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Abstract

We classify non-complete prime valency graphs satisfying the property that
their automorphism group is transitive on both the set of arcs and the set of 2-
geodesics. We prove that either Γ is 2-arc transitive or the valency p satisfies p ≡
1 (mod 4), and for each such prime there is a unique graph with this property:
it is a non-bipartite antipodal double cover of the complete graph Kp+1 with
automorphism group PSL(2, p)× Z2 and diameter 3.
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1 Introduction

In this paper, graphs are finite, simple and undirected. For a graph Γ, a vertex triple
(u, v, w) with v adjacent to both u and w is called a 2-arc if u 6= w, and a 2-geodesic
if in addition u, w are not adjacent. An arc is an ordered pair of adjacent vertices. A
non-complete graph Γ is said to be 2-arc transitive or 2-geodesic transitive if its au-
tomorphism group is transitive on arcs, and also on 2-arcs or 2-geodesics, respectively.
Clearly, every 2-geodesic is a 2-arc, but some 2-arcs may not be 2-geodesics. If Γ has
girth 3 (length of the shortest cycle is 3), then the 2-arcs contained in 3-cycles are
not 2-geodesics. Thus the family of non-complete 2-arc transitive graphs is properly
contained in the family of 2-geodesic transitive graphs. The graph in Figure 1 is the
icosahedron which is 2-geodesic transitive but not 2-arc transitive with valency 5.

The study of 2-arc transitive graphs goes back to Tutte [16, 17]. Since then, this
family of graphs has been studied extensively, see [1, 9, 14, 18, 19]. In this paper, we are
interested in 2-geodesic transitive graphs, in particular, which are not 2-arc transitive,
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Figure 1: Icosahedron

that is, they have girth 3. We first construct a family of coset graphs, and prove that
each of these graphs is 2-geodesic transitive but not 2-arc transitive of prime valency.
We then prove that each graph with these properties belongs to the family.

For a finite group G, a core-free subgroup H (that is,
⋂

g∈G Hg = 1), and an element

g ∈ G such that G = 〈H, g〉 and HgH = Hg−1H , the coset graph Cos(G,H,HgH) is
the graph with vertex set {Hx|x ∈ G}, such that two vertices Hx,Hy are adjacent if
and only if yx−1 ∈ HgH . This graph is connected, undirected, and G-arc transitive of
valency |H : H ∩Hg|, see [12].

Definition 1.1 Let C(5) be the singleton set containing the icosahedron, and for a
prime p > 5 with p ≡ 1 (mod 4), let C(p) consist of the coset graphs Cos(G,H,HgH) as
follows. Let G = PSL(2, p), choose a ∈ G of order p, soNG(〈a〉) = 〈a〉 : 〈b〉 ∼= Zp : Z p−1

2

for some b ∈ G of order p−1
2
. Then NG(〈b

2〉) = 〈b〉 : 〈c〉 ∼= Dp−1 for some c ∈ G of order
2. Let H = 〈a〉 : 〈b2〉 and g = cb2i for some i.

These graphs have appeared a number of times in the literature. They were con-
structed by D. Taylor [15] as a family of regular two-graphs (see [3, p.14]), they ap-
peared in the classification of antipodal distance transitive covers of complete graphs
in [6], and were also constructed explicitly as coset graphs and studied by the third
author in [11]. (Antipodal covers of graphs are defined in Section 2.)

A path of shortest length from a vertex u to a vertex v is called a geodesic from
u to v, or sometimes an i-geodesic if the distance between u and v is i. The graph Γ
is said to be geodesic transitive if its automorphism group is transitive on the set of
i-geodesics for all positive integers i less than or equal to the diameter of Γ.

Theorem 1.2 (a) A graph Γ ∈ C(p) if and only if Γ is a connected non-bipartite
antipodal double cover of Kp+1 with p ≡ 1 (mod 4), and AutΓ ∼= PSL(2, p)× Z2.

(b) For a given p, all graphs in C(p) are isomorphic, geodesic transitive and have
diameter 3.

Our second result shows that the graphs in Definition 1.1 are the only 2-geodesic
transitive graphs of prime valency that are not 2-arc transitive.

Theorem 1.3 Let Γ be a connected non-complete graph of prime valency p. Then Γ is
2-geodesic transitive if and only if Γ is 2-arc transitive, or p ≡ 1 (mod 4) and Γ ∈ C(p).
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These two theorems show that up to isomorphism, there is a unique connected
2-geodesic transitive but not 2-arc transitive graph of prime valency p and p ≡ 1
(mod 4). The family of 2-geodesic transitive but not 2-arc transitive graphs of valency
4 has been determined in [4]. It would be interesting to know if a similar classification
is possible for non-prime valencies at least 6. This is the subject of further research by
the second author, see [10].

