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SPECTRUM OF THE 1-LAPLACIAN AND CHEEGER’S

CONSTANT ON GRAPHS

K.C. CHANG

Abstract. We develop a nonlinear spectral graph theory, in which the Laplace
operator is replaced by the 1− Laplacian ∆1. The eigenvalue problem is to
solve a nonlinear system involving a set valued function. In the study, we inves-
tigate the structure of the solutions, the minimax characterization of eigenval-
ues, the multiplicity theorem, etc. The eigenvalues as well as the eigenvectors
are computed for several elementary graphs. The graphic feature of eigenval-
ues are also studied. In particular, Cheeger’s constant, which has only some
upper and lower bounds in linear spectral theory, equals to the first non-zero
∆1 eigenvalue for connected graphs.

1. Introduction

The Laplace operator is a differential operator acting on functions defined on a
manifold M , ∆u = −div(∇u). It can be seen as the differential of the Dirichlet
functional

D(u) =

∫

M

|∇u(x)|2dx

on the Sobolev space H1(M). The eigenvalue problem is to find a pair (λ, u) ∈
R1 ×H1(M) satisfying

∆u = λu.

While the 1− Laplace operator ∆1 is defined to be the subdifferential of the total
variation functional ‖Du‖(M) for functions on Bounded Variation Space BV (M),
where

‖Du‖(M) := sup{

∫

M

u div(ϕ)dx |ϕ ∈ C1
0 (M,Rn), |ϕk(x)| ≤ 1, 1 ≤ k ≤ n, a.e.x ∈M}.

is globally defined.

Formally,

∆1u = −div(
∇u

|∇u|
),

and the eigenvalue problem is to find a pair (µ, u) ∈ R
1 ×BV (M) satisfying

∆1u ∈ µSgn(u).

As an example, Chang [8] studied the eigenvalue problem for ∆1 on the unit interval
[0, 1]. The spectrum for the Neumann boundary problem is

σ(∆1) = {2k | k = 0, 1, 2, · · · , }
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and the associate eigenfunctions are

±ψk(x) = ±sgn(cos(kπx)),

in contrast with the spectrum of the Neumann problem for ∆ on the unit interval
[0, 1]:

σ(∆) = {2k | k = 0, 1, 2, · · · , },

and the associate eigenfunctions:

±ψk(x) = ±cos(kπx).

The solutions for equations involving ∆ are smooth, while those for ∆1 may be
discontinuous. Since solutions in many interesting problems e.g., in the signal
processing and in the image processing etc., may be discontinuous, the 1− Laplace
operator ∆1 has been received much attention in recent years.

Interestingly, Kawohl, B., Fridman, V. [14] and Kawohl, B., Schuricht, F. [15]
studied the connection between Cheeger’s constant h(Ω) (see Cheeger[9]) and the
first eigenvalue of ∆1 under Dirirchet boundary condition on a bounded domain Ω
in Rn. They showed:

lim
p→1+0

λp(Ω) = h(Ω),

where λp(Ω) is the first eigenvalue of the p− Laplacian, and

∆pu = div(|∇u|p−2∇u), 1 < p <∞

on Ω with Dirichlet boundary condition.
More recently, Bühler and Hein [4][5] studied the p− Laplacian on graphs, and
found that the Cheeger’s constant h(G) on a connected graph is the limit of the
second eigenvalues for the p− Laplacian, as p→ 1. Szlam and Bresson [17] studied
the relationship between the total variation of a graph and the Cheeger Cuts.

∆1 is in some sense the limit of ∆p as p → 1, and is exactly the subdifferential
of the total variation. This inspired us to study the eigenvalue problem for ∆1 on
graphs, in particular, the connection between the first nonzero eigenvalue of ∆1

and Cheeger’s constant.

The Spectral theory for the Laplace operator on graphs is a fruitful field in graph
theory, one can find many valuable monographs on this topics e.g., Brouwer, Haemers
[3], Biyikpglu, Leydold and Stadler[2], Chung[10] etc. and a vast of references
therein.

Given an undirected graph G = (V,E) with vertex set V = {1, 2, · · · , n} and edge
set E, each edge e is a pair of vertices (x, y). To the edge e ∈ E, we assign an
orientation, let x be the head, and y be the tail, they are denoted by x = eh, and
y = et respectively.
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Let m be the number of edges in E. An incidence matrix B = (bei) is a m × n
matrix:

(1.1) bei =







1 if i = eh,
−1 if i = et.
0 i /∈ e.

where e ∈ E, i ∈ V.
For any vertex i, di, the degree of i, is defined to be the number of all edges passing
through i, i.e.,

di = card({e ∈ E | i ∈ e}) i = 1, 2, · · · , n.

Let D = diag{d1, d2, · · · , dn}, and d = Σn
i=1di..

B is the counterpart of the differential operator grad on graphs, and the corre-
sponding Laplace operator reads as:

L = BTB = (lij),

where

lij =







−1 if i, j ∈ E, and i 6= j
di if i = j.
0 otherwise.

It is easily seen that L is independent to the choice of orientation.
The Chung’s version [10] of the Laplacian is modified to be:

(1.2) L = D−1/2LD−1/2,

with the convention D−1
ii = 0 for di = 0.

The eigenpair for L on G is the solution (λ, φ) ∈ R1×R
n\{θ} of the system, where

θ is the 0 vector:

(1.3) Lφ = λDφ.

The Dirichlet function on a graph becomes

(1.4) J(x) =
1

2
Σn

i=1Σj∼i(xi − xj)
2,

where i ∼ j means that i is adjacent to j, and vice versa.
It is easy to see that an eigenvector φ of the system (1.3) is a critical point of the
Dirichlet function J under the constraint:

Σn
i=1di|xi|

2 = 1.

While the eigenvalue λ is the value of Dirichlet function at φ.

In a parallel way, we introduce the 1− Laplace operator on graphs, which precise
formulation will be given in section 2.

(1.5) ∆1x = BTSgn(Bx),

where B is the incidence matrix, and Sgn : Rn → (2R)n is a set valued mapping:

Sgn(y) = (Sgn(y1), Sgn(y2), · · · , Sgn(yn)) ∀ y = (y1, y2, · · · , yn),

in which

(1.6) Sgn(t) =







1 if t > 0,
−1 if t < 0,
[-1, 1] if t = 0,
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is a set valued function. The addition of two subsets A,B ⊂ Rn is the set {x+y |x ∈
A, y ∈ B}, and for a scalar α, the scalar multiplication αA is the set {αx |x ∈ A}.
Also, ∆1 is independent to the choice of orientation.

We use the notation:

(1.7) X = {x = (x1, x2, · · · , xn) ∈ R
n |Σn

i=1di|xi| = 1.}.

The eigenvalue problem (see Definition 2.4 below) for ∆1 is to find eigenpairs
(µ, φ) ∈ R1 ×X of the system, φ = (x1, x2, · · · , xn):

(1.8)







Σj∼izij ∈ µdiSgn(xi), i = 1, · · · , n,
zij ∈ Sgn(xi − xj),
zji = −zij.

In the following, µ is called an eigenvalue with eigenvector φ. The set of all eigen-
values is called the spectrum of ∆1.
Note that the coefficients zij = zij(x) depend upon the point x, they are called the
adjacent coefficients.

We expect that an eigenvector φ of the system (1.8) is a critical point of the following
energy function:

(1.9) I(x) = Σn
i=1Σj∼i|xi − xj |,

under the constraint: x ∈ X, and the eigenvalue µ is the value of the energy function
I at φ.

In the system (1.8), the set valued function Sgn(t) is involved. Not like in the linear
spectral graph theory, which has rich mathematical tools at hand, in attacking the
challengeable problem (1.8), new methods are appealed.

After testing few examples, we find that a huge set of solutions for the system (1.8)
exists. In most cases, the solution sets appear in cells. The following are natural
questions:
1. How to approach these eigenpairs?
2. How to count the multiplicity of these solutions?
3. Do these eigenpairs reflect the feature of graphs?
4. What are the advantageous aspects of this theory?

In this paper, a nodal domain decomposition technique in combining with methods
in nonlinear analysis is developed in dealing with the nonlinear system (1.8).

First, a nodal domain decomposition is introduced (Definition 3.2). By which
the structure of solutions is studied. We prove all eigenvectors with respect to
an eigenvalue, either being single points, or being cells with various dimensions
(Theorem 3.7 and Corollary 3.8). As a result, the center of gravity can be seen
as a representative of the cell, it is called a normalized solution. After multiplying
a constant, the coordinates of normalized solutions are 1, 0,−1. Moreover, the
number of nodal domains of an eigenvector is estimated by the dimension of the
cell.
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Second, as we mentioned earlier, in the linear theory, (1.3) is the variational equa-
tion for the Dirichlet function J under the constraint (1.5), while the system (1.8)
is the variational equation for the function I on X. The nonsmooth setting of
Liusternik-Schnirelmann theorem in the critical point theory is applied to the study
of the multiplicity of solutions of (1.8). Counting multiplicity (in the sense of genus),
the number of eigenvalues of a graph G with n vertices is at least n (see Theorem
4.13). This is the counterpart of the multiplicity result for the linear spectral theory.

Third, many results in the linear spectral graph theory are extended to the nonlinear
setting. e.g.,
1. The spectrum of ∆1 is in [0, 1] (Theorem 2.8). Sufficient conditions on graphs
with eigenvalues µ ∈ (0, 1) are given (Theorem 5.2).
2. A graph G is connected if and only if the eigenvalue 0 is of multiplicity 1.
Moreover the multiplicity of eigenvalue 0 equals to the number of components of G
(Corollary 5.5).
3. Estimates for the first non-zero eigenvalue are studied in Theorem 5.13.
4. In the linear theory, the first non-zero eigenvalue is estimated via Rayleigh
quotient, while in the nonlinear theory, a characterization of the mountain pass
point plays a similar role (Theorem 5.12).
5. The spectrum as well as the normalized eigenvectors of some special graphs, e.g.,
paths, cycles, complete graphs, have been computed in section 6.

Finally, it seems too early to say which are the advantageous aspects of the nonlinear
theory. However, Theorem 5.15 reveals the fact that Cheeger’s constant for a
connected graph G is exactly the second eigenvalue of ∆1(G), but in the linear
spectral theory, only some upper and lower bounds for Cheeger’s constant can be
given. The evidence sheds light on graphic feature of nonlinear eigenvalues.

The paper is organized in six sections. The first section is an introduction. In
the second section, the definition of ∆1 and its eigenvalue problem are introduced.
A few elementary examples are provided, by which, readers may get a feeling on
the nonlinear eigenvalue problem. Basic properties of the nonlinear spectrum are
studied. The nodal domain decomposition for vectors on graphs and the structure
of eigenvectors are obtained in the third section.. The fourth section is devoted to
the critical point theory in the nonsmooth setting. The Liusternik Schnirelmann
Theorem is extended. A crucial step in the application to our eigenvalue problem
is Theorem 4.11. Basic results on eigenvalues are studied in Section 5, the char-
acterization of the mountain pass point on graphs with applications are studied as
well. The eigenvalues and eigenvectors for several elementary graphs are presented
in Section 6.

2. The 1− Laplacian on graphs

2.1. The definition. A vector x = (x1, · · · , xn) ∈ R
n can be seen as a function

defined on V , x : V → R
1. The energy function associate to the incidence matrix

B is defined by

I(x) =
∑

e∈E

|(Bx)e| =
∑

e∈E

|
n
∑

i=1

beixi|.
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The subdifferential of the convex function t→ |t| is the set valued function

∂|t| = Sgn(t).

The following theorem holds:

Theorem 2.1. ∀x ∈ R
n,

(2.1) u ∈ ∂I(x) ⇔ ∃ z : E → R
1

such that

(1) u = BT z,
(2) ze(Bx)e = |(Bx)e| ∀ e ∈ E.

