show that G − S is
Hamilton-connected. Let T be a scattering set of G − S and let S∗ = S ∪ T . Because T is a
scattering set of G− S, we find that S∗ is a vertex cut of G. We use this to derive that

sc(G− S) = c(G− S − T )− |T |
= c(G− S∗)− |S∗|+ |S∗| − |T |
≤ sc(G) + k − 0

≤ −1.

Then, by returning to the case k = 0 with G−S instead of G, we find that G−S is Hamilton-
connected, as required. This completes the proof of Theorem 3. ut

4 Future Work

We conclude our paper by posing a number of open problems. We start with recalling two
open problems posed in the literature, the first of which is the aforementioned question of
Damaschke [18]:

1. What is the complexity of 2-Hamilton Path for interval graphs?

Our results imply that we may restrict ourselves to interval graphs with scattering number
equal to 0 or 1. This can be seen as follows. Let G be an interval graph that together with
two of its vertices u and v forms an instance of 2-Hamilton Path. We apply Corollary 1 to
compute sc(G) in O(n+m) time. If sc(G) < 0, then G is Hamilton-connected by Theorem 1.
Then, by definition, there exists a Hamilton path between u and v. If sc(G) > 1, then G is
not traceable, also due to Theorem 1. Hence, there exists no Hamilton path between u and v.

The second open problem the literature is due to Asdre and Nikolopoulos [3], who consider
the `-Path Cover problem. This problem generalizes the 1-Path Cover problem and is
that of determining the size of a smallest path cover of a graph G subject to the additional
condition that every vertex of a given set T of size ` is an end-vertex of a path in the path
cover. Note that this problem generalizes 2-Hamilton Path. Asdre and Nikolopoulos ask
the following question:

2. What is the complexity of `-Path Cover for interval graphs?

In another paper [2], Asdre and Nikolopoulos proved that `-Path Cover, and hence 2-
Hamilton Path, can be solved in O(n+m) time on proper interval graphs.
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The Spanning Stave problem is that of computing the minimum value of p for which a given
graph has a spanning p-stave. Because a Hamilton path of a graph is a spanning 1-stave and
Hamilton Path is NP-complete, this problem is NP-hard in general.

3. What is the complexity of Spanning Stave for interval graphs?

The following example shows that we cannot generalize Lemma 1 and apply Algorithm 1 as
an attempt to solve this problem. Take the graph K4−e, which has four vertices a, b, c, d and
five edges, say (a, b), (a, c), (b, c), (b, d), (c, d). This graph is interval. However, we only have
a spanning 2-stave between a and d (as their degrees are 2) but there is a spanning 3-stave
between b and c, namely paths {b, a, c; b, c; b, d, c}.

Chen et al. [14] define the spanning connectivity of a Hamilton-connected graph G as the
largest integer q such that G has a spanning p-stave between any two vertices of G for all in-
tegers 1 ≤ p ≤ q. So, for instance, the complete graph on n vertices has spanning connectivity
n−1, and a graph has spanning connectivity at least 1 if and only if it is Hamilton-connected.
By the latter statement, the corresponding optimization problem Spanning Connectivity
is NP-hard. We posed as an open problem to determine the complexity of this problem for
proper interval graphs and interval graphs [7]. In response, very recently, Li and Wu [33]
announced an O(n + m) time algorithm for solving Spanning Connectivity on interval
graphs.

Kratsch, Kloks and Müller [30] gave an O(n3) time algorithm for solving Toughness on
interval graphs. We showed that Scattering Number can be solved in linear time on interval
graphs.

4. Can Toughness be solved in linear time on interval graphs?

Finally, we ask whether our algorithmic results can be generalized to superclasses of inter-
val graphs, such as circular-arc graphs or cocomparability graphs. The complexity status
of Hamilton Connectivity is still open for both circular-arc graphs and cocomparabil-
ity graphs, although Hamilton Cycle can be solved in O(n2 log n) time on circular-arc
graphs [38] and in O(n3) time on cocomparability graphs [21]. It is known that Scatter-
ing Number can be solved in O(n4) time on circular-arc graphs and in polynomial time on
cocomparability graphs of bounded dimension [30].

5. Can Hamilton Connectivity be solved in polynomial time for circular-arc graphs or
cocomparability graphs?

6. Can Scattering Number be solved in linear time for circular-arc graphs or cocompara-
bility graphs?

It seems that our approach by relating the Hamilton connectivity of a graph to its scattering
number via the existence of a k-stave has been tailored just for the class of interval graphs.
The method fails for any graph class that contains all complete bipartite graphs Kn,n, so for
example, for the class of cocomparability graphs and many of its subclasses, such as the classes
of permutation graphs and convex graphs. For graphs from these classes, it is no longer clear
which two vertices must be chosen as the “leftmost” and “rightmost” vertex, respectively. It
can be seen from the previous example, which considered the graph K4 − e, that this choice
is important even for interval graphs. For all n ≥ 2, the complete bipartite graph Kn,n is not
Hamilton-connected. However, there exists a spanning n-stave between any pair of adjacent
vertices, but only a spanning 2-stave between the remaining pairs.
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