2 Preliminaries

In this section, we give some definitions and prove some results which will be used
in the following discussion. Let Γ be a graph. We use V Γ, EΓ and AutΓ to denote its
vertex set, edge set and automorphism group, respectively. The size of V Γ is called the
order of the graph. The graph Γ is said to be vertex transitive if the action of AutΓ
on V Γ is transitive.

For two distinct vertices u, v of Γ, the smallest value for n such that there is a path
of length n from u to v is called the distance from u to v and is denoted by dΓ(u, v).
The diameter diam(Γ) of a connected graph Γ is the maximum of dΓ(u, v) over all
u, v ∈ V Γ. We set Γ2(v) = {u ∈ V Γ|dΓ(v, u) = 2} for every vertex v.

Quotient graphs play an important role in this paper. Let G be a group of permuta-
tions acting on a set Ω. AG-invariant partition of Ω is a partition B = {B1, B2, . . . , Bn}
such that for each g ∈ G, and each Bi ∈ B, the image Bg

i ∈ B. The parts of Ω are
often called blocks of G on Ω. For a G-invariant partition B of Ω, we have two smaller
transitive permutation groups, namely the group GB of permutations of B induced by
G; and the group GBi

Bi
induced on Bi by GBi

(the setwise stabiliser of Bi in G) where
Bi ∈ B. Let Γ be a graph, and let G ≤ AutΓ. Suppose B = {B1, B2, . . . , Bn} is a
G-invariant partition of V Γ. The quotient graph ΓB of Γ relative to B is defined to be
the graph with vertex set B such that {Bi, Bj} (i 6= j) is an edge of ΓB if and only
if there exist x ∈ Bi, y ∈ Bj such that {x, y} ∈ EΓ. We say that ΓB is nontrivial if
1 < |B| < |V Γ|. The graph Γ is said to be a cover of ΓB if for each edge {Bi, Bj} of
ΓB and v ∈ Bi, we have |Γ(v) ∩Bj | = 1.

For a graph Γ, the k-distance graph Γk of Γ is the graph with vertex set V Γ, such that
two vertices are adjacent if and only if they are at distance k in Γ. If d = diam(Γ) ≥ 2
and Γd is a disjoint union of complete graphs, then Γ is said to be an antipodal graph. In
other words, the vertex set of an antipodal graph Γ of diameter d, may be partitioned
into so-called fibres, such that any two distinct vertices in the same fibre are at distance
d and two vertices in different fibres are at distance less than d. For an antipodal graph
Γ of diameter d, its antipodal quotient graph Σ is the quotient graph of Γ where B is
the set of fibres. If further, Γ is a cover of Σ, then Γ is called an antipodal cover of Σ.

Paley graphs were first defined by Paley in 1933, see [13]. These graphs are vertex
transitive, self-complementary, and have many nice properties. Let q = pe be a prime
power such that q ≡ 1 (mod 4). Let Fq be the finite field of order q. The Paley graph
P (q) is the graph with vertex set Fq, where two distinct vertices u, v are adjacent if
and only if u−v is a nonzero square in Fq. The congruence condition on q implies that
−1 is a square in Fq, and hence P (q) is an undirected graph.

Lemma 2.2 is used in the proof of Theorem 1.3, and its proof uses the following
famous result of Burnside.
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Lemma 2.1 ( [5, Theorem 3.5B]) A primitive permutation group G of prime degree p
is either 2-transitive, or solvable and G ≤ AGL(1, p).

For a finite group G, and a subset S of G such that 1 /∈ S and S = S−1, the Cayley
graph Cay(G, S) of G with respect to S is the graph with vertex set G and edge set
{{g, sg} | g ∈ G, s ∈ S}. The Paley graph P (q) is a Cayley graph for the additive group
G = F+

q with S = {w2, w4, . . . , wq−1 = 1}, where w is a primitive element of Fq.

Lemma 2.2 Let Γ be an arc transitive graph of prime order p and valency p−1
2
. Then

p ≡ 1 (mod 4), AutΓ ∼= Zp : Z p−1

2

, and Γ ∼= P (p).

Proof. Since Γ has valency p−1
2
, p is an odd prime. Since Γ has the given order and

valency, it follows that Γ has p(p−1
2
)/2 edges. This implies that p ≡ 1 (mod 4).

Let A = AutΓ. Since A is transitive on V Γ and p is a prime, A is primitive on V Γ,
and since Γ is arc transitive, |A| is divisible by p(p−1)

2
. Since Γ is neither complete nor

empty, it follows by Lemma 2.1 that A < AGL(1, p) = Zp : Zp−1. Thus |A| is a proper

divisor of p(p− 1), and at least p(p−1)
2

, and so |A| = p(p−1)
2

. Hence A ∼= Zp : Z p−1

2

.