Proof. ” ⇒ ” ∀ e ∈ E, let
Ie(x) = |(Bx)e|.

It is a convex function with subdifferential

∂Ie(x) = {∂kIe(x) | 1 ≤ k ≤ n},

where

∂kIe(x) =







Sgn(Bx)e if k = eh,
−Sgn(Bx)e if k = et,
0 if k /∈ e.

and
∂iIe(x) = −∂jIe(x), if e = (i, j).

∀u ∈ ∂I(x), due to the additivity of the subdifferential of a convex function, there
exist ue ∈ ∂Ie(x) such that

u =
∑

e∈E

ue,

where ue = (ue1, u
e
2, · · · , u

e
k) and

uek =
∂|xi − xj |

∂xk
.

Therefore
uek = 0 if k /∈ e.

If e = (i, j), then

(2.2) uei = −uej,

and

uei =







1 if xi > xj ,
−1 if xi < xj ,
c if xi = xj ,

for some c, |c| ≤ 1.
Let us define

ze =







1 if xi > xj ,
−1 if xi < xj ,
c if xi = xj .

Then
uek = bekze,

and then
uk =

∑

e∈E

uek =
∑

e∈E

bekze,



SPECTRUM OF THE 1-LAPLACIAN AND CHEEGER’S CONSTANT ON GRAPHS 7

i.e.,
u = BT z.

This is (1). Also from the definition

ze(Bx)e = |(Bx)e| ∀ e ∈ E.

This is (2).
” ⇐ ” Conversely, from (2), we have

ze ∈ Sgn(Bx)e,

and then
ue = (BT z)e ∈ ∂Ie(x).

From (1), we obtain

u = BT z =
∑

e∈E

ue ∈ ∂I(x).

�

The following Euler identity holds:

Corollary 2.2. If u ∈ ∂I(x), then (u, x) = I(x).

Proof.

(u, x) = (BT z, x) = (z,Bx) =
∑

e∈E

(ze, (Bx)e) =
∑

e∈E

|(Bx)e| = I(x).

�

Definition 2.3. Let G = (V,E). The set valued map

∆1 : x→ {BT z | z : E → R
1is anRm vector, satisfying ze(Bx)e = |(Bx)e| ∀ e ∈ E}

is called the 1− Laplacian on the graph G.

It is rewritten as
∆1x = BTSgn(Bx).

where Sgn is defined in (1.7). Obviously, ∆1 : Rn → (2R)n is a nonlinear set valued
mapping, which is independent to the special choice of orientation.
Thus, in computations, we shall always fix an orientation, and write

−e = (j, i) if e = (i, j).

Following (2.2),
ze = −z−e, i.e., zij = −zji.

under this orientation we write the operator in the coordinate form:

(∆1x)i = (BTSgn(Bx))i

= {Σj∼izij(x) | zij(x) ∈ Sgn(xi − xj), zji(x) = −zij(x) ∀ i ∼ j},

i = 1, 2, · · · , n.

Definition 2.4. (µ, x) ∈ R
1 ×X is called an eigen-pair of the 1− Laplacian ∆ on

G = (V,E), if

(2.3) µDSgn(x)
⋂

∆1x 6= ∅,

where D = diag{d1, · · · , dn}.
The set of all solutions of (2.3) is denoted by S = S(G).
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In the coordinate form, (2.3) is the system: zij(x) ∈ Sgn(xi−xj) satisfying zji(x) =
−zij(x), ∀ i ∼ j, and

(2.4) Σj∼izij(x) ∈ µdiSgn(xi), i = 1, · · · , n,

This is exactly (1.8). Following Corollary 2.2, we have

Corollary 2.5. If (µ, x) is an eigenpair, then

I(x) = µ.

Proof. Let u = BT z, we have

I(x) = (u, x) = (BT z, x) = µΣn
i=1dixisgn(xi) = µΣn

i=1di|xi| = µ.

where

(2.5) sgn(t) =







1 if t > 0,
−1 if t < 0,
0 if t = 0,

�

2.2. Examples. We present here few examples to illustrate the solutions of the
above system. More examples will be given in section 6.

Example 1. G = (V,E), where V = {1, 2}, and E = {e = (1, 2)}. The system reads
as







z12 ∈ µSgn(x1),
−z12 ∈ µSgn(x2),
z12 ∈ Sgn(x1 − x2).

Obviously we have two pairs of solutions:
{

µ1 = 0, (x1, x2) = ±1/2(1, 1), z12 = 0,
µ2 = 1, (x1, x2) = ±1/2(1,−1), z12 = 1, .

In fact, all solutions corresponding to µ2 are (x1, x2) = ±(t, 1− t) ∀ t ∈ [0, 1].

Example 2. G = (V,E), where V = {1, 2, 3}, and E = {e1 = (1, 2), e2 = (2, 3), e3 =
(3, 1)}. The system reads as















z12 − z31 ∈ 2µSgn(x1),
z23 − z12 ∈ 2µSgn(x2),
z31 − z23 ∈ 2µSgn(x3),
zij ∈ Sgn(xi − xj), i, j = 1, 2, 3.

We find the following pairs of solutions:














µ1 = 0, △0 = ± 1
6 (1, 1, 1), z12 = z23 = z31 = 0,

µ2 = µ3 = 1, ±l1 = {± 1
2 (t,−1 + t, 0, ) t ∈ [0, 1]},

±l2 = {± 1
2 (t, 0,−1 + t) t ∈ [0, 1]},

±l3 = {± 1
2 (0, t,−1 + t) t ∈ [0, 1]}, z12 = 1, z23 = −1, z31 = −1.

The union of the last six segments consist of a cycle: l1 ◦ −l3 ◦ −l2 ◦ −l1 ◦ l3 ◦ l2.
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Example 3. G = (V,E), where V = {1, 2, 3, 4}, and E = {e1 = (1, 2), e2 =
(2, 3), e3 = (3, 4)}. The system reads as























z12 ∈ µSgn(x1),
z23 − z12 ∈ 2µSgn(x2),
z34 − z23 ∈ 2µSgn(x3),
−z34 ∈ µSgn(x4),
zij ∈ Sgn(xi − xj) i, j = 1, 2, 3, 4.

We find the following pairs of solutions:






































µ1 = 0, △0 = ± 1
6 (1, 1, 1, 1), z12 = z23 = z34 = 0,

µ2 = 1
3 , ±△1

1 = {±(t, t,−(13 − t),−(13 − t)) | t ∈ [0, 13 ]},
µ3 = µ4 = 1, △2

1 = {±(t, 0, 0, (1− t)) t ∈ [0, 1]}, z12 = 1
3 , z23 = 1, z34 =

1
3 ,

△1
2 = {±(t1,−

1
2 (1− t1 − t2), 0, t2) | t1 + t2 ≤ 1, t1, t2 ≥ 0}, z12 = 1, z23 = 1, z34 = 1,

△2
2 = {±(t1, 0,−

1
2 (1− t1 − t2), t2) | t1 + t2 ≤ 1, t1, t2 ≥ 0}, z12 = 1, z23 = −1, z34 = −1,

△3 = {±(t1,
−t2
2 , t32 ,−(1− t1 − t2 − t3)) | t1 + t2 + t3 ≤ 1, t1, t2, t3 ≥ 0}

z12 = 1, z23 = −1, z34 = 1.

It is interesting to note:

(1) All the solution sets are closed cells.

(2) For the eigenvalue: µ = 1, i.e., µ3 and µ4, the associate critical set consists
of a cycle. In fact, let l1 = ∆2

1, and l2 = {(−t, 0, 0, (1 − t)) | t ∈ [0, 1]}, then
l1 ◦ l2 ◦ (−l1) ◦ (−l2) is a cycle, while l2 ⊂ ∆1

2 ∩∆2
2.

Example 4. G = (V,E), where V = {1, 2, 3, 4}, and E = {e1 = (1, 2), e2 =
(2, 3), e3 = (3, 4), e4 = (4, 1)}. The system reads as























z12 − z41 ∈ 2µSgn(x1),
z23 − z12 ∈ 2µSgn(x2),
z34 − z23 ∈ 2µSgn(x3),
z41 − z34 ∈ 2µSgn(x4),
zij ∈ Sgn(xi − xj), zij = −zji i, j = 1, 2, 3, 4.

We have four pairs of solutions:














µ1 = 0, (x1, x2, x3, x4) = ±1/8(1, 1, 1, 1),
µ2 = 1

2 , (x1, x2, x3, x4) = ±1/8(1, 1,−1,−1),
µ3 = 1, (x1, x2, x3, x4) = ±1/4(1, 0,−1, 0),
µ4 = 1, (x1, x2, x3, x4) = ±1/8(1,−1, 1,−1).

Example 5. G = (V,E), where V = {1, 2, 3, 4, 5}, and E = {e1 = (1, 4), e2 =
(1, 5), e3 = (4, 5), e4 = (2, 5), e5 = (3, 5)}. The system reads as































z14 + z15 ∈ 2µSgn(x1),
z25 ∈ µSgn(x2),
z35 ∈ µSgn(x3),
z41 + z45 ∈ 2µSgn(x4),
z51 + z52 + z53 + z54 ∈ 4µSgn(x5),
zij ∈ Sgn(xi − xj), zij = −zji i, j = 1, 2, 3, 4, 5.



10 K.C. CHANG

We have five pairs of solutions:






















µ1 = 0, (x1, x2, x3, x4, x5) = ±1/10(1, 1, 1, 1, 1),
µ2 = 1

2 , (x1, x2, x3, x4, x5) = ±1/4(1, 0, 0, 1, 0),
µ3 = 1, (x1, x2, x3, x4, x5) = ±1/4(1,−1,−1, 0, 0),
µ4 = 1, (x1, x2, x3, x4, x5) = ±1/6(1, 1,−1,−1, 0),
µ5 = 1, (x1, x2, x3, x4, x5) = ±1/6(1,−1, 1,−1, 0).

2.3. Basic facts. We study the basic propositions of the eigenvalues for 1− Lapla-
cian ∆1 on graphs. Let G = (V,E) be a graph and let (µ, x) ∈ R

1 × R
n be an

eigenpair for ∆1(G)

Theorem 2.6. If µ 6= 0, then 0 ∈ Σn
i=1diSgn(xi).

Proof. Look at the system:

Σj∈izij ∈ µdiSgn(xi), ∀ i = 1, · · · , n.

Since

Σn
i=1Σj∼izij = 0,

we obtain

0 ∈ µ

n
∑

i=1

diSgn(xi).

�

Remark Hein and Buehler [12] showed similar results like Theorem 2.1, Corollary
2.2, Corollary 2.5 and Theorem 2.6 for unweighted L1 norm 1-Laplacian. In the
graph theoretic terminology Theorem 2.6 is equivalent to say that x has to have
weighted median zero (weighed L1-norm).

Theorem 2.7. If x ∈ X, with x1 = x2 = · · ·xn, then x = 1∑
n
i=1

di
(1, 1, · · · , 1) is

an eigenvector with eigenvalue µ = 0. Conversely, if G is connected, then µ = 0 is
an eigenvalue with eigenvector x = (x1, · · ·xn) where x1 = x2 = · · ·xn.

Proof. ” ⇒ ” First we prove: x = 1∑
n
i=1

di
(1, 1, · · · , 1), is an eigenvector, i.e., it

satisfies the system (2.3) with µ = 0, or 0 ∈ ∆1x. In fact I is a convex function on
R

n, it achieves its minimum at φ, it follows

0 ∈ ∂I(x).

