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Abstract. Richter and Thomassen proved that every graph has an
edge e such that the crossing number crpG ´ eq of G ´ e is at least
p2{5qcrpGq´Op1q. Fox and Cs. Tóth proved that dense graphs have large
sets of edges (proportional in the total number of edges) whose removal
leaves a graph with crossing number proportional to the crossing number
of the original graph; this result was later strenghtened by Černý, Kynčl
and G. Tóth. These results make our understanding of the decay of
crossing numbers in dense graphs essentially complete. In this paper we
prove a similar result for large sparse graphs in which the number of
edges is not artificially inflated by operations such as edge subdivisions.
We also discuss the connection between the decay of crossing numbers
and expected crossing numbers, a concept recently introduced by Mohar
and Tamon.

1. Introduction4

The crossing number crpGq of a graph G is the minimum number of pair-5

wise crossings of edges in a drawing of G in the plane. A graph G is k-6

crossing-critical if crpGq ě k, but crpG´ eq ă k for every edge e of G. Since7

loops are totally irrelevant for crossing number purposes, all graphs under8

consideration are loopless.9

1.1. The decay of crossing numbers. In this paper we are concerned10

with the effect of edge removal in the crossing number of a graph (following11

Fox and Tóth [10], this is referred to as the decay of crossing numbers).12

Richter and Thomassen [22] proved that every graph G has some edge e13

such that crpG ´ eq ě p2{5qcrpGq ´ 37{5. They conjectured that there14

always exist an edge e such that crpG ´ eq ě crpGq ´ c
a

crpGq, for some15

universal constant c. This conjecture was proved by Fox and Tóth [10] for16

dense graphs.17

Fox and Tóth actually proved a much stronger result: the existence of a18

large subset of edges whose removal leaves a graph whose crossing number19
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is at least a proportion of the crossing number of the original graph. More20

precisely, they proved that for every fixed ε ą 0, there is a constant n0 “21

n0pεq such that if G is a graph with n ą n0 vertices and m ą n1`ε edges,22

then G has a subgraph G1 with at most p1´ ε
24qm edges such that crpG1q ě23

p 1
28 ´ op1qqcrpGq.24

This result was further strenghtened by Černý, Kynčl and G. Tóth [5],25

who proved that for every ε, γ ą 0 there is an n0 “ n0pε, γq such that if G is26

a graph with n ą n0 vertices and m ą n1`ε edges, then G has a subgraph27

G1 with at most p1´ εγ
1224qm edges such that crpG1q ě p1´ γqcrpGq.28

1.2. The decay of crossing numbers of sparse graphs. Due to the Fox-29

Tóth and the Černý-Kynčl-Tóth results, our understanding of the decay of30

crossing numbers of dense graphs is essentially complete. The situation31

for sparse graphs is quite different. Although the Richter and Thomassen32

result is fully general, it only guarantees the existence of a single edge whose33

deletion leaves a graph with crossing number substantially large. As pointed34

out in [10], by combining the following two facts one obtains an improvement35

to the Richter-Thomassen result for graphs with n vertices and m ą 8.1n36

edges: (i) every graph with m ě 103
16 n satisfies crpGq ě 0.032m

3

n2 [20]; and37

(ii) for any graph G and any edge e of G, crpG´ eq ě crpGq ´m` 1 [21].38

In this paper we investigate the decay of crossing numbers of sparse39

graphs. We are particularly interested in establishing results as similar as40

possible as those in [10] and [5]: the existence of large sets of edges whose41

removal leaves a graph whose crossing number is at least some (constant)42

fraction of the crossing number of the original graph.43

In contrast with dense graphs, in a sparse graph it is possible to artificially44

increase the number of edges of a graph, while maintaining its crossing45

number, without adding any substantial topological feature. Consider, for46

instance, a graph consisting of a large planar grid plus an additional edge47

e joining two vertices far apart; subdivide this additional edge r times (for48

some integer r ą 0) to get a path P , and let G denote the resulting graph.49

For any given α ą 0, we can make r sufficiently large so that any set of at50

least α|EpGq| edges of G contains at least an edge of P . That is, for any set51

E0 of at least α|EpGq| edges of G, the crossing number of G´ E0 is 0.52

This example shows that no general result can possibly be established if53

we allow the number of edges to be artificially inflated. In particular, degree54

2 vertices need to be precluded from the graphs under consideration. This55

is a particular instance of a more general way to spuriously increase the56

number of edges, by substituting a set of (possibly just one) edges joining57

the same two vertices by a plane connected graph, as we now describe.58

We first recall the definition of a bridge. Let G be a graph, and let u, v59

be distinct vertices of G. Following Tutte, a uv-bridge is either a single edge60

joining u and v, together with u and v (in which case it is trivial), or a61

subgraph of G obtained by adding to a connected component K of Gztu, vu62
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all the edges attaching K to u or v, together with their ends. A uv-bridge is63

uv-planar if it can be embedded in the plane with u and v in the same face.64

Suppose that u, v are distinct vertices incident with the same face in a65

connected plane graph H with |V pHq| ą 2, and let k be the maximum66

number of pairwise edge-disjoint uv-paths in H. We say that pH,u, vq is67

a uv-blob of width k. Now consider a graph G, and let u, v be vertices of68

G, joined by k ě 1 edges. It is easy to see that we may substitute the69

edges joining u and v by an arbitrarily large uv-blob of width k, leaving70

the crossing number (and the criticality of G, if G is critical) unchanged.71

Conversely, if G is a graph with a vertex cut tu, vu, and for some tu, vu-72

bridge H we have that pH,u, vq is a uv-blob of width k, then G may be73

simplified, leaving its crossing number (and its criticality, if G is critical)74

unchanged, by substituting H by k parallel uv-edges.75

Note that the concept of uv-blob captures, in particular, the operation of76

edge subdivision. Indeed, a subdivided edge is simply a uv-blob of width 1,77

all of whose vertices, other than u and v, have degree 2.78

1.3. The main result. Since we are interested in proving the existence of79

large sets of edges (linear in the crossing number) with a special property80

(their removal does not decrease the crossing number arbitrarily), we need81

to preclude the existence of tu, vu-bridges (for any pair u, v of vertices) that82

are uv-blobs, since they inflate the number of edges of a graph, while adding83

no topologically interesting structure whatsoever to the graph itself.84

As it happens, such objects are the only structure that needs to be85

avoided. A graph is irreducible if there do not exist vertices u, v and a86

tu, vu-bridge H such that pH,u, vq is a uv-blob. We prove that if G is irre-87

ducible, then a large set of its edges (linear in the crossing number) may be88

removed, and still leave a graph whose crossing number is at least a fraction89

of the crossing number of the original graph. More precisely:90

Theorem 1. For each ε ą 0 and each positive integer k there exist m0 :“91

m0pε, kq and γ :“ γpεq with the following property. Every 2-connected ir-92

reducible graph G with crpGq “ k and at least m0 edges has a set E0 of at93

least γk edges such that crpG´ E0q ą p1{2´ εqcrpGq.94

Trivially, 3-connected graphs are irreducible, so in particular Theorem 195

applies to all 3-connected graphs.96

We also apply our techniques to improve (for sufficiently large graphs)97

the Richter and Thomassen result on crossing-critical graphs. Richter and98

Thomassen proved in [22] that every graph G has an edge e such that crpG´99

eq ě p2{5qcrpGq ´ 37{5.100

In order to improve on this result, again we need to be careful not to allow101

the artificial inflation in the number of edges. However, we do not need102

the full condition of irreducibility: it suffices to require that each vertex is103

adjacent to at least 3 other vertices. A slight variant of this requirement104

(namely X-minimality) was introduced by Ding, Oporowski, Thomas, and105
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Vertigan in [6], with the same motivation of not allowing a graph with given106

crossing number (in their case, a 2-crossing-critical graph) to spuriously grow107

its number of edges.108

Theorem 2. For each positive integer k, there is an integer m1 :“ m1pkq109

with the following property. Let G be a 2-connected graph in which each110

vertex is adjacent to at least 3 vertices. If crpGq “ k and G has at least m1111

edges, then G has an edge e such that crpG´ eq ą p2{3qcrpGq ´ 108.112

We conclude this section with a brief overview of the proofs of Theorems 1113

and 2, and of the rest of this paper.114

As in [5], [10], and [22], we make essential use of the embedding method.115

This technique consists of finding a set E0 of edges in a graph G, and for116

each e “ uv P E0 a set of pairwise edge-disjoint uv-paths Ppeq, with the117

aim of drawing G´E0 (with crpG´E0q crossings) and then embedding each118

e P E0 very closely to some path in Ppeq. The idea is to choose the set E0119

so that the embedding can be done without adding too many crossings.120

Richter and Thomassen proved the existence of an edge e “ uv (so that121

E0 “ teu) with the property that there is a uv-path (that avoids e) of length122

at most 4, all of whose internal vertices have degree less than 12. Fox and123

Tóth, and Černý-Kynčl-Tóth used the density of G to show the existence124

of a large set E0 of edges, such that each edge e “ uv of E0 has a large125

collection Ppeq of short edge-disjoint paths, and such that the collections126

Ppeq are pairwise edge-disjoint.127

In our current setup (sparse graphs) for all we know the graphs under128

consideration may have maximum degree 3, and so in general we cannot129

expect to find collections Ppeq of more than two edge-disjoint paths, for130

each e P E0. We prove that, indeed, each graph under consideration has131

large set E0 of edges such that each e “ uv P E0 has two short uv-paths132

P peq, Qpeq whose internal vertices have bounded degree, and if e ‰ f then133

P peqYQpeq and P pfqYQpfq are edge-disjoint. As it happens, P peq and Qpeq134

are not necessarily edge-disjoint, but this turns out to be unimportant. To135

be slightly more precise, let us mention that each graph Ξ “ eYP peqYQpeq136

has the property that P peq and Qpeq have length at most `, and the degree137

of their internal vertices is less than ∆. Following the lively notation in [5],138

