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ON THE DECAY OF CROSSING NUMBERS
OF SPARSE GRAPHS

JOZSEF BALOGH, JESUS LEANOS, AND GELASIO SALAZAR

ABSTRACT. Richter and Thomassen proved that every graph has an
edge e such that the crossing number cr(G — e) of G — ¢ is at least
(2/5)cr(G)—O(1). Fox and Cs. T'6th proved that dense graphs have large
sets of edges (proportional in the total number of edges) whose removal
leaves a graph with crossing number proportional to the crossing number
of the original graph; this result was later strenghtened by Cerny, Kynél
and G. T6th. These results make our understanding of the decay of
crossing numbers in dense graphs essentially complete. In this paper we
prove a similar result for large sparse graphs in which the number of
edges is not artificially inflated by operations such as edge subdivisions.
We also discuss the connection between the decay of crossing numbers
and expected crossing numbers, a concept recently introduced by Mohar
and Tamon.

1. INTRODUCTION

The crossing number cr(G) of a graph G is the minimum number of pair-
wise crossings of edges in a drawing of G in the plane. A graph G is k-
crossing-critical if cr(G) = k, but cr(G — e) < k for every edge e of G. Since
loops are totally irrelevant for crossing number purposes, all graphs under
consideration are loopless.

1.1. The decay of crossing numbers. In this paper we are concerned
with the effect of edge removal in the crossing number of a graph (following
Fox and Téth [10], this is referred to as the decay of crossing numbers).
Richter and Thomassen [22] proved that every graph G has some edge e
such that cr(G —e) = (2/5)cr(G) — 37/5. They conjectured that there
always exist an edge e such that cr(G — e) = cr(G) — cy/cr(G), for some
universal constant c¢. This conjecture was proved by Fox and Té6th [10] for
dense graphs.

Fox and T6th actually proved a much stronger result: the existence of a

large subset of edges whose removal leaves a graph whose crossing number

Date: August 16, 2018.

2010 Mathematics Subject Classification. 05C07, 05C10, 05C38.

Key words and phrases. Light subgraphs, nearly-light, crossing numbers, crossing-
critical.

The first author was supported by NSF CAREER Grant DMS-0745185, UIUC Campus
Research Board Grant 11067, and OTKA Grant K76099.

The third author was supported by CONACYT grant 106432.

1



20
21
22
23
24
25
26
27
28

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

ON THE DECAY OF CROSSING NUMBERS OF SPARSE GRAPHS 2

is at least a proportion of the crossing number of the original graph. More
precisely, they proved that for every fixed € > 0, there is a constant ng =
no(€) such that if G is a graph with n > ng vertices and m > n'*¢ edges,
then G has a subgraph G’ with at most (1 — 53)m edges such that cr(G’) >
(% —o(1))er(G). )

This result was further strenghtened by Cerny, Kynél and G. Téth [5],
who proved that for every €,y > 0 there is an ng = ng(e,y) such that if G is
a graph with n > ng vertices and m > n'*¢ edges, then G has a subgraph
G’ with at most (1 — 153;)m edges such that cr(G’) = (1 —7)cr(G).

1.2. The decay of crossing numbers of sparse graphs. Due to the Fox-
Téth and the Cerny-Kynél-Téth results, our understanding of the decay of
crossing numbers of dense graphs is essentially complete. The situation
for sparse graphs is quite different. Although the Richter and Thomassen
result is fully general, it only guarantees the existence of a single edge whose
deletion leaves a graph with crossing number substantially large. As pointed
out in [I0], by combining the following two facts one obtains an improvement
to the Richter-Thomassen result for graphs with n vertices and m > 8.1n
edges: (i) every graph with m > 12n satisfies cr(G) > 0.0327;—23 [20]; and
(ii) for any graph G and any edge e of G, cr(G —e) = cr(G) — m + 1 [21].

In this paper we investigate the decay of crossing numbers of sparse
graphs. We are particularly interested in establishing results as similar as
possible as those in [10] and [5]: the existence of large sets of edges whose
removal leaves a graph whose crossing number is at least some (constant)
fraction of the crossing number of the original graph.

In contrast with dense graphs, in a sparse graph it is possible to artificially
increase the number of edges of a graph, while maintaining its crossing
number, without adding any substantial topological feature. Consider, for
instance, a graph consisting of a large planar grid plus an additional edge
e joining two vertices far apart; subdivide this additional edge r times (for
some integer r > 0) to get a path P, and let G denote the resulting graph.
For any given a > 0, we can make r sufficiently large so that any set of at
least o| E(G)| edges of G contains at least an edge of P. That is, for any set
Ey of at least a|E(G)| edges of G, the crossing number of G — Ej is 0.

This example shows that no general result can possibly be established if
we allow the number of edges to be artificially inflated. In particular, degree
2 vertices need to be precluded from the graphs under consideration. This
is a particular instance of a more general way to spuriously increase the
number of edges, by substituting a set of (possibly just one) edges joining
the same two vertices by a plane connected graph, as we now describe.

We first recall the definition of a bridge. Let G be a graph, and let u, v
be distinct vertices of G. Following Tutte, a uv-bridge is either a single edge
joining w and v, together with v and v (in which case it is trivial), or a
subgraph of G obtained by adding to a connected component K of G\{u, v}
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all the edges attaching K to u or v, together with their ends. A wv-bridge is
wv-planar if it can be embedded in the plane with v and v in the same face.

Suppose that u,v are distinct vertices incident with the same face in a
connected plane graph H with |[V(H)| > 2, and let k£ be the maximum
number of pairwise edge-disjoint uv-paths in H. We say that (H,u,v) is
a uv-blob of width k. Now consider a graph G, and let u,v be vertices of
G, joined by k > 1 edges. It is easy to see that we may substitute the
edges joining u and v by an arbitrarily large uv-blob of width k, leaving
the crossing number (and the criticality of G, if G is critical) unchanged.
Conversely, if G is a graph with a vertex cut {u,v}, and for some {u,v}-
bridge H we have that (H,u,v) is a uv-blob of width k, then G may be
simplified, leaving its crossing number (and its criticality, if G is critical)
unchanged, by substituting H by k parallel uv-edges.

Note that the concept of uv-blob captures, in particular, the operation of
edge subdivision. Indeed, a subdivided edge is simply a uv-blob of width 1,
all of whose vertices, other than u and v, have degree 2.

1.3. The main result. Since we are interested in proving the existence of
large sets of edges (linear in the crossing number) with a special property
(their removal does not decrease the crossing number arbitrarily), we need
to preclude the existence of {u, v}-bridges (for any pair u, v of vertices) that
are uv-blobs, since they inflate the number of edges of a graph, while adding
no topologically interesting structure whatsoever to the graph itself.

As it happens, such objects are the only structure that needs to be
avoided. A graph is irreducible if there do not exist vertices u,v and a
{u,v}-bridge H such that (H,u,v) is a uv-blob. We prove that if G is irre-
ducible, then a large set of its edges (linear in the crossing number) may be
removed, and still leave a graph whose crossing number is at least a fraction
of the crossing number of the original graph. More precisely:

Theorem 1. For each € > 0 and each positive integer k there exist mg 1=
mo(€e, k) and v := ~(e) with the following property. Every 2-connected ir-
reducible graph G with cr(G) = k and at least mqy edges has a set Ey of at
least vk edges such that cr(G — Ep) > (1/2 — €)cr(G).

Trivially, 3-connected graphs are irreducible, so in particular Theorem
applies to all 3-connected graphs.

We also apply our techniques to improve (for sufficiently large graphs)
the Richter and Thomassen result on crossing-critical graphs. Richter and
Thomassen proved in [22] that every graph G has an edge e such that cr(G—
e) = (2/5)cr(G) — 37/5.

In order to improve on this result, again we need to be careful not to allow
the artificial inflation in the number of edges. However, we do not need
the full condition of irreducibility: it suffices to require that each vertex is
adjacent to at least 3 other vertices. A slight variant of this requirement
(namely X -minimality) was introduced by Ding, Oporowski, Thomas, and
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Vertigan in [6], with the same motivation of not allowing a graph with given
crossing number (in their case, a 2-crossing-critical graph) to spuriously grow
its number of edges.

Theorem 2. For each positive integer k, there is an integer my := mq (k)
with the following property. Let G be a 2-connected graph in which each
vertez is adjacent to at least 3 vertices. If cr(G) = k and G has at least my
edges, then G has an edge e such that cr(G — e) > (2/3)cr(G) — 108.

We conclude this section with a brief overview of the proofs of Theorems
and 2, and of the rest of this paper.

