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SPECTRUM OF THE 1-LAPLACIAN AND CHEEGER’S
CONSTANT ON GRAPHS

K.C. CHANG

ABSTRACT. We develop a nonlinear spectral graph theory, in which the Laplace
operator is replaced by the 1— Laplacian Aj. The eigenvalue problem is to
solve a nonlinear system involving a set valued function. In the study, we inves-
tigate the structure of the solutions, the minimax characterization of eigenval-
ues, the multiplicity theorem, etc. The eigenvalues as well as the eigenvectors
are computed for several elementary graphs. The graphic feature of eigenval-
ues are also studied. In particular, Cheeger’s constant, which has only some
upper and lower bounds in linear spectral theory, equals to the first non-zero
A eigenvalue for connected graphs.

1. INTRODUCTION

The Laplace operator is a differential operator acting on functions defined on a
manifold M, Au = —div(Vu). It can be seen as the differential of the Dirichlet
functional

D(u) = / |Vu(z)|>de
M
on the Sobolev space H'(M). The eigenvalue problem is to find a pair (\,u) €
R' x H'(M) satisfying
Au = lu.
While the 1— Laplace operator A; is defined to be the subdifferential of the total

variation functional || Dul|(M) for functions on Bounded Variation Space BV (M),
where

|| Du||(M) := sup{/ udiv(p)dr | ¢ € CH(M,R"), |or(x)] <1,1 <k <n, a.ex € M}.
M

is globally defined.

Formally,
Vu

vl
and the eigenvalue problem is to find a pair (u,u) € R! x BV (M) satisfying

Aqu = —div(

Aju € pSgn(u).
As an example, Chang [§] studied the eigenvalue problem for A; on the unit interval
[0,1]. The spectrum for the Neumann boundary problem is
o(Ay) ={2k|k=0,1,2,---,}
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and the associate eigenfunctions are
+i(z) = £sgn(cos(kmx)),

in contrast with the spectrum of the Neumann problem for A on the unit interval
[0, 1]:

o(A)={2k|k=0,1,2,---,},
and the associate eigenfunctions:
+i(z) = teos(knz).

The solutions for equations involving A are smooth, while those for A; may be
discontinuous. Since solutions in many interesting problems e.g., in the signal
processing and in the image processing etc., may be discontinuous, the 1— Laplace
operator A; has been received much attention in recent years.

Interestingly, Kawohl, B., Fridman, V. [14] and Kawohl, B., Schuricht, F. [15]
studied the connection between Cheeger’s constant h(€2) (see Cheeger[d]) and the
first eigenvalue of Ay under Dirirchet boundary condition on a bounded domain €2
in R™. They showed:

lim A (9) = A(%),

where A,(2) is the first eigenvalue of the p— Laplacian, and
Apu = div(|VuP™2Vu), 1 <p< oo

on 2 with Dirichlet boundary condition.

More recently, Biihler and Hein [4][5] studied the p— Laplacian on graphs, and
found that the Cheeger’s constant h(G) on a connected graph is the limit of the
second eigenvalues for the p— Laplacian, as p — 1. Szlam and Bresson [I7] studied
the relationship between the total variation of a graph and the Cheeger Cuts.

A, is in some sense the limit of A, as p — 1, and is exactly the subdifferential
of the total variation. This inspired us to study the eigenvalue problem for A; on
graphs, in particular, the connection between the first nonzero eigenvalue of A;
and Cheeger’s constant.

The Spectral theory for the Laplace operator on graphs is a fruitful field in graph
theory, one can find many valuable monographs on this topics e.g., Brouwer, Haemers
[3], Biyikpglu, Leydold and Stadler[2], Chung[l10] etc. and a vast of references
therein.

Given an undirected graph G = (V| E) with vertex set V = {1,2,--- ;n} and edge
set E, each edge e is a pair of vertices (z,y). To the edge e € E, we assign an
orientation, let = be the head, and y be the tail, they are denoted by = = e, and
y = e; respectively.
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Let m be the number of edges in E. An incidence matrix B = (be;) is a m x n
matrix:

1 if i =ep,
(11) bei = -1 if 4= €t.
0 ié¢e.
wheree € E, i€ V.
For any vertex i, d;, the degree of 4, is defined to be the number of all edges passing
through ¢, i.e.,
di=card({e€ Eli€e})i=1,2,--- ,n.
Let D = diag{dl, d2, s ,dn}, and d = Zzlzldz
B is the counterpart of the differential operator grad on graphs, and the corre-
sponding Laplace operator reads as:
L= B"B = (lyj),
where
-1 ifi,je E,andi#j
lij =4 d; if i=j.
0 otherwise.
It is easily seen that L is independent to the choice of orientation.
The Chung’s version [I0] of the Laplacian is modified to be:
(1.2) L=D"'2LD™'/2

with the convention D;il =0 for d; = 0.

The eigenpair for L on G is the solution (A, ¢) € R! x R™\{#} of the system, where
0 is the 0 vector:

(1.3) Lo = \Do.

The Dirichlet function on a graph becomes

1 n
(1.4) J(z) = 5 D1 Bji(i — ;)%

where ¢ ~ j means that ¢ is adjacent to j, and vice versa.
It is easy to see that an eigenvector ¢ of the system (1.3) is a critical point of the
Dirichlet function J under the constraint:

Ezlzldi|Ii|2 =1.
While the eigenvalue A is the value of Dirichlet function at ¢.

In a parallel way, we introduce the 1— Laplace operator on graphs, which precise
formulation will be given in section 2.

(1.5) Az = BT Sgn(Bz),
where B is the incidence matrix, and Sgn : R® — (2%)" is a set valued mapping:
Sgn(y) = (Sgn(yl)u Sgn(y2)7 o 759n(yn)) Vy = (y17y27 T 7yn)7
in which
1 ift>0,

(1.6) Sgn(t)=¢ —1 ift <0,
[1,1] ift=0,
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is a set valued function. The addition of two subsets A, B C R™ is the set {x+y |z €
A,y € B}, and for a scalar «, the scalar multiplication a4 is the set {ax |z € A}.
Also, A; is independent to the choice of orientation.

We use the notation:
(1.7) X ={z= (21,22, -+ ,x,) E R"| X1, d;|z;| = 1.}.

The eigenvalue problem (see Definition 2.4 below) for A; is to find eigenpairs
(4, ¢) € Rt x X of the system, ¢ = (z1, 2, -+ ,Tyn):

EjNiZij € udngn(;vi), i=1,---,n,
(1.8) zij € Sgn(z; — xj),
Zji = —Rij-

In the following, p is called an eigenvalue with eigenvector ¢. The set of all eigen-
values is called the spectrum of A;.

Note that the coefficients z;; = z;;(z) depend upon the point x, they are called the
adjacent coefficients.

We expect that an eigenvector ¢ of the system (1.8) is a critical point of the following
energy function:

(1.9) I(z) = X7 Yl — w1,

under the constraint: € X, and the eigenvalue p is the value of the energy function
I at ¢.

In the system (1.8), the set valued function Sgn(t) is involved. Not like in the linear
spectral graph theory, which has rich mathematical tools at hand, in attacking the
challengeable problem (1.8), new methods are appealed.

After testing few examples, we find that a huge set of solutions for the system (1.8)
exists. In most cases, the solution sets appear in cells. The following are natural
questions:

1. How to approach these eigenpairs?

2. How to count the multiplicity of these solutions?

3. Do these eigenpairs reflect the feature of graphs?

4. What are the advantageous aspects of this theory?

In this paper, a nodal domain decomposition technique in combining with methods
in nonlinear analysis is developed in dealing with the nonlinear system (1.8).

First, a nodal domain decomposition is introduced (Definition 3.2). By which
the structure of solutions is studied. We prove all eigenvectors with respect to
an eigenvalue, either being single points, or being cells with various dimensions
(Theorem 3.7 and Corollary 3.8). As a result, the center of gravity can be seen
as a representative of the cell, it is called a normalized solution. After multiplying
a constant, the coordinates of normalized solutions are 1,0,—1. Moreover, the
number of nodal domains of an eigenvector is estimated by the dimension of the
cell.
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Second, as we mentioned earlier, in the linear theory, (1.3) is the variational equa-
tion for the Dirichlet function J under the constraint (1.5), while the system (1.8)
is the variational equation for the function I on X. The nonsmooth setting of
Liusternik-Schnirelmann theorem in the critical point theory is applied to the study
of the multiplicity of solutions of (1.8). Counting multiplicity (in the sense of genus),
the number of eigenvalues of a graph G with n vertices is at least n (see Theorem
4.13). This is the counterpart of the multiplicity result for the linear spectral theory.

Third, many results in the linear spectral graph theory are extended to the nonlinear
setting. e.g.,

1. The spectrum of A; is in [0,1] (Theorem 2.8). Sufficient conditions on graphs
with eigenvalues p € (0,1) are given (Theorem 5.2).

2. A graph G is connected if and only if the eigenvalue 0 is of multiplicity 1.
Moreover the multiplicity of eigenvalue 0 equals to the number of components of G
(Corollary 5.5).

3. Estimates for the first non-zero eigenvalue are studied in Theorem 5.13.

4. In the linear theory, the first non-zero eigenvalue is estimated via Rayleigh
quotient, while in the nonlinear theory, a characterization of the mountain pass
point plays a similar role (Theorem 5.12).

5. The spectrum as well as the normalized eigenvectors of some special graphs, e.g.,
paths, cycles, complete graphs, have been computed in section 6.

Finally, it seems too early to say which are the advantageous aspects of the nonlinear
theory. However, Theorem 5.15 reveals the fact that Cheeger’s constant for a
connected graph G is exactly the second eigenvalue of A;(G), but in the linear
spectral theory, only some upper and lower bounds for Cheeger’s constant can be
given. The evidence sheds light on graphic feature of nonlinear eigenvalues.