we call each Ξ an p`,∆q-earring.139

Most of the rest of this paper is devoted to proving the result described140

in the previous paragraph. We start by establishing, in Section 2, several141

assorted statements on planar graphs; these are, in one way or another,142

elementary consequences of Euler’s formula. The existence of a large set143

of edge-disjoint p`,∆q-earrings (for certain values of ` and ∆) is proved144

in Section 3 for planar graphs, and in Section 4 for irreducible nonplanar145

graphs.146

In Section 5 we establish the version of the embedding method that we147

need. The proofs of Theorems 1 and 2 are in Section 6.148
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In Section 7 we discuss the connection between the decay of crossing149

numbers and the concept, recently introduced by Mohar and Tamon [18], of150

expected crossing numbers. Finally, in Section 8 we present some concluding151

remarks and open questions.152

2. Assorted lemmas on planar graphs153

A branch in a graph is a path whose endpoints have degree at least 3, and154

all whose internal vertices have degree 2.155

Lemma 3. Let G “ pV,Eq be a planar graph with minimum degree at least156

2, and let B Ď V be a set of vertices of degree at least 3. Suppose that the157

number of branchs with both endpoints in B is at most s. Then there are at158

least |V |{2´ s{2´ p3{2q|B| edges with both endpoints in V zB.159

Proof. Let W :“ V zB. To help comprehension, we color white (respectively,160

black) the vertices in W (respectively, B). A branch is black if its endpoints161

are both black. A white vertex is black-covered if all its adjacent vertices are162

black. A black-covered vertex is of Type I if it has degree 2; otherwise (that163

is, if it has degree ě 3) it is of Type II.164

Since there are no black vertices of degree 2, then no black branch can165

contain more than one Type I vertex. Thus there are at most s Type I166

vertices.167

Let W 1 denote the set of black-covered vertices of Type II, and let G1168

denote the subgraph of G induced by the edges incident with a vertex in169

W 1. This is a bipartite graph with bipartition pW 1, B1q, for some B1 Ď B.170

A standard Euler formula argument yields that |EpG1q| ď 2|V pG1q| ´ 4 “171

2|W 1| ` 2|B1| ´ 4. Since each vertex in W 1 has degree at least 3 (in G1, as172

well as in G) it follows that |EpG1q| “
ř

vPW 1 dpvq ě 3|W 1|. Thus 3|W 1| ď173

2|W 1| ` 2|B1| ´ 4 ď 2|W 1| ` 2|B| ´ 4, and so |W 1| ď 2|B| ´ 4. Thus, there174

are at most 2|B| ´ 4 Type II vertices.175

Therefore, the total number of black-covered vertices is at most s`2|B|´4.176

It follows that there are at least |W | ´ s´ 2|B| ` 4 ą |W | ´ s´ 2|B| white177

vertices that are adjacent to at least one white vertex, and so there are at178

least |W |{2´ s{2´ |B| “ |V |{2´ s{2´ p3{2q|B| edges with both endpoints179

in W . �180

The length of a face in a plane graph is the length of its boundary walk.181

A digon in an embedded graph consists of two parallel edges, together182

with their common endpoints. If the endpoints are u and v, then it is a uv-183

digon. A plane embedding of a graph G is clean if for each pair of vertices184

u, v joined by parallel edges, there exist edges e, e1 with endpoints u and v,185

such that the disc bounded by the digon formed by e and e1 contains all186

edges parallel to e and e1, and no other edges.187

Lemma 4. Let G be a connected plane graph in which each vertex is adjacent188

to at least 3 vertices. Suppose that the embedding of G is clean. Let r ě 0189
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be an integer. Let F be the set of faces of G, and let F 1 be the set of those190

faces whose length is at most r ` 5. Then |F 1| ě r|F |`12
r`3 .191

Proof. Let H be a graph obtained from G as follows: for each pair pu, vq of192

vertices joined by parallel edges, contract to a single all the parallel edges193

between u and v. Let FH denote the set of faces of H, and let F 1H denote194

the set of faces of H with length at most r ` 5. Our first task is to show195

that |F 1H | ě
r|FH |`12
r`3 .196

For each f P FH the sum wpfq :“
ř

v„f 1{dpvq is the weight of f , where197

dpvq denotes the degree of the vertex v and v „ f means that v is incident198

with f . (A vertex v contributes to wpfq as many times as the boundary199

walk of f passes through v.) Since H is simple and has minimum degree200

at least 3, then, letting lpfq denote the length of f , we have lpfq ě 3 and201

wpfq ď lpfq{3. It is easy to see that |V pHq| “
ř

fPFH
wpfq and 2|EpHq| “202

ř

fPFH
lpfq. From the last two equations and Euler’s formula it follows that203

2 “ 1
2

ř

fPFH
t2wpfq ´ lpfq ` 2u.204

Since wpfq ď lpfq{3, we have205

12 ď
ÿ

fPFH

t´lpfq ` 6u “
ÿ

fPF 1
H

t´lpfq ` 6u `
ÿ

fPFH´F
1
H

t´lpfq ` 6u.

Since lpfq ě 3 for each f P FH , then´lpfq`6 ď 3 and thus
ř

fPF 1
H
t´lpfq`206

6u ď 3|F 1H |. If f P FH´F
1
H then lpfq´6 ě r, that is, ´lpfq`6 ď ´r, and so207

ř

fPFH´F
1
H
t´lpfq`6u ď ´rp|FH |´|F

1
H |q. Thus, 12 ď 3|F 1H |´rp|FH |´|F

1
H |q,208

and so |F 1H | ě
r|FH |`12
r`3 , as required.209

Now as we inflate back H to G, each face in F 1H becomes a face in F 1.210

The other faces in F 1 are precisely the t :“ |EpGqzEpHq| faces created211

in the inflation process, that is, those bounded by parallel edges. Thus212

|F | “ |FH | ` t and |F 1| “ |F 1H | ` t. Thus |F 1| ´ t ě rp|F |´tq`12
r`3 , and so213

|F 1| ě r|F |`12
r`3 ` tp1´ r

r`3q ě
r|F |`12
r`3 . �214

If D is a digon in a plane graph, then the open (respectively, closed) disc215

bounded by D will be denoted ∆pDq (respectively, ∆pDq). If D,D1 are216

digons, then we write D1 ĺ D if ∆pD1q Ď ∆pDq. We recall that a vertex of217

degree 0 is an isolated vertex.218

Proposition 5. Let G “ pV,Eq be a plane graph, and let Z be a set of219

isolated vertices of G. Suppose that for each digon D in G, the disc bounded220

by D contains at least one vertex in Z. Then G has at most 3|V zZ| ` |Z|221

edges.222

Proof. Let Y :“ V zZ. To help comprehension, we colour the vertices in Y223

and Z black and green, respectively.224

We prove the stronger statement that G has at most 3|Y |` |Z|´6 edges.225

We proceed by induction on the number of digons in G. In the base case G226
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has no digons, and so by Euler’s Formula it has at most 3|Y | ´ 6 edges, as227

required. For the inductive step, we assume that G has at least one digon,228

and let D be a ĺ-minimal digon in G.229

Suppose first thatD is also ĺ-maximal. Then letG1 be the graph obtained230

from G by removing one edge of D and one green vertex contained in ∆pDq.231

Now G1 contains one fewer edge and one fewer green vertex than G. It is232

easy to see that the induction hypothesis can be applied to G1, and so the233

inductive step follows.234

Therefore we may assume that D is not ĺ-maximal. Among all digons235

that contain D, let D1 be a ĺ-minimal one.236

Suppose that D and D1 have an edge e in common, and let e be the other237

edge of D. It is easy to see that the induction hypothesis can be applied to238

the graph obtained from G by removing e and a green vertex contained in239

∆pDq, and once again the inductive step follows. Thus we may assume that240

D and D1 do not have an edge in common.241

If ∆pD1q contains a green vertex not contained in ∆pDq, the situation is242

again straightforward: the induction hypothesis can be applied to the graph243

G1 obtained by removing one edge of D and one green vertex contained in244

∆pDq, and the inductive step follows. Thus we may assume that every green245

vertex contained in ∆pD1q is contained in ∆pDq.246

In this case, there are no digons other than D1 and D contained in ∆pD1q.247

Now let G1 be the graph obtained by removing from G the black vertices248

and all the edges contained in ∆pD1q. Let Y 1 and Z 1 denote the sets of black249