Since

∂xi
I(x) =

∑

j∼i

Sgn(xi − xj),

This implies the existence of zij ∈ Sgn(xi − xj) satisfying (1.8) with µ = 0.
” ⇐ ” Since G is connected, ∀ k, j ∈ V, ∃ i0, i1, · · · , il such that k = i0 ∼ i1 ∼ · · · ∼
il = j. After Corollary 2.5, I(x) = 0, it implies

xk = xi1 = · · · = xil−1
= xj .

�
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Theorem 2.8. For any eigenvalue µ of ∆1, we have

0 ≤ µ ≤ 1.

Proof. Since
|xk − xj | ≤ |xk|+ |xj |,

we have

0 ≤ I(x) = Σj∼k|xk − xj | ≤ Σj∼k(|xk|+ |xj |) ≤ Σn
j=1dj |xj | = 1.

According to Corollary 2.5, µ = I(x), the lemma is proved. �

3. The structure of the solution set

For a given function, one considers the subsets of its domain, on which it is 0 or +
or −. The subsets are called nodal domains.
First, an eigenvector is regarded as a function, we rewrite it by nodal domains.
Next we introduce the notion of cells. A cell ∆ is a simplex {x = Σr

k=1λkφk |Σ
r
k=1λk =

1λk ≥ 0, k = 1, · · · , r.}, where {φ1, · · · , φr} are linearly independent vectors. The
dimension of the cell is r − 1. we shall prove that the set S(G) of all eigenvectors
consists of a set of cells.
Finally, we take the center of gravity of a cell in S(G) as a normalized eigenvector.

3.1. Nodal domains. Given a graph G = (V,E), for a vector x = (x1, · · · , xn) ∈
R

n, according to the signatures of xi, we classify the vertices into three groups. Let

D0 = {i ∈ V |xi = 0}, D± = {i ∈ V | ± xi > 0}.

We call D0 the null set of x, and the vertex set of a connected component of the
subgraph induced by D± is called a ± nodal domain. Accordingly, we divide V
into r+ + r− + 1 disjoint ± nodal domains with the null set:

V =

r+
⋃

α=1

D+
α ∪

r−
⋃

β=1

D−
β ∪D0.

where D±
γ is a ± nodal domain, and r± is the number of ± nodal domains.

The adjacent relations connecting nodal domains and the nodal set can be summa-
rized as the following equivalent statements:

(1) D+
α and D+

β have no connections ∀α 6= β. The same is true if D+ is

replaced by D−,

(2) If j ∼ i ∈ D+
α and j /∈ D+

α , then j ∈
⋃r−

β=1D
−
β ∪ D0. The same is true if

i ∈ D−
β and j /∈ D−

β , then j ∈
⋃r+

α=1D
+
α ∪D0,

(3) If i ∈ D+
α , then the ith summation Σj∼izij depends only on the connections

inside D+
α and those connections to

⋃r−

β=1D
−
β ∪D0.

Definition 3.1. The number r = r+ + r− is called the number of nodal domains
of x.

Let {e1, e2, · · · , en} be the Cartesian basis of Rn, ∀x ∈ X, let

E±
γ = E±

γ (x) = Σi∈D±
γ
ei, δ

±
γ = Σi∈D±

γ
di,

δ± = δ±(x) = Σδ±γ (x), δ0 = δ0(x) = d− δ+(x)− δ−(x).
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Definition 3.2. A vector (x1, x2, · · · , xn) ∈ X is expressed according to its nodal
domains as follow:

x = (Σr+

α=1Σi∈D+
α
− Σr−

β=1Σi∈D−

β
)ξiei,

where ξi = |xi|, ∀ i, and

(Σr+

α=1Σi∈D+
α
+Σr−

β=1Σi∈D−

β
)ξidi = 1.

It is called the nodal domain decomposition of x.

Let x ∈ S(G) be an eigenvector of ∆1. According to Theorem 2.6, if µ 6= 0, then

0 ∈ (Σr+

α=1Σi∈D+
α
+Σr−

β=1Σi∈D−

β
+Σi∈D0)midi,

where

mi = mi(x) =











1, i ∈
⋃r+

α=1D
+
α ,

−1, i ∈
⋃r−

β=1D
−
β ,

ci, i ∈ D0.

|ci| ≤ 1, it follows

|δ+ − δ−| ≤ δ0.

The eigenpair system now is rewritten as

(3.1) Σj∼izij(x) = µmi(x)di, ∀ i.

Let

Z+
αβ = Σ(i,j)∈D+

α×D−

β
zij , Z

−
βα = Σ(i,j)∈D−

β
×D+

α
zij ,

denote the numbers of edges between D+
α and D−

β , and let

Z↓
α = Σ(i,j)∈D+

α×D0zij , Z
↑
β = Σ(i,j)∈D−

β
×D0zij ,

denote the numbers of edges between D+
α (D−

β ) and D
0 respectively. Let

Z↑
α = Σ(i,j)∈D0×D+

α
zij , Z

↓
β = Σ(i,j)∈D0×D−

β
zij .

From zij = −zji, it follows

Z+
αβ = −Z−

βα,

and

Z↓
α = −Z↑

α, Z
↑
β = −Z↓

β.

For any D±
τ , let

(3.2) p±i = Σj∼i,j /∈D±
τ
zij , ∀ i ∈ D±

τ .

They denote the numbers of edges between i ∈ D±
τ and those vertices outside D±

τ .
The following equations relate vertices in different nodal domains:

Σi∈D+
α
p+i = ΣβZ

+
αβ + Z↓

α.(3.3)

Σi∈D−

β
p−i = ΣαZ

−
βα + Z↑

β .(3.4)

By adding the following equations over D±
τ

Σj∼izij = ±µdi, ∀i ∈ D±
τ ,
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we obtain:

(3.5) Σi∈D±
τ
p±i = ±µΣi∈D±

τ
di = ±µδ±τ ,

provided by

(3.6) Σi∈D±
τ
Σj∼i,j∈D±

τ
zij = 0.

Combining (3.3), (3.4) and (3.5), we have

Σα(ΣβZ
+
αβ + Z↓

α) = µδ+,(3.7)

Σβ(ΣαZ
−
βα + Z↑

β) = −µδ−.(3.8)

Lemma 3.3.

Σi∈D±
τ
Σj∈D±

τ , j∼i|xi − xj |+Σi∈D±
τ
p±i xi = µΣi∈D±

τ
dixi, ∀ τ.

Proof. Multiplying the following system

Σj∼izij = µdi, i = 1, · · · , n

by xi, and adding them over D±
τ , we obtain

Σi∈D±
τ
(Σj∼i,j∈D±

τ
+Σj∼i,j /∈D±

τ
)zijxi = µΣi∈D±

τ
dixi.

Following (3.2) and the relation:

Σi∈D±
τ
Σj∼i, j∈D±

τ
zijxi = Σi∈D±

τ
Σj∼i, j∈D±

τ
|xi − xj |,

the equation follows. �

Similarly we have

Lemma 3.4.

ΣαZ
↓
α = ΣβZ

↑
β .(3.9)

ΣαZ
↑
α = ΣβZ

↓
β .(3.10)

Proof. By the relationship between Z↑ and Z↓, these two equations are the same.
We only need to prove the first one. ∀ i ∈ D0 from zij = −zji, one sees

Σi∈D0Σj∼i, j∈D0zij = 0,

and

Σn
i=1Σj∼izij = 0.

Also, we have

Σn
i=1Σj∼izij = (Σi∈D0Σj∼i, j∈D0+ΣαΣj∼i, j∈D+

α
+ΣβΣj∼i, i,j∈D−

β
)zij = ΣαZ

↑
α−ΣβZ

↓
β.

Combining these three equations together, the equation is proved. �
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3.2. Homotopic equivalence. Given a subset A ⊂ X. Let x, y ∈ A, we say that
x is equivalent to y in A, denoted by x ≃ y, if there is a path l connecting x and y
in A, i.e.,∃ a continuous l : [0, 1] → A such that l(0) = x, l(1) = y.

Theorem 3.5. Let x = (x1, · · · , xn) ∈ S(G), and

ξ̄ = (δ±α )−1Σi∈D±
α
dixi, ξ = ξ̄E±

α +Σj /∈D±
α
xjej .

Then ξ ≃ x in S(G) ∩ I−1(c), where c = I(x).

Proof. We only prove the case i ∈ D+
α , the rest is the same. We define

xt = (1− t)x+ tξ,

and use the notation: ‖x‖ = Σn
j=1dj |xj |. We verify:

1o. xt ∈ X, i.e., ‖xt‖ = 1. In fact,

‖xt‖ = Σj /∈D+
α
dj |xj |+ δ+α ξ̄ = (Σj /∈D+

α
+Σj∈D+

α
)dj |xj | = 1.

2o. xt ∈ S(G). It is sufficient to verify the system:

(3.11) Σj∼iz
t
ij ∈ µdiSgn(x

t
i), ∀ i.

where ztij ∈ Sgn(xti − xtj). In fact, if at least one of i and j are not in D+
α , then we

have ztij = zij , because the order between xti and x
t
j is not changed. Therefore the

LHS does not change.
In case both i and j are in D+

α , when 0 ≤ t < 1, the order between xti and xtj
is again not changed. For t = 1 we can just keep the signs of the differences of
the original xi in order to satisfy the system (3.11). Thus x1 ∈ S(G), and then
xt ∈ S(G) ∀ t ∈ [0, 1].
3o. I(xt) = I(x) ∀ t ∈ [0, 1].We split the sum into three parts (the adjacent relation
∼ is symmetric):

I(xt) = Σn
i=1Σj∼i|x

t
i − xtj |

= (Σi/∈D+
α
Σj∼i, j /∈D+

α
+Σi∈D+

α
Σj∼i, j /∈D+

α
+Σi∈D+

α
Σj∼i, j∈D+

α
)|xti − xtj |

= I + II + III.

Since xtk = xk, ∀ k /∈ D+
α , I is invariant. Moreover,

III = Σi∈D+
α
Σj∼i, j∈D+

α
|xti − xtj | = (1− t)Σi∈D+

α
Σj∼i, j∈D+

α
|xi − xj |,

and since ∀ i ∈ D+
α , j /∈ D+

α , j ∼ i, implies xi > xj ,

II = Σi∈D+
α
Σj∼i, j /∈D+

α
(xti − xtj)

= Σi∈D+
α
Σj∼i, j /∈D+

α
[(xi − xj) + t(ξ̄ − xi)].

In this case, zij = 1. From lemma 3.3 and (3.5), we have

ξ̄Σi∈D+
α
p+i = µδ+α ξ̄

= µΣi∈D+
α
dixi

= Σi∈D+
α
Σj∼i, j∈D+

α
|xi − xj |+Σi∈D+

α
p+i xi,

we arrive at

II + III = (Σi∈D+
α
Σj∼i, j∈D+

α
+Σi∈D+

α
Σj∼i, j /∈D+

α
)|xi − xj |.

This prove I(xt) = I(x), t ∈ [0, 1]. �
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By the theorem, any eigenvector x is equivalent to an eigenvector of the form

(3.12)

{

y = Σαy
+
αE

+
α − Σβy

−
β E

−
β , y

+
α , y

−
β > 0,

Σαy
+
α δ

+
α +Σβy

−
β δ

−
β = 1.

i.e., on each nodal domain, the components of y are constants. In this case, the
function I can be expressed as

Theorem 3.6.

I(y) = Σα,βZ
+
αβ(y

+
α + y−β ) + ΣαZ

↓
αy

+
α +ΣβZ

↓
βy

−
β .

Proof. Since there is no connections between any two positive nodal domains: D+
α1

and D+
α2
, α1 6= α2, neither for any two negative nodal domains,

RHS = Σα,βΣi∈D+
α
Σj∼i,j∈D−

β
zij(y)(yi − yj)

+ ΣαΣi∈D+
α
Σj∼i,j∈D0zij(y)yi +ΣβΣi∈D0Σj∼i,j∈D−

β
zij(y)(−yj)

= Σn
i=1Σj∼izij(y)(yi − yj)

= Σn
i=1Σj∼i|yi − yj | = I(y).