Since Zp is regular on V Γ, it follows from [2, Lemma 16.3] that Γ is a Cayley graph
for Zp. Thus Γ = Cay(G, S) where G ∼= Zp, S ⊆ G \ {0}, S = S−1 and |S| = p−1

2
.

Now we may identify G with F+
p where Fp is a finite field of order p. Let v ∈ V Γ be

the vertex corresponding to 0 ∈ G. Then Av is the unique subgroup of order p−1
2

of
F ∗
p = 〈w〉, that is, Av = 〈w2〉. The Av-orbits in Fp are {0}, S1 = {w2, w4, . . . , wp−1}

and S2 = {w,w3, . . . , wp−2}, and so S = S1 or S2, and Γ = P (p) or its complement
respectively. In either case, Γ ∼= P (p). ✷

To end the section, we cite a property of Paley graphs which will be used in the
next section.

Lemma 2.3 ([7, p.221]) Let Γ = P (q), where q is a prime power such that q ≡ 1
(mod 4). Let u, v be distinct vertices of Γ. If u, v are adjacent, then |Γ(u)∩Γ(v)| = q−5

4
;

if u, v are not adjacent, then |Γ(u) ∩ Γ(v)| = q−1
4
.

3 Proof of Theorem 1.2

We study graphs in the family C(p) for each prime p ≡ 1 (mod 4). We first collect
some properties of graphs in C(p) for p > 5, which can be found in [11, Theorem 1.1]
and its proof.

Remark 3.1 Let Γ ∈ C(p) and p > 5. Then G = 〈H, g〉, Γ is connected and G-
arc transitive of valency p, AutΓ ∼= G × Z2, |V Γ| = |G : H| = 2p + 2. Further,
diam(Γ) = girth(Γ) = 3, so Γ is not 2-arc transitive.

The orbit set B = {∆1,∆2, . . . ,∆p+1} of the normal subgroup K ∼= Z2 of AutΓ
forms a system of imprimitivity for AutΓ in V Γ, and it follows from the proof of
[11, Theorem 1.1] that this is the unique nontrivial system of imprimitivity and the
kernel of the action of AutΓ on B is the normal subgroup K. For i = 1, . . . , p + 1,
let ∆i = {vi, v

′
i}. Then vi is not adjacent to v′i, and for each j 6= i, vi is adjacent

to exactly one point of ∆j and v′i is adjacent to the other. Thus, Γ(v1) ∩ Γ(v′1) = ∅,
V Γ = {v1} ∪ Γ(v1) ∪ {v′1} ∪ Γ(v′1), and Γ is a non-bipartite double cover of Kp+1.
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The next lemma shows that graphs in C(p) are geodesic transitive.

Lemma 3.2 Let p be a prime and p ≡ 1 (mod 4). Then each graph in C(p) is geodesic
transitive of girth 3 and diameter 3.

Proof. Let Γ ∈ C(p). If p = 5, then Γ is the icosahedron of girth 3 and diameter 3.
Its automorphism group is PSL(2, 5)× Z2 and it is geodesic transitive. Now suppose
that p > 5. Let B be as in Remark 3.1, A := AutΓ, v1 ∈ V Γ and u ∈ Γ(v1). Let K
be the kernel of the A-action on B so that the induced group AB = A/K. Then by
the proof of [11, Theorem 1.1], K ∼= Z2 ✁ A, A = G ×K, AB ∼= G = PSL(2, p) and

(AB)∆1

∼= Av1 . Since A ∼= G × Z2, it follows that |Av1 | =
p(p−1)

2
, and by Lemma 2.4

of [11], Av1
∼= Zp : Z p−1

2

, which has a unique permutation action of degree p, up to

permutational isomorphism. Since Γ is A-arc transitive, Av1 is transitive on Γ(v1) and
hence on B \ {∆1}, and therefore also on Γ(v′1), all of degree p. Thus the Av1-orbits
in V Γ are {v1},Γ(v1),Γ(v

′
1) and {v′1}, and it follows that Γ(v′1) = Γ2(v1). Moreover,

Av1,u
∼= Z p−1

2

has orbit lengths 1, p−1
2
, p−1

2
in Γ(v1), and hence has the same orbit lengths

in Γ2(v1), and also in Γ(u) (since Av1,u is the point stabiliser of Au acting on Γ(u)).
Since Γ(v1) ∩ Γ(u) 6= ∅, it follows that the Av1,u-orbits in Γ(u) are {v1},Γ(v1) ∩ Γ(u),
and Γ2(v1) ∩ Γ(u). Thus Γ is (A, 2)-geodesic transitive and girth(Γ) = 3. Further, as
Γ3(v1) = {v′1}, it follows that Γ is geodesic transitive and has diameter 3. ✷

In the proof of the second part of Theorem 1.2, we repeatedly use the fact that each
σ ∈ AutG induces an isomorphism from Cos(G,H,HgH) to Cos(G,Hσ, HσgσHσ), and
in particular, we use this fact for the conjugation action by elements of G. For a subset
∆ of the vertex set of a graph Γ, we use [∆] to denote the subgraph of Γ induced by
∆.