The paper is organized in six sections. The first section is an introduction. In
the second section, the definition of A; and its eigenvalue problem are introduced.
A few elementary examples are provided, by which, readers may get a feeling on
the nonlinear eigenvalue problem. Basic properties of the nonlinear spectrum are
studied. The nodal domain decomposition for vectors on graphs and the structure
of eigenvectors are obtained in the third section.. The fourth section is devoted to
the critical point theory in the nonsmooth setting. The Liusternik Schnirelmann
Theorem is extended. A crucial step in the application to our eigenvalue problem
is Theorem 4.11. Basic results on eigenvalues are studied in Section 5, the char-
acterization of the mountain pass point on graphs with applications are studied as
well. The eigenvalues and eigenvectors for several elementary graphs are presented
in Section 6.

2. THE 1— LAPLACIAN ON GRAPHS

2.1. The definition. A vector z = (x1, -+ ,2,) € R"™ can be seen as a function

defined on V,  : V. — R!. The energy function associate to the incidence matrix
B is defined by

I@) =) |(Ba)el = Y| beiwil.

ecE eck i=1
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The subdifferential of the convex function ¢ — [¢| is the set valued function

d)t| = Sgn(t).
The following theorem holds:
Theorem 2.1. Vz € R",
(2.1) wedl(r) & Iz: E—R!
such that
(1) u= BTz,

(2) ze(Bx)e = |(Bx)e|] VeecE.

Proof. 7 =7 Ve € E, let
L.() = |(Bx).l.
It is a convex function with subdifferential
Ol (z) = {Oklc(z) |1 <k <n},

where
Sgn(Bzx)e if k= ey,
Okl.(r) =< —Sgn(Bx). ifk=ey,
0 ifkée.
and

0ilc(z) = —0;1.(x), ife = (4,]).
Vu € 0I(x), due to the additivity of the subdifferential of a convex function, there
exist u® € dI.(z) such that
U= Z u®,

eceE
where u¢ = (u§,u$, - - aui) and
e Ol|z; — $j|

uk o 8:17k '
Therefore

up, =0 ifk ¢e.
If e = (Z,]), then
(2.2) up = —uj,
and

1 ifz; > Zj,

c itz =2,
for some ¢, |¢| < 1.
Let us define

1 ifx; > Zj,
Ze = -1 ifz <xy,
c ifx; =xj.
Then
uy, = bekZe,
and then

up = E ug = E bek Ze,

ecE ecE
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ie.,
u= BTz

This is (1). Also from the definition

ze(Bz)e = |(Bx)e| Ve € E.
This is (2).
7 <=7 Conversely, from (2), we have

ze € Sgn(Bx)e,
and then
u® = (BT2). € I.(x).

From (1), we obtain

u= BTz = Zue € dI(x).

eeF

O

The following Euler identity holds:

Corollary 2.2. If u € 9I(x), then (u,x) = I(z).

Proof.

(u,z) = (BT 2,2) = (2, Bx) = Z(ze, (Bx).) = Z |(Bx)e| = I(z).
ecE eckE

O

Definition 2.3. Let G = (V, E). The set valued map
Ay iz — {BTz|z: E — Rlis anR™ vector, satisfying z.(Bz). = |(Bz).|Ve € E}
is called the 1— Laplacian on the graph G.

It is rewritten as
Az = BT Sgn(Bz).
where Sgn is defined in (1.7). Obviously, A; : R — (28)" is a nonlinear set valued
mapping, which is independent to the special choice of orientation.
Thus, in computations, we shall always fix an orientation, and write
—e=(j,1) if e=(i,)).
Following (2.2),
Ze = —Z_e, 1.€., Zijj = —Zj.

under this orientation we write the operator in the coordinate form:

(Ayz); = (BT Sgn(Bzx));

= {Sjnizij(2) | 21 (x) € Sgn(xi — x;), zji(x) = —zi;(x) Vi~ j},

i=1,2,---,n.
Definition 2.4. (u,z) € R x X is called an eigen-pair of the 1— Laplacian A on
G=(V.E),if
(2.3) uDSgn(x) m Az # 0,

where D = diag{dy, - ,d,}.
The set of all solutions of (2.3) is denoted by S = S(G).
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In the coordinate form, (2.3) is the system: z;;(x) € Sgn(z; —x;) satisfying zj;(x) =
—zij(x), Vi~ 7, and

(2.4) Yjnizij(w) € pd;Sgn(z;), i=1,--- ,n,
This is exactly (1.8). Following Corollary 2.2, we have
Corollary 2.5. If (u,x) is an eigenpair, then

I(z) = p.
Proof. Let u = BTz, we have

I(x) = (u,x) = (BT z,2) = p¥i diwisgn (i) = p¥iy dilai| = p.

where
1 ift>0,
(2.5) sgn(t)=4¢ —1 ift <0,
0 ift=0,

O

2.2. Examples. We present here few examples to illustrate the solutions of the
above system. More examples will be given in section 6.

Example 1. G = (V, E), where V = {1,2}, and F = {e = (1,2)}. The system reads
as

212 € pSgn(zy),

—212 € pSgn(xs),

z12 € Sgn(x1 — x2).

Obviously we have two pairs of solutions:

H1 = O’ (5171,1172) = i1/2(15 1)7 212 = 07
K2 = 1’ (5171,1172) = i1/2(15 _1)5 212 = 17 .

In fact, all solutions corresponding to us are (z1,x2) = £(¢,1—1t) Vt € [0, 1].

Example 2. G = (V, E), where V = {1,2,3}, and E = {e; = (1,2),e2 = (2,3),e3 =
(3,1)}. The system reads as

2192 — 231 € 2,uSgn(x1)
293 — 212 € 21uSgn(x2)
231 — 223 € 2uSgn(xr3),

zij € Sgn(x; —z;), 1,5 =1,2,3.

3
)

We find the following pairs of solutions:
p1 =0, Ng=+35(1,1,1), 212 = 293 = 231 =0,
pe = p3 =1, £y = {£3(t,—1+1¢,0,) t €[0,1]},
+ly = {£1(¢,0,—-1+1t) t €0,1]},
+i3 = {ig(O,t, —1 —l—t) te [0, 1]}, 212 = 1,203 = —1, 237 = —1.

The union of the last six segments consist of a cycle: [ o —l30 —ly 0 —l; 0l30ls.
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Example 3. G = (V,E), where V = {1,2,3,4}, and E = {e;1 = (1,2),e2 =
(2,3),e3 = (3,4)}. The system reads as

z12 € uSgn(z1),

293 — 212 € 2uSgn(x2),

234 — 223 € 2uSgn(x3),

—z34 € pSgn(xs),

zij € Sgn(z; —xj) 4,5 =1,2,3,4.

We find the following pairs of solutions:

/J,l—O AQ— (1 1,1,1) 212—22322’34:0,

fi2 = iAl—{i(tt —(z—1),—(3 =) [t €0, 3]},

/L3—/J,4—1 A —{:l:(t 0,0, (1—t)) tE[O 1]} 212—§,2’23—1 234 = é,
A%:{i(tl,— (1—t1—t2) 0 tg) |t1 +1ty <1, tl,t2>0} z10=1,203 = 1,234 = 1,
A%:{ﬂ:(tl, 5 (1—t1—t2) tg) |t1 +t2§1 tl,tQZO} 212—1 2’23——1 Z34 = 1,
N3 = {i(tl,_Tt?,%,—(l—tl —ty —t3)) |t1 +ta+t3 < 1,t1,t2,t3 > 0}
2’12:17223:—1,23421.

It is interesting to note:
(1) All the solution sets are closed cells.

(2) For the eigenvalue: p = 1, i.e., us and py, the associate critical set consists
of a cycle. In fact, let Iy = A2 and Iy = {(~,0,0,(1 —¢))|t € [0,1]}, then
liolyo (=)o (=l2) is a cycle, while I C AS N A3.

Example 4. G = (V,E), where V. = {1,2,3,4}, and E = {e; = (1,2),e2 =
(2,3),e3 = (3,4),e4 = (4,1)}. The system reads as

Z12 — 241 € 2uSgn(zry),
Zo3 — 212 € 2uSgn(xr2),
234 — 223 € 2uSgn(x3),
241 — 234 € 2uSgn(xy),

Zij € Sgn(a:z — .Ij), Zij = —Zji 1, = 1,2,3,4.

We have four pairs of solutions:

=0, (z1,22,23,24) = £1/8(1,1,1, )7
H2 = %7 (‘I17$27$3; 4) i1/8(1517 7 )
p3 =1, (21,22, 23,24) = £1/4(1,0,-1,0),
Ha = 1, ($1,$2,$3,.’I]4) i1/8(17 1,1, _1)

Example 5. G = (V E), where V = {1,2,3,4,5}, and F = {e; = (1,4),es =
(1,5),e3 = (4,5),e4 = (2,5),e5 = (3,5)}. The system reads as

214 + 215 € 2uSgn(ry),

295 € pSgn(xz),

z35 € uSgn(xs),

241 + 245 € 2uSgn(x4),

Z51 + 252 + 253 + 254 € 4pSgn(xs),

Zij € Sgn(xl — J,'j), Zij = —Zji 1,7 =1,2,3,4,5.
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We have five pairs of solutions:

M1 :07 ($1,$2,$3,I4,(E5) :l:l/lo(l 17171 1)7

pe =%, (21,22, 33,24, 5) = £1/4(1,0, 0 1,0),

/Lg = 1, ($1,JJ2,JJ3,$4, 5) :|:1/4( ,0,0),
1, ($1,JJ2,JJ3,$4, 5) :|:1/6( ,1, 1,0),
=1, (z1,22,23,24,25) = £1/6(1, —1,0).