As in [5], [10], and [22], we make essential use of the embedding method.
This technique consists of finding a set Ey of edges in a graph G, and for
each e = uv € Ey a set of pairwise edge-disjoint uv-paths Z(e), with the
aim of drawing G — Ey (with cr(G — Ey) crossings) and then embedding each
e € Ey very closely to some path in &?(e). The idea is to choose the set Ey
so that the embedding can be done without adding too many crossings.

Richter and Thomassen proved the existence of an edge e = uv (so that
Ey = {e}) with the property that there is a uv-path (that avoids e) of length
at most 4, all of whose internal vertices have degree less than 12. Fox and
Té6th, and Cerny-Kynél-Téth used the density of G to show the existence
of a large set Ey of edges, such that each edge e = wv of Ey has a large
collection #(e) of short edge-disjoint paths, and such that the collections
Z(e) are pairwise edge-disjoint.

In our current setup (sparse graphs) for all we know the graphs under
consideration may have maximum degree 3, and so in general we cannot
expect to find collections Z(e) of more than two edge-disjoint paths, for
each e € Ey. We prove that, indeed, each graph under consideration has
large set Ey of edges such that each e = uv € Ey has two short uv-paths
P(e),Q(e) whose internal vertices have bounded degree, and if e # f then
P(e)uQ(e) and P(f)uQ(f) are edge-disjoint. As it happens, P(e) and Q(e)
are not necessarily edge-disjoint, but this turns out to be unimportant. To
be slightly more precise, let us mention that each graph = = eu P(e) u Q(e)
has the property that P(e) and Q(e) have length at most ¢, and the degree
of their internal vertices is less than A. Following the lively notation in [5],
we call each = an (¢, A)-earring.

Most of the rest of this paper is devoted to proving the result described
in the previous paragraph. We start by establishing, in Section [2] several
assorted statements on planar graphs; these are, in one way or another,
elementary consequences of Euler’s formula. The existence of a large set
of edge-disjoint (¢, A)-earrings (for certain values of ¢ and A) is proved
in Section [3] for planar graphs, and in Section [4 for irreducible nonplanar
graphs.

In Section [5| we establish the version of the embedding method that we
need. The proofs of Theorems [I] and [2] are in Section [6]
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In Section [7] we discuss the connection between the decay of crossing
numbers and the concept, recently introduced by Mohar and Tamon [1§], of
expected crossing numbers. Finally, in Section[§]we present some concluding
remarks and open questions.

2. ASSORTED LEMMAS ON PLANAR GRAPHS

A branch in a graph is a path whose endpoints have degree at least 3, and
all whose internal vertices have degree 2.

Lemma 3. Let G = (V, E) be a planar graph with minimum degree at least
2, and let B €V be a set of vertices of degree at least 3. Suppose that the
number of branchs with both endpoints in B is at most s. Then there are at

least |V'|/2 — s/2 — (3/2)|B| edges with both endpoints in V\B.

Proof. Let W := V\B. To help comprehension, we color white (respectively,
black) the vertices in W (respectively, B). A branch is black if its endpoints
are both black. A white vertex is black-covered if all its adjacent vertices are
black. A black-covered vertex is of Type Iif it has degree 2; otherwise (that
is, if it has degree > 3) it is of Type I1I.

Since there are no black vertices of degree 2, then no black branch can
contain more than one Type I vertex. Thus there are at most s Type I
vertices.

Let W’ denote the set of black-covered vertices of Type II, and let G’
denote the subgraph of G induced by the edges incident with a vertex in
W’. This is a bipartite graph with bipartition (W', B’), for some B’ < B.
A standard Euler formula argument yields that |E(G")| < 2|[V(G")| — 4 =
2|W'| + 2|B’| — 4. Since each vertex in W’ has degree at least 3 (in G’, as
well as in G) it follows that |E(G')| = X oy d(v) = 3|W'|. Thus 3|W'| <
2[W'| + 2|B'| — 4 < 2|W'| + 2|B| — 4, and so |W’| < 2|B| — 4. Thus, there
are at most 2| B| — 4 Type II vertices.

Therefore, the total number of black-covered vertices is at most s+2|B|—4.
It follows that there are at least |W|—s —2|B| + 4 > |W| — s — 2| B| white
vertices that are adjacent to at least one white vertex, and so there are at
least |W|/2 —s/2—|B| = |V|/2 —s/2 — (3/2)|B| edges with both endpoints
in W. ([

The length of a face in a plane graph is the length of its boundary walk.

A digon in an embedded graph consists of two parallel edges, together
with their common endpoints. If the endpoints are u and v, then it is a uv-
digon. A plane embedding of a graph G is clean if for each pair of vertices
u,v joined by parallel edges, there exist edges e, ¢ with endpoints u and v,
such that the disc bounded by the digon formed by e and ¢’ contains all
edges parallel to e and €', and no other edges.

Lemma 4. Let G be a connected plane graph in which each vertex is adjacent
to at least 3 wvertices. Suppose that the embedding of G s clean. Let r = 0
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be an integer. Let I be the set of faces of G, and let F' be the set of those

. / 7‘|F‘+12
faces whose length is at most v +5. Then |F'| > = 5.

Proof. Let H be a graph obtained from G as follows: for each pair (u,v) of
vertices joined by parallel edges, contract to a single all the parallel edges
between w and v. Let Fy denote the set of faces of H, and let F}, denote
the set of faces of H with length at most r + 5. Our first task is to show
that |Fy,| > "Eult12

For each f € Fy the sum w(f) := >}, _;1/d(v) is the weight of f, where
d(v) denotes the degree of the vertex v and v ~ f means that v is incident
with f. (A vertex v contributes to w(f) as many times as the boundary
walk of f passes through v.) Since H is simple and has minimum degree
at least 3, then, letting I(f) denote the length of f, we have I(f) > 3 and
w(f) <U(f)/3. 1t is easy to see that |V(H)| = > scp, w(f) and 2[E(H)| =
2 ery L(f). From the last two equations and Euler’s formula it follows that
2= 5 Yper, (20(f) — Uf) + 2}

Since w(f) < I(f)/3, we have

12< Y =) +6F= Y {=lIH+6+ D {=U(f)+6}

feFy feFy feFg—Fy

Since l(f) = 3 for each f € Fy, then —I(f)+6 < 3 and thus ZfeF}{{—l(f)—k
6} < 3|Fy|. If f € Fg—F}; then I(f)—6 > r, that is, —I(f)+6 < —r, and so
2 sery—r A=) +6} < —r(|[Fu|=|Fp[). Thus, 12 < 3|Fy[—r(|Ful—|Fy),

and so |Fj;| = T‘i}ﬂ;m, as required.
Now as we inflate back H to G, each face in F}; becomes a face in F”.
The other faces in F” are precisely the ¢ := |E(G)\E(H)| faces created

in the inflation process, that is, those bounded by parallel edges. Thus

= |Fg| + 1t an = +t. us —t > ————= and so
|F| = |Ful d |F'| = |Fy Thus |F'| 0412 - and

F|+12 F|+12
) > HEEE g -y > TEE2 O

If D is a digon in a plane graph, then the open (resgectively, closed) disc
bounded by D will be denoted A(D) (respectively, A(D)). If D,D’ are
digons, then we write D' < D if A(D’) € A(D). We recall that a vertex of

degree 0 is an isolated vertex.

Proposition 5. Let G = (V,E) be a plane graph, and let Z be a set of
isolated vertices of G. Suppose that for each digon D in G, the disc bounded
by D contains at least one vertex in Z. Then G has at most 3|V\Z| + | Z]
edges.

Proof. Let Y := V\Z. To help comprehension, we colour the vertices in Y
and Z black and green, respectively.

We prove the stronger statement that G has at most 3|Y |+ |Z| — 6 edges.
We proceed by induction on the number of digons in G. In the base case G
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has no digons, and so by Euler’s Formula it has at most 3|Y | — 6 edges, as
required. For the inductive step, we assume that G has at least one digon,
and let D be a <-minimal digon in G.

Suppose first that D is also <-maximal. Then let G’ be the graph obtained
from G by removing one edge of D and one green vertex contained in A(D).
Now G’ contains one fewer edge and one fewer green vertex than G. It is
easy to see that the induction hypothesis can be applied to G’, and so the
inductive step follows.

Therefore we may assume that D is not <-maximal. Among all digons
that contain D, let D’ be a <-minimal one.

Suppose that D and D’ have an edge e in common, and let € be the other
edge of D. It is easy to see that the induction hypothesis can be applied to
the graph obtained from G by removing € and a green vertex contained in
A(D), and once again the inductive step follows. Thus we may assume that
D and D’ do not have an edge in common.