Proof of Theorem 1.2 (a) Suppose first that Γ is a connected non-bipartite antipodal
double cover of Kp+1 with p ≡ 1 (mod 4), and A := AutΓ ∼= PSL(2, p) × Z2. Then
|V Γ| = 2p + 2, and for each u ∈ V Γ, let u′ ∈ V Γ be its unique vertex at maximum
distance. Then |Γ(u)| = p = |Γ(u′)|, and Γ(u) ∩ Γ(u′) = ∅. Since Γ is connected, it
follows that V Γ = {u} ∪ Γ(u) ∪ Γ(u′) ∪ {u′}, and the diameter of Γ is 3.

Let B = {B1, B2, . . . , Bp+1} be the invariant partition of V Γ such that ΓB
∼= Kp+1

and Γ is a non-bipartite antipodal double cover of ΓB. Let K be the kernel of the
A-action on B. As each |Bi| = 2, it follows that K is a 2-group. Further, as K is a
normal subgroup of A and PSL(2, p) is a simple group, it follows that K ∼= Z2. Thus
G := PSL(2, p) acts faithfully on B. Since the G-action on p+ 1 points is unique and
this action is 2-transitive, it follows that G is 2-transitive on B, and so ΓB is G-arc
transitive. Thus either G is transitive on V Γ or G has two orbits ∆1,∆2 in V Γ of size
p + 1. Suppose the latter holds. If the induced subgraph [∆i] contains an edge, then
[∆i] ∼= Kp+1, as the G-action on p+1 points is 2-transitive. It follows that Γ = 2 ·Kp+1

contradicting the fact that Γ is connected. Hence [∆i] does not contain edges of Γ, and
so Γ is a bipartite graph, again a contradiction. Thus G is transitive on V Γ.

Let B1 be a block and u ∈ B1. Then GB1

∼= Zp : Z p−1

2

and Gu
∼= Zp : Z p−1

4

. As Gu

has an element of order p, Gu is transitive on Γ(u), and hence Γ is G-arc transitive.
Let p = 5. Suppose B1 = {u, u′}. Since Γ is G-arc transitive, it follows that Gu

is transitive on Γ(u) and Gu′ is transitive on Γ(u′). As Gu = Gu,u′ = Gu′
∼= Z5 and
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Γ3(u) = {u′}, it follows that Γ is G-distance transitive. Thus by [3, p.222, Theorem
7.5.3 (ii)], Γ is the icosahedron, so Γ ∈ C(5).

Now assume that p > 5. As Γ is connected andG-arc transitive, Γ ∼= Cos(G,H,HgH)
for the subgroup H = Gu and some element g ∈ G \ H , such that 〈H, g〉 = G and
g2 ∈ H . Let a ∈ H and o(a) = p. Then 〈a〉 is a Sylow p-subgroup of G. Thus
H = 〈a〉 : 〈b2〉 where NG(〈a〉) = 〈a〉 : 〈b〉.

Now we determine the element g. Let u = H and v = Hg in V Γ. Then Gu = H
and Gu,v = 〈b2〉. Further, Gg

u,v = (Gu ∩ Gv)
g = Gg

u ∩ Gg
v = Gv ∩ Gu = Gu,v, and

hence 〈b2〉g = 〈b2〉. Thus g ∈ NG(〈b
2〉) ∼= Dp−1 = 〈b〉 : 〈x〉 for some involution x.

If g = bi for some i ≥ 1, then 〈H, g〉 ≤ NX(〈a〉) = 〈a〉 : 〈y〉 where X = PGL(2, p)
and y2 = b, contradicting the fact that 〈H, g〉 = G. Thus g = bix for some i, and so
NG(〈b

2〉) ∼= Dp−1 = 〈b〉 : 〈g〉. Thus Γ ∼= Cos(G,H,HgH) ∈ C(p).
Conversely, assume that Γ ∈ C(p). If Γ is the icosahedron, then we easily see that

Γ is a connected non-bipartite antipodal double cover of K6 and its automorphism
group is PSL(2, 5)×Z2. If p > 5, then by Remark 3.1, Γ is a connected non-bipartite
antipodal double cover of Kp+1 and AutΓ ∼= PSL(2, p)× Z2.