2.3. Basic facts. We study the basic propositions of the eigenvalues for 1— Lapla-
cian A; on graphs. Let G = (V, E) be a graph and let (u,z) € R! x R” be an
eigenpair for Ay (G)

Theorem 2.6. If u # 0, then 0 € X1, d; Sgn(z;).
Proof. Look at the system:
Yjeizij € pdiSgn(z;), Vi=1,--- n.
Since
Y3z =0,

we obtain

0Ocp Z d;Sgn(x;).

=1

Remark Hein and Buehler [12] showed similar results like Theorem 2.1, Corollary
2.2, Corollary 2.5 and Theorem 2.6 for unweighted L! norm 1-Laplacian. In the
graph theoretic terminology Theorem 2.6 is equivalent to say that = has to have
weighted median zero (weighed L!-norm).

Theorem 2.7. If x € X, with t1 = xo = -+ -x,, then x = Z” (1,1,--- ,1) s
an eigenvector with eigenvalue p = 0. Conversely, if G is connected then =0 1s
an eigenvalue with eigenvector x = (1, - - xy) where x1 = To =+ -+ Ty,

Proof. 7 = 7 First we prove: x = Z” (1 1,---,1), is an eigenvector, i.e., it

satisfies the system (2.3) with u =0, or 0 E Aqz. In fact I is a convex function on
R™, it achieves its minimum at ¢, it follows

0 € dI(x).

Since

Oz, I(x) = ZSgn(:z:i —z;),

This implies the existence of z;; € Sgn(z; — x;) satisfying (1.8) with p = 0.
7 <=7 Since G is connected, Vk,j € V, Jig, 41, -+ ,4; such that k =ig ~ i3 ~ - -~
iy = j. After Corollary 2.5, I(x) = 0, it implies

T = T4y = =Tj_, = Tj.



SPECTRUM OF THE 1-LAPLACIAN AND CHEEGER’S CONSTANT ON GRAPHS 11

Theorem 2.8. For any eigenvalue p of Ay, we have
0<u<l.

Proof. Since
|z — 5] < lak| + |zl
we have
0 < I(z) = Zjrlzr — 5| < Ejan(zn] +[25]) < Ejdjlz;] = 1.

According to Corollary 2.5, pn = I(z), the lemma is proved. O

3. THE STRUCTURE OF THE SOLUTION SET

For a given function, one considers the subsets of its domain, on which it is 0 or +
or —. The subsets are called nodal domains.

First, an eigenvector is regarded as a function, we rewrite it by nodal domains.
Next we introduce the notion of cells. A cell Aisasimplex {z = X} _; A\pdi | Zj_ 1 Ap =
1\ >0,k=1,---,r.}, where {¢1, - ,d,} are linearly independent vectors. The
dimension of the cell is » — 1. we shall prove that the set S(G) of all eigenvectors
consists of a set of cells.

Finally, we take the center of gravity of a cell in S(G) as a normalized eigenvector.

3.1. Nodal domains. Given a graph G = (V| E), for a vector © = (21, ,x,) €
R™, according to the signatures of x;, we classify the vertices into three groups. Let
D'={ieV|z;=0},DF ={ie V| +az; >0}

We call DY the null set of x, and the vertex set of a connected component of the
subgraph induced by D¥ is called a 4+ nodal domain. Accordingly, we divide V'
into 7+ 4+ r~ + 1 disjoint & nodal domains with the null set:

’I‘+ T
_ + - 0
V=|JDiulJD;uD"
a=1 p=1
where D$ is a + nodal domain, and r* is the number of & nodal domains.
The adjacent relations connecting nodal domains and the nodal set can be summa-
rized as the following equivalent statements:

(1) DI and D; have no connections Va # (. The same is true if DT is
replaced by D™,

(2) If j ~ie DY and j ¢ DF, then j € Us_, Dy UD". The same is true if
i€ Dy and j ¢ Dy, then j € Jl,_, D U D,

(3) If i € D, then the ith summation ;. ;z;; depends only on the connections
inside DI and those connections to Ug;l Dy U DY.

Definition 3.1. The number » = r+ + r~ is called the number of nodal domains
of z.

Let {e1,e2, - ,e,} be the Cartesian basis of R",V € X, let
+ + +
EY = EJ(2) = Xicprei, 07 =B prd;,

6F = 0% () = LoF(x), 6°=6%)=d—5"(x) -5 ().
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Definition 3.2. A vector (1,29, ,x,) € X is expressed according to its nodal
domains as follow:

T = (Sht1Ziepg — ZhorTien; s,
where &; = |z;|, Vi, and
(Zol1Biepg + ShorSiep; Jéidi = 1.
It is called the nodal domain decomposition of x.
Let z € S(G) be an eigenvector of A;. According to Theorem 2.6, if p # 0, then
UIS (E(T;:lziepg + 22;121»@5 + Xiepo)mids,

where .
15 1€ U;:];D;ra
mi =mi(x) =9 -1, ie;_, Dy,
ci, 1€ DO,
lei] <1, it follows
|67 — 07| < °
The eigenpair system now is rewritten as

Let
+ - _
ZozB = E(i,j)eD; XDy Zijs Z,Ba = E(i,j)eDg x DI ?ijs
denote the numbers of edges between D} and Dy, and let
- R 4 g
Zo = E(i,j)eD;xDozzaa Z/a = E(i,j)eD; x DOZi5>

denote the numbers of edges between D (Dg) and DY respectively. Let

zl = (i,j)e DOx DE Zid» Z/% = E(i,j)gDOngZij-
From z;; = —zj;, it follows
Z}ls=—-Zg,,
and
zl=-2zl, Z} = -7z

For any DZ, let
(3.2) P =%, ¢ptzij Vi€ DE.

They denote the numbers of edges between i € DF and those vertices outside D.
The following equations relate vertices in different nodal domains:

(3.3) SieptPi = SpZ}5+ Z}.
(3.4) Yiep;Pi = Zalg, t Zg'
By adding the following equations over D*

Yjizij = +pd;, Vi € DE,
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we obtain:
(3.5) Sieptpi = £pSeprdi = £pudE,

provided by

(36) ZiGszjm«i,jeDf Zij = 0.
Combining (3.3), (3.4) and (3.5), we have

(3.7) Sa(Ep215+ Z)) = o™,
(3.8) Sp(LaZs, + Z5) = —po™.

Lemma 3.3.

Yiept EjeD%,jNim — ;| + EieDTip?:xi = pXeprdizi, VT
Proof. Multiplying the following system
Yjmizig = pdi, 1=1,---,n
by z;, and adding them over D, we obtain
Siept (Bjijept + 20 jepi)7ijti = (15, pr dii.
Following (3.2) and the relation:
Liep# Njni, jepE2iiTi = ViepE Njn; jepE|Ti — Tjl;

the equation follows. ([

Similarly we have

Lemma 3.4.

(3.9) SaZ) = YsZ},.
(3.10) SaZ) = YsZ}.

Proof. By the relationship between ZT and Z*, these two equations are the same.
We only need to prove the first one. Vi € DY from Zij = —Zj;, one sees

YiepoXijni, jepozij = 0,
and
E?:lzj,%‘zij =0.
Also, we have

Zleijz” = (EiEDoszi, jEDD_'—ZOLEjNL JGD(J;—FEL-}Z )ZU = EQZQT‘—EL-}Zé

jri, i.5€DS

Combining these three equations together, the equation is proved. ([l
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3.2. Homotopic equivalence. Given a subset A C X. Let z,y € A, we say that
x is equivalent to y in A, denoted by x ~ y, if there is a path [ connecting x and y
in A, i.e.,3 a continuous [ : [0,1] — A such that I(0) = z,l(1) = y.

Theorem 3.5. Let z = (21, - ,2,) € S(G), and
£= (5§)_1Eiepgdwi, = EEZE + Ejgpngej-
Then &€ ~x in S(G)NI~Y(c), where ¢ = I(x).
Proof. We only prove the case i € D7, the rest is the same. We define
ot = (1 —t)x + ¢,

and use the notation: [|z| = X7_,d;|z;|. We verify:
1°. 2t € X, i.e., ||2!]| = 1. In fact,

o]l = 5, el + 658 = (%t + 5y p )l = 1.
2°. 2t € S(@G). Tt is sufficient to verify the system:
(3.11) Yjnizi; € pdiSgn(a}), Vi

3
where z}; € Sgn(z} — x%). In fact, if at least one of 4 and j are not in D}, then we
have z{; = z;j, because the order between z} and z is not changed. Therefore the
LHS does not change.
In case both i and j are in DF, when 0 < t < 1, the order between z} and }
is again not changed. For ¢ = 1 we can just keep the signs of the differences of
the original z; in order to satisfy the system (3.11). Thus z! € S(G), and then
zt € S(G) Yt €0,1].
3°. I(x') = I(z) V t € [0, 1]. We split the sum into three parts (the adjacent relation
~ is symmetric):

ty _ yn et ot
I(z") = 8, Sjil7; 5Uj|
_ t_ ot

= (Cigpt Yjmi jgnt T Vient Zjmi gt T Vient B jent) 1 — 7

=I1+4+1II+1II
Since x}; = xy, Vk ¢ DI T is invariant. Moreover,
1T = EieDgszi,jeDﬂl’E -l = (- D2 iept i, jent 1T = 74,
and since Vi € DY, j ¢ D}, j ~ i, implies z; > x;,
I =%, s %, iapt (@i —z5)

=Yiept Zjmi, jept (@i — x;) 4§ — x)].