�

3.3. Cell structure for eigenvectors. Keeping those equivalent statements of
the adjacent relations connecting nodal domains and the nodal set in mind and
combining them with Theorem 3.5, we obtain

Theorem 3.7. Let φ ∈ S(G) be of the form (3.12). Then vectors in the cell

∆r++r−−1 = {ψ = Σr+

α=1y
+
αE

+
α − Σr−

β=1y
−
β E

−
β , | y

+
α , y

−
β ≥ 0, Σr+

α=1y
+
α δ

+
α +Σr−

β=1y
−
β δ

−
β = 1}

are all eigenvectors with the same eigenvalue as φ.

Proof. Since φ is an eigenvector, there exist µ ∈ [0, 1], zij(φ) ∈ Sgn(xi−xj), mi(φ) ∈
Sgn(xi), such that

Σj∼izij(φ) = µdimi(φ).

However for any vector ψ = (y1, y2, · · · , yn) ∈ ∆r++r−−1, the signatures of ψ
in each nodal domain as well as in D0 are the same as those of φ. We choose
mi(ψ) = mi(φ). While in each nodal domain yi, i = 1, 2, · · · , n, are constants, all
the coordinates at adjacent vertices do not change their order. Therefore all terms
Sgn(xi − xj) ⊂ Sgn(yi − yj)∀j ∼ i, and then mi(ψ) = mi(φ) = Σj∼izij(φ) ∈
Σj∼iSgn(yi − yj).
Thus, ψ satisfies the same system, i.e., it is an eigenvector with the same eigenvalue
µ. �

Corollary 3.8. If x = (x1, · · · , xn) is an eigenvector with r nodal domains, then
x ∈ ∆r−1 ⊂ S(G), i.e., x lies on a r − 1 cell, which consists of eigenvectors.

3.4. Normalization. As a corollary of Theorem 3.5 and Corollary 3.8, we can
make the components of the eigenvector being constant on all nodal domains.
Namely
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Theorem 3.9. Let x = (x1, · · · , xn) be an eigenvector of the 1− Laplacian ∆1(G)
on a graph G = (V,H). Then x ≃ x̂, where

x̂ = δ−1[ΣαE
+
α − ΣβE

−
β ], δ = δ+ + δ−,

and E±
γ are the nodal domains with respect to x.

Now, we arrive at the following

Definition 3.10. An eigenvector x of the 1− Laplacian ∆1(G) on a graph G =
(V,E) is called normal, if it is of the form

(3.13) x = δ−1[ΣαE
+
α − ΣβE

−
β ],

where

E±
τ = Σi∈D±

τ
ei, δ

±
τ = Σi∈D±

τ
di.

δ+ = Σr+

τ=1δ
+
τ , δ

− = Σr−

τ=1δ
−
τ , δ = δ+ + δ−.

and D±
τ , τ = 1, 2, · · · , r±, are all nodal domains with respect to x.

Our theorem 3.9 is restated as

Theorem 3.11. Any eigenvector x of ∆1(G) is equivalent to a normal eigenvector
within the set of eigenvectors with the same eigenvalue µ.

Let us introduce a subset of X as follow:

π = {x = (x1, · · · , xn) ∈ X ||δ+(x)− δ−(x)| ≤ δ0(x)}.

The following statement is deduced from Theorem 3.9 and Theorem 2.6 directly:

Theorem 3.12. Any eigenvector x of ∆1(G) with eigenvalue µ 6= 0, lies on π.

4. Multiplicity and critical point theory on piecewise linear

manifolds

In this section we study the critical point theory of the function I (see (1.9)) on
the set X (see (1.7)). The purpose of the study is twofold:
(1) Provide a variational formulation of the eigenvalue problem for ∆1(G), which
has an explanation on the motivation of definition 2.4 on the eigenvalues of graphs.
(2) Define the multiplicity of eigenvalues. In the linear spectral theory, as a simple
application of linear algebra, a graph with n vertices possesses n linearly inde-
pendent eigenvectors, see for instance, Biyikpglu, Leydold and Stadler[2], Brouwer
and Haemers [3], and Chung[10]. However, in the previous section, we have shown
that the eigenvectors for the nonlinear operator ∆1(G) appear in the form of cells,
which are infinite subsets, except the 0− cells. How do we measure the multiplicity
of these eigenvectors? Do we have some sort of similar multiplicity result in this
case? A natural idea in mind is the Liusternik-Schnirelmann theory in nonlinear
eigenvalue problems on symmetric differential manifolds.

However, the function I and the manifold X are not smooth. The extension of
Liusternik-Schnirelmann theory to nonsmooth setting can be found in Chang[6]
and Corvellec, Degiovanni and Marzucchi[11] etc. However, all these extensions are
abstract, in the application to our problem it is required to concretize the abstract
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theory. Subsections 4.1-4.2 are devoted to study the tangent space structure. Sub-
section 4.3 studies the projections on the tangent space. Theorem 4.2 is crucial
in characterizing the critical set of the function I. We carefully write down the
pseudo-subgradient vector field of I on X . The purpose is twofold: (1) Bridging up
the relationship between the critical set of I on X and the set of all eigenvectors
S(G), and (2) it might be useful in computing the eigenvalues and eigenvectors
numerically.
The non-smooth function I on the piecewise linear manifoldX = {x = (x1, · · · , xn) ∈
R

n |
∑n

i=1 di|xi| = 1} are taken into consideration, where d1, · · · , dn are the degrees
of vertices. We shall follow the following steps:
1. Clarifying the notion of the critical point of the function I on X .
2. Extending the Liusterink- Schnirelmann theory to I on X . see Theorem 4.9
3. Building up the connection between the critical set of I on X and the set of all
eigenvectors S(G). It is Theorem 4.11.
4. Defining the multiplicity of an eigenvalue, see Definition 4.12.

4.1. Decomposition. First, we decompose the piecewise linear manifold into pieces
of open linear manifolds with different dimensions in addition to several isolated
points.
A k index subset is defined to be ι = {i1, · · · , ik}, 1 ≤ k ≤ n with 1 ≤ i1 < i2 · · · <
ik ≤ n. Let Ik be the set of all k indices. The number of Ik is |Ik| = Cn

k , where C
n
k

are the binomial coefficients.
Define a vector valued mapping m : Ik → 2k, i.e.,

m(ι) = (m(ι)i1 , · · · ,m(ι)ik),

where m(ι)i ∈ {+1,−1}, ∀ i ∈ ι. The set of all these mappings is denoted by Mk.
The total number of Mk, |Mk| = Cn

k 2
k.

We introduce the following notations: ∀ (ι,m) ∈ Ik ×Mk,

(4.1) Γι,m = {x = Σα∈ιxαmαeα | Σα∈ιxαdα = 1, xα > 0, ∀ α ∈ ι},

where d1, · · · , dn are the degrees of vertices, and mα = m(ι)iα .
It is a k − 1 cell, k = 1, 2, · · · , n. All these cells are open, except k = 1.
Let Sk−1 be the set of 2kCn

k disconnected k − 1 cells, i.e.,

Sk−1 =
⋃

(ι,m)∈Ik×Mk

Γι,m.

Obviously we have the following propositions:

(1) Γι,m

⋂

Γι′,m′ = ∅, if (ι,m) 6= (ι′,m′),
(2) Si

⋂

Sj = ∅, if i 6= j,

(3) X =
⋃n−1

i=0 Si.

In particular, ∀ a ∈ X, there must be unique k such that a ∈ Sk−1, and then
∃ (ι,m) ∈ Ik ×Mk, such that a ∈ Γι,m, i.e.,

a = Σα∈ιaαmαeα, Σ
k
α=1aαdiα = 1, aα > 0, ∀α ∈ ι.
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Given two cells Γι,m and Γι′,m′ , if

ι ⊂ ι′, and m′(ι′)|ι = m(ι),

then

Γι,m ⊂ Γι′,m′ .

In this case we write Γι′,m′ � Γι,m and say: the level of Γι′,m′ is higher than that of
Γι,m. In order to specify the relation, we sometimes write ι′ = ι⊕ σ, m′ = m⊕ w,
and if there is no confusion, we also briefly write Γι′,m′ as ∆σ,w.

There are totally 3n−k − 1 cells over Γι,m. Among them the numbers of (k+ l− 1)

cells is Cn−k
l 2l, l = 1, 2, · · · , n− k.

Let F k+l = {Γι′,m′ = ∆σ,w, | ι′ = ι ⊕ σ m′ = m ⊕ w}, l = 1, 2, · · · , n − k, and

F k = Γι,m. We have |F k+l| = Cn−k
l 2l, and let

(4.2) Fa =
n−k
⋃

l=0

F k+l.

Given a point a ∈ Γι,m ∈ Sk−1, its neighborhood Bδ(a) on X for small enough δ
lies on 3n−k pieces of various dimensional cells:

Bδ(a) =
⊔

∆σ,w∈Fa

Bσ,w(a),

where σ = (j1, · · · , jl), w = (wj1 , · · · , wjl), and let mα = m(ι)|iα , wβ = w(σ)|jβ ,

Bσ,w(a) ={x ∈ Bδ(a) |x = Σα∈ιξαmαeα +Σβ∈σηβwβeβ

ξα ∈ R1, ηβ > 0, Σαξαdα +Σβ∈σηβdβ = 1}.

Obviously, a lies in the interior of Γι,m, and is on the boundary of all those cells
∆σ,w ∈ Fa\Γι,m.

4.2. Tangent space. Since now X is a piecewise linear manifold, we shall extend
the notion of tangent space. h ∈ R

n is called a tangent vector of X at a ∈ X , if
a + th ∈ X for small t > 0. All tangent vectors form a tangent cone of X at a,
denoted by Ta(X).
For any α, γ ∈ ι with α 6= γ, we define

hα,γ =
mαeα

dα
−
mγeγ

dγ
,

and ∀β ∈ σ,

ψw
β =

wβeβ

dβ
−
mγeγ

dγ
.

We have

Theorem 4.1. If a ∈ Γι,m ⊂ Sk−1, then

Ta(X) =
⋃

∆σ,w∈Fa

Ta(Bσ,w(a)),

where

(4.3) Ta(Bσ,w(a)) = {Σα∈(ι\{γ})cαhα,γ +Σβ∈σbβψ
w
β | cα ∈ R1, bβ > 0}.
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Proof. First, for ε > 0 small, we have

a+ εhα,γ ∈ Γι,m.

Thus,
hα,γ ∈ Ta(Bσ,w(a)).

Obviously the rank of these vectors {hα,γ |α, γ ∈ ι} is k − 1. They form the first
group in the bracket of (4.3).

It is worth to note:
hα,γ = −hγ,α.

Next, ∀β ∈ σ and ∀w : σ → {+1,−1}, we define

(4.4) ξβ = (−a+
wβeβ

dβ
),

where wβ = w(σ)|β . it follows

a+ εξβ ∈ Bσ,w(a)

for ε > 0 small, that is
ξβ ∈ Ta(Bσ,w(a)).

Note

a = Σα∈(ι\{γ})aαdαhα,γ +
mγeγ

dγ
,

we have
ψw
β = ξβ + Σα∈(ι\{γ})aαdαhα,γ .

Therefore

Σα∈(ι\{γ})cαhα,γ+Σβ∈σbβψ
w
β = Σα∈(ι\{γ})c

′
αhα,γ+Σβ∈σb

′
βξβ , cα, c

′
α ∈ R1, bβ , b

′
β > 0.

�

Thus, ∆σ′,w′ � ∆σ,w implies Ta(Bσ,w(a)) ⊆ Ta(Bσ′,w′(a)).