and green vertices of G1, respectively, and let E1 denote the set of edges250

of G1 (note that Z 1 “ Z). We may clearly apply the induction hypothesis251

to G1, obtaining that |E1| ď 3|Y 1| ` |Z| ´ 6. Let Y 2 :“ Y zY 1, and E2 :“252

EzE1. Let x, y be the vertices of D1. Consider the graph G2 that consists253

of the vertices in Y 2 Y tx, yu and the edges in E2. Since G2 has exactly254

one digon (namely D), the usual Euler formula argument yields |EpG2q| ď255

3|V pG2q| ´ 5. However, this inequality is tight only if G2 is maximally256

planar, that is, if no edge can be added between two nonadjacent vertices257

while maintaining planarity; thus, since x and y are not adjacent in G2, it258

follows that |EpG2q| ď 3|V pG2q| ´ 6. Thus |E2| ď 3p|Y 2| ` 2q ´ 6. That is,259

|E|´|E1| ď 3p|Y |´|Y 1|`2q´6, and so |E| ď 3|Y |`|Z|´6, as required. �260

A set Z of vertices in a 2-connected planar graph G is an anchor if the261

following hold:262

(1) no vertex in Z is part of a 2-vertex-cut in G; and263

(2) if tu, vu is a 2-vertex-cut in G, then every nontrivial uv-bridge con-264

tains a vertex in Z.265

Lemma 6. Let G be a 2-connected plane graph in which each vertex is266

adjacent to at least 3 distinct vertices, and let Z be an anchor of G. Let267

Y Ď V pGqzZ, and let EY denote the set of edges of G with both endpoints268

in Y . Then the number of faces of G that are incident with exactly 2 vertices269

of Y is at most 3|Y | ` |Z| ` |EY |.270
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Proof. We may assume that |Y | ě 2, as otherwise there is nothing to prove.271

Let F2 denote the set of faces of G that are incident with exactly two vertices272

of Y .273

We start by coloring red each edge in EY , and green each vertex in Z.274

Now for each f P F2, join the two vertices in Y incident with f by a simple275

blue arc contained (except, obviously, for its endpoints) in f . Let H denote276

the plane graph that consists of the vertices in Y plus all the red edges and277

the blue arcs (now seen as edges), as well as the set Z of green vertices.278

Note that the green vertices are isolated in H. We remark that |F2| is the279

number of blue edges in H.280

Note that if D is a blue digon in H (that is, both edges of D are blue),281

with vertices u and v, then ∆pDq contains a uv-bridge in G. This bridge282

may be trivial (in which case it is a red edge) or nontrivial (in which case,283

by hypothesis, ∆opDq contains a green vertex).284

Finally, let K denote the graph that results from H by substituting each285

red edge by an isolated red vertex (placed in the interior of the red edge).286

Note that |EpKq| “ |F2|, that the vertex set of K is the union of Y with287

the set of all green or red vertices, and that there are |Z| green and |EY |288

red vertices.289

The graph K has the property that for each (necessarily blue) digon D in290

K, ∆opDq contains either a green or a red vertex. Applying Proposition 5291

we obtain that |EpKq| ď 3|Y | ` |Z| ` |EY |. Thus |F2| ď 3|Y | ` |Z| ` |EY |,292

as required. �293

If G is a plane graph, then we let Go denote its dual.294

Lemma 7. Let G be a 2-connected plane graph, and let Z be an anchor of295

G. Suppose that the embedding of G is clean. Let F 1 be a set of faces of G296

of length at least 3. Then the number of branchs in Go with both endpoints297

in F 1 is at most 3|F 1| ` |Z|.298

Proof. Since the embedding is clean, we may as well assume (in the context299

of this lemma) that G has no parallel edges. It follows that all branchs with300

both endpoints in F 1 are actual edges in Go. Thus our goal is to show that301

there are at most 3|F 1| ` |Z| edges in Go with both endpoints in F 1.302

Regarding G and Go as simultaneously embedded, remove everything303

except for F 1 (seen as a set of vertices in Go), the edges (in Go) joining304

two vertices in F 1, and the vertices in Z. The result is a graph G1 in which305

each vertex in Z is isolated, and such that the disc bounded by every digon306

contains a vertex in Z. To see this last property, note that if e and f are307

the edges of a digon in G1, then the edges in G corresponding to e and f308

are a 2-edge-cut in G; since Z is an anchor set of G, it then follows that the309

disc bounded by the digon must contain a vertex of Z in its interior.310

Applying Proposition 5, we obtain that G1 has at most 3|F 1| ` |Z| edges.311

This finishes the proof, since there is a bijection between the edges in G1312

and the edges in Go with both endpoints in F 1. �313
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3. Earrings in planar graphs314

Černý, Kynčl and Tóth introduced the lively terminology of earring of315

size p to describe a graph consisting of an edge e “ uv plus a collection of316

p pairwise edge-disjoint, bounded-length uv-paths. In order to use the re-317

embedding method, the goal is to find many pairwise edge-disjoint earrings.318

As we mentioned in Section 1, in our current context of sparse graphs,319

where (for all we know) the graphs under consideration may have maximum320

degree 3, the best we could hope for is to prove the existence of a large321

collection of earrings, each of size 2. As we also mentioned, in this discussion322

we do not need the two uv-paths of each earring to be edge-disjoint, but only323

a weaker condition (see (iii) in the following definition).324

Let `,∆ be positive integers. An p`,∆q-earring of a graph G is a subgraph325

of G that consists of a base edge e “ uv plus two distinct uv-paths P,Q326

(disjoint from e) with the following properties: (i) each of P and Q has at327

most ` edges; (ii) each internal vertex of P or Q has degree less than ∆; and328

(iii) if f is an edge in both P and Q, then te, fu is a 2-edge-cut of G.329

An edge e “ uv in a 2-connected plane graph is an p`,∆q-edge if each of330

its two incident faces has length at most `` 1, and no vertex incident with331

these two faces, other than possibly u or v, has degree ∆ or greater. If e is an332

p`,∆q-edge, then the subgraph that consists of e plus the cycles that bound333

its two incident faces, is an p`,∆q-earring, the p`,∆q-earring Ξpeq associated334

to e.335

The following lemma is the main workhorse in this paper.336

Lemma 8. Let G “ pV,Eq be a 2-connected planar graph in which each337

vertex is adjacent to at least 3 other vertices. Let Z be an anchor of G,338

where each vertex in Z has degree 4. Then G has at least 10´10|E|´10´5|Z|339

pairwise edge-disjoint p5000, 500q-earrings.340

Proof. Throughout the proof, we make use of several constants that are341

either very small, very close to 1, or somewhat large. In order to simplify342

the whole discussion, we first proceed to introduce these constants. We let343

`0 “ 5000, ∆0 “ 500, c1 “ 10´10, c2 “ 10´5, c3 “ 999{1000, c4 “ 1{1000,344

c5 “ 999, c6 “ 36{5000, and z1 “ 3p10´10q.345

It is a trivial observation that every planar graph has a clean plane em-346

bedding (clean embeddings are defined before Lemma 4). Throughout the347

proof we consider a fixed clean embedding of G in the plane. Let F denote348

the set of all faces of G, and let t :“ |Z|.349

Claim 9. It suffices to show that there are at least p2`0p2`0 ` 1q`1q¨pz1|F |´350

c2tq p`0,∆0q-edges.351

Proof. Consider the graph H whose vertices are the p`0,∆0q-edges of G,352

with two distinct p`0,∆0q-edges e, f adjacent if Ξpeq and Ξpfq have some353

edge in common.354

We note that H has maximum degree at most 2`0p2`0 ` 1q. This follows355

at once from the following two easy observations: (i) for each p`0,∆0q-edge356
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e, Ξpeq has at most 2`0 edges other than e; and (ii) each edge of G belongs357

to at most 2`0 ` 1 p`0,∆0q-earrings of the form Ξpfq for some edge f .358

Thus, V pHq has a stable set of size at least |V pHq|{p2`0p2`0 ` 1q ` 1q.359

Suppose that G has at least p2`0p2`0 ` 1q ` 1q ¨ pz1|F | ´ c2tq p`0,∆0q-edges;360

that is, |V pHq| ě p2`0p2`0 ` 1q`1q¨pz1|F |´c2tq. Then H has a stable set S361

of size at least z1|F |´c2t; that is, there is a collection of at least z1|F |´c2t362

pairwise edge-disjoint p`0,∆0q-earrings.363

Since G has minimum degree at least 3, a routine Euler formula argument364

yields that |F | ě |E|{3 ` 2. Thus there are at least z1p|E|{3 ` 2q ´ c2t ą365

c1|E|´c2t pairwise edge-disjoint p`0,∆0q-earrings, as required in Lemma 8.366

�367

Let W be the set of those vertices of G with degree at least ∆0, and let368

FW denote the set of faces of G that are incident with some vertex in W .369

For each integer j ě 1, let Fj denote the set of those faces of G incident370

with exactly j vertices in W (and perhaps other vertices in V zW ), and let371

fj “ |Fj |. Note that FW is the disjoint union
Ť

iě1 Fi.372

Let Flong (respectively, Fshort) denote the collection of faces of G with373

length greater than (respectively, at most) `0`1, and let flong :“ |Flong| and374

fshort :“ |Fshort|. It follows immediately from Lemma 4 that375

(1) fshort ě c3|F |.