In this case, z;; = 1. From lemma 3.3 and (3.5), we have
gEieDCfpj = /Msgg
= N’EieDidixi
= Yiept

o + .
i, jEDE |x1 CL']| + EieD;pi L,

we arrive at
I+ 11T = (Ziept Bji, jent + Bieni Bjmi, jgni ) @i — 4]
This prove I(zt) = I(z), t € [0,1]. O
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By the theorem, any eigenvector x is equivalent to an eigenvector of the form

— +pt —n— + =
(312) y= ana EO‘ _E]Kiyﬁ Eﬁ7 Ya s y[@ > 07

i.e., on each nodal domain, the components of y are constants. In this case, the
function I can be expressed as

Theorem 3.6.
I(y) = SapZl5 (w0 +y5) + SaZiyd + S Z5y;5 .-

Proof. Since there is no connections between any two positive nodal domains: D;rl

and D;;, a1 # ag, neither for any two negative nodal domains,

RHS = X0 8% pt ij‘,jeD; 215 () (Yi — yj)
+ EaBiept Ejmigenozij(y)yi + LpBiepoX;; jep 25 (Y)(—y;)
= X1 Bz () (i — y5)
=27 Bjmilyi — yil = 1(y).
O

3.3. Cell structure for eigenvectors. Keeping those equivalent statements of
the adjacent relations connecting nodal domains and the nodal set in mind and
combining them with Theorem 3.5, we obtain

Theorem 3.7. Let ¢ € S(G) be of the form (3.12). Then vectors in the cell
rt r- e e — rt e — e
Apigp1 = {0 =30yl B - Yh_1Ys Eg |y yg 20, Sh1Ya 04 + Yh1Ypls = 1}
are all eigenvectors with the same eigenvalue as ¢.

Proof. Since ¢ is an eigenvector, there exist u € [0,1], 2;;(¢) € Sgn(z;—x;), m;(¢) €
Sgn(x;), such that

ijizij ((b) = Ndzml((b)

However for any vector ¢ = (y1,¥2, " ,Yn) € Ap+y,.—_1, the signatures of 9
in each nodal domain as well as in DY are the same as those of ¢. We choose
m; (1) = m;(¢). While in each nodal domain y;, i = 1,2,--- ,n, are constants, all

the coordinates at adjacent vertices do not change their order. Therefore all terms
Sgn(x; —x;) C Sgn(y; — y;)Vj ~ i, and then m;(y) = mi(¢) = Tjmuizii(¢) €
EjniSgn(yi — y;).

Thus, 1 satisfies the same system, i.e., it is an eigenvector with the same eigenvalue
. (|

Corollary 3.8. If x = (21, -+ ,x,) is an eigenvector with r nodal domains, then
x € A,_1 CS(G), ie., xlieson ar —1 cell, which consists of eigenvectors.

3.4. Normalization. As a corollary of Theorem 3.5 and Corollary 3.8, we can
make the components of the eigenvector being constant on all nodal domains.
Namely
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Theorem 3.9. Let x = (x1, - ,xy) be an eigenvector of the 1— Laplacian A1 (G)
on a graph G = (V, H). Then x ~ &, where

& =0"SaE; —SpE5], =061 +6,
and E,jyt are the nodal domains with respect to x.
Now, we arrive at the following

Definition 3.10. An eigenvector = of the 1— Laplacian A;(G) on a graph G =
(V, E) is called normal, if it is of the form

(3.13) z =06 [ZaEl — TpE5],

where
+ _ +
ET =Y, p=ei, o = Y,eptdi.

St =% 6t 6T =XT_167, §=0T+0".

and DF, 7 =1,2,--- 7%, are all nodal domains with respect to .

Our theorem 3.9 is restated as

Theorem 3.11. Any eigenvector x of A1(G) is equivalent to a normal eigenvector
within the set of eigenvectors with the same eigenvalue p.

Let us introduce a subset of X as follow:

r={x= (21, ,2,) € X||0T(z) =0 (x)] < °(x)}.
The following statement is deduced from Theorem 3.9 and Theorem 2.6 directly:
Theorem 3.12. Any eigenvector x of A1(G) with eigenvalue p # 0, lies on 7.

4. MULTIPLICITY AND CRITICAL POINT THEORY ON PIECEWISE LINEAR
MANIFOLDS

In this section we study the critical point theory of the function I (see (1.9)) on
the set X (see (1.7)). The purpose of the study is twofold:

(1) Provide a variational formulation of the eigenvalue problem for A;(G), which
has an explanation on the motivation of definition 2.4 on the eigenvalues of graphs.
(2) Define the multiplicity of eigenvalues. In the linear spectral theory, as a simple
application of linear algebra, a graph with n vertices possesses n linearly inde-
pendent eigenvectors, see for instance, Biyikpglu, Leydold and Stadler[2], Brouwer
and Haemers [3], and Chung[10]. However, in the previous section, we have shown
that the eigenvectors for the nonlinear operator A;(G) appear in the form of cells,
which are infinite subsets, except the 0— cells. How do we measure the multiplicity
of these eigenvectors? Do we have some sort of similar multiplicity result in this
case? A natural idea in mind is the Liusternik-Schnirelmann theory in nonlinear
eigenvalue problems on symmetric differential manifolds.

However, the function I and the manifold X are not smooth. The extension of
Liusternik-Schnirelmann theory to nonsmooth setting can be found in Chang[6]
and Corvellec, Degiovanni and Marzucchi[I1] etc. However, all these extensions are
abstract, in the application to our problem it is required to concretize the abstract
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theory. Subsections 4.1-4.2 are devoted to study the tangent space structure. Sub-
section 4.3 studies the projections on the tangent space. Theorem 4.2 is crucial
in characterizing the critical set of the function I. We carefully write down the
pseudo-subgradient vector field of T on X. The purpose is twofold: (1) Bridging up
the relationship between the critical set of I on X and the set of all eigenvectors
S(G), and (2) it might be useful in computing the eigenvalues and eigenvectors
numerically.

The non-smooth function I on the piecewise linear manifold X = {z = (z1,--- ,x,) €
R™| Y% | di|z;| = 1} are taken into consideration, where dy, - - - , d,, are the degrees
of vertices. We shall follow the following steps:

1. Clarifying the notion of the critical point of the function I on X.

2. Extending the Liusterink- Schnirelmann theory to I on X. see Theorem 4.9

3. Building up the connection between the critical set of I on X and the set of all
eigenvectors S(G). It is Theorem 4.11.

4. Defining the multiplicity of an eigenvalue, see Definition 4.12.

4.1. Decomposition. First, we decompose the piecewise linear manifold into pieces
of open linear manifolds with different dimensions in addition to several isolated
points.

A k index subset is defined to be ¢ = {i1,--- ,ix}, 1 <k <nwith1 <i; <ig--- <
ix < n. Let Ij be the set of all k indices. The number of I is |Ix| = C}, where C}'
are the binomial coefficients.

Define a vector valued mapping m : I, — 2%, i.e.,

m(e) = (M), m)i),

where m(t); € {+1,—1}, Vi € . The set of all these mappings is denoted by Mj,.
The total number of My, | M| = Cp2*.

We introduce the following notations: V (¢, m) € I, x My,
(4.1) Tym ={z=20cfaMaCs | Laci®ada =1, o >0,V a € 1},

where dy, - - -, d, are the degrees of vertices, and mq, = m(¢);, .
Ttisak—1cell, k=1,2,---,n. All these cells are open, except k = 1.
Let Sx—1 be the set of 2’“0}; disconnected k — 1 cells, i.e.,

Sk—l = U Pb,m-

(¢,m)€E I X My,

Obviously we have the following propositions:

(1) Fb,mmrb’,m/ = @7 if (Lum) 7é (Llam/)u

(2) SiNS; =0, ifi#j,

(3) X =UiS S
In particular, Va € X, there must be unique k£ such that a € Sx_1, and then
3 (t,m) € I, x My, such that a € T, ,, i.e.,

a = Yaec,0aMaCq, Zizlaadia =1, a, >0,Va €.
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Given two cells I', ,, and I'y/ v/, if
vy and ()], =m(v),
then
Lo CT e

In this case we write I'ys s = I', ;,, and say: the level of I,/ ;s is higher than that of
T',.m. In order to specify the relation, we sometimes write v’ = ¢ @ o, m’ = m @ w,
and if there is no confusion, we also briefly write I'y/ v as Ay .

There are totally 3"% — 1 cells over T', ,,,,. Among them the numbers of (k+1— 1)
cells is Cl"_le, 1=1,2,---,n—k.

Let F** = Ty = Agy |/ = 1@ om' = mdwh,l =1,2,--- ,n—k, and
F¥ =T, ,,. We have |F¥!| = C77%2! and let

n—k
(4.2) F, =) F"
=0

Given a point a € I', ,, € Sk_1, its neighborhood Bj(a) on X for small enough §
lies on 3"~ % pieces of various dimensional cells:

Bs(a)= || Bouwl(a),
Ag w€EF,

where o = (jlv T ajl)v w = (wjl7 Tt 7wjz)7 and let m, = m(L)|ia’ wp = w(0)|j5a

Bow(a) ={z € Bs(a) |z = Xac.baMma€a + Lgesnpwseg
&a € Rlaﬁﬁ >0, XYabada + EﬁEUnﬁdﬁ = 1}'

Obviously, a lies in the interior of I', ,,, and is on the boundary of all those cells
Asw € F AL .

4.2. Tangent space. Since now X is a piecewise linear manifold, we shall extend
the notion of tangent space. h € R" is called a tangent vector of X at a € X, if
a+ th € X for small ¢ > 0. All tangent vectors form a tangent cone of X at a,
denoted by T,(X).

For any «, v € ¢ with a # ~, we define

Ma€a  Myey

ha, = )
v do, dy
and Vj € o,
WY = Wpeg  My€y
? dﬁ d’y
We have

Theorem 4.1. Ifa €T, ,, C S;_1, then
To(X) = U To(Bo,w(a)),

Aa,w er,

where

(43) TG(BUJU(CL» = {EQE(L\{W})Cahﬂu’Y + 2560b5w§1 | Ca € Rlv bﬁ > O}
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Proof. First, for € > 0 small, we have
a+chay €L m.

Thus,

ha,y € To(Bow(a)).
Obviously the rank of these vectors {ha,|a,y € ¢} is k — 1. They form the first
group in the bracket of (4.3).