4.3. Projection onto Ta(X). For a real n dimensional vector space En, we study
the duality between En and its dual (En)∗. Let {e1, · · · , en} be a basis of En, and
let {e∗1, · · · , e

∗
n} be its dual basis, i.e.,

< e∗i , ej >= δij , ∀, j = 1, 2, · · · , n.

Thus, ∀x∗ =
∑n

i=1 xie
∗
i , ∀ y =

∑n
i=1 yjej

< x∗, y >= Σn
i=1xiyi.

It is well known that in a finite dimensional space, all norms are equivalent. Thus
for the given basis and its dual basis one may assign the norms of y and x∗ on En

and (En)∗ by

‖y‖ = (Σn
i=1|yi|

2)1/2 and ‖x∗‖ = (Σn
i=1|xi|

2)1/2.

respectively.
Let

n0 = Σα∈ιmαdiαe
∗
iα , τσ,w = Σβ∈σwβdβe

∗
β .

The normal direction of the cell ∆(σ,w) reads as

(4.5) n = n0 + τσ,w.
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Let us denote span{Ta(Bσ,w(a))} by Xσ,w, and its dual by X∗
σ,w.

Given a co-vector p = Σn
i=1pie

∗
i , the projection of p onto X∗

σ,w is the covector:
pn = p− λn, where n is the normal co-vector, and

λ =
Σα∈ιmαdαpα +Σβ∈σwβdβpβ

Σα∈ιd2α +Σβ∈σd2β
.

Noticing that {hα, ψw
β , |α ∈ (ι\{i1}), β ∈ σ} is a basis of the linear subspace Xσ,w,

where hα = hα,1, we consider the following vector on Xσ,w induced by p:

(4.6) P̂(σ,w)p = Σα∈ιd
2
α < p, hα > hα +Σβ∈σd

2
β < p, ψw

β > ψw
β .

Note that

< n, hα >=< n,ψw
β >= 0, ∀α ∈ (ι\{i1}), β ∈ σ,

we have

P̂(σ,w)p = Σα∈ιd
2
α < pn, hα > hα +Σβ∈σd

2
β < pn, ψ

w
β > ψw

β .

Therefore there exists a constant C1 > 0 such that

(4.7) ‖P̂(σ,w)p‖ ≤ C1‖pn‖.

Since

‖pn‖
2 = ‖p‖2 − λ2‖n‖2,

we obtain

< pn, P̂(σ,w)p > = Σα∈ιd
2
α| < pn, hα > |2 +Σβ∈σd

2
β | < pn, ψ

w
β > |2

= ‖pn‖
2 + (λ −

mi1pi1
di1

)2‖n‖2.

Remark Let p ∈ ∂f(a) be a sub-differential of a function f . As a constraint sub-

differential, pn is its projection on X∗
σ,w, and then P̂(σ,w)p is a pseudo gradient

vector on Xσ,w, i.e., it satisfies

(1) ‖P̂(σ,w)p‖ ≤ C1‖pn‖,

(2) < pn, P̂(σ,w)p >≥ ‖pn‖
2.

This is the motivation of the above construction.
Moreover, we have

P̂(σ,w)p = 0 ∀ (σ,w) ⇔ p = 0.

However, Ta(Bδ(σ,w)) is a cone. In some directions, it has boundaries. ∀ p 6= 0.
In order to make the the projection of p onto Xσ,w points inside △σ,w, we should
modify the projection as follow:

(4.8) P(σ,w)p = Σα∈ιd
2
α < p, hα > hα +Σβ∈σd

2
β < p, ψw

β >+ ψw
β .

where

x+ =

{

x if x ≥ 0,
0 if x = 0.
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After the modification, the pseudo gradient vector P(σ,w)p is pushed down to the
lower level cell ∆σ0,w0

� ∆σ,w, with

< p, ψw
γ >≤ 0, ∀ γ ∈ σ\σ0, and < p, ψw

β >> 0, ∀β ∈ σ0.

Theorem 4.2. ∀ p ∈ R
n,

P(σ,w)p = 0 ∀ (σ,w) ⇔ p = λ(n0 +Σβ/∈ιcβdβe
∗
β),

where λ ≥ 0 and |cβ| ≤ 1, ∀ 1 ≤ β ≤ n− k.

Proof. ” ⇐ ”.
The case λ = 0 is trivial, we may assume λ > 0. It is sufficient to show

< p, hα >= 0, ∀α ∈ ι and < p, ψw
β >≤ 0 ∀β /∈ ι, ∀w.

In fact,

< p, hα >= λ < n0, hα >= λ < Σi∈ιmidie
∗
i ,
mαeα

dα
−
mi1ei1
di1

>= 0, ∀α ∈ ι.

and

< p, ψw
β >= λ < n0+Σj /∈ιwjdje

∗
j ,
wβeβ

dβ
−
mi1ei1
di1

>= λ(cβwβ−1) ≤ 0, ∀β /∈ ι∀w.

” ⇒ ” Now, we assume ∀σ (including σ = ∅), ∀w : σ → {±1}, P(σ,w)p = 0. These
imply:

(4.9) < p, hα >= 0, ∀α ∈ ι,

and

(4.10) < p, ψw
β >≤ 0 ∀β /∈ ι, ∀w.

From (4.9), it follows
mαpα
dα

−
mi1pi1
di1

= 0, ∀α ∈ ι.

Let λ =
mi1

pi1

di1

. We obtain

pα = λmαdα, ∀α ∈ (ι\{1}).

From (4.10), we obtain:

wβpβ
dβ

≤ λ, ∀β /∈ ι, ∀w : σ → {+1,−1}

and then λ ≥ 0.

If λ = 0, then p1 = 0 and then pα = 0, α ≥ 2 and pβ = 0 ∀β /∈ ι. i.e., p = 0. The
proof is done.
Otherwise, λ > 0, let

cβ =
pβ
λdβ

.
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Then |cβ | ≤ 1, and

p = Σα∈ιpαeα +
∑

β/∈ι

pβeβ

= λ(Σα∈ιmαdαeα +Σjβ /∈ιcβdβeβ)

= λ(n0 +Σβ/∈ιcβdβeβ).

The proof is complete. �

When we want to specify the component P(σ,w)p being at the point a, we denote it
by P (a)(σ,w)p, and define

Definition 4.3. ∀a ∈ Γι,m ⊂ X, ∀ p ∈ Rn, the collection of 3n−k vectors

P (a)p = {P (a)(σ,w)p | ∀ (σ,w) including σ = ∅}

is called the projection of p onto Ta(X), where the component P(σ,w)p is the vector
in Ta(B(σ,w)(a)).

It is important to note

(1) Generally, P (a)(−p) 6= −P (a)p. In particular, to those p satisfying P (a)p =
0, one may have P (a)(−p) 6= 0!

(2) P (a)(σ,w)p ∈ Ta(B(σ,w)(a)).

(3) The mapping p→ P (a)p is continuous.

4.4. Critical point theory on X. Let f : Rn → R
1 be a locally Lipschitzian

function, the sub-differential ∂f(x) is defined in the Clarke sense. The set valued
mapping:

x 7→ ∂f(x)

is convex closed valued and upper semi continuous (u.s.c), i.e., ∀x0 ∈ R
n,

xk → x0, uk ∈ ∂f(xk) anduk → u0 imply u0 ∈ ∂f(x0).

To the constraint problem, we introduce

Definition 4.4. Let f̃ = f |X . a ∈ X is called a critical point of f , if ∃ p ∈ ∂f(a)
such that P (a)p = 0. In other words,

0 ∈ P (a)∂f(a).

Let K be the set of all critical points of f̃ , it is called the critical set. Usually, we
write Kc = K ∩ f−1(c), ∀ c ∈ R1.

Lemma 4.5. The set valued mapping x 7→ P (x)∂f(x) is u.s.c. i.e, each of its
components P (x)(σ,w)∂f(x) is u.s.c. ∀ (σ,w). In other words, ∀ (σ,w), if ak → a in
∆σ,w, pk ∈ P (ak)(σ,w)∂f(ak) and pk → p, we have p ∈ P (a)(σ,w)∂f(a).
Consequently, the critical set K is closed.
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Proof. In fact, from the u.s.c. of x 7→ ∂f(x) and the continuity of x 7→ P (x)p:

< pk, hα >→< p, hα >, and < pk, ψ
w
β >→< p, ψw

β >,

the u.s.c. of x 7→ P (x)∂f(x) follows. The closeness of K follows directly from the
u.s.c. of P (x)∂f(x). �

We define

Definition 4.6. ∀ a ∈ Γι,m, ∀ (σ,w), set

λ(a) = Minu∈∂f(x){max(σ,w){‖p‖ | p ∈ P(σ,w)u}.

By definition, a ∈ X is a critical point of f̃ if and only if λ(a) = 0.

Lemma 4.7. For any a /∈ K, ∀ ǫ > 0, ∃ v0 ∈ Ta(X) and δ > 0, satisfying ‖v0‖ = 1
and

f(y − tv0) ≤ f(y)− t(r − ǫ) ∀ y ∈ Bδ(a), ∀ t ∈ [0, δ).

where r = λ(a)

Proof. Since a /∈ K, λ(a) > 0. There must be (σ,w) such that r = λ(a) =
Minp∈∂f(a) ‖P (a)(σ,w)p‖. Let v = Σα∈ιd

2
αξαhα +Σβ∈σd

2
βηβψ

w
β . Then

lim
t↓0,y→a

t−1[f(y − tv)− f(y)] = fo(a,−v)

= Maxp∈∂f(a) < p,−v >= −Minp∈∂f(a) Σα∈ιd
2
αξα < p, hα > +Σβ∈σd

2
βηβ < p, ψw

β >

where fo is the Clarke’s directional derivative.
Now, ∂f(a) is a closed convex set, there exists p0 ∈ ∂f(a) achieves the minimum
r2 of the quadratic function:

‖P (a)(σ,w)p‖
2 = Σα∈ιd

2
α < p, hα >

2 +Σβ∈σd
2
β < p, ψw

β >2 .

This implies

Minp∈∂f(a) Σα∈ιd
2
α < p, hα >< p0, hα > +Σβ∈σd

2
β < p, ψw

β >< p0, ψ
w
β >≥ ‖P (a)(σ,w)p0‖

2 = r2.

Let v0 = 1
rΣα∈ιd

2
α < p0, hα > hα +Σβ∈σd

2
β < p0, ψ

w
β > ψw

β . Then ‖v0‖ = 1, and

lim
t↓0,y→a

t−1[f(y − tv0)− f(y)]

= −
1

r
Minp∈∂f(a) Σα∈ιd

2
α < p, hα >< p0, hα > +Σβ∈σd

2
β < p, ψw

β >< p0, ψ
w
β >

≤ −r.

It follows
f(y − tv0) ≤ f(y)− t(r − ǫ) ∀ y ∈ Bδ(a)∀ t ∈ [0, δ).

�

Remark In the terminology of weak slope due to Corvellec, Degionanni, Marzocchi[11],
we introduce the mapping H : Bδ(a)× [0, δ) → X as follow

H(y, t) = y − tv,

where v = v0 with r − ǫ in replacing r, then

‖H(y, t)− y‖ = t.
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The weak slope is defined by

|df̃ |(a) = sup{r ∈ [0,∞) | f(H(y, t)) ≤ f(y)− tr}.

In this sense,

|df̃ |(a) = 0 ⇔ λ(a) = 0.

Based on the function λ, by standard procedure we can construct a pseudo-gradient
vector field v and the associate pseudo-gradient flow η : (X\K)×R1 → X with re-

spect to f̃ on X , see Chang[6], [7], Rabinowitz[16]. Then the following deformation
theorem holds.

