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Abstract

A retract of a graph Γ is an induced subgraph Ψ of Γ such that there exists a homomor-
phism from Γ to Ψ whose restriction to Ψ is the identity map. A graph is a core if it has
no nontrivial retracts. In general, the minimal retracts of a graph are cores and are unique
up to isomorphism; they are called the core of the graph. A graph Γ is G-symmetric if G
is a subgroup of the automorphism group of Γ that is transitive on the vertex set and also
transitive on the set of ordered pairs of adjacent vertices. If in addition the vertex set of Γ
admits a nontrivial partition that is preserved by G, then Γ is an imprimitive G-symmetric
graph. In this paper cores of imprimitive symmetric graphs Γ of order a product of two
distinct primes are studied. In many cases the core of Γ is determined completely. In other
cases it is proved that either Γ is a core or its core is isomorphic to one of two graphs, and
conditions on when each of these possibilities occurs is given.

Key words: graph homomorphism; core graph; core of a graph; symmetric graph; arc-
transitive graph
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1 Introduction

All graphs in this paper are finite and undirected without loops or multi-edges. The order

of a graph is its number of vertices. A homomorphism from a graph Γ to a graph Ψ is a

map φ : V (Γ) → V (Ψ) such that whenever x, y ∈ V (Γ) are adjacent in Γ, φ(x) and φ(y) are

adjacent in Ψ. The subsets φ−1(v) := {x ∈ V (Γ) : φ(x) = v} of V (Γ), v ∈ V (Ψ) are called

the fibres of φ. It is readily seen that all fibres are (possibly empty) independent sets of Γ (see

e.g. [10, Proposition 2.11]). Whenever there exists a homomorphism φ from Γ to Ψ, we denote

φ : Γ → Ψ or simply Γ → Ψ. For example, if Γ is a subgraph of Ψ, then Γ → Ψ by the inclusion

homomorphism, that is, the homomorphism that maps each vertex of Γ to itself.

A homomorphism φ from Γ onto an induced subgraph Ψ of Γ is called a retraction if the

restriction of φ to V (Ψ) (denoted by φ |Ψ) is the identity map; in this case Ψ is called a retract

of Γ. A graph is called a core if it has no nontrivial retracts. In general, the minimal retracts of

a graph are cores and are unique up to isomorphism. So we can speak of the core of a graph Γ,

denoted by Γ∗. Thus there exists a retraction φ : Γ → Γ∗ (so that φ |Γ∗ is the identity map from

V (Γ∗) to V (Γ∗)). A homomorphism from Γ to itself is called an endomorphism of Γ. A core

can be equivalently defined (see e.g. [10, Proposition 2.22]) as a graph whose endomorphisms

are all automorphisms.

A core can also be defined by virtue of the homomorphism equivalence relation. Two graphs

Γ and Ψ are said to be homomorphically equivalent, denoted by Γ ↔ Ψ, if we have both Γ → Ψ

and Ψ → Γ. This defines an equivalence relation that is coarser than isomorphism. It can be
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verified that each equivalence class contains a unique graph (up to isomorphism) with smallest

order; such a graph is a core, or the core of any graph in the class.

Cores play an important role in the study of homomorphisms and graph colourings. For

instance, a graph has a complete graph as its core if and only if its clique and chromatic

numbers are equal, and any graph and its core have the same chromatic number. Unfortunately,

in general it is difficult to determine the core of a graph. In fact, not many families of graphs

whose cores have been determined are known so far, the simplest being non-empty bipartite

graphs of which the cores are the complete graph K2 of order 2. The reader is referred to [10]

for a survey on homomorphisms, retracts and cores of graphs.

In [10, Theorem 3.7] it was proved that the core of any vertex-transitive graph is vertex-

transitive. In [10, Theorem 3.9] it was proved further that, for a vertex-transitive graph Γ,

the order of Γ∗ divides the order of Γ. In particular, vertex-transitive graphs of prime orders

are cores. In [21] the problem about when the vertex set of a vertex-transitive graph can be

partitioned into subsets each inducing a copy of its core was studied. It was proved that Cayley

graphs with connection sets closed under conjugation and vertex-transitive graphs with cores

half their order admit such partitions. In [7, Theorem 7.9.1] it was proved that Kneser graphs

(which are vertex-transitive) are cores. Complete graphs (which are clearly vertex-transitive)

are also cores.

The proof of [10, Theorem 3.7] can be extended to prove that the core of a symmetric (arc-

transitive) graph is also symmetric (see Theorem 2.3). Two-arc-transitive graphs form a proper

subfamily of the family of symmetric graphs, and in [7, Theorem 6.13.5] it was proved that any

connected non-bipartite two-arc-transitive graph is a core. A rank-three graph is a graph whose

automorphism group is transitive on vertices, ordered pairs of adjacent vertices and ordered

pairs of non-adjacent vertices. Thus rank-three graphs are necessarily symmetric and strongly

regular. In [2] it was proved (as a consequence of a more general result) that if Γ is a rank-three

graph then either Γ is a core or Γ∗ is a complete graph. In the same paper the authors asked

whether the same result holds for all strongly regular graphs. This was confirmed in [9] for two

families of strongly regular graphs that are not necessarily rank-three graphs. In [9] it was also

proved that any distance-transitive graph is either a core or has a complete core.

In this paper we study the cores of imprimitive symmetric graphs of order a product of

two distinct primes. All symmetric graphs of order a product of two distinct primes were

classified in [4, 18, 19, 25], and many interesting graphs arose from this classification. (In fact,

all vertex-transitive graphs of order a product of two distinct primes were classified in [19]

and [17] independently.) In [6] imprimitive automorphism groups of metacirculant graphs of

order a product of two distinct primes were classified. This together with previously known

results completed the classification of automorphism groups of vertex-transitive graphs of order

a product of two distinct primes. The fact that imprimitive symmetric metacirculants are

circulants can be derived from [6] and will be used in our study in the present paper.

The main result in this paper is as follows. (The graphs in Tables 1 and 2 will be defined in

§4.1, §3 and §5.1. All graphs Γ in Table 1 are circulant graphs as we will justify in §4.1.)

Theorem 1.1. Let p and q be primes with 2 ≤ p < q, and let Γ be an imprimitive symmetric

graph of order pq. Then the core Γ∗ of Γ is given in the third column of Tables 1 and 2.

As shown in Tables 1-2, in many cases we determine Γ∗ completely. In other cases we prove

that either Γ is a core or Γ∗ is isomorphic to one of two graphs. As seen in rows 10-12 of Table

1, determining the core of G(q, r)[Kp] − pG(q, r) is reduced to the problems of computing the

chromatic and clique numbers of a circulant graph. Unfortunately, the latter problems are both

NP-hard even for circulant graphs [5]. (In fact, determining the clique number remains NP-hard

even for circulant graphs of prime orders [5, Theorem 2].) Nevertheless, we notice that if r ≤ p
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Row Γ Γ∗ Condition Proof

1 G(2q, r) K2 q ≥ 3 L4.6

2 G(2, q, r) ∼= G(q, r)[K2] G(q, r) q ≥ 3 T4.8

3 G(3q, r) ∼= G(3q; r, 2, r) G(3q; r, 2, r)∗ q ≥ 5, r even L4.12

4 G(3q, r) ∼= G(3q; r, 2, 2r) G(3q; r, 2, 2r)∗ q ≥ 5, r odd L4.12

5 K3[Kq] K3 q ≥ 5 T4.7

6 G(q, r)[K3] G(q, r) q ≥ 5 T4.7

7 G(p, s)[Kq] G(p, s) p ≥ 2 T4.7

8 G(q, r)[Kp] G(q, r) p ≥ 5 T4.7

9 G(p, s)[Kq]− qG(p, s) G(p, s) p ≥ 5 T4.11

10 G(q, r)[Kp]− pG(q, r) G(q, r) p ≥ 5, χ(G(q, r)) ≤ p T4.11

11 G(q, r)[Kp]− pG(q, r) Kp p ≥ 5, ω(G(q, r)) ≥ p T4.11

12 G(q, r)[Kp]− pG(q, r) Γ p ≥ 5, χ(G(q, r)) > p >
ω(G(q, r))

T4.11

13 G(pq; r, s, u), t ∈ H(q, r) G(p, s) p ≥ 3, G(p, s) → G(q, u) T4.14

14 G(pq; r, s, u), t ∈ H(q, r) G(q, u) p ≥ 3, G(q, u) → G(p, s) T4.14

15 G(pq; r, s, u), t ∈ H(q, r) Γ p ≥ 3, G(p, s) 9 G(q, u),
G(q, u) 9 G(p, s)

T4.14

16 G(pq; r, s, u), t /∈ H(q, r) G(p, s) p ≥ 3, ∃η : G(p, s) → G(q, u) such
that each arc (i, j) of G(p, s) with
j − i = al satisfies η(j) − η(i) ∈
tlH(q, r)

T4.16

17 G(pq; r, s, u), t /∈ H(q, r) G(q, u) p ≥ 3, ∃ζ : G(q, u) → G(p, s)
such that each arc (x, y) ofG(q, u)
with y − x ∈ tlH(q, r) satisfies
ζ(y)− ζ(x) = al

T4.16

18 G(pq; r, s, u), t /∈ H(q, r) Γ p ≥ 3, neither η nor ζ above exists T4.16

Table 1: Imprimitive symmetric circulant graphs of order pq (2 ≤ p < q) and their cores. In row 7, if
p = 3, then the graph Γ is K3[Kq] and in this case the result is the same as that given in row 5. Acronym:
L = Lemma, T = Theorem, χ = chromatic number, ω = clique number.

then χ(G(q, r)) ≤ r ≤ p by Brooks’ theorem and so the core of G(q, r)[Kp]− pG(q, r) is G(q, r).

By rows 13-18 of Table 1, determining the core of G(pq; r, s, u) is reduced to the problem of

deciding whether there exists a homomorphism, or a homomorphism with certain properties,

between G(p, s) and G(q, u). The latter problem is, unfortunately, difficult in general. We notice

that the condition G(p, s) → G(q, u) in row 13 of Table 1 can not be satisfied unless ω(G(p, s)) =

ω(G(q, u)) = ω(G(pq; r, s, u)). (In fact, if G(p, s) → G(q, u), then the core of G(pq; r, s, u) is

G(p, s) and hence ω(G(q, u)) ≤ ω(G(p, s)) = ω(G(pq; r, s, u)) = min{ω(G(p, s)), ω(G(q, u))} by

Lemma 2.7 and [10, Observation 5.1].) Similarly, the condition G(q, u) → G(p, s) in row 14 can

not be satisfied unless these three clique numbers are equal.