It is worth to note:

haw = —hoya.
Next, VS € 0 and Vw : 0 — {+1,—1}, we define
wge

(4.4) & =(~a+ =),
B

where wg = w(o)|g. it follows
a+eég € By yw(a)

for € > 0 small, that is
s € Tu(Bo,w(a)).

Note e
@ = Zac(\())dadalay + ——
.
we have
V5 = &8 + BVac(\(v)%dalla,y-
Therefore

EO‘G(L\{'Y})cahaﬂ—’—zﬂ@fbﬂwg = Eae(L\{'y})c:xha,v"'zﬂEUb,/Bfﬂ7 Ca 0:1 S Rl, b,@, b,/@ > 0.
(I

Thus, Ay = Agy implies Ty (By (@) C To(By wi(a)).

4.3. Projection onto T,(X). For a real n dimensional vector space E™, we study
the duality between E™ and its dual (E™)*. Let {e1,---,e,} be a basis of E™, and
let {ef,---,el} be its dual basis, i.e.,
<ef,ej >= 61']‘, V,] =1,2,---,n.
Thus, Va* =" | zef, Vy=>",ye;
< .I*, Yy >= E?lelyz
It is well known that in a finite dimensional space, all norms are equivalent. Thus
for the given basis and its dual basis one may assign the norms of y and z* on E"
and (E™)* by
lyll = (St lyal )2 and (|2 = (S |2l *)'/2.
respectively.
Let
no = LacMadi, € , Tow = Ypeowpdges.
The normal direction of the cell A(, ,,) reads as

(4.5) n=no + Tow-
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Let us denote span{Tu(Bsw(a))} by Xsw, and its dual by X7 .

*
o,w

Given a co-vector p = X7 ;p;e;, the projection of p onto X, is the covector:

Pn = p — An, where n is the normal co-vector, and
YaeiMadapa + Xgeowpdsps
Saed2 + Lpeod?

Noticing that {ha,¥§, |a € (1\{i1}), 8 € o} is a basis of the linear subspace X, v,
where ho = ha,1, we consider the following vector on X, ., induced by p:

A=

(4.6) Plowyp = Bacid < p.ha > ha + Speody < p, 0§ > VY.

Note that
<n,hg >=<n, g >=0, Va € ((\{i1}),B8 € o,
we have
Plowyp = Bacid’ < poyha > ha + Lpeodl < pu, vf > Vh.
Therefore there exists a constant Cy > 0 such that

(4.7) 12wyl < Cillpall

Since
Ipall® = lIpI? = X2(|n]1?,

we obtain
< pnap(o,w)p > = EQGLdi| < Pnsha > |2 + Eﬁead%| < pnﬂ/féj > |2
mi, ps
= Ipall* + A = ==l

1

Remark Let p € 9f(a) be a sub-differential of a function f. As a constraint sub-

*
o,w’

differential, p,, is its projection on X and then P(aﬂu)p is a pseudo gradient

vector on X, ., i.€., it satisfies
(1) 1Po,wypll < Cillpall;

(2) < Pn, P((T,w)p >> ||pn||2
This is the motivation of the above construction.
Moreover, we have

Pouwyp =0 VY(o,w) < p=0.

However, T,(Bs(o,w)) is a cone. In some directions, it has boundaries. Vp # 0.
In order to make the the projection of p onto X, ,, points inside A, ,,, we should
modify the projection as follow:

(48) P(U,w)p = EaELdi <p, ha > ha + EBEad% <Dp, Mf >4 ¢}3U

where
|z ifx>0,
7Y 0 ifz=0.
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After the modification, the pseudo gradient vector P, .,)p is pushed down to the
lower level cell Ay wy = Ag e, With

<p, Y ><0, Yy €o\og, and < p,¢pg >>0, V3 € ao.

Theorem 4.2. Vp € R",
Pouwyp =0V (0,w) & p= Nno+ Zgg.cpdses),
where A >0 and |cg] <1, V1< g <n—k.

Proof. 7 <= 7.
The case A = 0 is trivial, we may assume A > 0. It is sufficient to show

<pha >=0, Va€rand <p, 95 ><0 VB¢, Vw.

In fact,

maea mil eil

da dil

<P ho >= A< ng,hq >= X < Xje,midie], >=0, Va € ¢.
and
wpep _ My, €4y

<p Y5 >= A < ng+Xjew;dje;, W 5 >= Acgwp—1) <0, VB ¢ 1YVw.
i1

” =7 Now, we assume Vo (including o = 0),Vw : 0 = {£1}, PP = 0. These
imply:

(4.9) <p,he >=0, Va €,
and
(4.10) <p,Yg ><0 VB &, Vw.

From (4.9), it follows
MaPa My, Piy
da dil

Let A\ = %. We obtain
i1

=0, Vae.

Pa = /\mada; Vo € (L\{l})

From (4.10), we obtain:
% <\ VBéE, Yw:o— {+1,—-1}
B
and then A > 0.

If A =0, then p; = 0 and then p, = 0,0 > 2 and pg =0V S ¢ ¢. ie., p=10. The
proof is done.
Otherwise, A > 0, let
_ Ps
cg = NG
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Then |cg| <1, and

b= EaELpozea + Zpﬁeﬁ

B
(Bacmadaes + EjﬂchlgdBelg)
= A(no + Egg.cadses).

The proof is complete. O

When we want to specify the component P, ,,)p being at the point a, we denote it
by P(a)(s,w)p, and define

Definition 4.3. Va €T, ,, C X, Vp € R", the collection of 3"~* vectors
P(a)p = {P(a)(s,u)p |V (0, w) including o = 0}

is called the projection of p onto T, (X ), where the component P, ,,)p is the vector
in Ta(B(U)w)(a)).

It is important to note

(1) Generally, P(a)(—p) # —P(a)p. In particular, to those p satisfying P(a)p =
0, one may have P(a)(—p) # 0!

(2) P(a)(d,w)p € Ta(B(U,w)(a))'
(3) The mapping p — P(a)p is continuous.

4.4. Critical point theory on X. Let f : R® — R! be a locally Lipschitzian
function, the sub-differential 9f(x) is defined in the Clarke sense. The set valued

mapping:
x> Of(x)

is convex closed valued and upper semi continuous (u.s.c), i.e., Vo € R™,
T — xo, uk € 0f(zr) andug — up imply ug € 9f (xo).
To the constraint problem, we introduce

Definition 4.4. Let f = f|x. a € X is called a critical point of f, if 3p € 8f(a)
such that P(a)p = 0. In other words,

0 € P(a)df(a).

Let K be the set of all critical points of f , it is called the critical set. Usually, we
write K. = KN f~1(c), Ve € R

Lemma 4.5. The set valued mapping = — P(z)df(z) is u.s.c. i.e, each of its
components P(2)(¢,,)0f(7) is us.c. V (o, w). In other words, ¥ (o, w), if ap — a in
Aa’,wv pr € P(ak)(a,w)af(ak) and Pk — p, We have pE P(a)(a,w)af(a)'
Consequently, the critical set K is closed.
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Proof. In fact, from the u.s.c. of z — Jf(z) and the continuity of x — P(x)p:
< Pk, he >—< b, ha >, and < pkvng >—=<Dp, ng >,

the u.s.c. of x — P(z)0f(x) follows. The closeness of K follows directly from the
u.s.c. of P(z)0f(x). O

We define
Definition 4.6. Va €T, 1, V (0, w), set

Aa) = Minyea(z) {maz o,w) {lIpll | P € Plo,wyu}
By definition, a € X is a critical point of f if and only if Ala) =0.

Lemma 4.7. For any a ¢ K, Ve > 0,3vy € T(X) and 6 > 0, satisfying |lvo|| = 1
and

f(y - t’Uo) < f(y) - t(T - 6) Vy € B5(a‘)7 Vi e [075)
where r = A(a)
Proof. Since a ¢ K, A(a) > 0. There must be (o,w) such that r = A a) =
Minges(a) | P(@)(o,0)pl]- Let v = Yac d2éoha + Egegd%nm/}z,”. Then

lim 7' [f(y —tv) = f(y)] = f°(a,~)

tl0,y—a
= Maxpeé)f(a) <p,—V>=— Minpeaf(a) ZQGLdiga <p, ha > +Eﬁ€ad%nﬁ <Dp, 1/)5} >

where f° is the Clarke’s directional derivative.
Now, df(a) is a closed convex set, there exists pg € 9f(a) achieves the minimum
r? of the quadratic function:

||P(a>(o,w)p||2 = ZQGLdi <p,ha >2 +2560d% < p,i/)};u >2 :
This implies
Minpeaf(a) EO(ELdi <p, he >< Do, ha > +2660d% <Dp, "/JEZU >< pOa"bg} >2> HP(G)(U,w)pOH2 = T2'
Let vo = 2Xae.d% < po, ha > ha + Xgeodd < po, ¥ > . Then |jvo|| = 1, and
lim ¢+~ [f(y — tvo) — f(y)]

tl0,y—a

1.
= =~ Minyeof(a) Sacd? < p,ha >< posha > +Egeodd < p, Yl >< po, ¥ >
< —r.

It follows
fly—two) < fly) —t(r—e) Vye Bs(a)Vte€|[0,0).
[l

Remark In the terminology of weak slope due to Corvellec, Degionanni, Marzocchi[I1],
we introduce the mapping H : Bs(a) x [0,d) — X as follow

H(y,t) =y —tv,
where v = vg with r — € in replacing r, then

1H (y; 1) = yll = ¢.



24 K.C. CHANG

The weak slope is defined by
|df|(a) = sup{r € [0,00) | f(H(y,1)) < f(y) —tr}.

In this sense,
ldf|(a) =0 < Aa)=0.

Based on the function A, by standard procedure we can construct a pseudo-gradient
vector field v and the associate pseudo-gradient flow 7 : (X\K) x R! — X with re-

spect to f on X, see Chang]6], [7], Rabinowitz[I6]. Then the following deformation
theorem holds.