Theorem 4.8. (Deformation) Let c ∈ R
1, Kc = K ∩ f̃−1(c), and N ⊂ X is a

neighborhood of Kc, then ∀ ǫ0 > 0, ∃ ǫ ∈ (0, ǫ0), and a deformation η : [0, 1]×X →
X satisfying

(1) η(0, x) = x ∀x ∈ X,

(2) η(t, x) = x ∀x /∈ f̃−1[c− ǫ0, c+ ǫ0],

(3) ∀ t ∈ [0, 1], η(t, ·) : X → X is a homeomorphism,

(4) η(1, f̃c+ǫ\N) ⊂ f̃c−ǫ, where f̃b is the level set of f̃ below or equal to b,

(5) If Kc = ∅, then η(f̃c+ǫ) ⊂ f̃c−ǫ.

Liusternik- Schnirelmann theory is applied to study the multiplicity of the criti-
cal points for even functions on the the symmetric piecewise linear manifold X .
We use the genus version of the theorem due to Krasnoselski, see Chang[7], and
Rabinowitz[16]. Let A ⊂ R

n be a symmetric set, i.e., −A = A, satisfying θ /∈ A.
An integer valued function, which is called the genus of A, γ : A→ Z+ ∪ {+∞} is
defined:

γ(A) =

{

0 if A = ∅,
min{k ∈ Z+ | ∃ odd continuoush : A→ Sk−1}

Genus is a topological invariant.

Theorem 4.9. Suppose that f is a locally Lipschitzian even function on R
n, then

ck = inf
γ(A)≥k

Maxx∈Af̃(x)

are critical values of f̃ , k = 1, 2, · · ·n. They satisfy

c1 ≤ c2 ≤ · · · ≤ cn.

Moreover, if

c = ck+1 = · · · = ck+l, 0 ≤ k ≤ k + l ≤ n,

then γ(Kc) ≥ l.

A critical value c is said of multiplicity l, if γ(Kc) = l.
Thus, we have



SPECTRUM OF THE 1-LAPLACIAN AND CHEEGER’S CONSTANT ON GRAPHS 25

Theorem 4.10. There are at least n critical points φk, k = 1, 2, · · · , n of Ĩ such
that φk ∈ Kck . Moreover, counting multiplicity, Ĩ has at least n critical values.

4.5. Connection between K and S(G).

Theorem 4.11. The critical set K of I is the same with the set of all eigenvectors
S(G) on G, i.e., K = S(G).

Proof. Let a ∈ Γι,m. a = (a1, · · · , an) ∈ K if and only if ∃ p ∈ ∂I(a) such that
P (a)p = 0. However, p ∈ ∂I(a) means that ∃ zij ∈ Sgn(xi − xj), zji = −zij such
that pi = Σj∼ixij , ∀ i.
According to Theorem 4.2, P (a)p = 0 means that ∃ ci with |ci| ≤ 1, such that

p = µ(n0 +Σjβ /∈ιcβdjβejβ ),

with

µ =
(p, n0)

‖n0‖2
.

i.e.,

Σj∼izij(a) =

{

µdisgn(ai), if i ∈ ι,
µdici, if i /∈ ι.

By Definition 2.3, for a ∈ S(G) if and only if

Σj∼izij(a) ∈ µdiSgn(ai).

Therefore, K = S(G). �

Definition 4.12. An eigenvalue µ of (1.8) is of multiplicity l, if γ(S(G)
⋂

Iµ) = l.

Following Corollary 2.5, Theorem 4.10 and Theorem 4.11, we immediately obtain

Theorem 4.13. ∀µ ∈ [0, 1], Kµ = S(G) ∩ Iµ, i.e., the critical set with critical
value µ is the set of eigenvectors with eigenvalue µ. Consequently, there are at least
n eigenvectors φk of the eigenvector system such that

I(φk) = ck,

where

(4.11) ck = inf
γ(A)≥k

Maxx∈AĨ(x), k = 1, 2, · · · , n.

Moreover, if µ = c and (4.11) holds, then the multiplicity of µ is greater than or
equal to l, and then counting multiplicity, (1.8) has at least n eigenvalues.

The above theorem can be seen as the counterpart of the multiplicity theorem in
linear spectral theory.

In this sense, the set of eigenvectors associate to an eigenvalue of multiplicity 1 may
not be a single vector, but a symmetric set of eigenvectors with genus 1.
In contrast to the linear spectral theory of graphs, the system (2.4) is nonlinear,
neither algebraic, there is no way to define the algebraic multiplicity for eigenvalues.
The above defined multiplicity is geometric or topological.

Remark
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Following Theorem 3.9, Theorem 4.11, and the fact that there are totally 3n closed
cells for a graph G with n vertices, we conclude: the spectrum for ∆1 on graphs is
discrete, because the number of distinct eigenvalues is no more than 3n

2 .
Now, we can arrange eigenvalues of ∆1(G) in increasing order:

0 = µ1 ≤ µ2 ≤ · · · ≤ 1.

Question We have also arranged some critical values of Ĩ in increasing order as in
Theorem 4.13.
According to Theorem 4.11, the set of critical values of Ĩ is the same as that of
eigenvalues of ∆1(G), then we ask: Is there any eigenvalue µ, which is not in the
sequence: {c1, c2, · · · , cn}?

5. Further results on eigenvalues and eigenvectors

5.1. Elementary facts. Let x be an eigenvector of ∆1(G) with eigenvalue µ.

Theorem 5.1. For µ = 1 if and only if any nodal domain of x consists of a single
vertex.

Proof. ” ⇒ ” Assume µ = 1
1. Suppose xi 6= 0 for some i. Look at the equation:

Σj∼izij = disgn(xi).

Since |zij | ≤ 1, and di is the number of j, which is adjacent to i, i.e., j ∼ i, we have

zij = sgn(xi), ∀ j ∼ i.

2. Suppose there is a nodal domain D+
α (similarly D−

β ),which consists of more than
one vertices. Say, there are i and j with j ∼ i. According to the previous conclusion,
we have

zij = sgn(xi) = 1,

and

zji = sgn(xj) = 1.

But,

zij = −zji.

This is a contradiction.

” ⇐ ” Suppose D+
α consists of a single vertex. According to (3.6),

p+α = µδ+α .

By the assumption, there is no inter-domain connection in D+
α , it must be

p+α = δ+α .

Therefore µ = 1. �

Theorem 5.2. For µ < 1 if and only if any nodal domain of x contains at least a
pair of adjacent vertices.
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Proof. ” ⇐ ” It follows from the above lemma.
” ⇒ ” For any nodal domain D±

τ , we obtain from (3.6),

p±τ = µδ±τ < δ±τ .

This means that besides those vertices adjacent outside the nodal domain, there is
at least a pair of adjacent vertices inside. �

Corollary 5.3. If G is a connected graph, and there exists a vertex i0 such that

di0 = Σi6=i0di,

then I has only two eigenvalues: 0 and 1, i.e., I(S(G)) = {0, 1}.

Proof. May assume i0 = 1. We have d2 = · · · = dn = 1 and d1 = n − 1. Suppose
the conclusion is not true, i.e., there exists an eigenvalue µ ∈ (0, 1). According
to Theorem 5.2, any nodal domains contain more than one vertex. However, G is
connected, it must contain i0. Thus we have only one nodal domain, and then all
terms on the RHS of the system (1.8) have no distinct sign. It contradicts with
Theorem 2.6. �

In fact, we find the solutions as follow:

µ1 = 0, φ1 =
1

2(n− 1)
Σn

i=1ei,

µ2 = · · · = µn = 1,

φ2 =
1

2(n− 1)
[e1 − Σn

i=2ei],

φk =
1

2
[e2 − ek], k = 3, · · · , n.

Theorem 5.4. For µ = 0 being a simple eigenvalue, i.e., x0 = 1
Σn

i=1
di
1 is the unique

eigenvector with respect to 0 if and only if G is connected, where 1 = (1, 1, · · · , 1).

Proof. ” ⇐ ” Suppose G is connected, let ξ be an eigenvector with eigenvalue 0.
From Corollary 2.5, I(ξ) = Σj∼i|ξi − ξj | = 0, ∀ i, it implies

ξi = ξj , ∀ j ∼ i.

However, G is connected, all ξi must equal. From ξ ∈ X, we have ξ = x0.
” ⇒ ” Suppose that G is not connected, say there are at least two connected
components G1 and G2. We define

ξk =
1

Dk
Σi∈Gk

ei,

where Dk = Σi∈Gk
di k = 1, 2. Then we have

I(ξ1) = I(ξ2) = 0.

ξ1 and ξ2 are distinct eigenvectors with the same eigenvalue 0. �
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Corollary 5.5. If G consists of r connected components G1, · · · , Gr, then the
eigenvalue µ = 0 has multiplicity r. i.e., all the eigenvectors with respect to 0
consist of a critical set A with γ(A) = r.

Proof. We have the following r pairs with eigenvalue 0,

ξk = ±
1

Dk
Σi∈Gk

ei,

where Dk = Σi∈Gk
di k = 1, 2, · · · , r. Let T = span{ξ1, , · · · , ξr} and B = T ∩ X .

It is homeomorphic to Sr−1. By definition, B ⊂ A, therefore

γ(A) ≥ γ(B) = r.

It remains to show: γ(A) ≤ r. If not, we assume γ(A) > r.
Let Gk = (Vk, Ek), Yk = R|Vk|, where |Vk| is the cardinal number of Vk, let Zk =
Yk ∩ ξ⊥k be the orthogonal complement of ξk in Yk, and let Pk : Rk → Yk be the
orthogonal projection, k = 1, 2, · · · , r. Since G1, · · ·Gr are components of G, we
have

I(x) =

r
∑

k=1

I(Pkx).

Note that

T⊥ =

r
⊕

k=1

Zk.

then
dim(T⊥) = n− r.

Since we assume γ(A) > r, then A∩T⊥ 6= ∅, according to the intersection property,
see [16], [7]. That is ∃x0 ∈ T⊥ ∩ A, from

r
∑

k=1

I(Pkx0) = I(x0) = 0,

it follows,
Ik(x0) = 0, k = 1, 2, · · · , r.

According to Theorem 5.4, Pkx0 = ξk, k = 1, 2, · · · , r, we obtain

x0 = Σr
k=1ξk ∈ T.

This is a contradiction.. �

An estimate of the nontrivial eigenvalues is obtained.

Theorem 5.6. If the eigenvalue 0 < µ < 1, then

2

Σn
i=1di

≤ µ ≤
n− 2

n− 1
.

Proof. We may assume that G is connected. Let x be the eigenvector with respect
to µ, and let D+ be a nodal domain of x. According to Theorem 5.2, it contains
at least 2 adjacent vertices. Thus, following the notations in subsection 3.1,

δ+ ≥ p+ + 1.

Now,

µ =
p+

δ+
≤ 1−

1

δ+
,
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We claim

δ+ ≤ n− 1.

For otherwise, D+ = V , and then µ = 0. This is a contradiction. We obtain

µ ≤ 1−
1

n− 1
.

As to the left inequality, we notice that the normal eigenvector x ∈ π ∩X, is of the
form (3.13), there must be vertices k and l such that xkxl < 0, with either k ∼ l or
k ∼ D0, l ∼ D0, where D0 is the null set of x. Let δ =

∑

i/∈D0 di, then by Corollary
2.5,

µ = I(x) = Σj∼i|xi − xj | ≥ 2δ−1.

Since δ ≤ Σn
i=1di, the conclusion follows. �

5.2. Alternative characterization of the mountain pass point and the sec-

ond eigenvalue. Given an open k − 1 cell ∆ = Γι,m with (ι,m) ∈ Ik ×Mk, the
index subsets D±, D0 are all determined:

D± = {i ∈ ι | ±m(ι)i > 0}, D0 = {i /∈ ι}.