The proof of Theorem 1.1 relies on the classification of imprimitive symmetric graphs of

order a product of two distinct primes, obtained in [4, Theorem 2.4], [25, Theorems 3-4] and [18,

Theorem] collectively. These graphs are given in the second column of Tables 1 and 2 (where

Kn is the complete graph of order n and Kn its complement), and their definitions will be given

in §4.1, §3 and §5.1, respectively. Along the way to the proof of Theorem 1.1, we will prove

some properties of such graphs; see Lemmas 4.12, 4.13 and Theorems 5.6, 5.7 and 5.8.
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Row Γ Γ∗ Condition Proof

1 X(PG(d− 1, r)) K2 p = 2, q = rd−1
r−1 E3.1

2 X ′(PG(d− 1, r)) K2 p = 2, q = rd−1
r−1 E3.1

3 X(H(11)) ∼= G(22, 5) K2 p = 2, q = 11 E3.1

4 X ′(H(11)) K2 p = 2, q = 11 E3.1

5 Γ(2, 3, ∅, {1, 2}) K5 p = 3, q = 5 T5.3

6 Γ(a, 3, ∅, {1, 2}) Γ p = 3, q = 2a + 1 > 5 with a = 2s T5.3

7 Γ(a, 3, ∅, {0}) Γ p = 3, q = 2a + 1 ≥ 5 with a = 2s T5.3

8 Γ(a, p, ∅, {0}) Kp p = 22
s−1

+ 1 ≥ 5, q = 2a + 1 > 5 with a = 2s T5.3

9 Γ(a, p, ∅, {0}) Γ 5 ≤ p < 22
s−1

+ 1, q = 2a + 1 > 5 with a = 2s T5.3

10 Γ(a, p, ∅, Ue,i) Γ p ≥ 5, q = 2a + 1 > 5 with a = 2s, Ue,i = {i2ej :
0 ≤ j < d/e} for some i ∈ Z∗

p and divisor e ≥ 1
of gcd(d, a) with 1 < d/e < p− 1, where d is the
order of 2 in Z∗

p

T5.3

Table 2: Symmetric incidence and Marušič-Scapellato graphs of order pq (2 ≤ p < q) and their cores.
Acronym: E = Example, T = Theorem.

2 Preliminaries

This section consists of definitions and known results that will be used in subsequent sections.

Let G be a group acting on a set V . That is, to every pair (g, v) ∈ G× V there corresponds

g(v) ∈ V such that 1G(v) = v and g(h(v)) = (gh)(v) for g, h ∈ G and v ∈ V , where 1G is the

identity element of G. The G-orbit containing v ∈ V is defined as G(v) := {g(v) : g ∈ G}, and

the stabilizer of v under G is the subgroup Gv := {g ∈ G : g(v) = v} of G. G is transitive on

V if G(v) = V for some (and hence all) v ∈ V , semiregular on V if Gv = 1 for every v ∈ V ,

and regular on V if it is both transitive and semiregular on V . A partition B of V is called

G-invariant if for any g ∈ G and each block B ∈ B, g(B) := {g(v) : v ∈ B} ∈ B, and is

nontrivial if 1 < |B| < |V | for some B ∈ B. If V admits a nontrivial G-invariant partition, then

G is imprimitive on V (and each block of this partition is a block of imprimitivity for G in its

action on V ); otherwise, G is primitive on V . A group G acting on V is a Frobenius group if it

is transitive, non-regular, and only the identify element of G can fix two points of V .

A graph Γ is called G-vertex-transitive if Γ admits G as a group of automorphisms acting

transitively on V (Γ). If in addition G is transitive on the set of arcs of Γ, then Γ is called a

G-symmetric graph, where an arc is an ordered pair of adjacent vertices. A graph Γ is vertex-

transitive (symmetric, respectively) if it is G-vertex-transitive (G-symmetric, respectively) for

some G ≤ Aut(Γ), where Aut(Γ) is the automorphism group of Γ. A G-vertex-transitive graph

is imprimitive or primitive according to whether G is imprimitive or primitive on V (Γ). In a

vertex-transitive graph Γ all vertices have the same valency, which is called the valency of Γ and

is denoted by val(Γ).

Given a group G and a subset S of G\{1G} such that S = S−1 := {s−1 : s ∈ S}, the Cayley

graph of G relative to S is the graph with vertex set G such that x, y are adjacent if and only if

x−1y ∈ S. A circulant graph is a Cayley graph on a cyclic group. More specifically, for the cyclic

group Zn of integers modulo n and a subset S ⊆ Zn \ {0} such that S = −S := {−s : s ∈ S},

the circulant graph of order n relative to S is the graph with vertex set Zn such that x, y ∈ Zn

are adjacent if and only if y − x ∈ S. It is well known that Cayley graphs are vertex-transitive,

and a graph is isomorphic to a circulant graph if and only if its automorphism group contains

a cyclic subgroup regular on the vertex set.

Lemma 2.1 ([7, Lemma 6.2.3]). Two graphs are homomorphically equivalent if and only if their

cores are isomorphic. In particular, any graph is homomorphically equivalent to its core.
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Theorem 2.2 ([10, Theorem 3.7]). The core of any vertex-transitive graph is vertex-transitive.

As mentioned in [10, p.121], the proof of this result can be easily adapted to other kinds of

transitivity. In particular, using essentially the same proof, we obtain the following result.

Theorem 2.3. The core of any symmetric graph is symmetric.

Theorem 2.4 ([8]). Let Γ be a symmetric graph. Then val(Γ∗) is a divisor of val(Γ).

Theorem 2.5 ([10, Theorem 3.9]). Let Γ be a vertex-transitive graph, and φ : Γ → Γ∗ a

retraction. Then |V (Γ∗)| divides |V (Γ)|, and all fibres of φ have the same cardinality, namely

|φ−1(u)| = |V (Γ)|/|V (Γ∗)| for u ∈ V (Γ∗).

As an immediate consequence, we have:

Corollary 2.6. Any vertex-transitive graph of prime order is a core.

Denote by α(Γ), ω(Γ) and χ(Γ) the independence, clique and chromatic numbers of Γ,

respectively.

Lemma 2.7 ([10, pp.110]). Let Γ and Ψ be non-bipartite graphs and φ : Γ → Ψ a homomor-

phism. Then

ω(Γ) ≥ ω(Ψ), χ(Γ) ≤ χ(Ψ).

In particular, for any non-bipartite graph Γ,

ω(Γ) = ω(Γ∗), χ(Γ) = χ(Γ∗). (1)

Theorem 2.8 ([8]). Let Γ be a vertex-transitive graph. Then

α(Γ)ω(Γ) ≤ |V (Γ)|.

Lemma 2.9 (No-Homomorphism Lemma [1]). Let Γ and Ψ be graphs such that Γ → Ψ and Ψ

is vertex-transitive. Then
α(Γ)

|V (Γ)|
≥

α(Ψ)

|V (Ψ)|
. (2)

In particular, if Γ is vertex-transitive, then Γ∗ is vertex-transitive (Theorem 2.2), and so by

Γ ↔ Γ∗ (Lemma 2.1) and (2) we obtain

α(Γ)

|V (Γ)|
=

α(Γ∗)

|V (Γ∗)|
. (3)

Definition 2.10. Let Γ and Ψ be graphs. The categorical product Γ × Ψ of Γ and Ψ and the

lexicographic product Γ[Ψ] of Γ by Ψ are both defined to have vertex set V (Γ) × V (Ψ). Their

edge sets are defined as follows:

E(Γ×Ψ) := {{(u, x), (v, y)} : {u, v} ∈ E(Γ) and {x, y} ∈ E(Ψ)}

E(Γ[Ψ]) := {{(u, x), (v, y)} : either {u, v} ∈ E(Γ), or u = v and {x, y} ∈ E(Ψ)}.

The deleted lexicographic product of Γ by Ψ, denoted by Γ[Ψ] − dΓ where d is the order of Ψ,

is obtained from Γ[Ψ] by deleting all edges of the form {(u, x), (v, x)} with {u, v} ∈ E(Γ) and

x ∈ V (Ψ). (The categorical product of graphs is also known as the Kronecker product, direct

product and tensor product in the literature.)

It was proved in [12, Proposition 4.18] that the cartesian product of two vertex-transitive

graphs is vertex-transitive. Similarly, one can prove the following lemma of which the second

statement follows from the fact that Aut(Γ)×Aut(Ψ) ≤ Aut(Γ×Ψ).
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Lemma 2.11 ([12, Proposition 4.18]). The categorical product of any two connected vertex-

transitive graphs is vertex-transitive; the categorical product of any two symmetric graphs is

symmetric.

Lemma 2.12 ([11, Proposition 2.1]). Let Ψ, Γ and Λ be graphs. Then the following hold:

(a) Ψ×Γ → Ψ and Ψ×Γ → Γ, and the corresponding homomorphisms are given by projections

(u, v) 7→ u and (u, v) 7→ v, (u, v) ∈ V (Ψ)× V (Γ), respectively;

(b) if Λ → Ψ and Λ → Γ, then Λ → Ψ× Γ;

(c) in particular, Γ → Ψ if and only if Ψ× Γ ↔ Γ.

Given a graph Γ and an integer t ≥ 2, a homomorphism from Γt :=

t
︷ ︸︸ ︷

Γ× · · · × Γ to Γ is called

a polymorphism [11]. A polymorphism φ : Γt → Γ is called idempotent [11] if φ(u, . . . , u) = u

for all u ∈ V (Γ). Obviously, for each i = 1, . . . , t, the projection πi : Γt → Γ defined by

πi(u1, . . . , ut) = ui is idempotent. A graph Γ is called projective [11] if for all integers t ≥ 2 the

only idempotent polymorphisms Γt → Γ are the projections π1, . . . , πt.

Theorem 2.13 ([14, Theorem 1.5]). Let Γ be a vertex-transitive and Aut(Γ)-primitive core.

Then Γ is projective.

Theorem 2.14 ([14, Theorem 1.4]). Let Γ be a vertex-transitive core. If Γ is projective, then

whenever Γ is a retract of a categorical product of connected graphs, it is a retract of a factor.

As mentioned earlier, our proof of Theorem 1.1 relies on the classification of imprimitive

symmetric graphs of order a product of two distinct primes, obtained in [4, Theorem 2.4], [25,

Theorems 3-4] and [18, Theorem]. We state this classification below but defer the definition of

related graphs for technical reasons.

Theorem 2.15. Let p and q be primes with 2 ≤ p < q, and let Γ be an imprimitive symmetric

graph of order pq. Then Γ is isomorphic to one of the graphs in Example 3.1, Definitions 4.2,

4.3 and 4.4, Example 4.5 and Theorem 5.2.

These graphs come in three classes, namely incidence and non-incidence graphs of two specific

block designs, circulant graphs, and Marušič-Scapellato graphs. We will give their definitions

and determine their cores in §3, §4 and §5, respectively.

3 Symmetric incidence and non-incidence graphs of order 2q

Let D be a 2-design with point set P and block set B. The incidence graph of D, denoted by

X(D), is defined to be the bipartite graph with bipartition {P,B} such that v ∈ P and B ∈ B

are adjacent if and only if v is incident to B in D. The nonincidence graph of D, denoted by

X ′(D), is the bipartite graph with the same bipartition such that v ∈ P and B ∈ B are adjacent

if and only if v is not incident to B in D. Since X(D) and X ′(D) are bipartite with at least one

edge, their cores are isomorphic to K2.