Since F is the disjoint union of Flong and Fshort, then |F | “ flong ` fshort,376

and so fshort ě c3pflong` fshortq implies fshort ě pc3{p1´ c3qqflong. Note that377

c5 “ c3{p1´ c3q. Therefore,378

(2) fshort ě c5flong.

We note that
ř

uPW dpuq “
ř

iě1 ifi. A routine application of Euler’s379

formula yields that
ř

iě3 ifi ď 2p3|W |´6q “ 6|W |´12. Since all vertices of380

Z have degree 4 it follows that W Ď V zZ, and so we can apply Lemma 6,381

to obtain f2 ď 3|W | ` t` |EW |. Combining these observations we obtain382

(3) f1 ě
ÿ

uPW

dpuq ´ 12|W | ´ 2|EW | ´ 2t` 12.

Claim 10. If |FW | ą 24t` 24c4fshort, then Lemma 8 follows.383

Proof. We establish four subclaims, and finally show that the proof follows384

easily from them.385

Subclaim A If |EW | ą 6|W | ´ 12` c4fshort, then Lemma 8 follows.386

Proof. If e1, e2, e3 are parallel edges with common endpoints u, v, and e2 is387

in the disc bounded by the digon formed by e1 and e3, then e2 is a sheltered388

edge. By Euler’s formula, a simple graph on |W | vertices has at most 3|W |´6389

edges. Since the embedding of G is clean, it follows that the subgraph of G390

induced by W has at least |EW |´2p3|W |´6q “ |EW |´6|W |`12 sheltered391
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edges. The fact that G is clean also implies that each sheltered edge is a392

p`0,∆0q-edge, and so G has at least |EW | ´ 6|W | ` 12 p`0,∆0q-edges.393

Suppose that |EW | ą 6|W | ´ 12 ` c4fshort. Then G has at least c4fshort394

p`0,∆0q-edges. Using (1), it follows that G has at least c3c4|F | p`0,∆0q-395

edges. The result now follows from Claim 9, since c3c4 ą p2`0p2`0 ` 1q `396

1qz1. �397

Subclaim B If p1{6qp
ř

uPW dpuqq ď 12|W | ` 2t` 2|EW | ´ 12, then |FW | ă398

24t` 24c4fshort or else Lemma 8 follows.399

Proof. By Subclaim A, under the given hypothesis we may assume that400
ř

uPW dpuq ď 72|W |`12t`p72|W |´144`12c4fshortq´72 “ 144|W |`12t`401

12c4fshort ´ 216 ă 144|W | ` 12t` 12c4fshort.402

Since each vertex in W has degree at least ∆0, it follows that ∆0|W | ď403
ř

uPW dpuq. Hence, |W | ă p12t`12c4fshortq{p∆0´144q. On the other hand,404

obviously |FW | ď
ř

uPW dpuq, and so |FW | ă 144p12t ` 12c4fshortq{p∆0 ´405

144q ` 12t ` 12c4fshort. Since 144{p∆0 ´ 144q ď 1, this implies |FW | ă406

12t` 12c4fshort ` 12t` 12c4fshort “ 24t` 24c4fshort. �407

Subclaim C If p1{6qp
ř

uPW dpuqq ď flong, then |FW | ď 6fshort{c5.408

Proof. Suppose that p1{6qp
ř

uPW dpuqq ď flong. The obvious inequality409

|FW | ď
ř

uPW dpuq then implies that |FW | ď 6 ¨ flong. The required in-410

equality follows from (2). �411

Subclaim D If p1{6qp
ř

uPW dpuqq ą 12|W | ` 2t` 2|EW | ´ 12 and412

p1{6qp
ř

uPW dpuqq ą flong, then |FW | ď c6fshort or else Lemma 8 follows.413

Proof. We show that, under the given hypotheses, if |FW | ą c6fshort, then414

there are at least pc3c6{3q|F | p`0,∆0q-edges; the subclaim then follows from415

Claim 9, since pc3c6q{3 ě p2`0p2`0 ` 1q ` 1q ¨ z1.416

It follows that, under the current hypotheses,417

(4) flong ă p1{3q
ÿ

uPW

dpuq ´ 12|W | ´ 2t´ 2|EW | ` 12.

Since |F1zFlong| ě f1 ´ flong, using (3) and (4) we obtain

|F1zFlong| ě
ÿ

uPW

dpuq ´ 12|W | ´ 2|EW | ´ 2t` 12´ flong ą p2{3q
ÿ

uPW

dpuq.

Since each face in F1 is (by definition) incident with exactly one ver-418

tex in W , the inequality |F1zFlong| ą p2{3q
ř

uPW dpuq implies that at least419

1{3 of the edges incident with W have their two incident faces in F1zFlong.420

Note that all such edges are p`0,∆0q-edges. We conclude that there are421

at least p1{3q
ř

uPW dpuq p`0,∆0q-edges incident with W . Since obviously422
ř

uPW dpuq ě |FW |, this implies that there are at least |FW |{3 p`0,∆0q-edges.423



ON THE DECAY OF CROSSING NUMBERS OF SPARSE GRAPHS 12

Using the assumption |FW | ą c6fshort and (1), it follows that there are at424

least pc3c6{3q|F | p`0,∆0q-edges, as required. �425

We now complete the proof of Claim 10.426

Since the hypotheses of Subclaims B, C, and D are exhaustive, it fol-427

lows from these subclaims that either we may assume that |FW | ă 24t `428

24c4fshort, or |FW | ď 6fshort{c5, or we may assume that |FW | ď c6fshort.429

Since maxt24c4, 6{c5, c6u “ 24c4, it follows that we may assume that |FW | ă430

24t` 24c4fshort. �431

We now complete the proof of Lemma 8.432

A face is white if it is either in FshortzFW or has length exactly 2, and433

is black otherwise. We let F˝ (respectively, F‚) denote the set of all white434

(respetively, black) faces. Let f˝ :“ |F˝|, and f‚ :“ |F‚|.435

Now consider the dual Go of G. The 2-connectivity of G implies that Go436

is also 2-connected. Let us say that an edge in Go is white if its endpoints437

are both white (faces in G).438

The key (and completely straightforward) observation is that the edge of439

G associated to each white edge is an p`0,∆0q-edge. Our final goal is to440

prove that there are many white edges.441

Every face in F‚ is either in Flong or in FW , and so f‚ ď flong ` |FW |.442

Using (2), Claim 10, and the obvious inequality fshort ď |F |, we obtain443

(5) f‚ ď 24t` p24c4 ` 1{c5q|F |.

By Lemma 7, Go has at most 3f‚ ` t branchs with both endpoints black.444

Lemma 3 (applied to Go) then implies that there are at least |F |{2´p3f‚`445

tq{2 ´ p3{2qf‚ “ |F |{2 ´ 3f‚ ´ t{2 ě p1{2 ´ 3p24c4 ` 1{c5qq|F | ´ p145{2qt446

white edges.447

As we have observed, the edge of G associated to each white edge is an448

p`0,∆0q-edge. Thus there are at least p1{2 ´ 3p24c4 ` 1{c5qq|F | ´ p145{2qt449

p`0,∆0q-edges. Since 1{2 ´ 3p24c4 ` 1{c5q ě p2`0p2`0 ` 1q ` 1q ¨ z1 and450

145{2 ď p2`0p2`0 ` 1q ` 1q ¨ c2, then we are done by Claim 9. �451

4. Earrings in nonplanar graphs452

Lemma 11. Let G “ pV,Eq be a 2-connected irreducible graph. Then G453

has at least 10´10|E| ´ p10´5 ` 2qcrpGq pairwise edge-disjoint p5000, 500q-454

earrings.455

Proof. Let `0 :“ 5000, ∆0 :“ 500, c1 :“ 10´10, c2 :“ 10´5, and c7 :“456

p10´5 ` 2q. Let t :“ crpGq, and let D be a drawing of G with exactly t457

crossings. Let H denote the plane graph that results by regarding the t458

crossings as degree 4 vertices (this is the crossings-to-vertices conversion),459

which we colour green to help comprehension (the other vertices of H, each460

of which corresponds to a vertex in G, are coloured black). We claim that461

(i) each vertex in H is adjacent to at least 3 other vertices; (ii) no green462
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vertex is part of a 2-vertex-cut; (iii) H is 2-connected; and (iv) the set of463

green vertices is an anchor set for H.464

We start by noting that (i) follows easily from the irreducibility of G, plus465

the observation that in any crossing-minimal drawing of any graph, the two466

edges involved in any crossing cannot have a common endpoint.467

By way of contradiction, suppose that u, v are green vertices such that468

tu, vu is a 2-vertex-cut in H. It is easy to see that then there are exactly two469