(b) The claims in part (b) hold for the icosahedron, so assume that p > 5 and p ≡ 1
(mod 4), and let G = PSL(2, p). Let elements ai, bi, gi and subgroups Hi be chosen as
in Definition 1.1 for i ∈ {1, 2}. Let X = PGL(2, p) ∼= AutG.

Since all subgroups of G of order p are conjugate there exists x ∈ G such that
〈a2〉

x = 〈a1〉, so we may assume that 〈a1〉 = 〈a2〉 = M , say. Let Y = NX(M). Then
Y = M : 〈y〉 where o(y) = p − 1, and H1 = M : 〈b21〉 and H2 = M : 〈b22〉 are equal to

the unique subgroup of Y of order p(p−1)
4

, that is, H1 = H2 = M : 〈y4〉 = H , say. Next,

since all subgroups of Y of order p−1
4

are conjugate, there exist x1, x2 ∈ Y such that
〈b21〉

x1 = 〈b22〉
x2 = 〈y4〉. Since each xi normalises H we may assume in addition that

〈b21〉 = 〈b22〉 = 〈y4〉 < 〈y〉. Thus g1, g2 are non-central involutions in NG(〈y
4〉) ∼= Dp−1,

an index 2 subgroup of NX(〈y
4〉) = 〈y〉 : 〈z〉 ∼= D2(p−1). The set of non-central

involutions in NG(〈y
4〉) forms a conjugacy class of NX(〈y

4〉) of size p−1
2

and consists

of the elements y2iz, for 0 ≤ i < p−1
2
. The group 〈y〉 acts transitively on this set of

involutions by conjugation (and normalises H). Hence, for some u ∈ 〈y〉, Hu = H and
gu2 = g1. Thus all graphs in C(p) are isomorphic. Finally, by Lemma 3.2, these graphs
are geodesic transitive of diameter 3. ✷

4 Proof of Theorem 1.3

In this section, we will prove Theorem 1.3 in a series of lemmas. For all lemmas
of this section, we assume that Γ is a connected 2-geodesic transitive graph of prime
valency p and we denote AutΓ by A. Note that the assumption of 2-geodesic transitivity
implies that the graph is not complete. If Γ is 2-arc transitive, there is nothing to prove,
so we assume further that this is not the case, that is to say, we assume that Γ has
girth 3. The first lemma determines some intersection parameters.

Lemma 4.1 Let (v, u, w) be a 2-geodesic of Γ. Then p ≡ 1 (mod 4), |Γ(v) ∩ Γ(u)| =

|Γ2(v) ∩ Γ(u)| = p−1
2

and |Γ(v) ∩ Γ(w)| divides p−1
2
. Moreover, A

Γ(v)
v

∼= Zp : Z p−1

2

is a

Frobenius group, and A
Γ(v)
v,u

∼= Z p−1

2

is transitive on Γ(v) ∩ Γ(u).
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Proof. Since Γ is 2-geodesic transitive but not 2-arc transitive, it follows that Γ is not
a cycle. In particular, p is an odd prime. Let |Γ(v)∩Γ(u)| = x and |Γ2(v)∩Γ(u)| = y.
Then x + y = |Γ(u) \ {v}| = p− 1. Since girth(Γ) = 3, x ≥ 1. Since p is odd and the
induced subgraph [Γ(v)] is an undirected regular graph with px

2
edges, it follows that x

is even. This together with x+ y = p− 1 and the fact that p− 1 is even, implies that
y is also even.

Since Γ is arc transitive, A
Γ(v)
v is transitive on Γ(v). Since p is a prime, A

Γ(v)
v acts

primitively on Γ(v). By Lemma 2.1, either A
Γ(v)
v is 2-transitive, or A

Γ(v)
v is solvable and

A
Γ(v)
v ≤ AGL(1, p). Since Γ is not complete, it follows that [Γ(v)] is not a complete

graph. Also since girth(Γ) = 3, [Γ(v)] is not an empty graph and so A
Γ(v)
v is not 2-

transitive. Hence A
Γ(v)
v < AGL(1, p). Thus A

Γ(v)
v

∼= Zp : Zm is a Frobenius group,
where m|(p− 1) and m < p− 1. Hence m ≤ p−1

2
.

Since Γ is vertex transitive, it follows that A
Γ(u)
u

∼= Zp : Zm, and hence A
Γ(u)
u,v

∼= Zm

is semiregular on Γ(u)\{v} with orbits of size m. Since Γ is 2-geodesic transitive, A
Γ(u)
u,v

is transitive on Γ2(v) ∩ Γ(u), and hence y = |Γ2(v) ∩ Γ(u)| = m, so x = p− 1 −m =
m(p−1

m
− 1) ≥ m, and x is divisible by m.