Example 3.1. Given a prime power r and an integer d ≥ 2, the symmetric design PG(d− 1, r)

has its points and blocks the points and hyperplanes respectively of the (d − 1)-dimensional

projective space over GF(r). It is noted in [4] that X(PG(d − 1, r)) and X ′(PG(d − 1, r)) are

symmetric graphs each with 2(rd − 1)/(r − 1) vertices. Thus, when (rd − 1)/(r − 1) is a prime,

these two graphs are symmetric graphs of order twice a prime.
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The unique 2-(11, 5, 2) design H(11) has as its points the elements of Z11 and its blocks

the 11 sets R + i = {x + i : x ∈ R}, where i ∈ Z11 and addition is undertaken in Z11, and

R = {1, 3, 4, 5, 9} is the set of non-zero quadratic residues modulo 11. It was noted in [4] that

both X(H(11)) and X ′(H(11)) are symmetric with order 22, and X(H(11)) is isomorphic to

the graph G(2 · 11, 5) to be defined in Definition 4.2.

Since X(PG(d− 1, r)), X ′(PG(d− 1, r)), X(H(11)) and X ′(H(11)) are bipartite, their cores

are all isomorphic to K2, justifying lines 2-5 in Table 2.

4 Cores of imprimitive symmetric circulant graphs of order pq

Throughout this section p and q are primes with 2 ≤ p < q. The purpose of this section is to

determine the cores of imprimitive symmetric circulants of order pq. To be self-contained we first

give the definitions [4, 25, 18] of such circulants. We then determine their cores in subsequent

subsections in this section.

4.1 Symmetric circulant graphs of order pq

Let p be a prime and r a positive divisor of p − 1. Denote by H(p, r) the unique subgroup of

Aut(Zp) ∼= Z∗
p with order r, where Z∗

p is the multiplicative group of units of Zp.

Definition 4.1. Define G(p, r) to be the circulant graph of order p relative to H(p, r). That is,

G(p, r) has vertex set Zp such that x, y ∈ Zp are adjacent if and only if y − x ∈ H(p, r).

It was proved in [3, Theorem 3] that, for an odd prime p, a graph Γ is a connected symmetric

graph of order p if and only if Γ ∼= G(p, r) for some even divisor r of p−1. Moreover, G(p, r) has

valency r, and if r < p− 1 then Aut(G(p, r)) ∼= Zp⋊H(p, r) (≤ AGL(1, p)) is a Frobenius group

in its action on the vertex set Zp of G(p, r), while G(p, p− 1) = Kp. (The fact that Aut(G(p, r))

is a Frobenius group on Zp was also observed in [24, Corollary 2.11] in a different setting.)

Definition 4.2. Let A and A′ be two disjoint copies of Zq, and for each i ∈ Zq, denote the

corresponding elements of A and A′ by i and i′, respectively.

For each positive divisor r of q− 1, define G(2q, r) [4] to be the graph with vertex set A∪A′

and edge set {{x, y′} : x, y ∈ Zq and y − x ∈ H(q, r)}.

For each positive even divisor r of q − 1, define G(2, q, r) [4] to be the graph with vertex set

A ∪A′ and edge set {{x, y}, {x′, y}, {x, y′}, {x′, y′} : x, y ∈ Zq and y − x ∈ H(q, r)}.

It was proved in [4, Lemmas 2.1 and 2.2] that both G(2q, r) and G(2, q, r) are symmetric. We

now show that they are both circulant graphs. In fact, in [4, Section 2] it was shown that both

G(2q, r) and G(2, q, r) have automorphisms τ and ρ defined by τ(i) = i+1, τ(i′) = (i+1)′, ρ(i) =

(−i)′ and ρ(i′) = −i. It can be verified that they also have automorphisms τa where a ∈ H(q, r),

defined by τa(i) = ai+1 and τa(i
′) = (ai+1)′. Thus they both have automorphism τ−1ρ, given

by τ−1ρ(i) = (i+1)′ and τ−1ρ(i
′) = i+1. It can be verified that τ−1ρ has order 2q. On the other

hand, 〈τ−1ρ〉 is transitive on A ∪A′, because for any i, j ∈ A, (τ−1ρ)
n1(i) = i+ n1 = j for some

even integer n1, and for any i ∈ A and j′ ∈ A′, (τ−1ρ)
n2(i) = (i+ n2)

′ = j′ for some odd integer

n2. (Note that 2 generates Zq as q is an odd prime.) Now that |A∪A′| = | 〈τ−1ρ〉 | = 2q, it follows

that 〈τ−1ρ〉 is regular on A∪A′. Since 〈τ−1ρ〉 ≤ Aut(G(2q, r)) and 〈τ−1ρ〉 ≤ Aut(G(2, q, r)), we

see that G(2q, r) and G(2, q, r) are both circulants.

Definition 4.3. For each positive divisor r of q − 1, define G(3q, r) [25] to be the graph with

vertex set Z3 × Zq and edge set {{(i, x), (i + 1, y)} : i ∈ Z3, x, y ∈ Zq and y − x ∈ H(q, r)}.

It was proved in [25, Example 3.4] that G(3q, r) is a connected symmetric graph with order

3q and valency 2r. Moreover, G(3q, r) is a circulant graph by [25, Lemma 3.6, Theorem 3].
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Definition 4.4. Let s be an even divisor of p−1 and r a divisor of q−1. Let H(p, s) = 〈a〉 ≤ Z∗
p.

Let t ∈ Z∗
q be such that ts/2 ∈ −H(q, r), and let u = lcm(r, o(t)) (least common multiple), where

o(t) is the order of t in Z∗
q. Define G(pq; r, s, u) [18] to be the graph with vertex set Zp×Zq such

that (i, x) and (j, y) are adjacent if and only if there exists an integer l such that j − i = al and

y − x ∈ tlH(q, r).

Up to isomorphismG(pq; r, s, u) is independent [18] of the choice of a and t with lcm(r, o(t)) =

u. It was proved in [18, Theorem 3.5] that G(pq; r, s, u) is a connected symmetric graph of order

pq and valency sr, and moreover G(pq; r, s, u) ∼= G(pq; r′, s′, u′) if and only if r = r′, s = s′

and u = u′. Furthermore, in the proof of [18, Theorem 3.5] it was shown that G(pq; r, s, u) is a

Cayley graph on Zp × Zq. Since p 6= q are primes, Zp × Zq
∼= Zpq and hence G(pq; r, s, u) is a

circulant graph.

Denote by Kq,q (respectively, Kq,q,q) the complete bipartite (respectively, tripartite) graph

with p vertices in each part of the bipartition (respectively, tripartition).

Example 4.5. The following graphs are symmetric circulants [4, 25, 18]:

(a) K2[Kq] ∼= Kq,q, where q ≥ 3;

(b) K3[Kq] ∼= Kq,q,q, where q ≥ 5;

(c) G(p, s)[Kq] and G(q, r)[Kp], where 3 ≤ p < q, s is an even divisor of p − 1, and r is an

even divisor of q − 1;

(d) G(p, s)[Kq]− qG(p, s) and G(q, r)[Kp]− pG(q, r), where 5 ≤ p < q, s is an even divisor of

p− 1, and r is an even divisor of q − 1.

As mentioned in [18, Section 3], the graphs in Example 4.5 are all circulants since each of

them admits a cyclic group of order pq acting regularly on the vertex set (where p = 2, 3 in (a),

(b) respectively).

Definitions 4.2, 4.3 and 4.4 and Example 4.5 give all imprimitive symmetric circulant graphs

of order a product of two distinct primes, listed in the second column in Table 1. We determine

their cores in the remainder of this section.

4.2 Lexicographic products

Since G(2q, r) is a bipartite graph by Definition 4.2, we have:

Lemma 4.6. The core of G(2q, r) is K2.

Theorem 4.7. The core of G(p, s)[Kq] is G(p, s), and the core of G(q, r)[Kp] is G(q, r).

Proof Denote Γ := G(p, s)[Kq]. Since for a fixed i ∈ V (Kq) the subset {(x, i) : x ∈ V (G(p, s))}

of V (Γ) induces a subgraph of Γ isomorphic to G(p, s), we have G(p, s) → Γ. On the other hand,

we have Γ → G(p, s) via the projection V (Γ) → V (G(p, s)), (x, i) 7→ x. Therefore, Γ ↔ G(p, s)

and so Γ∗ ∼= G(p, s)∗ by Lemma 2.1. Since G(p, s) is a vertex-transitive graph with prime order,

we have G(p, s)∗ = G(p, s) by Corollary 2.6. Hence the core of G(p, s)[Kq] is G(p, s). Similarly,

one can show that the core of G(q, r)[Kp] is G(q, r). ✷

Theorem 4.8. G(2, q, r) ∼= G(q, r)[K2], and the core of G(2, q, r) is G(q, r).
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Proof The circulant G(q, r) has vertex set Zq, with x, y ∈ Zq adjacent if and only if y − x ∈

H(q, r). The lexicographic product G(q, r)[K2] can be thought as defined on the vertex set

Zq×Z2, with (x, i), (y, j) ∈ Zq×Z2 adjacent if and only if x and y are adjacent in G(q, r). Thus,

using the notation in Definition 4.2, one can see that the map

A ∪A′ → Zq × Z2 : x 7→ (x, 0), x′ 7→ (x, 1), x ∈ Zq

defines an isomorphism from G(2, q, r) to G(q, r)[K2]. Therefore, G(2, q, r) ∼= G(q, r)[K2] and

so the core of G(2, q, r) is G(q, r) by Theorem 4.7. ✷

4.3 Deleted lexicographic products

Lemma 4.9. G(p, s)[Kq]− qG(p, s) = G(p, s)×Kq and G(q, r)[Kp]− pG(q, r) = G(q, r)×Kp.

Proof We may think of G(p, s)[Kq] as defined on Zp × Zq. Then (x, i), (y, j) ∈ Zp × Zq are

adjacent in G(p, s)[Kq]− qG(p, s) ⇔ x, y ∈ Zp are adjacent in G(p, s) and i 6= j ⇔ x, y ∈ Zp are

adjacent in G(p, s) and i, j ∈ Zq are adjacent in Kq ⇔ (x, i), (y, j) are adjacent in G(p, s)×Kq.

Hence G(p, s)[Kq] − qG(p, s) = G(p, s) ×Kq. Similarly, G(q, r)[Kp] − pG(q, r) = G(q, r) ×Kp.

✷

Lemma 4.10. Suppose that s is an even divisor of p− 1 and r is an even divisor of q − 1. Let

Γ = G(p, s)×G(q, r). Then Γ is not a core if and only if one of the following occurs:

(a) G(p, s) → G(q, r), in which case Γ∗ ∼= G(p, s);

(b) G(q, r) → G(p, s), in which case Γ∗ ∼= G(q, r).

Proof Since s is an even divisor of p − 1 and r is an even divisor of q − 1, both G(p, s) and

G(q, r) are symmetric. Thus Γ is symmetric by Lemma 2.11. Moreover, both G(p, s) and G(q, r)

are cores by Corollary 2.6.