uv-bridges. Let B be any of these uv-bridges, and let H 1 denote the plane470

graph obtained from H by performing a Whitney switching on B around471

u and v. Now by reversing the crossings-to-vertices conversion, we obtain472

from H 1 a drawing of G in which the edge intersections corresponding to473

u and v are tangential, not crossings. Each of these two tangential edge474

intersections may be removed with a small perturbation, yielding a drawing475

of G with two fewer crossings than D, contradicting the crossing-minimality476

of D. This contradiction shows that tu, vu cannot be a 2-vertex-cut in H.477

A similar contradiction is obtained from the assumption that H has a 2-478

vertex-cut with exactly one green vertex (in this case one obtains a drawing479

of G with one fewer crossing than D). This proves (ii).480

The 2-connectedness of G readily implies that no black vertex can be a481

cut vertex of H. On the other hand, a similar switching argument as in482

the proof of (ii) shows that no green vertex can be a cut vertex of H. This483

proves (iii).484

Now let u, v be black vertices such that tu, vu is a 2-vertex-cut in H, and485

let B be a nontrivial uv-bridge. If B does not contain any green vertex, then486

pB, u, vq is clearly a uv-blob of G. Since this contradicts the irreducibility487

of G, (iv) follows.488

We can thus apply Lemma 8 to H, and obtain that H has a collection E of489

at least c1|EpHq| ´ c2t pairwise edge-disjoint p`0,∆0q-earrings. If any such490

earring contains a green vertex, then it obviously contains at least two edges491

incident with a green vertex. Since these earrings are pairwise edge-disjoint,492

it immediately follows that E has a subcollection E 1, with |E 1| ě |E | ´ 2t493

pairwise edge-disjoint p`0,∆0q-earrings that do not contain any green vertex.494

That is, each earring in E 1 is an p`0,∆0q-earring of G.495

Therefore, E 1 is a collection at least |E | ´ 2t ě c1|EpHq| ´ pc2 ` 2qt496

pairwise edge-disjoint p`0,∆0q-earrings in G. Since |EpHq| ě |E|, it follows497

that |E 1| ě c1|E| ´ pc2 ` 2qt “ c1|E| ´ c7t. �498

5. The embedding method: adding edges with few crossings499

Our main goal is to show that every (sufficiently large) irreducible graph500

has a large collection of edges whose removal leaves a graph with large cross-501

ing number. The first main ingredient is the existence of a large collection502

of pairwise edge-disjoint p`,∆q-earrings (for some fixed ` and ∆); this is503

Lemma 8. The second main ingredient is the embedding method, which was504

used under similar circumstances by Richter and Thomassen [22], Fox and505
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Tóth [10], and Černý, Kynčl and Tóth [5] (see also [13, 24, 26]). We use the506

embedding method to prove the following.507

Lemma 12. Let G be a graph, and let `,∆, and r be positive integers.508

Suppose that G has a collection of r pairwise edge-disjoint p`,∆q-earrings.509

Then G has a set E0 of r edges such that crpG ´ E0q ą p1{2qcrpGq ´510

p1{2qp∆`` `2qr.511

Proof. Let Ξ1,Ξ2, . . . ,Ξr be a collection of pairwise edge-disjoint p`,∆q-512

earrings in G. For i “ 1, 2, . . . , r, let ei “ uivi be the base edge of Ξi,513

and let Pi, Qi be the uivi-paths such that Ξi “ PiYQiYteiu. We shall show514

that E0 :“ te1, e2, ..., eru satisfies the required property.515

Let t :“ crpG ´ E0q, and let D be a drawing of G ´ E0 with t crossings.516

The strategy is to extend D to a drawing of G by drawing ei very close to517

either Pi or Qi, for i “ 1, 2, . . . , r. Our aim is to show that this can be done518

while adding relatively few crossings.519

We analyze several types of crossings of Pi and Qi, for i “ 1, 2, . . . , r. A520

crossing in D is (i) of Type 1 if one edge is in Pi and the other edge is in521

Qi, for some i P t1, . . . , ru; (ii) of Type 2A if one edge is in Pi Y Qi and522

the other edge is in Pj Y Qj , for some i ‰ j, i, j P t1, . . . , ru; and (iii) of523

Type 2B if one edge is in Pi Y Qi for some i P t1, . . . , ru and the other524

in EpGqz
Ťr
j“1pPj Y Qjq. Note that if a crossing ˆ involving an edge of525

Ťr
i“1 Pi YQi is neither of Type 1, nor 2A, nor 2B, then the edges involved526

in ˆ must be both in Pi or both in Qi, for some i P t1, 2, .., ru. As we shall527

see, this last type of crossing is irrelevant to our discussion.528

For i “ 1, 2, . . . , r and k P t1, 2u, let χkpPiq (respectively, χkpQiq) denote529

the number of crossings of Type k that involve an edge in Pi (respectively,530

Qi).531

In every crossing-minimal drawing of any graph, no pair of edges cross532

each other more than once. Since each of Pi and Qi has at most ` edges, it533

follows that534

(6) χ1pPiq ď `2, for i “ 1, . . . , r.

Now let R be the set of all sequences pR1, R2, . . . , Rrq, with Ri P tPi, Qiu535

for i “ 1, 2, . . . , r, and consider the sum Σ :“
ř

RPR

`
řr
i“1 χ2pRiq

˘

.536

We claim that a crossing of Type 2A contributes in exactly 2r to Σ. To see537

this, first note that such a crossing involves an edge of an Ri P tPi, Qiu and538

an edge of an Rj P tPj , Qju for some i ‰ j. Let Ti (respectively, Tj) be the539

element in tPi, QiuzRi (respectively, tPj , QjuzRj). There are 2r´2 sequences540

in R that include both Ri and Rj , and so for each such sequence, the crossing541

contributes in 2 to Σ. There are 2r´2 sequences in R that include Ri and do542

not include Rj , and so for each such sequence, the crossing contributes in 1543

to Σ. Analogously, there are 2r´2 sequences in R that include Rj and do not544

include Ri, and so for each such sequence, the crossing contributes in 1 to Σ.545

Therefore each crossing of Type 2A contributes in 2 ¨2r´2`2r´2`2r´2 “ 2r546

to Σ, as claimed. Note that this reasoning assumes that no crossing of Type547
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2A is in both Pi and Qi for the same i. This is immediate if Pi and Qi are548

edge-disjoint, but we recall from our definition of earring that Pi and Qi may549

share edges. However, the validity of our reasoning follows since (again, by550

the definition of earring) any edge f P EpPiqXEpQiq is a cut edge of G´ei,551

from which it follows that f cannot be crossed in any optimal drawing of552

G´ E0.553

We also note that a crossing of Type 2B contributes to Σ in exactly 2r´1.554

Indeed, such a crossing involves (for some fixed i) an edge of Ri and an555

edge that belongs to no Rj ; it contributes in 1 to χpRiq, and there are 2r´1556

sequences in R that include Ri. (As in the previous paragraph, we remark557

that we are making use of the valid assumption that no crossing is in both558

Pi and Qi for the same i).559

In conclusion, each crossing of Type 2A or 2B contributes to Σ in at560

most 2r. Since only crossings of Types 2A and 2B contribute to Σ, and561

D has t crossings in total, we conclude that
ř

RPR

`
řr
i“1 χ2pRiq

˘

ď 2rt.562

Since |R| “ 2r, it follows that for some sequence pR1, R2, . . . , Rrq P R,563
řr
i“1 χ2pRiq ď t. By relabeling (exchanging) Pi and Qi if necessary, we may564

assume without any loss of generality that Ri “ Pi for each i “ 1, 2, . . . , r,565

and so566

(7)
r
ÿ

i“1

χ2pPiq ď t.

Now note that some Pi may have self-crossings. However, for each i there567

is a simple curve αi, contained in Pi, joining ui and vi. The definition568

of crossings of types 1, 2A, and 2B obviously extend to the crossings on569

each αi, and so (6) and (7) imply that χ1pαiq ď `2 for i “ 1, 2, . . . , r, and570
řr
i“1 χ2pαiq ď t. Moreover (this is the effect of having obtained αi by571

avoiding the self-crossings of its corresponding Pi), for i “ 1, 2, . . . , r, each572

crossing of αi is of one of these types.573

The idea is to draw each ei very close to its corresponding αi. There are574

two kinds of crossings on the resulting drawings of ei, i “ 1, . . . , r. Some575

crossings occur as we traverse ei and pass very close to a crossing of αi.576

The inequalities in the previous paragraph imply that there are, in total, at577

most `2r ` t crossings of this first kind. The second kind of crossing occurs578

as we pass very close to a vertex in αi, and cross some edges incident with579

this vertex. Since each such vertex is an internal vertex of some Pi (that is,580

has degree ă ∆) and there are at most `´ 1 internal vertices in each Pi, we581

conclude that each ei has fewer than ∆` crossings of this second kind. Thus582

in total there are fewer than ∆`r crossings of the second kind.583

We conclude that all the edges e1, e2, . . . , er may be added to the drawing584

D of G ´ E0 by introducing fewer than p∆` ` `2qr ` t crossings. Since t “585

crpG´E0q, it follows that crpGq ă 2crpG´E0q`p∆```
2qr or, equivalently,586

crpG´ E0q ą p1{2qcrpGq ´ p1{2qp∆`` `2qr. �587
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If we are interested in removing only one edge (as we are in Theorem 2),588