And then for a graph G, the nodal domains D±
γ (x) are invariant∀x ∈ ∆.

Now we improve Corollary 2.5 to the following:

Lemma 5.7. For a pair (µ, x) ∈ R1×X , if there exist zij = zij(x) ∈ Sgn(xi−xj),
satisfying zij = −zji, and

Σj∼izij(x) = µdisgn(xi), ∀ i ∈ D+ ∪D−,

then µ = I(x).

Proof. Since

Σj∼izij(x)xi = µdi|xi|, ∀ i ∈ D+ ∪D−,

and

Σj∼izij(x)xi = 0. ∀ i /∈ D+ ∪D−,

Again by summation, we obtain

Σj∼i|xi − xj | = µΣn
i=1di|xi| = µ.

�

Lemma 5.8. Let ∆ = Γι,m be a k − 1 dimensional open cell in X . Assume that
ξ ∈ ∆ attains the minimum of I on ∆, and

c∆ = r(E+ − E−), δ = δ+ + δ−, r = δ−1

where E± = Σi∈D±ei, and δ
± = Σi∈D±di. Then

I(ξ) = I(c∆).
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Proof. 1o Since ξ = (ξ1. · · · , ξn) attains the minimum of Ĩ on ∆ and ∆ is open, we
have

∂I(ξ) = µdisgn(ξi), ∀ i ∈ D+(ξ) ∪D−(ξ),

for some µ ∈ R1, i.e., ∃ zij(ξ) ∈ Sgn(ξi − ξj), satisfying zji(ξ) = −zij(ξ) and
∑

j∼i

zij(ξ) = µdisgn(ξi), ∀ i ∈ D+(ξ) ∪D−(ξ).

From the previous lemma, we have µ = I(ξ).
2o Let ξt = (1− t)ξ + tc∆, t ∈ [0, 1], then ξt = (ξt1, · · · , ξ

t
n) satisfies

ξti =







(1− t)ξi + tr, if i ∈ D+,
(1− t)ξi − tr, if i ∈ D−,
(1− t)ξi if i ∈ D0.

It is easily seen

Sgn(ξti − ξtj) = Sgn(ξi − ξj) ∀ t ∈ [0, 1), ∀ i ∈ D+ ∪D−, ∀ j.

and

sgn(ξti) = sgn(ξi), ∀ t ∈ [0, 1], ∀ i ∈ D+ ∪D−.

∀ i ∈ D+
α , from

Sgn(ξ1i − ξ1j ) = 1, ∀ j ∈ D− ∪D0,

Sgn(ξ1i − ξ1j ) = [−1, 1] ∀ j ∈ D+
α ,

and the relation: zij = −zji, it follows

Sgn(ξti − ξtj) ⊂ Sgn(ξ1i − ξ1j ), ∀ t ∈ [0, 1).

We take zij(ξ
1) = zij(ξ) ∈ Sgn(ξ1i − ξ1j ), it follows

µdisgn(ξ
1
i ) = µdisgn(ξi) = Σj∼izij(ξ) ∈ Σj∼iSgn(ξ

1
i − ξ1j ), ∀ i ∈ D+ ∪D−.

According to lemma 5.7,

I(ξ) = µ = I(c∆).

�

Lemma 5.9. The subset π ⊂ X is closed.

Proof. Note that the numbers δ±(x) as well as δ0(x) are constants on each open cell
∆ ⊂ π. However, if a sequence {x(m)} ⊂ ∆ tends to a point x(0) on the boundary
of ∆, then the number gained in δ0(x(0)) are those lost from δ+(x(0)) and δ−(x(0)).
Therefore

|δ+(xm)− δ−(xm)| ≤ δ0(xm),

implies

|δ+(x0)− δ−(x0)| ≤ δ0(x0).

This means that x(m) ⊂ π implies x(0) ∈ π. �

Lemma 5.10. Let m =Minx∈πI(x) Then there exists an element of the form

φ = δ−1(E+ − E−), δ = δ+ + δ−,

such that m = I(φ).
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Proof. Since π is closed, it is compact, there exists x0 ∈ π such that m = I(x0). If
m < 1. then x0 ∈ X\V . Following the notations used in section 4, X = ∪n

k=1Sk is
a disjoint union, and also

Sk = ∪(ι,m)∈Ik×Mk
Γι,m.

All Γι,m are open sets except k = 1, there must be a unique (ι,m) ∈ Ik×Mk, k > 1,
such that x0 ∈ Γι,m. Now Γι,m is open, after lemma 5.8, we have φ of the above
form such that I(φ) = I(x0) = m.
Otherwise, m = 1, either x0 ∈ Γι,m with (ι,m) ∈ Ik ×Mk, k > 1, or x0 = ei for
some i ∈ V . In the previous case, the conclusion follows from the above argument,
and in the latter case, one takes E+ = ei, E

− = ∅, i.e., φ = 1
di
ei. �

Lemma 5.11. Let D± and D0 be disjoint index subsets of {1, 2, · · ·n} with D+ ∪
D−∪D0 = {1, 2, · · ·n}. Let φ = (δ++δ−)−1(E+−E−) and φ0 = 1

d(E
++E−+E0),

where d = Σn
i=1di = δ++ δ−+ δ0. Then there exists a path on X connecting φ and

φ0 in the level set Ic, where c = I(φ).

Proof. Define

φt = (
t

d− δ0
+

1− t

d
)E+ + (

−t

d− δ0
+

1− t

d
)E− +

1− t

d
E0, t ∈ [0, 1],

and

φt = g(t)−1φt,

where g(t) = |φt| and |x| = Σn
i=1di|xi|. Thus, φt ∈ X . According to Theorem 3.6,

we have

I(φt) = Σα,βZαβ
2t

d− δ0
+ (ΣαZ

↓
α +ΣβZ

↑
β)

t

d− δ0

=
t

d− δ0
[Σα,β2Zαβ + (ΣαZ

↓
α +ΣβZ

↑
β)]

= tI(φ)

Therefore

I(φt) =
t

g(t)
I(φ),

and

g(t) =

{

δ++δ0−δ−

d + 2δ−

d t, if t ≥ t0 := d−δ0

2d−δ0 ,

1− 2δ−

δ++δ− t, if t ≤ t0.

Noticing

(
t

g(t)
)′ =

1

g(t)2

{

δ++δ0−δ−

d , if t ≥ t0,
1, if t ≤ t0.

Since |δ+ − δ−| ≤ δ0, I(φt) is increasing, we have I(φt) ≤ I(φ) = c. The path
{φt | t ∈ [0, 1]} is in the level set Ic. �

Recall Theorem 3.12,and lemma 5.9, all eigenvectors with eigenvalues µ 6= 0 lie on
the compact subset:

π = {x ∈ X | |δ+(x) − δ−(x)| ≤ δ0(x)}.
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Let us define

m =Min{I(x) |x ∈ π}.

and then turn to prove

Theorem 5.12. If G is connected, then

c2 = µ2 = m.

Proof. We only need to prove: 0 < m = c2. Once it is shown, then m is a pos-
itive eigenvalue according to Theorem 4.11. Since all eigenvectors with positive
eigenvalues lie in π, and m is the minimum on π, it follows m ≤ µ2 ≤ c2.
We first prove: c2 ≥ m. In fact, there exists a ∈ K ⊂ π, such that c2 = I(a).
Therefore

c2 ≥Min{I(x) |x ∈ π} = m.

Next, we verify c2 ≤ m and m > 0
1o. Since I is continuous, and π is compact, the minimum of I on π is achieved.
Let it be φ ∈ π, then m = I(φ).

2o. We conclude: m > 0. For otherwise, I(φ) = 0. However, we assumed that G is
connected, this implies φ = φ0 = 1

d1. But, φ0 /∈ π. This is a contradiction.

3o. According to lemma 5.11, we obtain a path γ1 connecting φ and φ0 in Im ∩X .

Similarly, we have paths γ2 connecting φ0 and −φ, γ3 connecting −φ and −φ0, γ4
connecting −φ0 and φ in Im ∩X . Let

A0 = γ1 ◦ γ2 ◦ γ3 ◦ γ4.

We have A0 ⊂ Im ∩X , and A0 ≃ S1. Thus γ(A0) ≥ 2, and then

c2 = inf
γ(A)≥2

sup
x∈A

Ĩ(x) ≤ m,

i.e., c2 ≤ m. �

From this theorem, one may compute the second eigenvalue by minimizing the
function I over the subset π of X .
As an application of Theorem 5.8, the following sufficient conditions for µ2 < 1 is
presented.

Theorem 5.13. Let G be a connected graph. If there are two groups of vertices
{α1, · · · , αk}, {β1, · · · , βl} satisfying:

(1) Σk
i=1dαi

= Σl
j=1dβj

, denoted by c,
(2) In one of the two groups, there is at least a pair of adjacent vertices.

Then 0 < µ2 ≤ 1− 1
2c .

Proof. Let us define

x =
1

2c
(Σk

i=1eαi
− Σl

j=1eβj
),
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where c = Σk
i=1dαi

. Obviously, x ∈ X, and Σmαxαdiα = 0, i.e., x ∈ π. Assume
without loss of generality: α1 ∼ α2. Let D

0 be the nodal set of x. We have

I(x) = Σj∼i|xi − xj | =
1

2c
[Σβj∼αi

2 + Σβj∼D01 + Σαi∼D01].

The total adjacent numbers starting from {α1, · · · , αk} or from {β1, · · · , βl} are at
most c. But, at least one of the adjacent pairs is between α1 and α2, which does
not have contribution in the summation. Thus

Σβj∼αi
2 + Σβj∼D01 + Σαi∼D01 ≤ 2c− 1.

Following Theorem 5.12, we obtain

µ2 ≤ I(x) ≤ 1−
1

2c
.

�

5.3. Cheeger’s constant. Given a graph G = (V,E) and a subset of vertices
S ⊂ V , the volume of S is defined to be

V ol(S) =
∑

i∈S

di.

Let S̄ = V \S. The edge boundary of S is

∂S = {e = (i, j) ∈ E | either i ∈ S, j /∈ S, or j ∈ S, i /∈ S}.

Thus,

∂S = ∂S̄.

It is denoted by E(S, S̄).
The number

h(G) =MinS
|E(S, S̄)|

min(V ol(S), V ol(S̄))

is called Cheeger’s constant[9], where |S| is the cardinal number of S.

The following lemma is adapted from the proof of Theorem 2.9 in Chung[10].

Lemma 5.14. There exists a vector y = (y1, · · · yn) ∈ Rn such that

h(G) = supc∈R1

Σj∼i|yi − yj|

Σn
i=1|yi − c|di

.

Proof. By definition there exists a subset S ⊂ V such that

h(G) =
E(S, S̄)

V ol(S)
, V ol(S) ≤ V ol(S̄).

Define

yi =

{

1, if i ∈ S,
−1, if i /∈ S.
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i = 1, · · · , n, the vector y = (y1, · · · , yn) is what we need. Indeed,

supc∈R1

Σj∼i|yi − yj |

Σn
i=1|yi − c|di

=Max|c|≤1
Σj∼i|yi − yj |

Σn
i=1|yi − c|di

=Max|c|≤1
2|E(S, S̄)|

(1− c)V ol(S) + (1 + c)V ol(S̄)

=
|E(S, S̄)|

V ol(S)
= h(G).

�

Moreover, h(G) has the following Minimax characterization:

h(G) = infx∈Rn\{t1̄ | t∈R1}supc∈R1

Σj∼i|xi − xj |

Σn
i=1|xi − c|di

.

Cf. Theorem 2.9 Chung[10].
Applying the above results, we establish the relationship between h(G) and µ2.
Namely,

Theorem 5.15. Assume that G = (V,E) is connected, then

µ2 = h(G).