If G(p, s) → G(q, r), then Γ ↔ G(p, s) by Lemma 2.12, and so Γ∗ ∼= G(p, s)∗ by Lemma

2.1. Since G(p, s) is a core, it follows that Γ∗ ∼= G(p, s) and so Γ is not a core. Similarly, if

G(q, r) → G(p, s), then Γ∗ ∼= G(q, r) and Γ is not a core.

In the rest of this proof we assume that Γ is not a core. By Theorems 2.3 and 2.5, Γ∗ is a

symmetric graph of prime order (and hence is isomorphic to a circulant graph), and so Aut(Γ∗)

is primitive on V (Γ∗). Thus, by Theorem 2.13, Γ∗ is projective. Since Γ∗ is vertex-transitive and

is a retract of Γ, it follows from Theorem 2.14 that Γ∗ is a retract of either G(p, s) or G(q, r).

Since both G(p, s) and G(q, r) are cores, we have either Γ∗ ∼= G(p, s) or Γ∗ ∼= G(q, r). Since

Γ∗ ↔ Γ, Γ → G(p, s) and Γ → G(q, r), we have Γ∗ → G(p, s) and Γ∗ → G(q, r). Therefore, if

Γ∗ ∼= G(p, s) then G(p, s) → G(q, r), and if Γ∗ ∼= G(q, r) then G(q, r) → G(p, s). ✷

Theorem 4.11. Suppose that s is an even divisor of p− 1 and r is an even divisor of q − 1.

(a) If Γ = G(p, s)[Kq]− qG(p, s), then Γ∗ ∼= G(p, s).

(b) If Γ = G(q, r)[Kp]− pG(q, r), then exactly one of the following occurs:

(1) χ(G(q, r)) ≤ p, in which case Γ∗ ∼= G(q, r);

(2) ω(G(q, r)) ≥ p, in which case Γ∗ ∼= Kp;

(3) χ(G(q, r)) > p > ω(G(q, r)), in which case Γ is a core.
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Proof (a) Let Γ := G(p, s)[Kq] − qG(p, s). Since G(q, q − 1) ∼= Kq, by Lemma 4.9, Γ ∼=
G(p, s) × G(q, q − 1). Since p < q, we have χ(G(p, s)) < q and so G(p, s) → G(q, q − 1).

Therefore, by Lemma 4.10, Γ∗ ∼= G(p, s).

(b) Now consider Γ := G(q, r)[Kp] − pG(q, r). Since G(p, p − 1) ∼= Kp, by Lemma 4.9, Γ ∼=
G(q, r)×G(p, p− 1). Thus, by Lemma 4.10, if G(q, r) → G(p, p− 1) (that is, if χ(G(q, r)) ≤ p),

then Γ∗ ∼= G(q, r); if G(p, p − 1) → G(q, r) (that is, if ω(G(q, r)) ≥ p), then Γ∗ ∼= G(p, p − 1) ∼=
Kp; and if none of these cases occurs (that is, if χ(G(q, r)) > p > ω(G(q, r))), then Γ is a

core. Therefore, at least one of cases (1)-(3) occurs. If, say, ω(G(q, r)) = χ(G(q, r)) = k,

then G(q, r)∗ ∼= Kk. Since G(q, r) is a core by Corollary 2.6, this happens precisely when

r = q − 1 = k − 1. Since p < q, it follows that exactly one of (1)-(3) occurs. ✷

4.4 Categorical products

Lemma 4.12. G(3q, r) = G(3q; r, 2, u), where u = r if r is even, and u = 2r if r is odd.

Proof We use the notation in Definitions 4.3 and 4.4. For G(3q; r, 2, u), we have p = 3, s = 2

and H(p, s) = 〈−1〉 = Z∗
3. Let t ∈ Z∗

q be such that ts/2 = t ∈ −H(q, r). Then t2 ∈ H(q, r).

If r is even, then −H(q, r) = H(q, r) and so 〈t〉 ≤ H(q, r). Hence o(t) divides r and

u = lcm(o(t), r) = r.

If r is odd, then −H(q, r) 6= H(q, r). Thus tk ∈ H(q, r) for even k and tk ∈ −H(q, r) for odd

k. Hence o(t) is even and u = lcm(o(t), r) = 2r.

Note that both G(3q, r) and G(3q; r, 2, u) are defined on the vertex set Z3 × Zq. Let

(i, x), (j, y) ∈ Z3 × Zq. If these two vertices are adjacent in G(3q, r), then by Definition 4.3,

j − i ≡ 1 ≡ (−1)2 mod 3 and y − x ∈ H(q, r) = t2H(q, r). Since H(3, 2) = 〈−1〉, by Definition

4.4, (i, x) and (j, y) are also adjacent in G(3q; r, 2, u).

Now assume that (i, x) and (j, y) are adjacent in G(3q; r, 2, u). Then by Definition 4.4, there

exists an integer l such that j − i ≡ (−1)l mod 3 and y − x ∈ tlH(q, r). If l is even, then

tl ∈ H(q, r), j− i ≡ 1 mod 3 and y−x ∈ H(q, r), implying that (i, x) and (j, y) are adjacent in

G(3q, r). If l is odd, then tl ∈ −H(q, r), i− j ≡ 1 mod 3 and x− y ∈ H(q, r), again implying

that (i, x) and (j, y) are adjacent in G(3q, r). Therefore, G(3q, r) = G(3q; r, 2, u). ✷

Note that in G(pq; r, s, u) the integer u must be a divisor of q − 1, because in Definition 4.4

q − 1 is a common multiple of r and o(t) and u = lcm(o(t), r). Thus, for a given G(pq; r, s, u),

the graph G(q, u) is well-defined. The next lemma connects G(pq; r, s, u) and G(p, s)×G(q, u).

Lemma 4.13. G(p, s) × G(q, u) is symmetric, and G(pq; r, s, u) is isomorphic to a spanning

subgraph of G(p, s) × G(q, u). Moreover, G(pq; r, s, u) ∼= G(p, s) × G(q, u) if and only if the

element t ∈ Z∗
q in the definition of G(pq; r, s, u) belongs to H(q, r).

Proof Denote Γ := G(pq; r, s, u) and Ψ := G(p, s) × G(q, u). The definition of Γ as given

in Definition 4.4 requires s to be even so that G(p, s) is symmetric. We now prove that u is

even and so G(q, u) is symmetric as well. From this and Lemma 2.11 we then obtain that Ψ is

symmetric.

As in Definition 4.4 let H(p, s) = 〈a〉 and H(q, r) = 〈c〉, where a ∈ Z∗
p and c ∈ Z∗

q. Let ω be a

primitive element of Z∗
q so that we can take c = ω(q−1)/r. The definition of Γ involves an element

t ∈ Z∗
q such that w := −ts/2 ∈ H(q, r). Let k := o(t) be the order of t in Z∗

q and let u := lcm(k, r).

Then 〈t, c〉 is the unique subgroup of Z∗
q with order u. Hence H(q, r) ≤ 〈t, c〉 = H(q, u) =

〈ω(q−1)/u〉. Thus tlH(q, r) ⊆ H(q, u) for any integer l, or equivalently H(q, u) = ∪kl=1t
lH(q, r).

Let v be the inverse element of w in H(q, r). Then vw = 1 in Z∗
q and H(q, u) contains the

element ts/2v = −1. Since −1 is an involution in Z∗
q, it follows that the order u of H(q, u) must

be even. Therefore, Ψ is symmetric by our discussion in the previous paragraph.
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We may take both Γ and Ψ as defined on the same vertex set Zp × Zq. Suppose that

(i, x), (j, y) ∈ Zp × Zq are adjacent in Γ. Then j − i = al and y − x ∈ tlH(q, r) for some integer

l. Since H(p, s) = 〈a〉 and tlH(q, r) ⊆ H(q, u) as mentioned above, this means that (i, x) and

(j, y) are adjacent in Ψ. Thus Γ is a spanning subgraph of Ψ.

It remains to show that t ∈ H(q, r) if and only if every edge of Ψ is an edge of Γ. Suppose

first that t ∈ H(q, r). Then u = r and H(q, u) = H(q, r). If (i, x), (j, y) ∈ Zp × Zq are adjacent

in Ψ, then j − i ∈ H(p, s) and y − x ∈ H(q, u). That is, j − i = al and y − x ∈ tlH(q, r) for

some integer l, and so (i, x) and (j, y) are adjacent in Γ.

Suppose conversely that every edge of Ψ is an edge of Γ. Then for any i, j ∈ Zp and x, y ∈ Zq

such that j − i ∈ H(p, s) and y− x ∈ H(q, u), we have j − i = al and y − x ∈ tlH(q, r) for some

integer l. In particular, for (i, x) = (0, 0), this means that for any integers l and d, there exists an

integer e such that ωd(q−1)/u = tlωe(q−1)/r. Taking l = 0, this implies u = r, H(q, r) = H(q, u),

and so t ∈ H(q, r). Therefore, Γ = Ψ if and only if t ∈ H(q, r). ✷

Combining Lemma 4.10 and the second part of Lemma 4.13, we obtain:

Theorem 4.14. Let Γ = G(pq; r, s, u) and suppose that t ∈ H(q, r). If G(p, s) → G(q, u), then

Γ∗ ∼= G(p, s); if G(q, u) → G(p, s), then Γ∗ ∼= G(q, u); in the remaining case Γ is a core.

In the next subsection we determine the core of G(pq; r, s, u) when t /∈ H(q, r). As it turns

out, this is a more challenging task.

4.5 The core of G(pq; r, s, u) when t /∈ H(q, r)

Throughout this subsection we let Γ := G(pq; r, s, u) and assume t /∈ H(q, r). As in Definition

4.4, let a ∈ Z∗
p and c ∈ Z∗

q be such that H(p, s) = 〈a〉 and H(q, r) = 〈c〉. Let l and m be fixed

positive integers. Define the permutation γ on the vertex set Zp × Zq of Γ by

γ : (i, x) 7→ (i+ al, x+ tlcm), (i, x) ∈ Zp × Zq.

It is clear that γ ∈ Aut(Γ) and (i, x) and γ((i, x)) are adjacent in Γ.

The purpose of this subsection is to prove the following two results. The first asserts that Γ∗

is isomorphic to Γ, G(p, s) or G(q, u), and the second tells us exactly when each of these cases

occurs.

Theorem 4.15. Suppose that Γ is not a core. Then exactly one of the following occurs:

(a) Γ∗ ∼= G(p, s) and the fibres of any retraction φ : Γ → Γ∗ are the sets {(i, x) : x ∈ Zq},

i ∈ Zp;

(b) Γ∗ ∼= G(q, u) and the fibres of any retraction φ : Γ → Γ∗ are the sets {(i, x) : i ∈ Zp},

x ∈ Zq.

Theorem 4.16. (a) Γ∗ ∼= G(p, s) if and only if there exists a homomorphism η : G(p, s) →

G(q, u) such that for every arc (i, j) of G(p, s), say, j − i = al for some integer l, we have

η(j) − η(i) ∈ tlH(q, r);

(b) Γ∗ ∼= G(q, u) if and only if there exists a homomorphism ζ : G(q, u) → G(p, s) such

that for every arc (x, y) of G(q, u), say, y − x ∈ tlH(q, r) for some integer l, we have

ζ(y)− ζ(x) = al.