we can improve the 1{2 coefficient in Lemma 12 to 2{3, as the following589

statement shows.590

Lemma 13. Let G be a graph, and let ` and ∆ be positive integers. Suppose591

that G has an p`,∆q-earring. Then G has an edge e such that crpG ´ eq ą592

p2{3qcrpGq ´ p2{3qp∆`` `2q.593

Proof. The proof is essentially the same as the proof of Lemma 13, with594

the following favourable exception. If we consider only one earring, then595

r “ 1, and so there are no crossings of Type 2A. Each crossing of Type 2B596

contributes to Σ in at most 1, and so χ2pP1q ` χ2pQ1q ď t. By exchanging597

P1 and Q1 if necessary, we may assume that χ2pP1q ď t{2.598

In parallel to the last paragraph of the proof of Lemma 13, in the present599

case we conclude that the edge e1 may be added to the drawing D ofG´E0 “600

G ´ e1 by introducing fewer than p∆` ` `2q ` t{2 crossings. Since t “601

crpG´e1q, it follows that crpGq ă p3{2qcrpG´e1q`∆`` `2 or, equivalently,602

crpG´ e1q ą p2{3qcrpGq ´ p2{3qp∆`` `2q. �603

6. Proof of Theorems 1 and 2604

Proof of Theorem 1. Let `0 :“ 5000 and ∆0 :“ 500, c1 :“ 10´10, and605

c7 :“ p10´5 ` 2q. Let k be a positive integer and let ε ą 0. Define606

γ :“ ε{pp1{2qp∆0`0 ` `
2
0qq and m0 :“ ppc7 ` γqkq{c1. Let G “ pV,Eq be607

a 2-connected irreducible graph with crpGq “ k and at least m0 edges.608

Lemma 11 implies that G has a collection of at least c1|E| ´ c7k pairwise609

edge-disjoint p`0,∆0q-earrings. Since |E| ě ppc7 ` γqkq{c1, it follows that610

G has a collection of at least γk pairwise edge-disjoint p`0,∆0q-earrings.611

Thus, by Lemma 12, G has a collection E0 of at least γk edges such that612

crpG´E0q ą p1{2qcrpGq´ p1{2qp∆0`0 ` `
2
0qγk “ p1{2qcrpGq´ εk “ pp1{2q´613

εqcrpGq. �614

If u, v are vertices of a graph G, a double uv-path is a subgraph of G that615

consists of a uv-path with all its edges doubled.616

Proof of Theorem 2. Let `0 :“ 5000, ∆0 :“ 500, c1 :“ 10´10, and c7 :“617

p10´5 ` 2q. Let k be a positive integer, and let m1 :“ pc7kq{c1 ` 1. We618

prove that if G “ pV,Eq is a 2-connected graph in which each vertex is619

adjacent to at least 3 vertices, crpGq “ k, and G has at least m1 edges, then620

G has an edge e such that crpG´ eq ą p2{3qcrpGq ´ 108.621

Suppose first that G is not irreducible, and let pB, u, vq be a minimal622

blob in G, (that is, G has no blob pB1, u1, v1q such that B1 is a subgraph of623

B). The minimality of B implies that B has no cut edges, and so its width624

wpBq is at least 2. It is easy to see that if every edge of B is in a 2-edge-cut625

separating u and v, then B is a double uv-path. This clearly contradicts the626

X-minimality of G, and so we conclude that there is an edge e in B such627

that the uv-blob (in G´ e) B ´ e has width at least 2.628



ON THE DECAY OF CROSSING NUMBERS OF SPARSE GRAPHS 17

By way of contradiction, suppose that crpG ´ eq ă p2{3qcrpGq. It is629

straightforward to see that there is a crossing-minimal drawing D of G´ e630

in which the set E1 of edges crossed in B´e form a smallest uv-edge cut (that631

is, a minimum size edge cut in B ´ e separating u and v), with each edge632

in E1 crossed the same number (say s) of times. In particular, crpG´ eq ě633

|E1|s ě 2s. The planarity of B´ e (with u, v in the same face) implies that:634

(i) if e is in distinct components of pB ´ eq ´E1, then e can be added to D635

by introducing exactly s crossings; and (ii) otherwise, e can be added to D636

without introducing any crossings. In either case, the result is a drawing of637

G with at most crpG´ eq ` s crossings, and so crpGq ď crpG´ eq ` s. The638

assumption crpGq ą p3{2qcrpG´eq then implies crpG´eq ă 2s, contradicting639

that crpG´ eq ě 2s. Thus crpG´ eq ě p2{3qcrpGq ą p2{3qcrpGq ´ 108.640

Suppose finally that G is irreducible. Lemma 11 then implies that G has641

at least c1|E| ´ c7k pairwise edge-disjoint p`0,∆0q-earrings. Since |E| ě642

pc7kq{c1 ` 1, it follows that G has at least one p`0,∆0q-earring. Thus, by643

Lemma 13, G has an edge e such that crpG´eq ą p2{3qcrpGq´p2{3qp∆`` `2q ą644

p2{3qcrpGq ´ 108. �645

7. Bounded decay and expected crossing numbers646

The pioneering work of Richter and Thomassen, as well as our work in647

this paper, are naturally described as “bounded decay” results: the existence648

of sets of edges whose removal does not decrease arbitrarily the crossing649

number. The papers by Fox and Tóth [10] and by Černý, Kynčl and Tóth [5]650

concern themselves with “almost no decay” results: the existence of sets of651

edges whose removal results in a very small decrease of the crossing number.652

As an additional motivation to bounded decay results, we discuss in this653

section a connection with expected crossing numbers, a concept recently654

introduced by Mohar and Tamon [18, 19].655

7.1. Expected crossing numbers and decay of crossing numbers.656

Given a drawing D of a graph G “ pV,Eq, and a weight function w :657

E Ñ R`, define the crossing weight crpD, wq as
ř

te,fuPXpDqwpeqwpfq, where658

XpDq is the set of all pairs of edges that cross each other in D. The pair659

pG,wq is a weighted graph, and the weighted crossing number of pG,wq is660

crpG,wq :“ minD crpD, wq, where the minimum is taken over all drawings D661

of G. Now take the weights on the edges to be independently identically dis-662

tributed random variables, with uniform distributions on the interval r0, 1s.663

The expected value of crpG,wq under this distribution is the expected cross-664

ing number of G, and is denoted EpcrpGqq.665

Let us say that a family G of graphs is robust (or, more precisely, ε-robust)666

if there exist a constant ε :“ εpG q and an npG q such that EpcrpGqq ě ε¨crpGq667

for every graph G in G with at least npG q vertices.668

Mohar and Tamon proved in [18] that EpcrpKnqq is Θpn4q. From this it669

follows immediately that the family of all complete graphs is robust. More-670

over, it follows from their Crossing Lemma for Expectations (Theorem 5.2671
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in [18]) that for each fixed γ ą 0, the family of graphs with at least γ ¨ n2672

edges is also robust (more precisely, ε-robust, where ε might depend on γ). It673

is thus natural to inquire about the robustness of families of sparser graphs.674

Our aim in this subsection is to unveil and exploit the close connection675

between robustness and several results and conjectures, presented in [5], on676

the decay of crossing numbers.677

In [5], Černý, Kynčl and Tóth proved the following: for each ε ą 0, there678

exist δ, γ ą 0 such that every sufficiently large graph G with n vertices and679

m ě n1`ε edges has a subgraph G1 with at most p1 ´ δqm edges such that680

crpG1q ě γ ¨ crpGq. This impressive “almost no decay” statement is best681

possible, in the sense that (as shown in [5]) one cannot require that every682

subgraph with p1´ δqm edges has crossing number at least γ ¨ crpGq. In this683

vein, Černý, Kynčl and Tóth also investigated the following closely related684

problem.685

Let us say that a family G of graphs is stable (or, more precisely, pδ, γq-686

stable) if there exist positive constants δ :“ δpG q, γ :“ γpG q, and npG q687

such that for every graph G P G with at least npG q vertices (and m edges),688

a positive fraction of all subgraphs of G with p1 ´ δqm edges has crossing689

number at least γ¨crpGq. The requirement may be equivalently formulated as690

follows: if G1 is a random subgraph of G obtained by deleting independently691

each edge with probability δ, then w.h.p. crpG1q ě γ ¨ crpGq.692

In the earlier version [4] of [5], it was conjectured that for each ε ą 0,693

the family of graphs with Θpn1`εq edges is stable. In [5], it was shown that694

this is false for ε ă 1{3 (we have slightly refined the construction in [5],695

and shown that it does not hold either for ε “ 1{3; see Theorem 17). The696

conjecture remains open for denser graphs:697

Conjecture 14. There exists an ε P p1{3, 1q such that, for each ε P pε, 1s,698

the family of graphs with Θpn1`εq edges is stable.699

(See also a weaker version put forward in [5]).700

Before moving on to explore the close relationship between Conjecture 14701

and the robustness of dense graphs, we note the stability of random graphs:702

Remark 15. The family of all random graphs Gpn, pq with p ą 2{n, is703

stable.704

Proof. We start by noting that EpcrpGpn, pqq ď p2crpKnq ď p1{10qp2n4.705

From the other side, Spencer and G. Tóth ([25], Section 4) proved that there706

is a c ą 0 such that for n sufficiently large the lower boundEpcrpGpn, 2{nqqq ą707