Proof. 10 We prove: h(G) ≥ µ2. From the above lemma, there exists a vector
y = (y1, · · · , yn) such that

h(G) = supc∈R1

Σj∼i|yi − yj|

Σn
k=1|yk − c|dk

,

while

µ2 =Minz∈πΣj∼i|zi − zj|.

Now let us define t ∈ R1 such that

Σyi<tdi ≤ Σyj≥tdj ,

Σyi≤tdi ≥ Σyj>tdj ,

and let w = y − t1̄, where 1̄ = (1, · · · , 1), then we have

|δ+(w) − δ−(w)| ≤ δ0(w).

Let zi =
wi

Σn
k=1

dk|wk|
, i = 1 · · · , n, z = (z1, · · · , zn), We have z ∈ π. and

supc∈R1

Σj∼i|yi − yj |

Σn
k=1|yk − c|dk

≥
Σj∼i|yi − yj|

Σn
k=1|yk − t|dk

=
Σj∼i|wi − wj |
∑n

k=1 |wk|dk
=

∑

j∼i

|zi − zj|,

Therefore

h(G) ≥Minz∈π

∑

j∼i

|zi − zj| = µ2.
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2o Now, we turn to prove h(G) ≤ µ2. To this end, we take the normalized second
eigenvector φ into consideration. Let φ = (x1, x2, · · · , xn), where xi = ν times ±1
or 0, i = 1, 2, · · · , n, and ν is a constant satisfying:

Σn
i=1di|xi| = 1, i.e., (δ+ + δ−)ν = 1,

|δ+ − δ−| ≤ δ0.

Let c0 be the minimum of Σn
i=1di|xi − c|. For c0 ≥ 0,

Σn
i=1di|xi − c0|

= δ+(ν − c0) + δ−(ν + c0) + δ0c0

= ν(δ+ + δ−) + c0(δ
0 − (δ+ − δ−))

≥ ν(δ+ + δ−) = 1.

For c0 ≤ 0, we also have

Σn
i=1di|xi − c0|

= δ+(ν + |c0|) + δ−(ν − |c0|) + δ0|c0|

= ν(δ+ + δ−) + |c0|(δ
0 + (δ+ − δ−))

≥ ν(δ+ + δ−) = 1.

In summary,

inf
c∈R1

n
∑

i=1

di|xi − c| ≥ 1.

Thus

µ2 = Σj∼i|xi − xj |

≥ supc∈R1

Σj∼i|xi − xj |

Σn
i=1|xi − c|di

≥ infy∈Rn\{t1̄ | t∈R1}supc∈R1

Σj∼i|yi − yj |

Σn
i=1di|yi − c|

= h(G).

We have proved h(G) = µ2. �

Remark

In the linear spectral graph theory, it has been proved [9]:

λ2
2

≤ h(G) ≤
√

2λ2.

However, Cheeger’s constant for a connected graph G is exactly the second eigen-
value of ∆1(G). This is the motivation of our study of the nonlinear eigenvalue
theory. In fact, a result similar to Theorem 5.15 has been given in Hein and
Buehler [12] for the unweighted L1-norm 1-Laplacian, where the volume function
is the cardinality of the set. In a slightly different context in Hein and Setzer [13]
the Cheeger cut is discussed.
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As an example, we consider the Petersen graph: G = (V,E), where V = {1, 2 · · · , 10},
and

E = {e12, e23, e34, e45, e51, e16, e27, e38, e49, e5 10, e68, e69, e79, e7 10, e8 10}.

Thus d1 = d2 = · · · = d10 = 3.

It is easily verified:

µ2 =
1

3
,

φ =
1

15
(1, 1, 1, 1, 1,−1,−1,−1,−1,−1),

z12 = z23 = z34 = z45 = z51 = 0,

z68 = z69 = z7 10 = z8 10 = z79 = 0,

z16 = z27 = z38 = z49 = z5 10 = 1,

By taking S = {1, 2, 3, 4, 5}, S̄ = {6, 7, 8, 9, 10}, we have

E(S, S̄) = 5, vol(S) = vol(S̄) = 15, h(G) =
1

3
.

While λ2 = 2
3 , see [1].

6. 1-Laplacian Spectral for Some Special Graphs

In this section, we study the spectral of 1-Laplacian for some special graphs.

6.1. Pn. A path with n vertices is a graph of a sequence of n vertices, starting from
1 and ending at n such that consecutive vertices are adjacent. It is denoted by Pn.
In this graph

d1 = dn = 1, d2 = d3 = · · · = dn−1 = 2.

Let φ = Σn
i=1xiei be an eigenvector, with eigenvalue µ. Then they satisfy the

system:

(6.1)























z12 ∈ µSgn(x1),
z23 − z12 ∈ 2µSgn(x2)
· · · , · · ·
zn−1,n − zn−2,n−1 ∈ 2µSgn(xn−1)
−zn−1n ∈ µSgn(xn).

It is known that µ = 0 is simple, with eigenvector 1
2(n−1)1. We turn to case

µ ∈ (0, 1).
1o. We claim: x1 6= 0. For otherwise, x1 = 0 implies z12 = 0, i.e., 0 ∈ Sgn(x1 − x2),
it must be x2 = 0. Repeating the deduction, it follows,

xn = xn−1 = · · · = x1 = 0.

This is impossible.
2o. No loss of generality, we assume x1 > 0. From the first equation

µ = z12 ∈ Sgn(x1 − x2),

It must be x2 = x1, and then by the second equation

z23 − z12 = 2µ.
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This implies

3µ ∈ Sgn(x2 − x3).

Thus x3 ≤ x2.
If x3 < x2, then µ = 1

3 . Otherwise, x3 = x2, we repeat the procedure.
On the other side, we start from xn, by the same procedure, and conclude: 0 6=
xn = xn−1. Either µ = 1

3 or xn−2 ≤ xn−1, etc. We define

φk+1 =

{

1
2(n−2k+1)Σ

r−k+1
i=1 (ei − en−i+1), n = 2r,

1
2(n−2k)Σ

r−k+1
i=1 (ei − en−i+1), n = 2r + 1.

µk+1 =

{ 1
n−2k+1 , n = 2r,

1
(n−2k) , n = 2r + 1.

k = 1, 2, · · · , r − 1. It is easy to verify that they satisfy the system (6.1).

Finally, we study the case µ = 1. Following lemma 5.1, each nodal domain consists
of a single vertex. This means that no two consecutive vertices having the same
sign. Let

φr+k+1 =
1

2(2k + 1)
[Σk

i=1(e2i−1 − e2i) + (e2k+1 − en)],

k = 0, 1, 2, · · · , r − 1, either n = 2r or n = 2r + 1, but in case n = 2r + 1, we add

φn =
1

4
(−e1 + er+1 − en).

Then,

sgn(xj) =







(−1)j−1, j = 1, 2, · · · , 2k + 1,
0, j = 2k + 1, · · · , 2r − 1,
−1, j = n

By definition,

zj,j+1(φr+k+1) = (−1)j−1 j = 1, 2, · · · , 2k + 1.

zn−1,n(φr+k+1) = 1

They satisfy the system (6.1).

Now we have the conclusion:

n = 2r :











































µ1 = 0, φ1 = 1
2(n−1) (1, · · · , 1, 1 · · · , 1)

µ2 = 1
n−1 , φ2 = 1

2(n−1) (1, · · · , 1,−1 · · · ,−1)

· · · , · · ·
µk+1 = 1

n−2k+1 , φk+1(1, · · · , 1, 0, · · · , 0,−1, · · · ,−1),

k = 1, 2, · · · r − 1
µr+k = 1, φr+k = 1

2(k+1) (1,−1, · · · ,−1, 1, 0, · · · , 0,−1)

k = 0, 1, 2, · · · r − 1.
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n = 2r + 1 :















































µ1 = 0, φ1 = 1
2(n−1) (1, · · · , 1, 1 · · · , 1)

µ2 = 1
n−2 , φ2 = 1

2(n−1) (1, · · · , 1, 0,−1 · · · ,−1)

· · · , · · ·
µk+1 = 1

n−2k , φk+1(1, · · · , 1, 0, · · · , 0,−1, · · · ,−1),

k = 1, 2, · · · r − 1
µr+k = 1, φr+k = (1,−1, · · · ,−1, 1, 0, · · · , 0,−1)
k = 0, 1, 2, · · · r.
µn = 1, φn = (−1, 0, · · · , 0, 1, 0, · · · , 0,−1).

6.2. Cn. A cycle with n vertices is a connected graph, where every vertex has
exactly two neighbors. It is denoted by Cn. In this graph

d1 = d2 = · · · = dn−1 = dn = 2.

The eigenpair system reads as:

(6.2)























z12 − zn1 ∈ 2µSgn(x1),
z23 − z12 ∈ 2µSgn(x2),
· · · , · · ·
zn−1,n − zn−2,n−1 ∈ 2µSgn(xn−1),
zn1 − zn−1n ∈ 2µSgn(xn).

Obviously, µ = 0 is simple, with eigenvector 1
2n1.

As for µ ∈ (0, 1), either n = 2r or n = 2r + 1, we have the following:























µk+1 = 1
r−k+1 ,

φk+1 = 1
4(r−k+1) (1, · · · , 1, 0, · · · , 0,−1, · · · ,−1),

k = 1, 2, · · · r − 1, there are 2(k − 1) zeros, ifn = 2r; 2k − 1 zeros, ifn = 2r + 1.
µr+k = 1, φr+k = (0 · · · , 0, 1,−1, · · · , 1,−1)
k = 1, 2, · · · r, there aren− 2k zeros.

Since the graph is cyclic invariant, all eigenvectors after cyclic transformation are
eigenvectors.
The spectrum of Cn is {0, 1r , · · · ,

1
2 , 1}.

6.3. Kn. A graph G is called complete, if any two vertices are adjacent. A complete
graph with n vertices is denoted by Kn. In this case,

d1 = d2 = · · · ,= dn = n− 1.

Since any two vertices are adjacent, The possible numbers for nodal domains are
r+ = r− = 1. Thus a normalized eigenvector is of the form

x = δ−1(Σi∈D+ − Σi∈D−)ei

For µ 6= 0, let

card(D+) = card(D−) = k,

we obtain:

δ± = Σi∈D±di = (n− 1)k,

and card(D0) = n− 2k, either n = 2r, or n = 2r + 1, k = 1, 2, · · · , r.



SPECTRUM OF THE 1-LAPLACIAN AND CHEEGER’S CONSTANT ON GRAPHS 39

The graph Kn is invariant under permutation group Sn, we write down the eigen-
vectors without specifying the coordinates of indices.

n = 2r































µk+2 = r+k
n−1 ,

φk+2 = 1
(n−2k)(n−1) (1, · · · , 1, 0, · · · , 0,−1, · · · ,−1),

k = 0, 1, 2, · · · r − 2, there are 2k zeros
µr+k = 1,
φr+k = (0 · · · , 0, 1,−1, · · · , 1,−1)
k = 1, 2, · · · r, there aren− 2k zeros.

and

n = 2r + 1































µk+2 = r+k+1
n−1 ,

φk+2 = 1
(n−2k−1)(n−1) (1, · · · , 1, 0, · · · , 0,−1, · · · ,−1),

k = 0, 1, 2, · · · r − 2, there are 2k + 1 zeros
µr+k = 1,
φr+k = 1

2k(n−1) (0 · · · , 0, 1,−1, · · · , 1,−1)

k = 1, 2, · · · r, there aren− 2k zeros.

The spectrum forKn is {0, n
2(n−1) , · · · ,

n−2
n−1 , 1} if n is even, and {0, n+1

2(n−1) , · · · ,
n−2
n−1 , 1}

if n is odd.

Remark

Amghibech [1] provides some explicit examples for the eigenvalues of the p-Laplacian
for p > 1 similar to the above results.
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