Theorem 4.8. (Deformation) Let ¢ € R', K. = KN f~Y(c), and N C X is a
neighborhood of K., then V ey >0, Je € (0,¢p), and a deformation n: [0,1] x X —
X satisfying

(1) n(0,z) =2 Vze X,

(2) n(t,z) =z Yo g fe—e,c+el,

(3) Vt € [0,1],n(t,-) : X — X is a homeomorphism,

(4) 7(1, for\N) C fe_c, where fy is the level set of f below or equal to b,

(5) If Ko =0, then n(fese) C foe.

Liusternik- Schnirelmann theory is applied to study the multiplicity of the criti-
cal points for even functions on the the symmetric piecewise linear manifold X.
We use the genus version of the theorem due to Krasnoselski, see Chang[7], and
Rabinowitz[I6]. Let A C R™ be a symmetric set, i.e., —A = A, satisfying 6 ¢ A.
An integer valued function, which is called the genus of A, v: A — Z; U {+o0} is
defined:

({0 iTA=0
A= min{k € Z, | Jodd continuoush : A — S*~1}

Genus is a topological invariant.

Theorem 4.9. Suppose that f is a locally Lipschitzian even function on R™, then

= inf Mazgeaf
ok = Jnf Maz eaf(x)

are critical values of f, k=1,2,---n. They satisfy
c1<c < < cp.

Moreover, if
c=cpp1 = =Cpyl, 0 k< k41 <n,
then v(K.) > L.

A critical value c is said of multiplicity I, if v(K.) = .
Thus, we have
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Theorem 4.10. There are at least n critical points ¢r, k =1,2,---,n OfI~ such
that ¢, € K., . Moreover, counting multiplicity, I has at least n critical values.

4.5. Connection between K and S(G).
Theorem 4.11. The critical set K of I is the same with the set of all eigenvectors
S(G) on G, i.e., K = S(G).
Proof. Let a € T, 4y. a = (a1, ,a,) € K if and only if I3p € 9I(a) such that
P(a)p = 0. However, p € 9I(a) means that 3 z;; € Sgn(x; — x;), z; = —z;; such
that pPi = EjNiLL'ij, V1.
According to Theorem 4.2, P(a)p = 0 means that 3¢; with |¢;| < 1, such that

p= N(no + Ejg%bcﬁdjﬁejﬁ)v
with

ie.
Yjnizij(a) = { Z;lilgn(?flggé Llfl ="
By Definition 2.3, for a € S(G) if and only if
Yimizij(a) € ud;Sgn(a;).
Therefore, K = S(G). O

Definition 4.12. An eigenvalue g of (1.8) is of multiplicity I, if v(S(G)(1.) = L.
Following Corollary 2.5, Theorem 4.10 and Theorem 4.11, we immediately obtain

Theorem 4.13. Vp € [0,1], K, = S(G) N1, i.e., the critical set with critical
value 1 is the set of eigenvectors with eigenvalue . Consequently, there are at least
n eigenvectors ¢ of the eigenvector system such that

I(¢r) = ck,
where

4.11 = inf Mazgeal(z), k=1,2,-- ,n.

( ) Ck 7(lAlfl)Zk azzeal(x) n

Moreover, if p = ¢ and (4.11) holds, then the multiplicity of p is greater than or
equal to 1, and then counting multiplicity, (1.8) has at least n eigenvalues.

The above theorem can be seen as the counterpart of the multiplicity theorem in
linear spectral theory.

In this sense, the set of eigenvectors associate to an eigenvalue of multiplicity 1 may
not be a single vector, but a symmetric set of eigenvectors with genus 1.

In contrast to the linear spectral theory of graphs, the system (2.4) is nonlinear,
neither algebraic, there is no way to define the algebraic multiplicity for eigenvalues.
The above defined multiplicity is geometric or topological.

Remark
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Following Theorem 3.9, Theorem 4.11, and the fact that there are totally 3™ closed
cells for a graph G with n vertices, we conclude: the spectrum for A1 on graphs is
discrete, because the number of distinct eigenvalues is no more than 2 7.
Now, we can arrange eigenvalues of A1(G) in increasing order:

O=pp <pp <---< 1.

Question We have also arranged some critical values of I in increasing order as in
Theorem 4.13.

According to Theorem 4.11, the set of critical values of I is the same as that of
eigenvalues of A1(G), then we ask: Is there any eigenvalue u, which is not in the
sequence: {c1,c2, - ,cn}?

5. FURTHER RESULTS ON EIGENVALUES AND EIGENVECTORS
5.1. Elementary facts. Let z be an eigenvector of A;(G) with eigenvalue p.

Theorem 5.1. For pu =1 if and only if any nodal domain of x consists of a single
vertex.

Proof. 7 =7 Assume pu =1
1. Suppose x; # 0 for some 7. Look at the equation:
Yimizij = disgn(z;).
Since |z;;| < 1, and d; is the number of j, which is adjacent to 4, i.e., j ~ i, we have
zij = sgn(xz;), Vj~i.

2. Suppose there is a nodal domain D (similarly D;),which consists of more than
one vertices. Say, there are ¢ and j with j ~ i. According to the previous conclusion,
we have

zij = sgn(wi) =1,
and

zji = sgn(z;) = L.
But

)
Zij = —Zji-

This is a contradiction.

” <7 Suppose DI consists of a single vertex. According to (3.6),

pE = pds.
By the assumption, there is no inter-domain connection in D, it must be
Py =0
Therefore p = 1. O

Theorem 5.2. For p < 1 if and only if any nodal domain of x contains at least a
pair of adjacent vertices.
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Proof. 7 <=7 It follows from the above lemma.
” = " For any nodal domain DF, we obtain from (3.6),

py = pdy <07

This means that besides those vertices adjacent outside the nodal domain, there is
at least a pair of adjacent vertices inside. ([l

Corollary 5.3. If G is a connected graph, and there exists a vertex ig such that
diy = Yitiods,
then I has only two eigenvalues: 0 and 1, i.e., I(S(G)) = {0, 1}.

Proof. May assume ig = 1. We have dy = --- =d, = 1 and d; = n — 1. Suppose
the conclusion is not true, i.e., there exists an eigenvalue p € (0,1). According
to Theorem 5.2, any nodal domains contain more than one vertex. However, G is
connected, it must contain ig. Thus we have only one nodal domain, and then all
terms on the RHS of the system (1.8) have no distinct sign. It contradicts with
Theorem 2.6. ]

In fact, we find the solutions as follow:

1
=0 = i)
M1 7¢1 2(71—1) i=1€
p2 = = pp =1,
b2 = o1 — Tie]
2 = 2(n_ 1) €1 i=2€i],
1
¢k:§[e2_ek]7 k:?’u"'an'

Theorem 5.4. For u = 0 being a simple eigenvalue, i.e., xo = ﬁl is the unique
=1
eigenvector with respect to 0 if and only if G is connected, where 1= (1,1,---,1).

Proof. 7 < 7 Suppose G is connected, let £ be an eigenvector with eigenvalue 0.
From Corollary 2.5, I(§) = X;i|& — €| =0, V4, it implies

& =&, Vj~i
However, G is connected, all ; must equal. From £ € X, we have £ = z.

7 = 7 Suppose that G is not connected, say there are at least two connected
components G; and G5. We define
1

Sk = Dr
where Dy, = Y;cq,d;i k =1,2. Then we have
I(&) =1(&) = 0.

&1 and & are distinct eigenvectors with the same eigenvalue 0. ([

EiGGk €;,
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Corollary 5.5. If G consists of r connected components G1,---,G,, then the
eigenvalue ;1 = 0 has multiplicity r. i.e., all the eigenvectors with respect to 0
consist of a critical set A with v(4) =r.

Proof. We have the following r pairs with eigenvalue 0,

1
&k = iD_kEieeri’
where Dy = Yieq, di k =1,2,--- ,r. Let T = span{&,,---,&} and B=TnNX.

It is homeomorphic to S"~!. By definition, B C A, therefore
v(A) =2 y(B) =r.
It remains to show: y(A4) < r. If not, we assume y(A4) > r.
Let Gy = (Vi, Ey), Y = RIV¥l, where |V;| is the cardinal number of Vi, let Z;, =
Y. N §,€L be the orthogonal complement of & in Yy, and let Py : R* — Y}, be the

orthogonal projection, k = 1,2,--- ,r. Since (1, -G, are components of G, we
have

I(z) =Y I(Pypx).
k=1
Note that

T+ = é Z.
k=1

dim(T+) =n —r.
Since we assume y(A) > r, then ANT+ # (), according to the intersection property,
see [16], [7]. That is 3¢ € T+ N A, from

iI(PkJJQ) = I({Eo) = O,

k=1

then

it follows,
I(x0) =0, k=1,2,--- 7.
According to Theorem 5.4, Pyxo = &k, k=1,2,--- ,r, we obtain
xo=2Xp_1&k €T

This is a contradiction.. O

An estimate of the nontrivial eigenvalues is obtained.

Theorem 5.6. If the eigenvalue 0 < p < 1, then
n—2
Sp< :
E?:ldi n—1
Proof. We may assume that G is connected. Let x be the eigenvector with respect

to p, and let DT be a nodal domain of x. According to Theorem 5.2, it contains
at least 2 adjacent vertices. Thus, following the notations in subsection 3.1,

st >pt 1.

Now,
pt 1

:u:6+— 5__;’_5
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We claim
0t <n—1.
For otherwise, DT =V, and then yu = 0. This is a contradiction. We obtain

1

<1- .
b= n—1

As to the left inequality, we notice that the normal eigenvector x € w N X, is of the
form (3.13), there must be vertices k and ! such that zyz; < 0, with either k ~ [ or
k ~ D% 1~ DY where DO is the null set of . Let § = Zi¢D0 d;, then by Corollary
2.5,

Hn = I(I) = Ej~i|xi —Ij| Z 25_1.