cn2 holds. Standard sparsening of Gpn, pq (keeping each edge with proba-708

bility 2{ppnq) gives that for p ą 2{n, EpcrpGpn, pqqq ą pc{4qp2n4. Using709

these bounds, together with the observation that if each edge of a Gpn, pq710

is removed with probability ε then we obtain a Gpn, p1 ´ εqpq, the remark711

follows. �712

The key connection between expected crossing number (robustness) and713

the decay of crossing numbers (stability) is the following observation:714
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Proposition 16. If a family G of graphs is stable, then it is robust. More715

precisely: if G is pδ, γq-stable, then it is δ2γ-robust.716

Proof. Suppose that G is a pδ, γq-stable family of graphs. Let G be a (suffi-717

ciently large) graph in G , and let w be a random weight assignment (sampled718

from the uniform distribution) on the edges of G. Our aim is to show that719

the expected value of crpG,wq is at least δ2γ ¨ crpGq.720

Let G1 be the subgraph of G that results by deleting the edges that re-721

ceive a weight smaller than δ under w. Let D be a drawing of G that722

minimizes crpG,wq, and let D1 be the restriction of G to G1. Clearly D1 has723

at most crpG,wq{δ2 crossings, and so crpG1q ď crpD1q ď crpG,wq{δ2. Thus724

crpG,wq ě δ2crpG1q.725

Note that G1 may be equivalently regarded as a graph obtained from G by726

deleting each edge independently with probability δ. Since G is pδ, γq-stable,727

it follows that w.h.p. crpG1q ě γ ¨ crpGq. Therefore the expected value of728

crpG,wq is at least δ2γ ¨ crpGq, as required. �729

We now proceed with a concrete illustration of how the results and tech-730

niques on the decay of crossing numbers (specifically, those developed in [5])731

find an immediate application in expected crossing numbers.732

As we observed above, Černý, Kynčl and Tóth [5] proved that, for each733

ε P p0, 1{3q, the family of graphs with Θpn1`εq edges is not stable. We have734

slightly refined the construction in [5], and extended it to cover the case735

ε “ 1{3.736

Theorem 17 (Non-stability of graphs with Θpn4{3q edges). For every δ, γ ą
0 there exist c :“ cpδ, γq and n0 :“ n0pδ, γq such that there exist infinitely

many graphs G with n ą n0 vertices and c ¨ n4{3 ă m ă n4{3 edges, that
satisfy the following. If G1 is a random subgraph of G obtained by deleting
independently each edge with probability δ, then w.h.p.

crpG1q ă γ ¨ crpGq.

We omit the proof of this result, since it closely resembles the proof of737

our next statement. Theorem 18 shows the non-robustness of graphs with738

Θpn4{3q edges, and illustrates how the non-stability results and techniques739

in [5] can be extended to prove the non-robustness of graphs with Θpn1`εq740

edges for each ε P p0, 1{3q.741

Theorem 18 (Non-robustness of graphs with Θpn4{3q edges). For every
γ ą 0 there exist c :“ cpγq and n0 :“ n0pγq such that there are infinitely

many graphs G with n ą n0 vertices and c ¨ n4{3 ă m ă n4{3 edges, and

EpcrpGqq ă γ ¨ crpGq.

Proof. For readability purposes, we shall omit explicitly taking the integer742

part of several quantities involved. The integrality requirement will be, in743

every case, obvious from the context.744
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We may assume without loss of generality that γ is small enough so that745

e´1200{γ ă γ{720. Let α :“ γ{600, c :“ α2{100, r :“ α2n1{3{5, s :“ 1{α2,746

and t :“
a

n{s. Note that obviously r ą 5cn1{3.747

Inspired by the construction in [5], G will be the disjoint union of two748

graphs G1 and G2 plus some isolated vertices. Let G1 be n{2r copies of the749

complete graph Kr. Clearly |V pG1q| ď n{2. Now let G2 be obtained from a750

complete graph Kt by subdividing each edge s´ 1 times, i.e. replacing each751

edge by a path with s edges (these length s paths are the branches). It is752

easy to check that |V pG2q| ď n{2. Furthermore,753

(8) α4n2 “ t4 ą crpG2q ą
t4

100
“

n2

100s2
“
α4n2

100
,

where the inequalities t4 ą crpG2q ą t4{100 are easily derived bounds for754

the crossing number of the complete graph on t vertices.755

Now let w be a random weight assignment on the edges of G. Let Eăα756

denote the set of edges of G that receive a weight smaller than α under757

w. Let us say that a branch is weak if at least one of its edges is in Eăα;758

otherwise the branch is strong.759

The probability that any fixed branch is strong is

p1´ αqs « e´αs “ e´1{α.

Using Chernoff’s bound, w.h.p. at most t2e´1{α branches are strong. That760

is, w.h.p. at least
`

t
2

˘

´ t2e´1{α « t2p1{2´ e´1{αq branches are weak.761

Now consider the drawing of G2 in which the t vertices of degree t´1 are762

in convex position, and the edges are the straight segments joining them.763

This drawing of G2 has
`

t
4

˘

« t4{24 crossings (this is by no means a crossing-764

minimal drawing of G2, but it is enough for our purposes). Moreover, by765

adjusting the drawing of each branch if needed, we may ensure that each766

branch is crossed in exactly one edge, namely the edge with smallest weight.767

It follows that the number of crossings involving two strong branches (and768

thus, in particular, the number of crossings of weight ě α) is w.h.p. at most769

pt2e´1{αq2, and so w.h.p.770

crpG2, wq ă t4e´2{α ` α ¨ t4p1{24´ e´2{αq ă t4pα{24` e´2{αq

ă 100crpG2qpα{24` e´2{αq ď 5α ¨ crpG2q,(9)

where for this last inequality we used that e´1200{γ “ e´2{α ă γ{720 “771

p5{6qα.772

We finally move on to G. First we note that

|EpGq| “ |EpG1q| ` |EpG2q| ě |EpG2q| “ pn{2rqrpr ´ 1q{2 ą nr{5 ą cn4{3.

Using (8), we obtain773

(10) crpGq “ crpG1q ` crpG2q ą crpG2q ą α4n2{100.
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From the other side, using (8) and (9) and the trivial bound crpKrq ď r4,774

we get775

(11) crpG,wq ď crpG1q ` crpG2, wq ď pn{2rqr
4 ` 5α5n2 ă 6α5n2,

where for the last inequality we used the (easily checked) inequality pn{2rqr4 ă776

α5n2.777

Finally, using (10) and (11) and recalling that α “ γ{600, we obtain

crpG,wq ă 6α5n2 “ p600αqpα4n2{100q ă γ ¨ crpGq,

as required. �778

We close this subsection with two constructions that further illustrate779

the discrepancy between the crossing number of a graph and its expected780

crossing number.781

First we describe a construction that highlights the fact that the crossing782

number (of a family of graphs) may grow with the number of vertices, and yet783

the expected crossing number (of all graphs in the family) may be bounded784

by an absolute constant. For any graph G, let npGq and mpGq denote the785

number of vertices and edges of G, respectively, and let s ¨G the graph that786

consists of s disjoint copies of G. Let K5ptq denote the graph obtained by787

replacing each edge of K5 with a path of length t (a branch). Trivially, for788

any positive integer s, nps ¨ K5ptqq “ sp10pt ´ 1q ` 5q “ 10st ´ 5s,mps ¨789

K5ptqq “ 10st, and crps ¨K5ptqq “ s. However, the weighted crossing number790

of K5ptq is minwpeqwpfq, where the minimum is taken over all pairs of791

edges e, f that lie on branches that correspond to nonincident edges. A792

fairly standard calculation shows that Epcrps ¨ K5ptqq ď ps{t
2q log2 s. It is793

worthwhile to explore the consequences of plugging in various values of s.794

Probably the most interesting case occurs when s “ n2{3{ log n, for this795

shows the following:796

Proposition 19. There exists an infinite family of graphs G with crossing797

number n2{3{ log n and expected crossing number at most 1. l798

Our final construction pertains a family of graphs that seem more natural799

than the graphs constructed above. We recall that C3 l Cn denotes the800

Cartesian product of the cycles of sizes 3 and n (see Figure 1).801

Proposition 20. The Cartesian products C3 l Cn satisfy

crpC3 l Cnq “ n,

and yet
EpcrpC3 l Cnqq ď 2n2{3 log1{3 n` 3.

Proof. The vertices of C3 l Cn can be labeled vi,j , 0 ď i ď 2, 0 ď j ď n´1,802

so that there is an edge joining vi,j and vi1,j1 if and only if either (i) j “ j1803

and |i ´ i1| “ 1 or (ii) i “ i1 and |j ´ j1| “ 1 (indices are modulo n). For804

j “ 0, 1, . . . , n ´ 1, let Vj :“ tvi,j | i P t0, 1, 2uu. That is, the Vjs are the805

vertex sets of the 3-cycles. For j “ 0, 1, . . . , n´ 1, let Epjq denote the set of806

(three) edges with an endpoint in Vj and another endpoint in Vj`1.807
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Figure 1. A drawing of C3 l C6 with 14 crossings, where
the thick edges are the edges of one particular Epjq. This
is easily generalized to obtain, for every even integer n ě
2, a (not crossing-minimal) drawing of C3 l Cn with 3n ´
4 crossings with the following property: there exists a j P
t0, 1, 2, . . . , n´1u such that each crossing involves an edge in
Epjq.