If A(D') contains a green vertex not contained in A(D), the situation is
again straightforward: the induction hypothesis can be applied to the graph
G’ obtained by removing one edge of D and one green vertex contained in
A(D), and the inductive step follows. Thus we may assume that every green
vertex contained in A(D') is contained in A(D).

In this case, there are no digons other than D’ and D contained in A(D’).
Now let G’ be the graph obtained by removing from G the black vertices
and all the edges contained in A(D’). Let Y’ and Z’ denote the sets of black
and green vertices of G’, respectively, and let E’ denote the set of edges
of G’ (note that Z’ = Z). We may clearly apply the induction hypothesis
to G’, obtaining that |E'| < 3|Y’| + |Z| — 6. Let Y” := Y\Y’, and E” :=
E\E'. Let x,y be the vertices of D’. Consider the graph G” that consists
of the vertices in Y” u {z,y} and the edges in E”. Since G” has exactly
one digon (namely D), the usual Euler formula argument yields |E(G”)| <
3|[V(G")| — 5. However, this inequality is tight only if G” is maximally
planar, that is, if no edge can be added between two nonadjacent vertices
while maintaining planarity; thus, since x and y are not adjacent in G”, it
follows that |E(G")| < 3|V(G")| — 6. Thus |E”| < 3(]Y"| + 2) — 6. That is,
|E|—|E'| < 3(]Y|—|Y'|+2)—6, and so |E| < 3|Y|+|Z]|—6, as required. [

A set Z of vertices in a 2-connected planar graph G is an anchor if the
following hold:

(1) no vertex in Z is part of a 2-vertex-cut in G; and
(2) if {u,v} is a 2-vertex-cut in G, then every nontrivial uv-bridge con-
tains a vertex in Z.

Lemma 6. Let G be a 2-connected plane graph in which each verter is
adjacent to at least 3 distinct vertices, and let Z be an anchor of G. Let
Y € V(G)\Z, and let Ey denote the set of edges of G with both endpoints
in'Y . Then the number of faces of G that are incident with exactly 2 vertices
of Y is at most 3|Y |+ |Z| + | Ey|.
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Proof. We may assume that |Y| > 2, as otherwise there is nothing to prove.
Let F5 denote the set of faces of GG that are incident with exactly two vertices
of Y.

We start by coloring red each edge in Ey, and green each vertex in Z.
Now for each f € F5, join the two vertices in Y incident with f by a simple
blue arc contained (except, obviously, for its endpoints) in f. Let H denote
the plane graph that consists of the vertices in Y plus all the red edges and
the blue arcs (now seen as edges), as well as the set Z of green vertices.
Note that the green vertices are isolated in H. We remark that |F3| is the
number of blue edges in H.

Note that if D is a blue digon in H (that is, both edges of D are blue),
with vertices u and v, then A(D) contains a uv-bridge in G. This bridge
may be trivial (in which case it is a red edge) or nontrivial (in which case,
by hypothesis, A°(D) contains a green vertex).

Finally, let K denote the graph that results from H by substituting each
red edge by an isolated red vertex (placed in the interior of the red edge).
Note that |E(K)| = |Fz|, that the vertex set of K is the union of YV with
the set of all green or red vertices, and that there are |Z| green and |Ey |
red vertices.

The graph K has the property that for each (necessarily blue) digon D in
K, A°(D) contains either a green or a red vertex. Applying Proposition
we obtain that |E(K)| < 3|Y| + |Z| + |Ey|. Thus |Fy| < 3|Y| + |Z| + |Ey]|,
as required. O

If G is a plane graph, then we let G° denote its dual.

Lemma 7. Let G be a 2-connected plane graph, and let Z be an anchor of
G. Suppose that the embedding of G is clean. Let F' be a set of faces of G
of length at least 3. Then the number of branchs in G° with both endpoints
in F' is at most 3|F'| + | Z|.

Proof. Since the embedding is clean, we may as well assume (in the context
of this lemma) that G has no parallel edges. It follows that all branchs with
both endpoints in F” are actual edges in G°. Thus our goal is to show that
there are at most 3|F'| + |Z| edges in G° with both endpoints in F”.
Regarding G and G° as simultaneously embedded, remove everything
except for F’ (seen as a set of vertices in G°), the edges (in G°) joining
two vertices in F’, and the vertices in Z. The result is a graph G’ in which
each vertex in Z is isolated, and such that the disc bounded by every digon
contains a vertex in Z. To see this last property, note that if e and f are
the edges of a digon in G’, then the edges in G corresponding to e and f
are a 2-edge-cut in (3; since Z is an anchor set of GG, it then follows that the
disc bounded by the digon must contain a vertex of Z in its interior.
Applying Proposition [5| we obtain that G’ has at most 3|F'| +|Z| edges.
This finishes the proof, since there is a bijection between the edges in G’
and the edges in G° with both endpoints in F”. O
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3. EARRINGS IN PLANAR GRAPHS

Cerny, Kynél and Téth introduced the lively terminology of earring of
size p to describe a graph consisting of an edge e = uwv plus a collection of
p pairwise edge-disjoint, bounded-length uv-paths. In order to use the re-
embedding method, the goal is to find many pairwise edge-disjoint earrings.

As we mentioned in Section [I], in our current context of sparse graphs,
where (for all we know) the graphs under consideration may have maximum
degree 3, the best we could hope for is to prove the existence of a large
collection of earrings, each of size 2. As we also mentioned, in this discussion
we do not need the two uv-paths of each earring to be edge-disjoint, but only
a weaker condition (see (iii) in the following definition).

Let ¢, A be positive integers. An (¢, A)-earring of a graph G is a subgraph
of G that consists of a base edge e = uwv plus two distinct uv-paths P, Q)
(disjoint from e) with the following properties: (i) each of P and @ has at
most ¢ edges; (ii) each internal vertex of P or @) has degree less than A; and
(iii) if f is an edge in both P and @, then {e, f} is a 2-edge-cut of G.

An edge e = uv in a 2-connected plane graph is an (¢, A)-edge if each of
its two incident faces has length at most £ + 1, and no vertex incident with
these two faces, other than possibly u or v, has degree A or greater. If e is an
(¢, A)-edge, then the subgraph that consists of e plus the cycles that bound
its two incident faces, is an (¢, A)-earring, the (¢, A)-earring =(e) associated
to e.

The following lemma is the main workhorse in this paper.

Lemma 8. Let G = (V, E) be a 2-connected planar graph in which each
vertezr is adjacent to at least 3 other vertices. Let Z be an anchor of G,
where each vertex in Z has degree 4. Then G has at least 10719 E|—1075|Z|
pairwise edge-disjoint (5000, 500)-earrings.

Proof. Throughout the proof, we make use of several constants that are
either very small, very close to 1, or somewhat large. In order to simplify
the whole discussion, we first proceed to introduce these constants. We let
lo = 5000, Ag = 500, ¢c; = 1071, ¢y = 107°, ¢3 = 999/1000, c4 = 1/1000,
cs = 999, cg = 36/5000, and z; = 3(10~10).

It is a trivial observation that every planar graph has a clean plane em-
bedding (clean embeddings are defined before Lemma . Throughout the
proof we consider a fixed clean embedding of G in the plane. Let F' denote
the set of all faces of G, and let t := |Z|.

Claim 9. It suffices to show that there are at least (209(2¢y + 1)+1)-(z1|F|—
cot) (Lo, Ag)-edges.

Proof. Consider the graph H whose vertices are the ({y, Ag)-edges of G,
with two distinct (¢g, Ag)-edges e, f adjacent if Z(e) and Z(f) have some
edge in common.

We note that H has maximum degree at most 2¢y(2¢y + 1). This follows
at once from the following two easy observations: (i) for each ({y, Ag)-edge



357
358
359
360
361
362
363
364
365
366
367

368
369
370
371
372
373
374
375

376
377
378

379
380
381
382

383

385

386

388
389
390
391

ON THE DECAY OF CROSSING NUMBERS OF SPARSE GRAPHS 10

e, Z(e) has at most 2{y edges other than e; and (ii) each edge of G belongs
to at most 20y + 1 (£o, Ag)-earrings of the form Z(f) for some edge f.

Thus, V(H) has a stable set of size at least |V(H)|/(2¢p(2¢p + 1) + 1).
Suppose that G has at least (209(20p + 1) + 1) - (z1|F| — cat) (Lo, Ap)-edges;
that is, |V (H)| = (20p(2¢p + 1)+ 1) (z1|F| —cat). Then H has a stable set
of size at least z1|F'| — cot; that is, there is a collection of at least z1|F'| — cat
pairwise edge-disjoint ({y, Ag)-earrings.