Since § < X%, d;, the conclusion follows. O

5.2. Alternative characterization of the mountain pass point and the sec-
ond eigenvalue. Given an open k — 1 cell A =T, ,,, with (¢,m) € I, x My, the
index subsets D¥, DY are all determined:

D ={ici| £m(); >0}, D° = {i ¢}

And then for a graph G, the nodal domains Df(:z:) are invariantVz € A.

Now we improve Corollary 2.5 to the following:

Lemma 5.7. For a pair (u, ) € R' x X, if there exist z;; = z;;(x) € Sgn(z; —z;),
satisfying z;; = —z;;, and

Sjmizij(x) = pdisgn(x;), Yie DT UD™,
then p = I(x).

Proof. Since
Yjmizij(T)z; = pdi|zi|, Vie DYUD™,
and
Sjmizij(x)r; =0. Vig DTUD™,
Again by summation, we obtain

Yjnilrs — 5| = pXis di|zs| = p.

Lemma 5.8. Let A =T, ,, be a k — 1 dimensional open cell in X. Assume that
& € A attains the minimum of I on A, and

ca=r(ET—E7), 6=6"+0",r=0"
where ET = ¥,cp+e;, and 6T = S;cp+d;. Then

1(€) = I(ca).
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Proof. 1° Since £ = (&.--- ,&,) attains the minimum of 7 on A and A is open, we
have

0I(§) = pdisgn(&:), Vi € DT(§) UD™(6),
for some pu € RY, i.e., 32;;(€) € Sgn(& — &), satisfying zj;(£) = —2;;(€) and
D 25(€) = pdisgn(&:), Vi€ DT(E)UD(E).
i
From the previous lemma, we have y = I(¢).
29 Let &' = (1 — t)€ + tea, t €]0,1], then & = (&, -+, &) satisfies

(1 —t)& +tr, ifie DT,
&= (1-t)&—tr, ifie D,
(1—-t)¢ ifi e DO
It is easily seen
Sgn(& — &) = Sgn(& — &) YVt € [0,1),Yie DT UD™, V.
and
sgn(€l) = sgn(&), Vte€[0,1],Vie DY UD™.
Vie D}, from
Sgn(& — &) =1, Yje D"UD’,
Sgn(&} =€) =[-1,1] Vje Df,
and the relation: z;; = —z;;, it follows
Sgn(&f — &) € Sgn(&l —€5), V€ [0,1).
We take z;;(£') = z;;(€) € Sgn(&} — &j), it follows
pdisgn(€}) = pdisgn (&) = Sjmizij(€) € jmiSgn(é) — &), Vie DYuD™.
According to lemma 5.7,
I(€) = p = I(ca).

Lemma 5.9. The subset m C X is closed.

Proof. Note that the numbers §*(z) as well as §°(z) are constants on each open cell
A C 7. However, if a sequence {2(™} C A tends to a point 2(®) on the boundary
of A, then the number gained in 6°(z(?)) are those lost from ¢+ (z(?)) and 6~ (2(©).
Therefore

6% (™) = 6 (a™)] < 8°(a™),
implies
67 (2%) — 67 (2°)] < 6%(2°).

This means that 2™ C 7 implies (9 € 7. (I

Lemma 5.10. Let m = Min,c.I(x) Then there exists an element of the form
¢p=06""ET-E7), §=6"+4",
such that m = I(¢).
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Proof. Since 7 is closed, it is compact, there exists xo € 7 such that m = I(xg). If
m < 1. then zy € X\V. Following the notations used in section 4, X = U}_, Sk is
a disjoint union, and also

Sk = U(L,m)elk XMkFL,m'

AllT, ., are open sets except k = 1, there must be a unique (¢, m) € I x My, k > 1,
such that g € I', . Now I', ,,, is open, after lemma 5.8, we have ¢ of the above
form such that I(¢) = I(zg) = m.

Otherwise, m = 1, either zg € T, ,,, with (¢,m) € I, X My, k > 1, or zp = e; for
some ¢ € V. In the previous case, the conclusion follows from the above argument,
and in the latter case, one takes ET =¢;, E~ =0, i.e., ¢ = diiel-. (I

Lemma 5.11. Let D* and D° be disjoint index subsets of {1,2,---n} with Dt U
D=UD®={1,2,---n}.Let ¢ = (67467 )"Y(E*—E~) and ¢g = L(ET+E~ +E"),
where d = X7 ;d; = 6T+~ +6°. Then there exists a path on X connecting ¢ and
¢o in the level set I., where ¢ = I(9).

Proof. Define

t 1—-1t —t 1-1t 1—-1t
= —ET* — VYE 4+ —E" ¢ 1
8 = (g + VB + (o + B+ B, e 0,1,
and
¢t = g(t)_1¢t7

where g(t) = |¢'| and |z| = X ,d;|z;|. Thus, ¢ € X. According to Theorem 3.6,
we have

2t t
1) =X 20— Eazi oz
(¢) B Bd_60+( p ﬁﬂ)d—éo
t
= m[xaﬁ?%g + (o Zk + Eﬁzg)]
=tl(¢)
Therefore
t
I (b =—=I (b )
and
t460—5- - . _ 50
g(t): M%‘F%t, lftzto = %7
1— 2t ift <to.
Noticing
(tyo 2 TR T
gt)” g | 1, ift<to.
Since |67 — 6| < &°, I(¢;) is increasing, we have I(¢;) < I(¢) = c. The path
{¢¢ |t € ]0,1]} is in the level set 1. 0

Recall Theorem 3.12,and lemma 5.9, all eigenvectors with eigenvalues pu # 0 lie on
the compact subset:

m={zeX||6T(z) — 0 (x)] < =)}
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Let us define
m = Min{I(x)|z € }.

and then turn to prove

Theorem 5.12. If G is connected, then
Co = U2 = M.

Proof. We only need to prove: 0 < m = cg. Once it is shown, then m is a pos-
itive eigenvalue according to Theorem 4.11. Since all eigenvectors with positive
eigenvalues lie in 7, and m is the minimum on 7, it follows m < ps < cs.
We first prove: ¢ > m. In fact, there exists a € K C =, such that co = I(a).
Therefore

co > Min{I(z)|x € n}=m.
Next, we verify co < m and m >0

1°. Since I is continuous, and 7 is compact, the minimum of I on 7 is achieved.
Let it be ¢ € 7, then m = I(¢).

2°. We conclude: m > 0. For otherwise, I(¢) = 0. However, we assumed that G is
connected, this implies ¢ = ¢g = él. But, ¢ ¢ . This is a contradiction.

3°. According to lemma 5.11, we obtain a path «; connecting ¢ and ¢¢ in I,,, N X.

Similarly, we have paths 7 connecting ¢y and —¢, -3 connecting —¢ and —¢q, V4
connecting —¢g and ¢ in I,, N X. Let

Ag =71 072073 074.

We have Ay C I,,, N X, and Ag ~ S*. Thus v(4g) > 2, and then
co = inf supl(z)<m,
2=k, e () <

i.e., co < m. O

From this theorem, one may compute the second eigenvalue by minimizing the
function I over the subset m of X.

As an application of Theorem 5.8, the following sufficient conditions for pus < 1 is
presented.

Theorem 5.13. Let G be a connected graph. If there are two groups of vertices
{a17 e 7a7€}7 {ﬁlu e 7ﬁl} Satlsfylng

(1) 2k d,, = Eé»:ldgj, denoted by c,

(2) In one of the two groups, there is at least a pair of adjacent vertices.
Then0<,u2§1—%.

Proof. Let us define

|y l
T = %(Ei:1e0¢i - Ejzleﬁj)7
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where ¢ = ¥¥_ d,,. Obviously, = € X, and ¥m,zad;, = 0, i.e., * € 7. Assume
without loss of generality: oy ~ as. Let D° be the nodal set of x. We have

1
I(z) = Xjuilwi — 23] = o

% [EﬁjNQiQ + EﬂjNDol + X~ DO 1].

The total adjacent numbers starting from {ay,--- ,ax} or from {By,--- , 5} are at
most c. But, at least one of the adjacent pairs is between a; and «s, which does
not have contribution in the summation. Thus

Sg;ma2 + Bg,upol + Lgupol < 2 — 1.

Following Theorem 5.12, we obtain

5.3. Cheeger’s constant. Given a graph G = (V,E) and a subset of vertices
S C V, the volume of S is defined to be

Vol(S) = _d.

ies
Let S = V\S. The edge boundary of S is
0S ={e=(i,j) € E|eitheri € S,5¢ S, or j €S,i ¢ S}.

Thus,
08 = 08S.
It is denoted by F(S, S).
The number
[E(S,S)]

ME) = Mins e ai(S), Vol(5))

is called Cheeger’s constant[9], where |S| is the cardinal number of S.

The following lemma is adapted from the proof of Theorem 2.9 in Chung[10].
Lemma 5.14. There exists a vector y = (y1,---yn) € R"™ such that

Ejn~ilyi — vl
WG) = sup,ep —2~1Y Z Vil
( ) Sup €R? Z’Zn:l|y1 —C|dz

Proof. By definition there exists a subset S C V such that

_ B(S,9)
~ Vol(S)

1, ifies,
YiZ\ -1, ifies.

h(G) , Vol(S) < Vol(S).