Now again by arc transitivity, |Γ(u) ∩ Γ(w)| = |Γ(u) ∩ Γ(v)| = x. Since |Γ2(v) ∩
Γ(u)| = m, it follows that |Γ2(v) ∩ Γ(u) ∩ Γ(w)| ≤ m − 1. Since Γ(w) ∩ Γ(u) =
(Γ(w) ∩ Γ(u) ∩ Γ(v)) ∪ (Γ(w) ∩ Γ(u) ∩ Γ2(v)), it follows that

x ≤ |Γ(w) ∩ Γ(u) ∩ Γ(v)|+ (m− 1). (∗)

Let z = |Γ(v) ∩ Γ(w)| and n = |Γ2(v)|. Since Γ is 2-geodesic transitive, z, n are
independent of v, w and, counting edges between Γ(v) and Γ2(v) we have pm = nz.
Now z ≤ |Γ(v)| = p. Suppose first that z = p. Then m = n and Γ(v) = Γ(w), and so
for distinct w1, w2 ∈ Γ2(v), dΓ(w1, w2) = 2. Since Γ is 2-geodesic transitive, it follows
that Γ(v) = Γ(v′) whenever dΓ(v, v

′) = 2. Thus diam(Γ) = 2, V Γ = {v}∪Γ(v)∪Γ2(v)
and |V Γ| = 1+p+m. Let ∆ = {v}∪Γ2(v). Then for distinct v1, v

′
1 ∈ ∆, dΓ(v1, v

′
1) = 2;

for any v′′1 ∈ V Γ \∆, v1, v
′′
1 are adjacent. Thus, for any v1 ∈ ∆, ∆ = {v1} ∪ Γ2(v1). It

follows that ∆ is a block of imprimitivity for A of size m+1. Hence (m+1)|(p+m+1),
so (m+1)|p. Since m|(p−1), it follows that m+1 = p which contradicts the inequality
m ≤ p−1

2
.

Thus z < p, and so z divides m, as pm = nz. Since |Γ(w) ∩ Γ(u) ∩ Γ(v)| ≤ z, it
follows from (∗) that x ≤ z + (m − 1) ≤ 2m− 1 < 2m. Since x is divisible by m and
x ≥ m we have x = m. Thus 2m = x + y = p − 1, so x = y = m = p−1

2
, and since

x is even, p ≡ 1 (mod 4). Also x = m implies that A
Γ(v)
v,u is transitive on Γ(v) ∩ Γ(u).

Finally, since nz = pm = p(p−1
2
) and z < p, it follows that z divides p−1

2
. ✷

Lemma 4.2 For v ∈ V Γ, the stabiliser Av
∼= Zp : Z p−1

2

is a Frobenius group.

Proof. Suppose that (v, u) is an arc of Γ. Then by Lemma 4.1, A
Γ(v)
v

∼= Zp : Z p−1

2

is

a Frobenius group, and A
Γ(v)
v,u

∼= Z p−1

2

is regular on Γ(v) ∩ Γ(u). Let K be the kernel

of the action of Av on Γ(v). Let u′ ∈ Γ(v) ∩ Γ(u) and x ∈ K. Then x ∈ Av,u,u′. Since

A
Γ(u)
u,v

∼= Z p−1

2

is semiregular on Γ(u) \ {v}, it follows that x fixes all vertices of Γ(u).

Since x also fixes all vertices of Γ(v), this argument for each u ∈ Γ(v) shows that x
fixes all vertices of Γ2(v). Since Γ is connected, x fixes all vertices of Γ, and hence
x = 1. Thus K = 1, so Av

∼= Zp : Z p−1

2

is a Frobenius group. ✷
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Lemma 4.3 Let (v, u, w) be a 2-geodesic of Γ. Then |Γ(v) ∩ Γ(w)| = p−1
2
, |Γ2(v) ∩

Γ(w) ∩ Γ(u)| = p−1
4
, |Γ2(v)| = p, and |Γ2(v) ∩ Γ(w)| = p−1

2
.

Proof. Let z = |Γ(v)∩Γ(w)| and n = |Γ2(v)|. By Lemma 4.1, |Γ(u)∩Γ2(v)| =
p−1
2

and

z|p−1
2
. Counting the edges between Γ(v) and Γ2(v) gives

p−1
2
p = nz. By Lemma 4.2,

Av,u = Z p−1

2

, and by Lemma 4.1, Av,u is transitive on Γ(v) ∩ Γ(u), so [Γ(u)] is Au-arc

transitive. Since p is a prime, it follows by Lemma 2.2 that [Γ(u)] is a Paley graph
P (p). Since v, w ∈ Γ(u) are not adjacent, by Lemma 2.3, |Γ(v) ∩ Γ(u) ∩ Γ(w)| = p−1

4
,

hence z ≥ p−1
4

+ 1. Since z|p−1
2
, it follows that z = p−1

2
. Hence n = p. Thus,

|Γ(v) ∩ Γ(w)| = p−1
2

and |Γ2(v)| = p.