Since G has minimum degree at least 3, a routine Euler formula argument
yields that |F| > |E|/3 4+ 2. Thus there are at least z;(|E|/3 + 2) — cat >
c1|E| — caot pairwise edge-disjoint (£y, Ap)-earrings, as required in Lemma

O

Let W be the set of those vertices of G with degree at least Ap, and let
Fy denote the set of faces of GG that are incident with some vertex in W.
For each integer j > 1, let F} denote the set of those faces of G incident
with exactly j vertices in W (and perhaps other vertices in V\W), and let
fi = |Fj|. Note that Fyy is the disjoint union [ J;5, F;.

Let Flong (respectively, Fy,or;) denote the collection of faces of G with
length greater than (respectively, at most) €o+ 1, and let fiong := |Flong| and
fenort := | Fihort|- It follows immediately from Lemma [4] that

(1) fshort = C3’F|'

Since F' is the disjoint union of Flong and Fiper, then |F| = fiong + fohort

and so fshort = C3(flong + fshort) 1mphes fshort = (C3/(1 - C3>)flong' Note that
cs = c3/(1 — c3). Therefore,

(2) fshort = C5f10ng-

We note that »; .y d(u) = Y5 4fi. A routine application of Euler’s
formula yields that }},_sif; < 2(3|W|—6) = 6|W|—12. Since all vertices of
Z have degree 4 it follows that W < V\Z, and so we can apply Lemma @
to obtain fo < 3|W| + t + |Ew|. Combining these observations we obtain

(3) fr= ) d(u) — 12|W] - 2| By | — 2t + 12.
ueWw

Claim 10. If |Fy| > 24t + 24cy fonors, then Lemma@follows.

Proof. We establish four subclaims, and finally show that the proof follows
easily from them.

SUBCLAIM A If [Ew| > 6|W| — 12 + C4 fonort, then Lemmal[§ follows.

Proof. If ey, es, e3 are parallel edges with common endpoints u, v, and es is
in the disc bounded by the digon formed by e; and eg, then es is a sheltered
edge. By Euler’s formula, a simple graph on |W| vertices has at most 3|W|—6
edges. Since the embedding of G is clean, it follows that the subgraph of G
induced by W has at least |Ew|—2(3|W|—6) = |Ew| —6|W|+ 12 sheltered
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edges. The fact that G is clean also implies that each sheltered edge is a
(Lo, Ap)-edge, and so G has at least |Ew | — 6|W| + 12 (¢, Ag)-edges.
Suppose that |Ey| > 6|W| — 12 + ¢4 finors- Then G has at least ¢4 fonort
(o, Ao)-edges. Using ([)), it follows that G has at least csca|F| (£o, Ag)-
edges. The result now follows from Claim |§|7 since c3cy > (20p(20p + 1) +
1)Z1. |

SUBCLAIM B If (1/6) (X e d(w)) < 12|W| + 2t + 2|Ew| — 12, then |Fw| <
24t + 24c¢4 fonore 0T else Lemma @ follows.

Proof. By Subclaim A, under the given hypothesis we may assume that
Sy d(u) < T2W| + 12t + (72| W | — 144 + 124 fapore) — 72 = 144|W| + 12t +
12¢4 funore — 216 < 144[W| + 12t + 12¢4 faport.

Since each vertex in W has degree at least Ag, it follows that Ag|W| <
Duew d(w). Hence, [W| < (12t +12¢4 fohort) /(Ao — 144). On the other hand,
obviously |Fy| < X, d(u), and so |Fy| < 144(12t + 12¢4 fohort)/ (Do —
144) + 12t + 12¢4 fopors. Since 144/(Ag — 144) < 1, this implies |Fyy| <
12t + 12¢4 fonort + 12t + 12¢4 fonore = 24t + 24¢4 fnort- O

SUBCLAIM C If (1/6)(X e d(1)) < fiong, then |Fy| < 6 fonort/Cs-

Proof. Suppose that (1/6)(>,cpy d(4)) < fiong. The obvious inequality
|Fiw| < 2,ew d(u) then implies that |Fy| < 6 - fiong. The required in-
equality follows from . O

SuBcLAIM D If (1/6) (X e d(w)) > 12|W| + 2t + 2|Ew| — 12 and
(1/6)(Xuew (1)) > fiong, then |Fiy| < €6 fanore o else Lemma§ follows.

Proof. We show that, under the given hypotheses, if |Fyy| > €6 fshort, then
there are at least (csce/3)|F| (Yo, Ap)-edges; the subclaim then follows from
Claim [9] since (esce)/3 = (200(20 + 1) + 1) - 2.

It follows that, under the current hypotheses,

(4) frong < (1/3) D" d(u) — 12|W| — 2t — 2| Ew| + 12.
ueW

Since |F1\Flong| = f1 — fiong, using and we obtain

|Fi\Flong| = ). d(u) — 12]W| = 2| By | — 2t + 12 — fiong > (2/3) ] d(u).
ueW ueW

Since each face in Fj is (by definition) incident with exactly one ver-
tex in W, the inequality |Fi\Flong| > (2/3) X ew d(u) implies that at least
1/3 of the edges incident with W have their two incident faces in F\Flong.
Note that all such edges are (fo, Ag)-edges. We conclude that there are
at least (1/3)> e d(u) (bo, Apg)-edges incident with W. Since obviously
D wew d(w) = |Fyy|, this implies that there are at least |Fyy|/3 (o, Ao)-edges.
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Using the assumption |Fyy| > ¢g fshore and , it follows that there are at
least (c3ce/3)|F| (Lo, Ag)-edges, as required. O

We now complete the proof of Claim

Since the hypotheses of Subclaims B, C, and D are exhaustive, it fol-
lows from these subclaims that either we may assume that |Fyy| < 24t +
24¢y fonors, O |Fw| < 6 fsnort/C5, Or we may assume that |[Fyy| < €6 fshort-
Since max{24cy4, 6/cs5, cs} = 24cy, it follows that we may assume that |Fyy| <
24t + 24¢4 fonort - O

We now complete the proof of Lemma

A face is white if it is either in Fy,\Fy or has length exactly 2, and
is black otherwise. We let F, (respectively, F,) denote the set of all white
(respetively, black) faces. Let fo := |Fy|, and f, := |F].

Now consider the dual G° of G. The 2-connectivity of G implies that G°
is also 2-connected. Let us say that an edge in G° is white if its endpoints
are both white (faces in G).

The key (and completely straightforward) observation is that the edge of
G associated to each white edge is an ({y, Ap)-edge. Our final goal is to
prove that there are many white edges.

Every face in F, is either in Fio,, or in Fyy, and 8o fo < fiong + |Fv|-
Using (2)), Claim and the obvious inequality fuore < |F|, we obtain

(5) fo < 24t + (24cy + 1/C5)|F|.

By Lemmal[7] G° has at most 3 f, + ¢ branchs with both endpoints black.
Lemma [3| (applied to G°) then implies that there are at least |F|/2 — (3 fs +
£)/2 = (3/2)fa = |F|/2 — 3fs — t/2 > (1/2 — 3(24cyq + 1/c5))|F| — (145/2)t
white edges.

As we have observed, the edge of G associated to each white edge is an
(Lo, Ap)-edge. Thus there are at least (1/2 — 3(24cy + 1/c5))|F| — (145/2)¢
(Lo, Ap)-edges. Since 1/2 — 3(24cy + 1/c5) = (209(20p+ 1) + 1) - z; and
145/2 < (209(20p + 1) + 1) - ¢, then we are done by Claim [9] O

4. EARRINGS IN NONPLANAR GRAPHS

Lemma 11. Let G = (V, E) be a 2-connected irreducible graph. Then G
has at least 107°|E| — (1075 + 2)cr(G) pairwise edge-disjoint (5000, 500)-
earrings.

Proof. Let £y := 5000, Ay := 500, ¢; := 10719, ¢y := 107°, and c7 :=
(107° + 2). Let t := cr(G), and let D be a drawing of G with exactly ¢
crossings. Let H denote the plane graph that results by regarding the ¢
crossings as degree 4 vertices (this is the crossings-to-vertices conversion),
which we colour green to help comprehension (the other vertices of H, each
of which corresponds to a vertex in G, are coloured black). We claim that
(i) each vertex in H is adjacent to at least 3 other vertices; (ii) no green
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vertex is part of a 2-vertex-cut; (iii) H is 2-connected; and (iv) the set of
green vertices is an anchor set for H.

We start by noting that (i) follows easily from the irreducibility of G, plus
the observation that in any crossing-minimal drawing of any graph, the two
edges involved in any crossing cannot have a common endpoint.