To establish these results we need to prove three lemmas first.
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Lemma 4.17. Let φ : Γ → Γ∗ be a retraction. Then (φγj) |Γ∗∈ Aut(Γ∗) for any integer j ≥ 1,

and (φγ) |Γ∗ does not fix any vertex of Γ∗.

Proof Since γj ∈ Aut(Γ) and φ : Γ → Γ∗ is a homomorphism, (φγj) |Γ∗ is an endomorphism

of Γ∗. Since Γ∗ is a core, it follows that (φγj) |Γ∗∈ Aut(Γ∗).

It is clear that γ fixes no vertex of V (Γ). Since (i, x) and γ(i, x) = (i+al, x+tlcm) are adjacent

in Γ, and since fibres of φ are independent sets of Γ, we have φ(i, x) 6= φ(γ(i, x)) = (φγ)(i, x).

Since φ |Γ∗ is the identity map from V (Γ∗) to itself, for (i, x) ∈ V (Γ∗) we have φ(i, x) = (i, x)

and therefore (φγ)(i, x) 6= (i, x). In other words, (φγ) |Γ∗ fixes no vertex of Γ∗. ✷

Lemma 4.18. Suppose that Γ∗ 6= Γ and Γ∗ is not a complete graph. Then the following hold:

(a) Γ∗ ∼= G(n, d), where n = p or q and d is an even divisor of n − 1. Moreover, we may

identify Γ∗ with G(n, d) by labelling bijectively the vertices of Γ∗ by the elements of Zn in

such a way that h∗, k∗ ∈ V (Γ∗) are adjacent in Γ∗ if and only if k−h ∈ H(n, d), where k∗

denotes the unique vertex of Γ∗ labelled by k ∈ Zn.

(b) Under this identification, for any retraction φ : Γ → Γ∗ that fixes every vertex of Γ∗,

there exists b = b(Γ∗, φ) ∈ Zn such that (φγ) |Γ∗ (k∗) = (k + b)∗ (with addition in Zn) for

k ∈ V (Γ∗).

Proof Since Γ is symmetric, by Theorem 2.3, Γ∗ is symmetric. Denote n := |V (Γ∗)|. Since

Γ has order pq and is not a core, by Theorem 2.5, we have n = p or q. Since Γ∗ is symmetric

of prime order, Γ∗ ∼= G(n, d) for some even divisor d of n − 1. Thus we may identify Γ∗ with

G(n, d) in the way as described in (a). Since Γ∗ is not a complete graph, under this identification,

Aut(Γ∗) ∼= Zn⋊H(n, d) consists of all affine transformations φm,b (m ∈ H(n, d), b ∈ Zn) defined

by φm,b(k
∗) = (mk+b)∗ for k ∈ Zn (with addition undertaken in Zn). Ifm 6= 1, then b = k(1−m)

in Zn for some k ∈ Z∗
n and so φm,b(k

∗) = (mk + k(1 − m))∗ = k∗. That is, if m 6= 1, then

φm,b ∈ Aut(Γ∗) fixes at least one vertex of Γ∗. On the other hand, for any retraction φ : Γ → Γ∗,

by Lemma 4.17 we have (φγ) |Γ∗∈ Aut(Γ∗) and it does not fix any vertex of Γ∗. Therefore, there

exists b ∈ Zn such that (φγ) |Γ∗= φ1,b, that is, (φγ) |Γ∗ (k∗) = (k + b)∗ for k ∈ Zn. ✷

Technically, Γ∗ is an induced subgraph of Γ (and so its vertices k∗ are elements of Zp × Zq),

but we identify it with G(n, d) in the way as in Lemma 4.18(a). With this convention the fibres

of φ are:

Pk,φ := {(i, x) ∈ Zp × Zq : φ(i, x) = k∗}, k ∈ Zn. (4)

Since φ fixes every vertex of Γ∗, we have k∗ ∈ Pk,φ for every k ∈ Zn. Since the number of fibres

Pk,φ and the number of vertices of Γ∗ are both equal to n, it follows that

Pk,φ ∩ V (Γ∗) = {k∗}. (5)

Lemma 4.19. Suppose that Γ∗ 6= Γ and Γ∗ is not a complete graph. Then for any retraction

φ : Γ → Γ∗, there exists b = b(Γ∗, φ) ∈ Zn such that (φγj) |Γ∗ (k∗) = (k + jb)∗ for any integer

j ≥ 1 and k∗ ∈ V (Γ∗).

Proof Since Γ is symmetric and any automorphism of Γ maps a core to a core, without loss

of generality we may assume that the core Γ∗ under consideration contains the arc of Γ from

(0, 0) ∈ Zp × Zq to (al, tlcm) ∈ Zp × Zq (in particular, (0, 0), (al , tlcm) ∈ V (Γ∗)). Without loss of

generality we may also assume that 0∗ = (0, 0). By Lemma 4.18, there exists b = b(Γ∗, φ) ∈ Zn

such that (φγ) |Γ∗ (k∗) = (k + b)∗ for every k∗ ∈ V (Γ∗), with addition k + b undertaken in

Zn. More explicitly, if k∗ = (i, x), then φ(k∗ + (al, tlcm)) = φ(i + al, x + tlcm) = (φγ)(i, x) =
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(φγ) |Γ∗ (k∗) = (k + b)∗, or equivalently, k∗ + (al, tlcm) ∈ Pk+b,φ. In particular, φ((al, tlcm)) =

φ(0∗ + (al, tlcm)) = (φγ) |Γ∗ (0∗) = b∗ and (al, tlcm) ∈ Pb,φ. Since b∗ is the unique vertex of Γ∗

contained in Pb,φ, from (5) it follows that b∗ = (al, tlcm).

We prove (φγj) |Γ∗ (k∗) = (k+ jb)∗ for any φ and k∗ ∈ V (Γ∗) by induction on j. This is true

when j = 1 as noted above. Assume that, for any retraction φ : Γ → Γ∗ that fixes every vertex of

Γ∗, the result is true for some j ≥ 1. In what follows we prove (φγj+1) |Γ∗ (k∗) = (k+(j+1)b)∗

for k∗ ∈ V (Γ∗) to complete the proof of the lemma.

Consider the image Γ# := γj(Γ∗) of Γ∗ under γj . Since γj ∈ Aut(Γ), Γ# ∼= Γ∗ ∼= G(n, d) and

Γ# is a core of Γ. The vertices of Γ# are k# := γj(k∗) (where k∗ ∈ V (Γ∗)), which are labelled by

k ∈ Zn respectively. Since φ(k#) = (φγj)(k∗) = (k + jb)∗ by the induction hypothesis, we have

k# ∈ Pk+jb,φ. Moreover, since γj ∈ Aut(Γ) and φ is a retraction, γjφ : Γ → Γ# is a retraction.

Define τ : V (Γ#) → V (Γ#) by τ(k#) := (k − jb)# and then let ψ := τγjφ : Γ → Γ#.

We have: h#, k# are adjacent in Γ# ⇔ h∗, k∗ are adjacent in Γ∗ ⇔ k − h ∈ H(n, d). Thus

τ ∈ Aut(Γ#) by the definition of τ . Hence ψ : Γ → Γ# is a retraction and the set of fibres of ψ is

the same as that of γjφ. However, the fibres of γjφ are the subsets {(i, x) ∈ Zp×Zq : (γ
jφ)(i, x) =

γj(k∗)} = {(i, x) ∈ Zp × Zq : φ(i, x) = k∗} = Pk,φ, k ∈ Zn. Therefore, the set of fibres of ψ is

identical to the set of fibres Pk,φ of φ. Moreover, ψ(k#) = (τγjφγj)(k∗) = (τγj)((k + jb)∗) =

τ((k + jb)#) = k#, that is, ψ fixes every vertex of Γ#. Since k# ∈ Pk+jb,φ as shown above

and the set of fibres of ψ is {Pk,φ : k ∈ Zn}, it follows that the unique fibre of ψ containing

k#, denoted by Pk,ψ, is given by Pk,ψ = Pk+jb,φ. In particular, 0# = (jal, jtlcm) ∈ Pjb,φ and

b# = ((j+1)al, (j+1)tlcm) ∈ P(j+1)b,φ, and so γ(0#) = b#. Since ψ fixes every vertex of Γ#, we

then have (ψγ)|Γ#(0#) = ψ(b#) = b#. Thus, when applying Lemma 4.18 to (Γ#, ψ), the element

b(Γ#, ψ) of Zn involved is equal to b and so ψ(γ(k#)) = (ψγ)|Γ#(k#) = (k+ b)# by this lemma.

Therefore, γj+1(k∗) = γ(k#) ∈ Pk+b,ψ = Pk+(j+1)b,φ, that is, (φγ
j+1)|Γ∗(k∗) = (k+ (j +1)b)∗ as

required. ✷

Proof of Theorem 4.15 Since Γ has order pq and is not a core, by Theorem 2.5, |V (Γ∗)| = p

or q. Denote Ψ := G(p, s)×G(q, u).

Case 1: Γ∗ is a complete graph. Then Γ∗ ∼= G(n, n− 1), where n = p or q, and so Γ contains

a subgraph isomorphic to the complete graph G(n, n−1). Since by Lemma 4.13, Ψ contains Γ as

a spanning subgraph, it contains a subgraph isomorphic to G(n, n− 1). Hence G(n, n− 1) → Ψ.

On the other hand, by Lemma 2.12, there are projection homomorphisms Ψ → G(p, s) and

Ψ → G(q, u). Also, we have G(p, s) → G(n, n − 1) or G(q, u) → G(n, n − 1) since G(p, s) or

G(q, u) is a subgraph of G(n, n − 1), depending on whether n = p or q. In either case we have

Ψ → G(n, n − 1). Therefore, Ψ ↔ G(n, n− 1) and so Ψ∗ ∼= G(n, n − 1). In particular, Ψ is not

a core. Thus, by Lemma 4.10, either Ψ∗ ∼= G(p, s) or Ψ∗ ∼= G(q, u). Therefore, if n = p then

s = p− 1, and if n = q then u = q − 1.

Since Γ is a spanning subgraph of Ψ, the identity map from Zp × Zq to itself is a homomor-

phism Γ → Ψ. This together the projections Ψ → G(p, s) and Ψ → G(q, u) implies that the

projections

π : Γ → G(p, s), (i, x) 7→ i; ρ : Γ → G(q, u), (i, x) 7→ x

are homomorphisms. Therefore, if n = p, then s = p− 1 and π : Γ → G(p, p− 1) is a retraction;

if n = q, then u = q − 1 and ρ : Γ → G(q, q − 1) is a retraction.

Case 2: Γ∗ is not a complete graph. We will only consider the case where |V (Γ∗)| = p since

the case |V (Γ∗)| = q can be dealt with similarly.