By Lemma 4.1, we have |Γ(v) ∩ Γ(u)| = p−1
2
. Since Γ is arc transitive, it follows

that |Γ(v1) ∩ Γ(v2)| =
p−1
2

for every arc (v1, v2). Thus, |Γ(u) ∩ Γ(w)| = p−1
2
. Since

Γ(u) ∩ Γ(w) = (Γ(v) ∩ Γ(u)∩ Γ(w)) ∪ (Γ2(v)∩ Γ(u) ∩ Γ(w)) where Γ(v) ∩ Γ(u)∩ Γ(w)
and Γ2(v) ∩ Γ(u) ∩ Γ(w) are disjoint, and since |Γ(v) ∩ Γ(u) ∩ Γ(w)| = p−1

4
, it follows

that |Γ2(v) ∩ Γ(u) ∩ Γ(w)| = p−1
2

− p−1
4

= p−1
4
. Since Av = Zp : Z p−1

2

, it follows that

Av,w = Z p−1

2

and Av,w is semiregular on Γ2(v) \ {w} with orbits of size p−1
2
. Since

Γ2(v) ∩ Γ(w) ⊆ Γ(w) \ Γ(v) (of size p−1
2
) and since |Γ2(v) ∩ Γ(w) ∩ Γ(u)| = p−1

4
> 0, it

follows that |Γ2(v) ∩ Γ(w)| = p−1
2
. ✷

Lemma 4.4 Let v be a vertex of Γ. Then |Γ3(v)| = 1 and diam(Γ) = 3, so Γ is
antipodal with fibres of size 2. Further, Γ is geodesic transitive.

Proof. Suppose that (v, u, w) is a 2-geodesic of Γ. Then by Lemma 4.3, |Γ(v)∩Γ(w)| =
p−1
2

and |Γ2(v)∩Γ(w)| =
p−1
2
. Hence |Γ3(v)∩Γ(w)| = p−|Γ(v)∩Γ(w)|−|Γ2(v)∩Γ(w)| =

1. Since Γ is 2-geodesic transitive, it follows that |Γ3(v)∩Γ(w1)| = 1 for all w1 ∈ Γ2(v).
Thus Γ is 3-geodesic transitive.

Let Γ3(v)∩Γ(w) = {v′}, n = |Γ3(v)| and i = |Γ2(v)∩Γ(v
′)|. Counting edges between

Γ2(v) and Γ3(v), we have p = ni. Since [Γ(w)] is a Paley graph and u, v′ ∈ Γ(w) are
not adjacent, it follows from Lemma 2.3 that |Γ(u) ∩ Γ(w) ∩ Γ(v′)| = p−1

4
. Since

Γ(u)∩ Γ2(v) contains these
p−1
4

vertices as well as w, we have i ≥ p+3
4

> 1. Thus i = p
and n = 1, that is, |Γ3(v)| = 1. Since |Γ2(v) ∩ Γ(v′)| = p and |Γ2(v)| = p, it follows
that Γ2(v) = Γ(v′), so diam(Γ) = 3 and Γ is antipodal with fibres of size 2. Therefore
Γ is geodesic transitive. ✷

We are ready to prove Theorem 1.3.

Proof of Theorem 1.3. Let Γ be a connected non-complete graph of prime valency
p. Suppose first that Γ is 2-geodesic transitive. If girth(Γ) ≥ 4, then every 2-arc is a
2-geodesic, so Γ is 2-arc transitive. Now assume that girth(Γ) = 3. Let v ∈ V Γ. Then
it follows from Lemmas 4.1 to 4.4 that p ≡ 1 (mod 4), |Γ2(v)| = p, |Γ3(v)| = 1 and
diam(Γ) = 3. Thus, V Γ = {v}∪Γ(v)∪Γ2(v)∪{v′}, where Γ3(v) = {v′}, Γ(v) = Γ2(v

′)
and Γ2(v) = Γ(v′), and also |V Γ| = 2p+2. Further, by Lemma 4.4, Γ is antipodal and
geodesic transitive.