By way of contradiction, suppose that u,v are green vertices such that
{u,v} is a 2-vertex-cut in H. It is easy to see that then there are exactly two
uv-bridges. Let B be any of these uv-bridges, and let H' denote the plane
graph obtained from H by performing a Whitney switching on B around
u and v. Now by reversing the crossings-to-vertices conversion, we obtain
from H’ a drawing of G in which the edge intersections corresponding to
u and v are tangential, not crossings. Each of these two tangential edge
intersections may be removed with a small perturbation, yielding a drawing
of G with two fewer crossings than D, contradicting the crossing-minimality
of D. This contradiction shows that {u,v} cannot be a 2-vertex-cut in H.
A similar contradiction is obtained from the assumption that H has a 2-
vertex-cut with exactly one green vertex (in this case one obtains a drawing
of G with one fewer crossing than D). This proves (ii).

The 2-connectedness of G readily implies that no black vertex can be a
cut vertex of H. On the other hand, a similar switching argument as in
the proof of (ii) shows that no green vertex can be a cut vertex of H. This
proves (iii).

Now let u, v be black vertices such that {u,v} is a 2-vertex-cut in H, and
let B be a nontrivial uv-bridge. If B does not contain any green vertex, then
(B,u,v) is clearly a uv-blob of G. Since this contradicts the irreducibility
of G, (iv) follows.

We can thus apply Lemmal[8|to H, and obtain that H has a collection £ of
at least c1|E(H)| — cot pairwise edge-disjoint (£y, Ag)-earrings. If any such
earring contains a green vertex, then it obviously contains at least two edges
incident with a green vertex. Since these earrings are pairwise edge-disjoint,
it immediately follows that £ has a subcollection &', with || = |E] — 2t
pairwise edge-disjoint (£y, Ag)-earrings that do not contain any green vertex.
That is, each earring in &’ is an ({y, Ag)-earring of G.

Therefore, £ is a collection at least |E] — 2t > c1|E(H)| — (ca + 2)t
pairwise edge-disjoint (¢, Ag)-earrings in G. Since |E(H)| > |E|, it follows
that |£'] = ¢1|E| — (c2 + 2)t = ¢1|E| — c7t. O

5. THE EMBEDDING METHOD: ADDING EDGES WITH FEW CROSSINGS

Our main goal is to show that every (sufficiently large) irreducible graph
has a large collection of edges whose removal leaves a graph with large cross-
ing number. The first main ingredient is the existence of a large collection
of pairwise edge-disjoint (¢, A)-earrings (for some fixed ¢ and A); this is
Lemma [8] The second main ingredient is the embedding method, which was
used under similar circumstances by Richter and Thomassen [22], Fox and
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T6th [10], and Cerny, Kynél and Téth [5] (see also [13, 24} 26]). We use the
embedding method to prove the following.

Lemma 12. Let G be a graph, and let £,A, and r be positive integers.
Suppose that G has a collection of r pairwise edge-disjoint (¢, A)-earrings.
Then G has a set Ey of r edges such that cr(G — Ep) > (1/2)cr(G) —
(1/2)(AC + 2)r.

Proof. Let Z1,Z,,...,E, be a collection of pairwise edge-disjoint (¢, A)-
earrings in G. For i = 1,2,...,r, let ¢; = w;v; be the base edge of =;,
and let P;, Q; be the u;v;-paths such that Z; = P;u Q; u{e;}. We shall show
that Ey := {e1, e, ..., ,} satisfies the required property.

Let t := cr(G — Ey), and let D be a drawing of G — Ey with ¢ crossings.
The strategy is to extend D to a drawing of G by drawing e; very close to
either P; or Q;, for i =1,2,...,r. Our aim is to show that this can be done
while adding relatively few crossings.

We analyze several types of crossings of P; and Q;, fori =1,2,...,r. A
crossing in D is (i) of Type 1 if one edge is in P; and the other edge is in
Q;, for some i € {1,...,7}; (ii) of Type 2A if one edge is in P; U Q; and
the other edge is in P; u Qj, for some ¢ # j, i,j € {1,...,r}; and (iii) of
Type 2B if one edge is in P; U Q; for some i € {1,...,r} and the other
in E(G)\Uj=1(P; v Qj). Note that if a crossing x involving an edge of
Uiy P; u Q; is neither of Type 1, nor 2A, nor 2B, then the edges involved
in x must be both in P; or both in @;, for some ¢ € {1,2,..,r}. As we shall
see, this last type of crossing is irrelevant to our discussion.

Fori=1,2,...,r and k € {1,2}, let xx(P;) (respectively, xx(Q;)) denote
the number of crossings of Type k that involve an edge in P; (respectively,
Qi)-

In every crossing-minimal drawing of any graph, no pair of edges cross
each other more than once. Since each of P; and ); has at most ¢ edges, it
follows that

(6) x1(P) <2 fori=1,...,r

Now let Z be the set of all sequences (R1, Rs, ..., R,), with R; € {P;, Q;}
for i =1,2,...,r, and consider the sum ¥ := Y5, (37, x2(Ri)).

We claim that a crossing of Type 2A contributes in exactly 2" to X. To see
this, first note that such a crossing involves an edge of an R; € {F;, Q;} and
an edge of an R; € {P;,Q;} for some i # j. Let T; (respectively, T};) be the
element in {P;, Q;}\R; (respectively, {Pj, Q;}\R;). There are 2"~2 sequences
in Z that include both R; and R;, and so for each such sequence, the crossing
contributes in 2 to ¥. There are 2”2 sequences in Z that include R; and do
not include R;, and so for each such sequence, the crossing contributes in 1
to ¥. Analogously, there are 2"~2 sequences in Z that include R; and do not
include R;, and so for each such sequence, the crossing contributes in 1 to 3.
Therefore each crossing of Type 2A contributes in 2-27"2 42772 4272 = 27
to X, as claimed. Note that this reasoning assumes that no crossing of Type
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2A is in both P; and @Q; for the same 4. This is immediate if P; and Q; are
edge-disjoint, but we recall from our definition of earring that P; and @); may
share edges. However, the validity of our reasoning follows since (again, by
the definition of earring) any edge f € E(P;) n E(Q;) is a cut edge of G — ¢;,
from which it follows that f cannot be crossed in any optimal drawing of
G — FEy.

We also note that a crossing of Type 2B contributes to ¥ in exactly 271,
Indeed, such a crossing involves (for some fixed i) an edge of R; and an
edge that belongs to no R;; it contributes in 1 to x(R;), and there are 2"~
sequences in Z that include R;. (As in the previous paragraph, we remark
that we are making use of the valid assumption that no crossing is in both
P; and Q; for the same 7).

In conclusion, each crossing of Type 2A or 2B contributes to ¥ in at
most 2". Since only crossings of Types 2A and 2B contribute to 3, and
D has ¢ crossings in total, we conclude that Y, (37 x2(R;)) < 27t
Since |#Z| = 27, it follows that for some sequence (Ri, Ro,...,R,) € %,
Di_1x2(Ri) < t. By relabeling (exchanging) P; and Q; if necessary, we may
assume without any loss of generality that R; = P; for each ¢ = 1,2,...,r,
and so

@ Y (P <t
=1

Now note that some P; may have self-crossings. However, for each i there
is a simple curve «y, contained in F;, joining w; and v;. The definition
of crossings of types 1, 2A, and 2B obviously extend to the crossings on
each «y, and so @ and (7)) imply that y1(coy) < €% for i = 1,2,...,r, and
D1 x2(ei) < t. Moreover (this is the effect of having obtained «; by
avoiding the self-crossings of its corresponding F;), for i = 1,2,...,r, each
crossing of «; is of one of these types.

The idea is to draw each e; very close to its corresponding «;. There are
two kinds of crossings on the resulting drawings of e;, ¢ = 1,...,r. Some
crossings occur as we traverse e; and pass very close to a crossing of «;.
The inequalities in the previous paragraph imply that there are, in total, at
most £%r 4 t crossings of this first kind. The second kind of crossing occurs
as we pass very close to a vertex in «;, and cross some edges incident with
this vertex. Since each such vertex is an internal vertex of some P; (that is,
has degree < A) and there are at most £ — 1 internal vertices in each P;, we
conclude that each e; has fewer than A/ crossings of this second kind. Thus
in total there are fewer than Afr crossings of the second kind.