So let us assume |V (Γ∗)| = p and Γ∗ ≇ Kp. Then n = p by Lemma 4.18. We aim to

prove Γ∗ ∼= G(p, s). Let φ : Γ → Γ∗ be any retraction that fixes each vertex of Γ∗. By Lemma

4.19, there exists an element b ∈ Zp such that (φγjp) |Γ∗ (k∗) = (k + jpb)∗ for any integer
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j ≥ 1 and k ∈ Zp. Since k + jpb ≡ k mod p, we then have (φγjp) |Γ∗ (k∗) = k∗ for each

k ∈ Zp. In other words, γjp(k∗) ∈ Pk,φ for k ∈ Zp. More explicitly, letting k∗ = (i, x), then

γjp(k∗) = γjp(i, x) = (i + jpal, x + jptlcm) = (i, x + jptlcm) ∈ Pk,φ. Since p and q are distinct

primes and t, c ∈ Z∗
q, we have ptlcm ∈ Z∗

q and so 〈ptlcm〉 = Zq. In other words, x + jptlcm is

running over all elements of Zq when j is running over all positive integers. Therefore, from

(i, x + jptlcm) ∈ Pk,φ we obtain that {(i, y) : y ∈ Zq} ⊆ Pk,φ. On the other hand, by Theorem

2.5, each fibre Pk,φ of φ has order q. Therefore,

Pk,φ = {(i, y) : y ∈ Zq}

for all k∗ = (i, x) ∈ V (Γ∗). Since k∗ is the unique vertex of Γ∗ in Pk,φ, k
∗ and i determine each

other uniquely. Thus i is running over all elements of Zp when k∗ is running over all vertices of

Γ∗.

By Lemma 4.13, Γ is a spanning subgraph of Ψ, and moreover Γ 6= Ψ since t 6∈ H(q, r).

Hence Γ∗ is a subgraph of Ψ and so we can talk about the inclusion homomorphism δ : Γ∗ → Ψ.

Let π : Ψ → G(p, s), (i, x) 7→ i be the projection from Ψ to G(p, s). Since π is surjective,

πδ : Γ∗ → G(p, s) is a surjective homomorphism. This together with the fact that Γ∗ and

G(p, s) have the same order implies that πδ is bijective. Hence (πδ)(Γ∗) ∼= Γ∗ and (πδ)(Γ∗) is a

spanning subgraph of G(p, s).

We claim that (πδ)(Γ∗) = G(p, s). In fact, let i, j ∈ Zp be any two adjacent vertices of

G(p, s), so that j− i = al0 ∈ H(p, s) for some integer l0. Then i and j each determines uniquely

a vertex of Γ∗, say, h∗ = (i, x) and k∗ = (j, y), respectively. The fibres of φ containing h∗ and k∗

are Ph,φ and Pk,φ, respectively. Since j − i = al0 ∈ H(p, s), each vertex (i, z) ∈ Ph,φ is adjacent

in Γ to at least one vertex of Pk,φ, say, (j, z+ tl0c). Thus h∗ and k∗ are adjacent in Γ∗. In other

words, if two vertices of G(p, s) are adjacent, then the corresponding vertices of Γ∗ are adjacent

in Γ∗. Hence |E(Γ∗)| ≥ |E(G(p, s))|. On the other hand, |E(Γ∗)| = |E((πδ)(Γ∗))| ≤ |E(G(p, s))|

as (πδ)(Γ∗) is a spanning subgraph of G(p, s). Therefore, |E(Γ∗)| = |E((πδ)(Γ∗))| = |E(G(p, s))|

and so (πδ)(Γ∗) = G(p, s). Consequently, Γ∗ ∼= G(p, s). Moreover, from the discussion above we

see that the fibres of φ are the sets {(i, x) : x ∈ Zq}, i ∈ Zp, as claimed in (a).

Similarly, one can prove that, if |V (Γ∗)| = q, then the statements in (b) hold. ✷

Recall that in the proof of Lemma 4.13 we proved that H(q, u) = ∪kl=1t
lH(q, r). This implies

that for any arc (x, y) of G(q, u) there exists an integer l such that y − x ∈ tlH(q, r).

Proof of Theorem 4.16 We prove (a) only since the proof of (b) is similar. Denote Ψ :=

G(p, s)×G(q, u).

Sufficiency: Suppose that there exists a homomorphism η : G(p, s) → G(q, u) such that

η(j)− η(i) ∈ tlH(q, r) for every arc (i, j) of G(p, s) with j − i = al. Let ∆ be the subgraph of Γ

induced by {(i, η(i)) : i ∈ Zp} ⊂ Zp × Zq. The definition of η ensures that the map (i, η(i)) 7→ i

from V (∆) to V (G(p, s)) = Zp is an isomorphism from ∆ to G(p, s). Since Γ → Ψ by inclusion

(Lemma 4.13) and Ψ → G(p, s) by projection (Lemma 2.12), we have Γ → G(p, s) ∼= ∆.

This together with the inclusion homomorphism ∆ → Γ implies that Γ ↔ ∆. Therefore,

Γ∗ ∼= ∆∗ ∼= G(p, s) by Lemma 2.1 and Corollary 2.6.

Necessity: Suppose that Γ∗ ∼= G(p, s). Then by Theorem 4.15 there is a retraction φ :

Γ → Γ∗ whose fibres are the sets {(i, x) : x ∈ Zq}, i ∈ Zp. On the other hand, we have

δ : Γ → Ψ by inclusion (Lemma 4.13) and π : Ψ → G(p, s), (i, x) 7→ i by projection. Thus

πδ : Γ → G(p, s), (i, x) 7→ i is a homomorphism whose set of fibres is identical to the set of

fibres of φ. As seen in (5), each fibre of φ contains exactly one vertex of Γ∗. Thus each fibre

of πδ contains exactly one vertex of Γ∗. In other words, for each i ∈ Zp, Γ
∗ contains exactly

one vertex of the form (i, x). Thus θ := (πδ) |Γ∗ : V (Γ∗) → V (G(p, s)), (i, x) 7→ i, is a bijection.
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Since πδ is a homomorphism, θ : Γ∗ → G(p, s) is a homomorphism. Since |E(Γ∗)| = |E(G(p, s))|

(as Γ∗ ∼= G(p, s)), it follows that θ is an isomorphism from Γ∗ to G(p, s).

Let ρ : Ψ → G(q, u), (i, x) 7→ x be the projection from Ψ to G(q, u). Then the projection

ρδ : Γ → G(q, u), (i, x) 7→ x is a homomorphism from Γ to G(q, u). Hence ψ := (ρδ) |Γ∗ :

Γ∗ → G(q, u), (i, x) 7→ x is a homomorphism. Consequently, η := ψθ−1 : G(p, s) → G(q, u)

is a homomorphism, and it maps each i ∈ Zp to the unique x(i) ∈ Zq such that (i, x(i)) is

the unique vertex of Γ∗ contained in the fibre {(i, x) : x ∈ Zq} of φ. If (i, j) is an arc of

G(p, s), then j = i + al for some integer l, and (θ−1(i), θ−1(j)) is an arc of Γ∗ (as θ−1 is an

isomorphism from G(p, s) to Γ∗) and hence an arc of Γ. Since θ−1(i) = (i, x(i)), it follows

from the definition of Γ that θ−1(j) = (i + al, x(i) + tlcm) for some integer m. Therefore,

η(j) − η(i) = (x(i) + tlcm)− x(i) = tlcm ∈ tlH(q, r) as required. ✷

5 Cores of symmetric Marušič-Scapellato graphs

In this section we determine the cores of symmetric Marušič-Scapellato graphs, to be given

in Theorem 5.3. Such graphs have order pq for a Fermat prime q and a prime factor p of

q− 2. In §5.1 we give the definition of (general) Marušič-Scapellato graphs. In §5.5 and §5.6 we

derive bounds on the clique and independent numbers of a general (not necessarily symmetric)

Marušič-Scapellato graph of order pq, respectively. It turns out that these bounds are crucial

to the proof of Theorem 5.3. In §5.4 we give necessary conditions for the core of a symmetric

Marušič-Scapellato graph to have order q, which will be used to show that this occurs only in a

certain very special case. After a brief discussion on the cores of two specific rank-three graphs

in §5.7, finally we prove Theorem 5.3 in §5.8.

5.1 Marušič-Scapellato graphs

Marušič-Scapellato graphs (MS graphs for short) were introduced in [15]. We adopt their defi-

nition and notation1 from [18, Definition 3.6].

Definition 5.1. Let a > 1 be an integer, m > 1 a divisor of 2a − 1, S = −S a (possibly

empty) symmetric subset of Z∗
m, U a subset of Zm, and w a primitive element of GF(2a). The

Marušič-Scapellato graph Γ = Γ(a,m, S,U) is the graph with vertex set

V (Γ) := PG(1, 2a)× Zm (with PG(1, 2a) identified to GF(2a) ∪ {∞})

such that (∞, r) ∈ V (Γ) has neighbourhood

Γ((∞, r)) := {(∞, r + s) : s ∈ S} ∪ {(x, r + u) : x ∈ GF(2a), u ∈ U}

and (x, r) ∈ V (Γ) (where x ∈ GF(2a)) has neighbourhood

Γ((x, r)) := {(x, r+s) : s ∈ S}∪{(∞, r−u) : u ∈ U}∪{(x+wi,−r+u+2i) : i ∈ Z2a−1, u ∈ U}.

Obviously, Γ = Γ(a,m, S,U) has valency |S| + 2a|U |. Marušič and Scapellato [16] proved

that Γ admits SL(2, 2a) as a vertex-transitive group of automorphisms. Moreover, they showed

that

B := {Bx : x ∈ PG(1, 2a)}, where Bx := {(x, r) : r ∈ Zm} (6)

is an SL(2, 2a)-invariant partition of V (Γ) such that the quotient graph ΓB is the complete graph

of order 2a+1, that is, there is at least one edge of Γ between any two blocks of B. They proved

further that Γ is SL(2, 2a)-symmetric if Γ = Γ(a,m, ∅, {u}) for some u ∈ Zm.

1Γ(a,m, S, U) in Definition 5.1 is the graph X(a,m, S, U) in [18, Definition 3.6] and [15, Definition 1.3], and
is F (2a + 1,m, S, U) in [17, p.188] where this graph is called a Fermat graph.
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An integer of the form Fs := 22
s

+1 is called a Fermat number, where s ≥ 0 is an integer; if

Fs is a prime, then it is called a Fermat prime.

The following result of Praeger, Wang and Xu [18] determines all symmetric MS graphs of

order a product of two distinct primes. (Note that the symmetric graphs F (s), F ′(s) of order

3q defined in [25] (where q = 22
s

+ 1 is a Fermat prime with s ≥ 1) are isomorphic to the MS

graphs Γ(2s, 3, ∅, {0}),Γ(2s , 3, ∅, {1, 2}), respectively.)

Theorem 5.2 ([18, 3.7(b), 3.8 and 4.9(a)]). Let q = 2a + 1 be a Fermat prime, where a = 2s

with s ≥ 1, and let p be a prime divisor of 2a − 1. Then an MS graph of order pq is symmetric

if and only if it is of the form Γ = Γ(a, p, ∅, U), where either

U = {u}

for some u ∈ Zp, or

U = Ue,i := {i2ej : 0 ≤ j < d/e} (7)

for some i ∈ Z∗
p and divisor e ≥ 1 of gcd(d, a) with 1 < d/e < p− 1, where d is the order of 2 in

Z∗
p. In the former case, Γ ∼= Γ(a, p, ∅, {0}) and val(Γ) = 2a; in the latter case, val(Γ) = 2ad/e.