Let B = {∆1,∆2, . . . ,∆p+1} where ∆i = {ui, u
′
i} such that dΓ(ui, u

′
i) = 3. Then

each ∆i is a block for A := AutΓ of size 2 on V Γ. Further, for each j 6= i, ui is adjacent
to exactly one vertex of ∆j , and u′

i is adjacent to the other. The quotient graph Σ = ΓB

is therefore a complete graph Kp+1 and Γ is a cover of Σ. In particular, the map σ
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such that uσ
i = u′

i and u′σ
i = ui for all i is an automorphism of Γ of order 2, and fixes

each of the ∆i setwise.
We now determine the automorphism group A. By Lemma 4.2, Av

∼= Zp:Z p−1

2

is

a Frobenius group, and so |A| = |Av|.|V Γ| = p(p + 1)(p − 1). Let K be the kernel
of A acting on B. Then A is an extension of K by the factor group AB. Since Γ
is a cover of Σ, the kernel K is semiregular on V Γ, and hence has order at most
2. Since the involution σ defined above lies in K, it follows that K ∼= Z2. Thus
|AB| = |A/K| = p(p+1)(p−1)

2
.

Since Γ is arc transitive, the quotient graph Σ = Kp+1 isA
B-arc transitive. Thus, AB

is 2-transitive on the vertex set B, and the point stabiliser (AB)∆1
= KAu1

/K ∼= Au1

∼=
Zp:Z p−1

2

is a Frobenius group, so AB is a Zassenhaus group. Since |AB| = p(p+1)(p−1)
2

and AB is not 3-transitive on B, by [8, Theorem 11.16], AB ∼= PSL(2, p). Therefore,
we have

A = K.AB = Z2.PSL(2, p).

Suppose that the extension of Z2 by PSL(2, p) is non-split. Then A = SL(2, p) has only
one involution, which lies in the center of A. However, the stabiliser (AB)∆1

∼= Zp : Z p−1

2

is of even order and has trivial center, which is a contradiction. So the extension K.AB

is split, and A ∼= Z2 × PSL(2, p). It now follows from Theorem 1.2 (a) that Γ ∈ C(p).
Conversely, if Γ is 2-arc transitive, then it is 2-geodesic transitive. If Γ ∈ C(p), then

by Theorem 1.2 (b), Γ is 2-geodesic transitive. ✷

References

[1] R. W. Baddeley, Two-arc transitive graphs and twisted wreath products. J.
Algebraic Combin. 2 (1993), 215–237.

[2] N. L. Biggs, Algebraic Graph Theory, Cambridge University Press, New York,
(1974).

[3] A. E. Brouwer, A. M. Cohen and A. Neumaier, Distance-Regular Graphs,
Springer Verlag, Berlin, Heidelberg, New York, (1989).

[4] A. Devillers, W. Jin, C. H. Li and C. E. Praeger, Line graphs and geodesic
transitivity, Ars Math. Contemp. 6 (2013), 13–20.

[5] J. D. Dixon and B. Mortimer, Permutation groups, Springer, New York, (1996).

[6] C. D. Godsil, R. A. Liebler and C. E. Praeger, Antipodal distance transitive
covers of complete graphs, European J. Combin. 19 (1998), 455–478.

[7] C. D. Godsil and G. F. Royle, Algebraic Graph Theory, Springer, New York,
Berlin, Heidelberg, (2001).

[8] B. Huppert and N. Blackburn, Finite Groups III, Springer, New York, Berlin,
Heidelberg, (1982).

[9] A. A. Ivanov and C. E. Praeger, On finite affine 2-arc transitive graphs. Euro-
pean J. Combin. 14 (1993), 421–444.

9



[10] W. Jin, W. J. Liu and S. J. Xu, Finite 2-geodesic transitive graphs of valency
6, submitted.

[11] C. H. Li, Finite CI-groups are soluble, Bull. London Math. Soc. 31 (1999),
419–423.

[12] P. Lorimer, Vertex transitive graphs: symmetric graphs of prime valency, J.
Graph Theory 8 (1984), 55–68.

[13] R. E. A. C. Paley, On orthogonal matrices, J. Math. Phys. 12 (1933), 311–320.

[14] C. E. Praeger, An O’Nan Scott theorem for finite quasiprimitive permutation
groups and an application to 2-arc transitive graphs, J. London Math. Soc. (2)
47 (1993), 227–239.

[15] D. E. Taylor, Two-graphs and doubly transitive groups, J. Combin. Theory A
61 (1992), 113–122.

[16] W. T. Tutte, A family of cubical graphs, Proc. Cambridge Philos. Soc. 43
(1947), 459–474.

[17] W. T. Tutte, On the symmetry of cubic graphs, Canad. J. Math. 11 (1959),
621–624.

[18] R. Weiss, s-transitive graphs, Colloquia Mathematica Societatis Janos Bolyai,
Algebraic methods in graph theory, szeged (Hungary) 25 (1978), 827–847.

[19] R. Weiss, The non-existence of 8-transitive graphs, Combinatorica 1 (1981),
309–311.

10


	1 Introduction
	2 Preliminaries
	3 Proof of Theorem 1.2 
	4  Proof of Theorem 1.3