808

It is known that crpC3 l Cnq “ n for every n ě 3 [23]. In Figure 1 we809

depict how to produce a (not crossing-minimal) drawing of C3 l Cn with810

3n´ 4 crossings, for every even integer n ě 2, with the following property:811

there is a j P t0, 1, 2 . . . , n´ 1u such that every crossing involves an edge in812

Epjq (the edges in Epjq are the thick edges in Figure 1). Thus,813

(A) if the edges in C3 l Cn are are weighted, and there exists a j such814

that the sum of the weights of the edges in Epjq is r, then such a815

weighted C3 l Cn has crossing number at most r ¨ n.816

For j “ 0, 1, . . . , n´1, denote the weights of the edges in Epjq by xj1, x
j
2, x

j
3.

We have for t ď 1 that Prpxj1`x
j
2`x

j
3 ą tq “ 1´t3{3!. Using independence,

PrpDj : xj1 ` x
j
2 ` x

j
3 ď tq “ 1´ p1´ t3{6qn « 1´ expr´nt3{6s.

Choosing t “ 61{3n´1{3 log1{3 n, this is at least 1´ 1{n.817

Now let s :“ mintxj1`x
j
2`x

j
3 | j P t0, 1, . . . , n´1uu. Thus s ď t with prob-818

ability at least 1´ 1{n. In the complementary scenario (which occurs with819

probability ă 1{n), s is obviously at most 3. Using this observation together820

with (A), it follows that EpcrpC3 l Cnqq ă
“

p1´1{nqpp6q1{3n´1{3 log1{3 nq`821

p1{nq3
‰

¨ n ă 2n2{3 log1{3 n` 3. �822
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7.2. Concentration of the expected crossing number and the cross-823

ing number of randomly sparsened graphs. Continuing in the theme824

of expected crossing numbers and its interplay with the decay of crossing825

numbers, we finally explore the concentration around the crossing number826

of a randomly sparsened graph, as well as the concentration around the827

expected crossing number of a graph.828

Denote R “ RpG, pq the random graph obtained from G by randomly829

and independently removing edges, each with probability p. Using a stan-830

dard martingale concentration inequality we show that crpRq is concentrated831

around its mean. Let EpGq “ te1, . . . , emu, and consider the random vari-832

able crpRq as a Doob’s martingale, where the edges are exposed one by one.833

The length of the martingale is |EpGq|. Removing or adding an edge changes834

the crossing number by at most |EpGq|. Thus, by the Azuma-Hoeffding’s835

inequality, for every λ ą 0 we have836

(12) Prr|EpcrpRqq ´ crpRq| ą λs ď exp

„

´λ2

2|EpGq|3



.

Let βpnq be any function tending to infinity. Inequality (12) shows con-837

centration with radius λ “ βpnq|EpGq|3{2:838

(13) Prr|EpcrpRqq ´ crpRq| ą βpnq|EpGq|3{2s ď exp

„

´βpnq2

2



.

Similary, we can get concentration around the expected crossing number.839

Assign to each edge a random variable taking values from r0, 1s (which could840

be different for each edge), which provides to each of them a random weight.841

Formally, it could be a function w : EpGq Ñ F , where F is a collection of842

random variables taking values from r0, 1s. ThenEpcrpG,wqq is the expected843

crossing number for a given w, and crpG,wq is a random variable, which is844

the crossing number of a weighted graph G. As with the random graph845

R above, resampling the weight of one edge changes the weighted crossing846

number by at most |EpGq|, and so we obtain:847

(14) Prr|EpcrpGqq ´ crpG,wq| ą βpnq|EpGq|3{2s ď exp

„

´βpnq2

2



.

These inequalities are meaningful only whenG is dense enough, i.e. |EpGq| ě848

n5{4. Note that we could have obtained sharper concentration results for849

sparse graphs, under the assumption that removing any edge makes the850

crossing number drop by op|EpGq|q.851

8. Concluding remarks852

Lemma 8 falls into the realm of light subgraphs. We recall that the853

weight of a subgraph H of a graph G is the sum of the degrees (in G) of its854

vertices. For a class G of graphs, define wpH,G q as the smallest integer w855
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such that each graph G P G which contains a subgraph isomorphic to H has856

a subgraph isomorphic to H of weight at most w. If wpH,G q is finite then857

H is light in G .858

Fabrici and Jendrol’ [8] proved that paths (and no other connected graphs)859

are light in the class of 3-connected planar graphs. Fabrici et al. [9] proved860

that this remains true even if the minimum degree is at least 4, and Mo-861

har [16] extended this to 4-connected planar graphs.862

Although some cycles are light in certain families of planar graphs (see for863

instance [11, 12, 15, 17]), it is easy to see that cycles are not light on the class864

of planar graphs (consider, for instance, a wheel Wn with n large: each cycle865

in Wn is either very long or incident with a large degree vertex). However,866

as Richter and Thomassen illustrated in [22], for some applications one does867

not need the full lightness condition. A cycle C in a graph is p`,∆q-nearly868

light if it has length less than ` and at most one of its vertices has degree869

∆ or greater. Richter and Thomassen proved that every planar graph has a870

p6, 11q-nearly light cycle. This was later refined in [14], where it was shown871

that if the graphs under consideration are sufficiently large, then there is a872

∆ ą 0 such that a linear proportion of the face boundaries are p6,∆q-nearly873

light.874

The concept of p`,∆q-earrings extends the idea of nearly light cycles: we875

allow both vertices u, v incident with some edge e to have arbitrarily large876

degree, and ask for the existence of two cycles that contain e, have bounded877

length, and (other than u and v) bounded degree. The following imme-878

diate corollary (since every 3-connected graph is obviously irreducible) of879

Lemma 11 guarantees the existence of many pairwise edge-disjoint earrings880

in 3-connected planar graphs.881

Lemma 21. If G “ pV,Eq is a 3-connected planar graph, then G has at882

least 10´10|E| pairwise edge-disjoint p5000, 500q-earrings.883

We remark that the linear dependence on |E| in Lemma 21 is clearly best884

possible, since there cannot be more pairwise edge-disjoint earrings than885

edges in a graph.886

Finally, it is natural to ask if the 3-connectedness requirement can be887

weakened. The construction illustrated in Figure 2 answers this in the neg-888

ative.889

890

It might be argued that the graphs constructed in the proof of Theorem 18891

are somewhat artificial, since many edges are subdivided a large number of892

times. However, these graphs can be turned into 3-connected graphs, with893

equivalent properties, as follows. Consider the graph G2 in the proof of894

Theorem 18, and some fixed drawing of G2 (for instance, as in the proof895

of Theorem 18, draw the degree t ´ 1 vertices on a circumference, and the896

branches as the straight edges joining them). Let u1, u2, . . . , ut be the nodes897

(degree t´1 vertices) of G2. Thus each branch with endpoints ui, uj can be898

written as ui “ u0i,j , u
1
i,j , . . . , u

s´1
i,j , u

s
i,j “ uj (the same branch, traversing the899
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u v

Figure 2. The graph Hn obtained by identifying n copies
of K4 ´ e on their degree 2 vertices u, v. This family of 2-
connected graphs shows that the 3-connectedness condition
in Lemma 21 cannot be weakened: for each pair of integers
`,∆ there is an n0 :“ n0p`,∆q such that for all n ě n0, Hn

does not contain any p`,∆q-earring.

vertices in the reverse order, reads uj “ u0j,i, u
1
j,i, . . . , u

s´1
j,i , u

s
j,i “ ui, so that900

uki,j “ us´kj,i for k “ 0, 1, . . . , s). Now for each branch u0i,j , u
1
i,j , . . . , u

s´1
i,j , u

s
i,j ,901

add the edges uki,j and uk`2i,j , for k “ 0, 1, . . . , s´ 2. The augmented graph is902

already 2-connected, but each pair of nodes (that is, degree t ´ 1 vertices)903

is a 2-vertex-cut, so we need to strenghten the connectivity around each904

node. Consider the node u1, and suppose for simplicity that the edges905

u1u
1
1,2, u1u

1
1,3, . . . , u1u

1
1,t leave u1 in the given (say clockwise) cyclic order.906

Then, for each j “ 2, 3, . . . , s, it is possible to draw an edge from one of907

u11,j and u21,j to one of u11,j`1 and u21,j`1 without introducing any crossings908

(indices are read modulo s). By performing this procedure around each909

node, we obtain a 3-connected graph that also witnesses Theorem 18. The910

proof is analogous to the proof of Theorem 18; the only difference is that911

instead of requiring a weak edge of a branch (say between ui and uj), we912

need weak triplets of edges of the form pu`i,j , u
``1
i,j q, pu

`´1
i,j , u

``1
i,j q, pu

`
i,j , u

``2
i,j q,913

where 3 ď ` ď s´ 3; we omit the details.914
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