We conclude that all the edges ey, e, ..., e, may be added to the drawing
D of G — Ey by introducing fewer than (Af + ¢2)r + t crossings. Since t =
cr(G — Ey), it follows that cr(G) < 2cr(G — Ep) + (Al+£2)r or, equivalently,
cr(G — Ep) > (1/2)er(G) — (1/2)(AL + £2)r. a
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If we are interested in removing only one edge (as we are in Theorem ,
we can improve the 1/2 coefficient in Lemma (12| to 2/3, as the following
statement shows.

Lemma 13. Let G be a graph, and let £ and A be positive integers. Suppose
that G has an (¢, A)-earring. Then G has an edge e such that cr(G —e) >
(2/3)er(G) — (2/3)(AL + £2).

Proof. The proof is essentially the same as the proof of Lemma with
the following favourable exception. If we consider only one earring, then
r = 1, and so there are no crossings of Type 2A. Each crossing of Type 2B
contributes to X in at most 1, and so x2(P;) + x2(@Q1) < t. By exchanging
Py and Q) if necessary, we may assume that yo(P;) < t/2.

In parallel to the last paragraph of the proof of Lemma in the present
case we conclude that the edge e; may be added to the drawing D of G—FEy =
G — e by introducing fewer than (Af + ¢?) + t/2 crossings. Since t =
cr(G —eq), it follows that cr(G) < (3/2)cr(G —ey) + A+ £2 or, equivalently,
cr(G —e1) > (2/3)er(G) — (2/3) (AL + £2). O

6. PROOF OF THEOREMS [I] AND

Proof of Theorem[1. Let ¢y := 5000 and Ay := 500, ¢; := 10719, and
c7 := (107° + 2). Let k be a positive integer and let ¢ > 0. Define
v = €/((1/2)(Aoly + £3)) and mg := ((c7 + 7)k)/c1. Let G = (V,E) be
a 2-connected irreducible graph with cr(G) = k and at least mg edges.
Lemma (11| implies that G has a collection of at least ¢1|E| — c7k pairwise
edge-disjoint (£, Ag)-earrings. Since |E| = ((c7 + v)k)/c1, it follows that
G has a collection of at least vk pairwise edge-disjoint (¢p, Ag)-earrings.
Thus, by Lemma G has a collection Ejy of at least vk edges such that
cr(G = Ep) > (1/2)er(G) — (1/2)(Aolo + )7k = (1/2)cr(G) — ek = ((1/2) -
e)cr(G). O

If u, v are vertices of a graph G, a double uv-path is a subgraph of G that
consists of a uv-path with all its edges doubled.

Proof of Theorem[3. Let £y := 5000, Ag := 500, ¢; := 1071% and c; :=
(107° + 2). Let k be a positive integer, and let m; := (c7k)/c; + 1. We
prove that if G = (V, E) is a 2-connected graph in which each vertex is
adjacent to at least 3 vertices, cr(G) = k, and G has at least m; edges, then
G has an edge e such that cr(G —e) > (2/3)cr(G) — 108.

Suppose first that G is not irreducible, and let (B,u,v) be a minimal
blob in G, (that is, G has no blob (B’,u,v’) such that B’ is a subgraph of
B). The minimality of B implies that B has no cut edges, and so its width
w(B) is at least 2. It is easy to see that if every edge of B is in a 2-edge-cut
separating u and v, then B is a double uv-path. This clearly contradicts the
X-minimality of G, and so we conclude that there is an edge e in B such
that the uv-blob (in G —e) B — e has width at least 2.
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629 By way of contradiction, suppose that cr(G —e) < (2/3)cr(G). It is
630 straightforward to see that there is a crossing-minimal drawing D of G — e
631 in which the set E’ of edges crossed in B—e form a smallest uv-edge cut (that
632 is, a minimum size edge cut in B — e separating u and v), with each edge
633 in E’ crossed the same number (say s) of times. In particular, cr(G — e) >
63 |E'|s = 2s. The planarity of B —e (with u, v in the same face) implies that:
635 (i) if e is in distinct components of (B —e) — E’, then e can be added to D
636 by introducing exactly s crossings; and (ii) otherwise, e can be added to D
637 without introducing any crossings. In either case, the result is a drawing of
638 G with at most cr(G — e) + s crossings, and so cr(G) < cr(G —e) + s. The
639 assumption cr(G) > (3/2)cr(G—e) then implies cr(G—e) < 2s, contradicting
620 that cr(G — e) = 2s. Thus cr(G — e) = (2/3)cr(G) > (2/3)cr(G) — 108.

641 Suppose finally that G is irreducible. Lemma [I1] then implies that G has
642 at least c¢1|F| — c7k pairwise edge-disjoint (g, Ag)-earrings. Since |E| >
643 (c7k)/ci + 1, it follows that G has at least one ({y, Ag)-carring. Thus, by
644 Lemmal[l3| G has an edge e such that cr(G—e) > (2/3)cr(G)—(2/3)(AL + £2) >

65 (2/3)cr(G) — 108. a
646 7. BOUNDED DECAY AND EXPECTED CROSSING NUMBERS
647 The pioneering work of Richter and Thomassen, as well as our work in

648 this paper, are naturally described as “bounded decay” results: the existence
649 of sets of edges whose removal does not decrease arbitrarily the crossing
650 number. The papers by Fox and Téth [10] and by Cerny, Kynél and Téth [5]
651 concern themselves with “almost no decay” results: the existence of sets of
652 edges whose removal results in a very small decrease of the crossing number.
653 As an additional motivation to bounded decay results, we discuss in this
654 section a connection with expected crossing numbers, a concept recently
655 introduced by Mohar and Tamon [I8], 19].

656 7.1. Expected crossing numbers and decay of crossing numbers.
657 Given a drawing D of a graph G = (V,E), and a weight function w :
68 E — R, define the crossing weight cr(D,w) as X, prex(p) w(e)w(f), where
659 X (D) is the set of all pairs of edges that cross each other in D. The pair
660 (G,w) is a weighted graph, and the weighted crossing number of (G,w) is
661 cr(G,w) := minp cr(D, w), where the minimum is taken over all drawings D
662 of G. Now take the weights on the edges to be independently identically dis-
663 tributed random variables, with uniform distributions on the interval [0, 1].
664 The expected value of cr(G,w) under this distribution is the expected cross-
665 1ng number of G, and is denoted E(cr(G)).

666 Let us say that a family ¢ of graphs is robust (or, more precisely, e-robust)
667 if there exist a constant € := €(¥) and an n(¥) such that E(cr(G)) = e-cr(G)
668 for every graph G in ¢ with at least n(¥) vertices.

669 Mohar and Tamon proved in [I8] that E(cr(K,)) is ©(n*). From this it
670 follows immediately that the family of all complete graphs is robust. More-
671 over, it follows from their Crossing Lemma for Expectations (Theorem 5.2
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in [I8]) that for each fixed v > 0, the family of graphs with at least v - n?
edges is also robust (more precisely, e-robust, where € might depend on ). It
is thus natural to inquire about the robustness of families of sparser graphs.

Our aim in this subsection is to unveil and exploit the close connection
between robustness and several results and conjectures, presented in [5], on
the decay of crossing numbers.

In [5], Cerny, Kynél and Téth proved the following: for each € > 0, there
exist d,7 > 0 such that every sufficiently large graph G with n vertices and
m = n'*¢ edges has a subgraph G’ with at most (1 — §)m edges such that
cr(G') = 7 - cr(G). This impressive “almost no decay” statement is best
possible, in the sense that (as shown in [5]) one cannot require that every
subgraph with (1 —d)m edges has crossing number at least v-cr(G). In this
vein, Cerny, Kynél and Téth also investigated the following closely related
problem.

Let us say that a family ¢ of graphs is stable (or, more precisely, (d,)-
stable) if there exist positive constants ¢ := 0(¥), v := v(¥), and n(¥)
such that for every graph G € ¢ with at least n(¥) vertices (and m edges),
a positive fraction of all subgraphs of G with (1 — §)m edges has crossing
number at least v-cr(G). The requirement may be equivalently formulated as
follows: if G’ is a random subgraph of G obtained by deleting independently
each edge with probability §, then w.h.p. cr(G') = v - cr(G).

In the earlier version [4] of [5], it was conjectured that for each ¢ > 0,
the family of graphs with ©(n!*€) edges is stable. In [5], it was shown that
this is false for ¢ < 1/3 (we have slightly refined the construction in [5],
and shown that it does not hold either for € = 1/3; see Theorem . The

conjecture remains open for denser graphs:

Conjecture 14. There ezists an € € (1/3,1) such that, for each € € (€, 1],
the family of graphs with ©(n'T¢) edges is stable.

(See also a weaker version put forward in [5]).
Before moving on to explore the close relationship between Conjecture
and the robustness of dense graphs, we note the stability of random graphs:

Remark 15. The family of all random graphs G(n,p) with p > 2/n, is
stable.