Note that

1 < |Ue,i| = d/e < p− 1 (8)

and Γ(a, p, ∅, Ue,i) is SL(2, 2
a) ⋊ Za/e-symmetric (see [18, Theorem 3.7(b)]).

5.2 Cores of symmetric Marušič-Scapellato graphs

The following is the main result in this section. Its proof will be given in §5.8.

Theorem 5.3. Let a = 2s with s ≥ 1 an integer, and let p be a prime divisor of 2a − 1 and

q = 2a + 1 a Fermat prime. Let Γ = Γ(a, p, ∅, U) be a symmetric MS graph as described in

Theorem 5.2, where U = {u} for some u ∈ Zp, or U = Ue,i as given in (7). Then the following

hold:

(a) if pq = 15, then either Γ = Γ(2, 3, ∅, {u}) and Γ is a core, or Γ = Γ(2, 3, ∅, {1, 2}) and

Γ∗ ∼= K5;

(b) if pq > 15 and p is not a Fermat prime, then Γ is a core;

(c) if pq > 15 and p = 22
l

+ 1 is a Fermat prime with 0 ≤ l < s− 1, then Γ is a core;

(d) if pq > 15, p = 22
s−1

+ 1 is a Fermat prime and Γ = Γ(a, p, ∅, {u}), then Γ∗ ∼= Kp;

(e) if pq > 15, p = 22
s−1

+ 1 is a Fermat prime and Γ = Γ(a, p, ∅, Ue,i), then Γ is a core.

5.3 Assumption and notation

In the remainder of this section we assume that s, a, p, q are as in Theorem 5.3 and that w is a

primitive element of GF(2a) as used in Definition 5.1. For brevity, we set

ΓS,U := Γ(a, p, S, U), (9)

where S = −S ⊆ Z∗
p and U ⊆ Zp. Note that this MS graph has order pq and vertex set

PG(1, 2a)× Zp, but it is not necessarily symmetric.

As in [16, Eq. (14)], for each b ∈ GF(2a), define

λb((x, r)) =

{

(∞, r), x = ∞, r ∈ Zp

(x+ b, r), x ∈ GF(2a), r ∈ Zp.
(10)
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Define [16, Eq. (10) and (12)]

ρ((x, r)) =

{

(x, r + 1), x ∈ {∞, 0}, r ∈ Zp

(xw, r + 1), x ∈ GF(2a)∗, r ∈ Zp.
(11)

Then λb, ρ ∈ Aut(ΓS,U ) [16] and so

J := 〈ρp〉 ≤ Aut(ΓS,U ) (12)

H := {λb : b ∈ GF(2a)} ≤ Aut(ΓS,U ). (13)

Note that

J ∼= Z(2a−1)/p, H ∼= Za2, H ⋊ J = SL(2, 2a)∞ ≤ SL(2, 2a) ≤ Aut(ΓS,U ). (14)

Recall that ΓS,U admits an SL(2, 2a)-invariant partition B defined in (6). Clearly, λb fixes B∞

pointwise for each b ∈ GF(2a), and ρip fixes B∞ ∪ B0 pointwise for each integer i. Therefore,

H ⋊ J fixes B∞ pointwise; that is, for every r ∈ Zp,

H ⋊ J ≤ Aut(ΓS,U )(∞,r). (15)

For each d ∈ Zp, denote by ΓdS,U the subgraph of ΓS,U induced by

Vd := {(x, d) : x ∈ GF(2a)}. (16)

In view of (10) and (11), each element of H ⋊ J fixes the second coordinate of every vertex of

ΓS,U . Therefore, H ⋊ J fixes Vd setwise. Since H ⋊ J ≤ Aut(ΓS,U), it follows that Γ
d
S,U admits

H ⋊ J as a group of automorphisms in its induced action on Vd. Moreover, H is regular on Vd
(in particular ΓdS,U is vertex-transitive), and each element of J fixes (0, d) ∈ Vd.

5.4 What happens if the core of a symmetric MS graph has order q

Lemma 5.4. Let Γ = Γ∅,{u} or Γ∅,Ue,i
, where u ∈ Zp and Ue,i is given in (7). If |V (Γ∗)| = q,

then Γ∗ contains exactly one vertex from each block of B.

Proof Suppose to the contrary that Γ∗ contains multiple vertices from some block of B. Since Γ

is vertex-transitive, without loss of generality we may assume that (∞, u), (∞, v) ∈ V (Γ∗)∩B∞,

where u, v ∈ Zp with u 6= v. By the definition of Γ (Definition 5.1), each block of B is an

independent set of Γ. In particular, (∞, u) and (∞, v) are not adjacent in Γ and so Γ∗ is not

a complete graph. Since Γ is symmetric by Theorem 5.2, so is Γ∗ by Theorem 2.3. Since Γ∗

has prime order q, it follows that Γ∗ ∼= G(q, r) for some proper even divisor r of q − 1 and

Aut(Γ∗) ∼= Zq ⋊ H(q, r) is a Frobenius group in its action on V (Γ∗) (see the discussion below

Definition 4.1).

Let φ : Γ → Γ∗ be a retraction. Since each λb ∈ H fixes B∞ pointwise, (φλb) |Γ∗∈ Aut(Γ∗)

fixes both (∞, u) and (∞, v). Since Aut(Γ∗) is a Frobenius group on V (Γ∗), it follows that

(φλb) |Γ∗= 1Aut(Γ∗) is the identity element of Aut(Γ∗). In other words, λb must map each

vertex of Γ∗ to a vertex of Γ in the same fibre of φ; that is, the H-orbit H((y, z)) containing

(y, z) ∈ V (Γ∗) is a subset of φ−1((y, z)).

Since |B∞| = p < q = |V (Γ∗)|, there exists at least one vertex (y, z) ∈ V (Γ∗) with y 6= ∞. By

(10), it can be verified that H is semiregular on V (Γ) \B∞. Since (y, z) ∈ V (Γ) \B∞, it follows

that p < 2a = |H| = |H((y, z))| ≤ |φ−1((y, z))|. However, since |V (Γ∗)| = q by our assumption,

we have |φ−1((y, z))| = p by Theorem 2.5. This contradiction shows that Γ∗ contains at most

one vertex from each block of B. This together with |V (Γ∗)| = |B| = q implies that Γ∗ contains

exactly one vertex from each block of B. ✷
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It is well known that all Fermat numbers Ft = 22
t

+ 1 are pairwise coprime [13] and satisfy

the relation [13]:

Ft = F0F1 · · ·Ft−1 + 2, t ≥ 1. (17)

In particular, since q = Fs by our assumption, q − 2 = F0F1 · · ·Fs−1.

Theorem 5.5. Let Γ = Γ∅,{u} or Γ∅,Ue,i
, where u ∈ Zp and Ue,i is given in (7). If pq > 15 and

|V (Γ∗)| = q, then Γ∗ ∼= Kq.

Proof Suppose that pq > 15, |V (Γ∗)| = q but Γ∗ 6∼= Kq. Since pq > 15 and p < q = 2a+1 = Fs,

we have s ≥ 2. Since Γ is symmetric, by Theorem 2.3 and the discussion below Definition 4.1,

Γ∗ ∼= G(q, r) for some proper even divisor r of q− 1 and moreover Aut(Γ∗) is a Frobenius group

on V (Γ∗) as seen in the proof of Lemma 5.4.

Let φ : Γ → Γ∗ be a retraction. Since p is a prime divisor of 2a − 1 = Fs − 2, by (17)

and the fact that distinct Fermat numbers are coprime, we know that p is a prime factor of

exactly one Fl, 0 ≤ l ≤ s − 1. Thus p ≤ Fs−1, and so by (17) and the fact s ≥ 2, we have

|B∞ ∪B0| = 2p ≤ 2Fs−1 < F0F1 · · ·Fs−1+2 = Fs = q. Since φ has q fibres, it follows that there

is at least one fibre of φ which is disjoint from B∞ ∪ B0. In other words, there exists a vertex

(x, t) ∈ V (Γ∗) with x ∈ GF(2a)∗ such that φ−1((x, t)) ∩ (B∞ ∪B0) = ∅.

Since Γ is vertex-transitive, every vertex of Γ is contained in some copy of Γ∗. In particular,

for every vertex (y, z) ∈ φ−1((x, t)), there is a core Γ# ∼= Γ∗ of Γ such that (y, z) ∈ V (Γ#). (Note

that Γ# depends on (y, z), though all of them are isomorphic to each other.) We claim that

φ |Γ# is an isomorphism from Γ# to Γ∗. In fact, since φ is a homomorphism, φ |Γ# : Γ# → Γ∗

is a homomorphism. Moreover, φ |Γ# is surjective for otherwise the composition of a retraction

from Γ to Γ# and φ |Γ# is a homomorphism from Γ to a proper subgraph of Γ∗, contradicting

the assumption that Γ∗ is a core of Γ. Since Γ# ∼= Γ∗, there is an isomorphism δ : Γ∗ → Γ#.

Then (δφ) |Γ# : Γ# → Γ# is an endomorphism and so an automorphism of Γ# as Γ# is a core.

In particular, (δφ) |Γ# is a bijection from V (Γ#) to itself. Therefore, φ |Γ# is a bijection from

V (Γ#) to V (Γ∗) and hence an isomorphism from Γ# to Γ∗. In particular, each fibre of φ contains

exactly one vertex of Γ#.

Define η : V (Γ∗) → V (Γ#) to be the inverse of the isomorphism φ |Γ# : V (Γ#) → V (Γ∗).

Then (y, z) = η((x, t)) and for each (j, k) ∈ V (Γ∗), η((j, k)) ∈ V (Γ#) ∩ φ−1((j, k)) is the

unique vertex of Γ# contained in the fibre φ−1((j, k)). Define ψ := ηφ : Γ → Γ#. Then ψ

is a retraction whose set of fibres is identical to the set of fibres of φ. More specifically, for

(j, k) ∈ V (Γ∗), the fibre ψ−1(η(j, k)) of ψ is equal to the fibre φ−1((j, k)) of φ. In particular,

ψ−1((y, z)) = φ−1((x, t)).

Applying Lemma 5.4 to Γ#, we know that Γ# contains exactly one vertex from each block

of B. Clearly, (y, z) is the unique vertex of Γ# in By. Let (∞, c), (0, d) be the vertices of Γ#

contained in B∞, B0, respectively, where c, d ∈ Zp. Since by (11) J fixes B∞ ∪B0 pointwise, for

any γ ∈ J , (ψγ) |Γ#∈ Aut(Γ#) fixes both (∞, c) and (0, d). Since Aut(Γ#) is a Frobenius group

on V (Γ#) (as Γ# ∼= Γ∗ ∼= G(q, r)), it follows that (ψγ) |Γ#= 1Aut(Γ#). In other words, γ maps

each vertex of V (Γ#) to a vertex of Γ in the same fibre of ψ. Since this holds for every γ ∈ J ,

the J-orbit J((y, z)) containing (y, z) satisfies J((y, z)) ⊆ ψ−1((y, z)) = φ−1((x, t)). Since this

holds for every (y, z) ∈ φ−1((x, t)), φ−1((x, t)) is a (disjoint) union of J-orbits and so |J | divides

|φ−1((x, t))|. Note that |φ−1((x, t))| = p by Theorem 2.5 and our assumption |V (Γ∗)| = q. On

the other hand, since φ−1((x, t))∩ (B∞ ∪B0) = ∅, for each (y, z) ∈ φ−1((x, t)) we have y 6= ∞, 0

and thus by (11), |J((y, z))| = |J | = (2a − 1)/p. Therefore, (2a − 1)/p is a divisor of p, implying

that either (2a − 1)/p = p or (2a − 1)/p = 1.