Define
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t=1,---,n, the vector y = (y1, -+ ,yn) is what we need. Indeed,
Ej~ilyi — Y4l
SUPce RV o T 19
e Y7 lyi — cld;
Yinilyi — il
= Mag, o —3~1Yi Uil
eIt 2y —cld;
2|E(8, 5)|
= M c =
ST O Vol(S) + (1 + ) Vol(3)
|E(S, )|
= ———2> = h(G).
Vol(S) (@)

Moreover, h(G) has the following Minimax characterization:

jnilzi — 7]

h(G) = infocrm\ it lrer) SUPeer S 0 g

Cf. Theorem 2.9 Chung[10].
Applying the above results, we establish the relationship between h(G) and po.
Namely,

Theorem 5.15. Assume that G = (V, E) is connected, then
Mo = h(G)

Proof. 1° We prove: h(G) > ps. From the above lemma, there exists a vector
y= (Y1, -+ ,Yn) such that

Yimilyi — y5l

h(G) = sup, )
( ) p €R?t Ez:1|yk —C|dk

while
Mo = MinzeﬁEjNi|zi — Zj|.
Now let us define t € R such that
Byi<tdi < Xy >1d;,
Yyi<idi > Xy >idy,
and let w =y — t1, where 1 = (1,---,1), then we have
6+ (w) = 0 (w)] < 8°(w).

Let zizm,izl--- ,n, 2= (21, ,2n), We have z € 7. and
Ejnilyi — vl Similyi =yl Bjmiwi — wy
SUPcc R1 > = = 2 —
ceER EZ:1|yk —_ C|dk EZ:1|yk — t|dk ZZ:l |wk|dk J;' (2 ]|7
Therefore

hG) > Minzewz |zi — zj| = pe.

Jri
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2° Now, we turn to prove h(G) < ug. To this end, we take the normalized second

eigenvector ¢ into consideration. Let ¢ = (z1, 22, - ,2,), where z; = v times +1
or0,i=1,2,---,n, and v is a constant satisfying:

Y dilzil =1, de, (0T + 0 v =1,

|6T — 6] < o°.

Let ¢p be the minimum of X%, d;|z; — ¢|. For ¢g > 0,
Yitidilzi — col
=6 (v —co)+ 0 (v+ecp)+ 8%
= V(64 +0-) +co(8° — (64 —4-))

For ¢y <0, we also have
Eitidilzi — co
= 0" (v +|eol) + 07 (v — |eo]) + 8%|co
= v(64 +0-) + |col(8° + (04 —4-))

In summary,

inf Z(M% —c >1.
i=1

cER! 4
Thus
po = Tjmilzi — ;]
E ~z|$z — Ij|
> Suppep —m—t I
celt E?:l |$i — C|dl
. Silys ]
> n 1 Jrt J
i mfyeR \{t1|teR}SUPcecR! Eﬁzldﬁyi — ]
= h(Q).
We have proved h(G) = us. O
Remark
In the linear spectral graph theory, it has been proved [9]:

% < h6) < VI

However, Cheeger’s constant for a connected graph G is exactly the second eigen-
value of A;(G). This is the motivation of our study of the nonlinear eigenvalue
theory. In fact, a result similar to Theorem 5.15 has been given in Hein and
Buehler [12] for the unweighted L'-norm 1-Laplacian, where the volume function
is the cardinality of the set. In a slightly different context in Hein and Setzer [13]
the Cheeger cut is discussed.
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As an example, we consider the Petersen graph: G = (V, E), where V = {1,2--- 10},
and
E = {e12, €23, €34, €45, €51, €16, €27, €38, €49, €5 10, €68, €69, €79, €710, €810 } -
ThUSdldeZ"'de:?).
It is easily verified:
1
H2 = 57
1
(b = 1_5(17 17 17 17 17 _17 _17 _17 _17 _1)7
212 = 223 = 234 = 245 = 251 = 0,
268 = 269 = 2710 = 2810 = 279 = 0,
216 = 227 = 238 = 249 = 2510 = 1,

By taking S = {1,2,3,4,5}, 5 = {6,7,8,9,10}, we have

E(S,S) =5, wol(S)=wvol(S) =15 h(G)=-.

6. 1-LAPLACIAN SPECTRAL FOR SOME SPECIAL GRAPHS

In this section, we study the spectral of 1-Laplacian for some special graphs.

6.1. P,. A path with n vertices is a graph of a sequence of n vertices, starting from
1 and ending at n such that consecutive vertices are adjacent. It is denoted by P,.
In this graph
di=d,=1,dyo=ds=-=dp_1=2.

Let ¢ = X7 ,x;e; be an eigenvector, with eigenvalue p. Then they satisfy the
system:

z12 € uSgn(zy),

223 — 212 € 2uSgn(x2)

(6.1)8 -,

anl,n - Zn72,n71 S 2,USQTL($”,1)

—Zn—1n € pSgn(x,).
It is known that pu = 0 is simple, with eigenvector ml. We turn to case
we (0,1).
1°. We claim: x1 # 0. For otherwise, x1 = 0 implies z12 = 0, i.e., 0 € Sgn(z1 — x2),
it must be zo = 0. Repeating the deduction, it follows,

Tp =Tp_1=---=x1 =0.

This is impossible.
2°. No loss of generality, we assume x; > 0. From the first equation

w=z12 € Sgn(z1 — z2),
It must be z2 = x1, and then by the second equation

223 — Z12 = 2.
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This implies
3u € Sgn(za — x3).

Thus z3 < xs.

If x5 < z2, then u = % Otherwise, x3 = =2, we repeat the procedure.

On the other side, we start from x,,, by the same procedure, and conclude: 0 #
Ty = Tp—1. Either p = % or Tp_o < Tn_1, etc. We define

k1
Y0 (e —€ep—iy1), n=2r,

1
_ ) 2m=2k+D) “i=
e { ngﬁﬂ(ei —en—it1), n=2r+1.

)

—, n=2r-+1.

1
—_— e, N = 27"
“okF 1>

M1 —{ nogk
(n—2k)°

k=1,2,---,r — 1. It is easy to verify that they satisfy the system (6.1).

Finally, we study the case p = 1. Following lemma 5.1, each nodal domain consists
of a single vertex. This means that no two consecutive vertices having the same
sign. Let

1
Driks1 = m[zle(ezi—l —e2;) + (e2k+1 — €y)],

k=0,1,2,--- ,r — 1, either n = 2r or n = 2r + 1, but in case n = 2r + 1, we add

¢n = Z(_el + €er41 — en)-
Then,
(_1)j_17 .] = 1725 T a2k+ 15
sgn(zj) =< 0, j=2k+1,---,2r—1,
_17 j =n

By definition,

Zj g+ (brinr) = (1770 j=1,2,--- 2k + 1.

anl,n(¢r+k+1> =1

They satisfy the system (6.1).

Now we have the conclusion:

=0, ¢ =gyl 1,100, 1)
,UQZﬁv (bQZﬁ(la"'vla_l"'v_l)

n=2r: ll‘k-i-l:#mu(bk-i-l(l,”',170,"',0,—1,"',—1),
k=1,2,---r—1
Nr-i—kzl, (br-Hc:m(lv_lv'”7_171707"'707_1)
k=0,1,2,---r—1.
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w1 =0, (bl:ﬁ(la"'alvl"'vl)

/1*2:%7 ¢2:ﬁ(1="'71707_1"'7_1)
n— 241 Hk+1:n_—12k7¢k+1(1a"' ,1,0,---,0, =1, , —1),

k=1,2,---r—1

ek =1, ryr=(1,-1,---,-1,1,0,---,0,-1)

k=0,1,2,---r.

un =1, ¢, =(-1,0,---,0,1,0,---,0,—1).

6.2. C,,. A cycle with n vertices is a connected graph, where every vertex has
exactly two neighbors. It is denoted by C),. In this graph
di=dy=---=dp_1=d, =2.

The eigenpair system reads as:

212 — Zp1 € 2uSgn(z1),

223 — 212 € 2uSgn(z2),

6.2)S -,
anl,n - Zn72,n71 S 2,USQ7’L(:E”,1)7
Znl — Zn—1n € 2uSgn(xy,).

Obviously, = 0 is simple, with eigenvector %1.

As for p € (0,1), either n = 2r or n = 2r 4+ 1, we have the following:

Hre4+1 = T_—,lch,

¢k+1:m(1’”' ,1,0,---,0,—1, -+, —1),

k=1,2,---r —1, there are 2(k — 1) zeros, ifn = 2r; 2k — 1zeros, ifn = 2r + 1.
rik =1, ¢y =(0---,0,1,—-1,---,1,-1)

k=1,2,---r, there aren — 2k zeros.

Since the graph is cyclic invariant, all eigenvectors after cyclic transformation are
eigenvectors.
The spectrum of C,, is {0, %, cee %, 1}.

6.3. K,. A graph G is called complete, if any two vertices are adjacent. A complete
graph with n vertices is denoted by K,,. In this case,

d1=d2:"- ,:dnz’n—l.
Since any two vertices are adjacent, The possible numbers for nodal domains are
rT =7~ = 1. Thus a normalized eigenvector is of the form

2 =06"(Siep+ — Tiep-)ei
For p # 0, let

card(DT) = card(D™) = k,
we obtain:

6F = iepd; = (n — 1k,

and card(D®) = n — 2k, either n =2r, orn=2r +1, k=1,2,--- ,r.
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The graph K, is invariant under permutation group S,, we write down the eigen-
vectors without specifying the coordinates of indices.

/Lk+2:%71
¢k+2:m(17'” 71707"' 707_17"'7_1)7
k=0,1,2,---r — 2, there are 2k zeros
n=2r
/LT+k:17
(b’r-i-k:(o"' 70717_17"' 717_1)
k=1,2,---r, there aren — 2k zeros.
and

Hk+2 = T:;ﬁtlal
bri2 = oo (b L0+, 0,1, =1,
k=0,1,2,---r — 2, there are 2k + 1zeros

n=2r—+1
Nr—i-k:lu

¢7‘+1€ = m(o 70717_17"' 717_1)
k=1,2,---r, there aren — 2k zeros.

The spectrum for K, is {0
if n is odd.

S ImeT) et =2 1} if nis even, and{O,Q(n L= =21}

Remark
Amghibech [I] provides some explicit examples for the eigenvalues of the p-Laplacian
for p > 1 similar to the above results.
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