Proof. We start by noting that E(cr(G(n,p)) < p?cr(K,) < (1/10)p*n*.
From the other side, Spencer and G. Téth ([25], Section 4) proved that there
is a ¢ > 0 such that for n sufficiently large the lower bound E(cr(G(n,2/n))) >
cn? holds. Standard sparsening of G(n,p) (keeping each edge with proba-
bility 2/(pn)) gives that for p > 2/n, E(cr(G(n,p))) > (¢/4)p*n*. Using
these bounds, together with the observation that if each edge of a G(n,p)
is removed with probability € then we obtain a G(n, (1 — €)p), the remark
follows. O

The key connection between expected crossing number (robustness) and
the decay of crossing numbers (stability) is the following observation:
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Proposition 16. If a family & of graphs is stable, then it is robust. More
precisely: if 4 is (0, ~)-stable, then it is 6%y-robust.

Proof. Suppose that ¢ is a (d,y)-stable family of graphs. Let G be a (suffi-
ciently large) graph in ¢, and let w be a random weight assignment (sampled
from the uniform distribution) on the edges of G. Our aim is to show that
the expected value of cr(G, w) is at least 6%y - cr(G).

Let G’ be the subgraph of G that results by deleting the edges that re-
ceive a weight smaller than § under w. Let D be a drawing of G that
minimizes cr(G,w), and let D’ be the restriction of G to G'. Clearly D’ has
at most cr(G,w)/6% crossings, and so cr(G’) < cr(D') < cr(G,w)/6%. Thus
cr(G,w) = §2er(Q).

Note that G’ may be equivalently regarded as a graph obtained from G by
deleting each edge independently with probability 6. Since ¥ is (0, )-stable,
it follows that w.h.p. cr(G’) = 7 - cr(G). Therefore the expected value of
cr(G,w) is at least 62y - cr(G), as required. O

We now proceed with a concrete illustration of how the results and tech-
niques on the decay of crossing numbers (specifically, those developed in [5])
find an immediate application in expected crossing numbers.

As we observed above, Cerny, Kynél and Téth [5] proved that, for each
e € (0,1/3), the family of graphs with ©(n!*¢) edges is not stable. We have
slightly refined the construction in [5], and extended it to cover the case
e=1/3.

Theorem 17 (Non-stability of graphs with ©(n*3) edges). For every §,~v >
0 there exist ¢ := ¢(d,7) and ng := no(0,7y) such that there exist infinitely
many graphs G with n > ng vertices and ¢ - n*? < m < n%? edges, that
satisfy the following. If G' is a random subgraph of G obtained by deleting
independently each edge with probability §, then w.h.p.

cr(G') < - er(G).

We omit the proof of this result, since it closely resembles the proof of
our next statement. Theorem [18] shows the non-robustness of graphs with
O(n*3) edges, and illustrates how the non-stability results and techniques
in [5] can be extended to prove the non-robustness of graphs with ©(n!*<)
edges for each € € (0,1/3).

Theorem 18 (Non-robustness of graphs with ©(n*?3) edges). For every
v > 0 there exist ¢ := c(y) and ng := no(y) such that there are infinitely
many graphs G with n > ng vertices and ¢ - n*? < m < n*? edges, and

E(cr(G)) < v -cr(G).

Proof. For readability purposes, we shall omit explicitly taking the integer
part of several quantities involved. The integrality requirement will be, in
every case, obvious from the context.
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We may assume without loss of generality that + is small enough so that
e 12007 < 4/720. Let o := /600, ¢ := a2/100, r := a*n'/3/5 s := 1/a?,
and t := y/n/s. Note that obviously 7 > 5¢en'/3.

Inspired by the construction in [5], G will be the disjoint union of two
graphs G and G2 plus some isolated vertices. Let G1 be n/2r copies of the
complete graph K,. Clearly |V (G1)| < n/2. Now let Gy be obtained from a
complete graph K; by subdividing each edge s — 1 times, i.e. replacing each
edge by a path with s edges (these length s paths are the branches). It is
easy to check that |V (G2)| < n/2. Furthermore,

4 n? atn?

100 100s2 100’

where the inequalities t* > cr(Ga) > t*/100 are easily derived bounds for
the crossing number of the complete graph on ¢ vertices.

Now let w be a random weight assignment on the edges of G. Let F_,
denote the set of edges of G that receive a weight smaller than a under
w. Let us say that a branch is weak if at least one of its edges is in F_q;
otherwise the branch is strong.

The probability that any fixed branch is strong is

(1—a)~e® =¢ /e

(8) a'n? = t* > cr(Go) >

Using Chernoff’s bound, w.h.p. at most t2e~ 1/ branches are strong. That
is, w.h.p. at least (;) —t2e71/* » t2(1/2 — e~ 1/®) branches are weak.

Now consider the drawing of G5 in which the ¢ vertices of degree t — 1 are
in convex position, and the edges are the straight segments joining them.
This drawing of G2 has (D ~ t*/24 crossings (this is by no means a crossing-
minimal drawing of Gy, but it is enough for our purposes). Moreover, by
adjusting the drawing of each branch if needed, we may ensure that each
branch is crossed in exactly one edge, namely the edge with smallest weight.
It follows that the number of crossings involving two strong branches (and
thus, in particular, the number of crossings of weight > «) is w.h.p. at most
(t2e~Y*)2 and so w.h.p.

cr(Gy,w) < tle 2 + o - t4(1/24 — e 2) < t4 (/24 + e~ H)
(9) < 100er(Gy) (/24 + e72/%) < 5a - cr(Ga),

where for this last inequality we used that e 1200/7 = ¢=2/a < /720 =

(5/6)a.

We finally move on to G. First we note that
|E(Q)| = |E(GY)| + |E(G2)| = |E(G2)| = (n/2r)r(r —1)/2 > nr/5 > en*?.
Using , we obtain
(10) cr(G) = cr(Gy) + cr(Ga) > cr(Ge) > a*n?/100.
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From the other side, using and @ and the trivial bound cr(K,) < 74,
we get

(11) cr(G,w) < cr(Gy) + er(Ga, w) < (n/2r)r* + 5a°n? < 6a°n?,
where for the last inequality we used the (easily checked) inequality (n,/2r)r* <
a’n?.
Finally, using and and recalling that a = /600, we obtain
cr(G,w) < 6a°n? = (600a)(a*n?/100) < v - cr(G),
as required. O

We close this subsection with two constructions that further illustrate
the discrepancy between the crossing number of a graph and its expected
crossing number.

First we describe a construction that highlights the fact that the crossing
number (of a family of graphs) may grow with the number of vertices, and yet
the expected crossing number (of all graphs in the family) may be bounded
by an absolute constant. For any graph G, let n(G) and m(G) denote the
number of vertices and edges of GG, respectively, and let s- G the graph that
consists of s disjoint copies of G. Let Kj5(t) denote the graph obtained by
replacing each edge of K5 with a path of length t (a branch). Trivially, for
any positive integer s, n(s - K5(t)) = s(10(t — 1) + 5) = 10st — 5s,m(s -
K5(t)) = 10st, and cr(s- K5(t)) = s. However, the weighted crossing number
of K5(t) is minw(e)w(f), where the minimum is taken over all pairs of
edges e, f that lie on branches that correspond to nonincident edges. A
fairly standard calculation shows that E(cr(s - K5(t)) < (s/t*)log?s. It is
worthwhile to explore the consequences of plugging in various values of s.
Probably the most interesting case occurs when s = n2/3/ logn, for this
shows the following;:

Proposition 19. There exists an infinite family of graphs G with crossing
number n2/3/ logn and expected crossing number at most 1. O

Our final construction pertains a family of graphs that seem more natural
than the graphs constructed above. We recall that Cs [] C,, denotes the
Cartesian product of the cycles of sizes 3 and n (see Figure [1).

Proposition 20. The Cartesian products C3 [ C, satisfy
cr(Cs [ Cy) = n,

and yet
E(cr(Cs [0 Cp)) < 2n%31og B n + 3.

Proof. The vertices of C3 [] C), can be labeled v;;, 0 <i<2,0<j<n—1,
so that there is an edge joining v;; and vy j if and only if either (i) j = j’
and |i — | = 1 or (ii) 4 = ¢ and |j — j'| = 1 (indices are modulo n). For
j=0,1,....,n—1,let V; := {v;; | i € {0,1,2}}. That is, the V}s are the
vertex sets of the 3-cycles. For j =0,1,...,n—1, let E(j) denote the set of
(three) edges with an endpoint in V; and another endpoint in Vj;.
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W [/
AN

FI1GURE 1. A drawing of C3 [] Cg with 14 crossings, where
the thick edges are the edges of one particular E(j). This
is easily generalized to obtain, for every even integer n >
2, a (not crossing-minimal) drawing of C3 [J C), with 3n —
4 crossings with the following property: there exists a j €
{0,1,2,...,n—1} such that each crossing involves an edge in

E(j)-

It is known that cr(Cs [J Cp) = n for every n = 3 [23]. In Figure [1| we
depict how to produce a (not crossing-minimal) drawing of C3 [J C), with
3n — 4 crossings, for every even integer n > 2, with the following property:
there is a j € {0,1,2...,n — 1} such that every crossing involves an edge in
E(j) (the edges in E(j) are the thick edges in Figure [1)). Thus,

(A) if the edges in C3 [] C), are are weighted, and there exists a j such
that the sum of the weights of the edges in E(j) is r, then such a
weighted Cs [ C), has crossing number at most 7 - n.

For j =0,1,...,n—1, denote the weights of the edges in E(j) by x{, w%, a:%
We have for ¢ < 1 that Pr(z] + 23 + 23 > t) = 1—t3/3!. Using independence,

Pr(3j:ad + 2+ 2l <t)=1—(1—£3/6)" ~ 1 — exp[—nt’/6].

Choosing t = 61/3p~1/3 logl/3 n, this is at least 1 — 1/n.

Now let s := min{a:{—i—:zg—kxg | 7€{0,1,...,n—1}}. Thus s < t with prob-
ability at least 1 — 1/n. In the complementary scenario (which occurs with
probability < 1/n), s is obviously at most 3. Using this observation together
with (A), it follows that E(cr(Cs [0 Cy)) < [(1—1/n)((6)Y/*n~1/3 log'/3n) +
(1/n)3] -n < 20?3 log3n + 3. O
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7.2. Concentration of the expected crossing number and the cross-
ing number of randomly sparsened graphs. Continuing in the theme
of expected crossing numbers and its interplay with the decay of crossing
numbers, we finally explore the concentration around the crossing number
of a randomly sparsened graph, as well as the concentration around the
expected crossing number of a graph.

Denote R = R(G,p) the random graph obtained from G by randomly
and independently removing edges, each with probability p. Using a stan-
dard martingale concentration inequality we show that cr(R) is concentrated
around its mean. Let E(G) = {ei,...,en}, and consider the random vari-
able cr(R) as a Doob’s martingale, where the edges are exposed one by one.
The length of the martingale is |E(G)|. Removing or adding an edge changes
the crossing number by at most |E(G)|. Thus, by the Azuma-Hoeffding’s
inequality, for every A > 0 we have

—)2
(12) Pr[|E(cr(R)) — cr(R)| > A\] < exp[2|E(G)|3].
Let S(n) be any function tending to infinity. Inequality shows con-
centration with radius A = B(n)|E(G)|*/?:

— n 2
(13)  Prf[E(cr(R)) - ex(R)| > B(n)|E(G)Y?] < e"p[ﬁ;)]‘

Similary, we can get concentration around the expected crossing number.
Assign to each edge a random variable taking values from [0, 1] (which could
be different for each edge), which provides to each of them a random weight.
Formally, it could be a function w : E(G) — F, where F is a collection of
random variables taking values from [0, 1]. Then E(cr(G, w)) is the expected
crossing number for a given w, and cr(G,w) is a random variable, which is
the crossing number of a weighted graph G. As with the random graph
R above, resampling the weight of one edge changes the weighted crossing
number by at most |E(G)|, and so we obtain:

—B(n 2
(14) Pr[|E(cr(G)) — cr(G,w)| > B(n)|E(G)[*?] < exp[ﬁé)].

These inequalities are meaningful only when G is dense enough, i.e. |[E(G)| =
n®*%. Note that we could have obtained sharper concentration results for
sparse graphs, under the assumption that removing any edge makes the
crossing number drop by o(|E(G)|).

8. CONCLUDING REMARKS

Lemma [§ falls into the realm of light subgraphs. We recall that the
weight of a subgraph H of a graph G is the sum of the degrees (in G) of its
vertices. For a class ¢ of graphs, define w(H,%¥) as the smallest integer w
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such that each graph G € ¢ which contains a subgraph isomorphic to H has
a subgraph isomorphic to H of weight at most w. If w(H,¥) is finite then
H is light in 9.

Fabrici and Jendrol’ [§] proved that paths (and no other connected graphs)
are light in the class of 3-connected planar graphs. Fabrici et al. [9] proved
that this remains true even if the minimum degree is at least 4, and Mo-
har [I6] extended this to 4-connected planar graphs.

Although some cycles are light in certain families of planar graphs (see for
instance [11}, 12, 15, [I7]), it is easy to see that cycles are not light on the class
of planar graphs (consider, for instance, a wheel W,, with n large: each cycle
in W, is either very long or incident with a large degree vertex). However,
as Richter and Thomassen illustrated in [22], for some applications one does
not need the full lightness condition. A cycle C in a graph is (¢, A)-nearly
light if it has length less than ¢ and at most one of its vertices has degree
A or greater. Richter and Thomassen proved that every planar graph has a
(6,11)-nearly light cycle. This was later refined in [I4], where it was shown
that if the graphs under consideration are sufficiently large, then there is a
A > 0 such that a linear proportion of the face boundaries are (6, A)-nearly
light.

The concept of (¢, A)-earrings extends the idea of nearly light cycles: we
allow both vertices u, v incident with some edge e to have arbitrarily large
degree, and ask for the existence of two cycles that contain e, have bounded
length, and (other than u and v) bounded degree. The following imme-
diate corollary (since every 3-connected graph is obviously irreducible) of
Lemma [11] guarantees the existence of many pairwise edge-disjoint earrings
in 3-connected planar graphs.

Lemma 21. If G = (V, E) is a 3-connected planar graph, then G has at
least 107 | E| pairwise edge-disjoint (5000, 500)-earrings.

We remark that the linear dependence on |E| in Lemma is clearly best
possible, since there cannot be more pairwise edge-disjoint earrings than
edges in a graph.

Finally, it is natural to ask if the 3-connectedness requirement can be
weakened. The construction illustrated in Figure [2| answers this in the neg-
ative.

It might be argued that the graphs constructed in the proof of Theorem
are somewhat artificial, since many edges are subdivided a large number of
times. However, these graphs can be turned into 3-connected graphs, with
equivalent properties, as follows. Consider the graph G5 in the proof of
Theorem and some fixed drawing of Gy (for instance, as in the proof
of Theorem [I8 draw the degree ¢ — 1 vertices on a circumference, and the
branches as the straight edges joining them). Let uy,ua, ..., u; be the nodes
(degree t — 1 vertices) of Ga. Thus each branch with endpoints u;, u; can be

written as u; = uoj, ul .. uiTh ug = uj (the same branch, traversing the

igo Wige e Wi o Wi g
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FiGURE 2. The graph H, obtained by identifying n copies
of K4 — e on their degree 2 vertices u,v. This family of 2-
connected graphs shows that the 3-connectedness condition
in Lemma [21] cannot be weakened: for each pair of integers
¢, A there is an ng := ng(¢, A) such that for all n > ngy, Hy,
does not contain any (¢, A)-earring.

1 s—1 s

. . — O _ .
vertices in the reverse order, reads u; = U U s o oo Wiy 5 U 5 = Uiy SO that
k _ sk _ 0 1 s—1 , s
U ;= U for k =0,1,...,s). Now for each branch Uy U o eees Uy 5 UG 5

add the edges uf] and uij, for k=0,1,...,s—2. The augmented graph is
already 2-connected, but each pair of nodes (that is, degree t — 1 vertices)
is a 2-vertex-cut, so we need to strenghten the connectivity around each
node. Consider the node w;, and suppose for simplicity that the edges
ULuT 9, Ut} 3, . .., urug, leave uy in the given (say clockwise) cyclic order.
Then, for each j = 2,3,...,s, it is possible to draw an edge from one of
uij and u%j to one of uij 41 and U%,j 41 without introducing any crossings
(indices are read modulo s). By performing this procedure around each
node, we obtain a 3-connected graph that also witnesses Theorem The
proof is analogous to the proof of Theorem the only difference is that

instead of requiring a weak edge of a branch (say between w; and u;), we

J4 ZJrl) ( /—1 ZJrl) (ué Z+2)
) ) )

need weak triplets of edges of the form (ui’j, U, ; i Wis i Wi g

where 3 < ¢ < s — 3; we omit the details.
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