If (2a − 1)/p = 1, then by (17), p = 2a − 1 = Fs − 2 = F0F1 · · ·Fs−1, which forces s = 1,

a = 2, p = F0 = 3 and q = 5. However, this contradicts the fact s ≥ 2. If (2a − 1)/p = p

(and s ≥ 2), then by (17), p2 = 2a − 1 = F0F1 · · ·Fs−1. However, this cannot happen since
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F0F1 · · ·Fs−1 contains two distinct prime factors, namely F0 = 3 and F1 = 5, but p has only

one prime factor. ✷

5.5 Bounding the clique number

Theorem 5.6. The clique number of ΓS,U satisfies ω(ΓS,U ) ≥ p, with equality only when p =

22
l

+ 1 for some 0 ≤ l ≤ s− 1.

Proof By Definition 5.1, ΓS,U contains Γ∅,{u} as a spanning subgraph, where u ∈ U , and by

Theorem 5.2, this spanning subgraph is isomorphic to Γ := Γ∅,{0}. Thus ω(ΓS,U) ≥ ω(Γ). We

first prove that the result is true for Γ.

Since p divides 2a − 1 = Fs − 2 = F0F1 · · ·Fs−1 (by (17)) and all Fermat numbers are

pairwise coprime, p divides exactly one Fl for some 0 ≤ l ≤ s − 1. Since GF(2a)∗ = 〈w〉

has order 2a − 1 = F0F1 · · ·Fs−1, w
FlFl+1···Fs−1 has order F0F1 · · ·Fl−1 in GF(2a)∗. Hence the

multiplication group of the subfield GF(22
l

) of GF(2a) is given by GF(22
l

)∗ = 〈wFlFl+1···Fs−1〉. Set

C := {(x, 0) : x ∈ GF(22
l

)}. Let x, y ∈ GF(22
l

) be distinct elements. Then y = x+wiFlFl+1···Fs−1

for some i, and so (y, 0) = (x + wiFlFl+1···Fs−1 , 2iFlFl+1 · · ·Fs−1) as Fl ≡ 0 mod p. Since

wiFlFl+1···Fs−1 ∈ GF(22
l

)∗, by Definition 5.1, (x, 0) and (y, 0) are adjacent in Γ. Thus C is a

clique of Γ with size 22
l

. In addition, by Definition 5.1, (∞, 0) is adjacent to every vertex of C

in Γ. Therefore, {(∞, 0)} ∪C is a clique of Γ with size 22
l

+1, and consequently ω(Γ) ≥ 22
l

+1.

Since p is a factor of Fl = 22
l

+ 1, we then have ω(Γ) ≥ p, and equality occurs only when

p = 22
l

+ 1. Therefore, ω(ΓS,U) ≥ ω(Γ) ≥ p. Moreover, if ω(ΓS,U ) = p, then ω(Γ) = p and so

p = 22
l

+ 1. ✷

Theorem 5.7. If S = ∅ then ω(ΓS,U) ≤
2a

p−1 |U |+1, and if S 6= ∅ then ω(ΓS,U) ≤
2a

p−1 |U |+p−1.

Proof Denote Ψ := ΓS,U and Ψd := ΓdS,U for each d ∈ Zp. Fix r ∈ Zp \ U . Denote Γ := Γ∅,{r}

and Γd := Γd∅,{r}. Then Ψ is edge-disjoint from Γ, and Ψd is edge-disjoint from Γd. Hence any

clique of Γd is an independent set of Ψd, and consequently ω(Γd) ≤ α(Ψd).

Since Γ is vertex-transitive, every vertex of it is contained in a maximum clique. In particular,

for each d ∈ Zp, (∞, d− r) is contained in a maximum clique of Γ. Since the neighbourhood of

(∞, d−r) in Γ is Vd, such a maximum clique must be a subset of {(∞, d−r)}∪Vd, and therefore

ω(Γd) = ω(Γ) − 1. Since ω(Γ) ≥ p by Theorem 5.6, it follows that p− 1 ≤ ω(Γd) ≤ α(Ψd). On

the other hand, since Ψd is vertex-transitive, by Theorem 2.8 we have α(Ψd)ω(Ψd) ≤ |V (Ψd)|.

Therefore, ω(Ψd) ≤ |Vd|/α(Ψ
d) ≤ 2a/(p − 1).

Now let C be a fixed maximum clique of Ψ containing (∞, 0) (such a maximum clique exists

since Ψ is vertex-transitive), and let N be the set of elements d ∈ Zp such that C ∩ Vd 6= ∅.

Since whenever d 6∈ U , (∞, 0) is not adjacent in Ψ to any vertex of Vd, we have

N = {u ∈ U : C ∩ Vu 6= ∅}.

Since |C ∩ Vu| ≤ ω(Ψu) ≤ 2a/(p − 1) as proved above, we obtain

|C| = |C ∩B∞|+
∑

u∈N

|C ∩ Vu| ≤ |C ∩B∞|+
2a

p− 1
|N |. (18)

Set

T1 := {(∞, z) ∈ C ∩B∞ : z + r ∈ U}, T2 := {(∞, z) ∈ C ∩B∞ : z + r /∈ U}.
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Then |C∩B∞| = |T1|+|T2|. Since r 6∈ U , by Definition 5.1 no vertex (∞, z) ∈ C∩B∞ is adjacent

to any vertex in Vz+r. Thus, for each (∞, z) ∈ T1, we have C ∩ Vz+r = ∅ and so z + r 6∈ N .

Consequently |N | ≤ |U | − |T1|. Plugging this into (18) and noting 2a/(p − 1) > 1, we obtain

ω(Ψ) = |C| ≤ |T1|+ |T2|+
2a

p− 1
(|U | − |T1|) ≤

2a

p− 1
|U |+ |T2|.

If S = ∅, then C ∩ B∞ = {(∞, 0)}. Since 0 + r /∈ U , we then have |T2| = 1 and so

ω(Ψ) ≤ 2a

p−1 |U |+ 1, as required.

Assume that S 6= ∅. If |C ∩ B∞| ≤ p − 1, then |T2| ≤ p − 1. If |C ∩ B∞| = p, then

C ∩B∞ = B∞ and so T1 6= ∅, implying |T2| = |C ∩B∞| − |T1| ≤ p− 1. In either case we obtain

ω(Ψ) ≤ 2a

p−1 |U |+ p− 1. ✷

5.6 Bounding the independence number

The purpose of this subsection is to give an upper bound on α(Γ∅,{0}) under the additional

assumption that

p = Fl = 22
l

+ 1 is a Fermat prime for some 0 ≤ l ≤ s− 1. (19)

Denote

n := Fl+1 · · ·Fs−1 (20)

C := {(x, 0) : x ∈ GF(22
l

)} (21)

V0 := {(x, 0) : x ∈ GF(2a)}.

As seen at the end of §5.3, H fixes V0 setwise and Γ0
∅,{0} admits H as a group of automorphisms

in its induced action on V0. Moreover, one can see that Γ0
∅,{0} is H-vertex-transitive.

The main result in this subsection is as follows.

Theorem 5.8. Suppose that p is as in (19) and let n,C be defined in (20), (21), respectively.

Then α(Γ∅,{0}) ≤ q, with equality only if l = s− 1 (that is, p = 22
s−1

+ 1).

Denote by

λb(C) = {(x+ b, 0) : x ∈ GF(22
l

)}

the image of C under λb ∈ H. We need the following lemma in the proof of Theorem 5.8.

Lemma 5.9. Suppose that p is as in (19) and let n,C be defined in (20), (21), respectively. Let

h be an integer with 1 ≤ h ≤ F0F1 · · ·Fl−1. The following hold:

(a) C is a block of imprimitivity for H in its action on V0 and is a (p − 1)-clique of Γ0
∅,{0}

(hence so is λb(C) for each λb ∈ H). Moreover, C ∩ λwhn(C) = ∅.

(b) For 1 ≤ j ≤ q − 2 such that (wj , 0) ∈ λwhn(C) but wj 6= whn, we have j 6≡ hn mod p.

(c) For 1 ≤ i, j ≤ q − 2 such that (wi, 0), (wj , 0) ∈ λwhn(C) but wi 6= wj , we have i 6≡ j

mod p.

Proof (a) Denote Γ0 := Γ0
∅,{0}. Define

L := {λb : b ∈ GF(22
l

)}.
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Then L ≤ H ≤ Aut(Γ∅,{0})(∞,0) by (15). It can be seen that the L-orbit L((0, 0)) containing

(0, 0) is exactly C. By Theorem 5.6 and its proof, C is a (p− 1)-clique of Γ0. Since each λb ∈ H

induces an automorphism of Γ0, λb(C) is also a (p − 1)-clique of Γ0.

Since H is abelian, L is a normal subgroup of H. Since H is transitive on V (Γ0), it follows

that the L-orbit C is a block of imprimitivity for H in its action on V0, and hence so is λb(C)

for each λb ∈ H.

Since p = Fl is a Fermat prime and distinct Fermat numbers are coprime, hn is not a multiple

of FlFl+1 · · ·Fs−1. Hence whn 6∈ GF(22
l

) and so (whn, 0) /∈ C. Therefore, λwhn(C) 6= C, which

implies C ∩ λwhn(C) = ∅.

(b) Since (wj , 0) ∈ λwhn(C), we have (wj , 0) = (x + whn, 0) for some x ∈ GF(22
l

)∗. Since

p = Fl and x ∈ GF(22
l

)∗, we have x = wtpn for some integer t with 1 ≤ t ≤ F0F1 · · ·Fl−1. Thus

wj = whn+wtpn and so wj−hn = 1+w(tp−h)n (where 1 is the multiplicative identity of GF(2a)).

Since w(tp−h)n ∈ GF(22
l+1

), 1 + w(tp−h)n ∈ GF(22
l+1

). Hence wj−hn = 1 + w(tp−h)n = wkn for

some integer k with 1 ≤ k ≤ F0F1 · · ·Fl, and so j − hn ≡ kn mod (q − 2). Since p = Fl is a

divisor of q − 2, we then have j − hn ≡ kn mod p. Note that wkn 6= 1 as 1 < kn ≤ q − 2.

Suppose by way of contradiction that j ≡ hn mod p. Then kn ≡ 0 mod p. However, n is

coprime to p as distinct Fermat primes are coprime. Hence k ≡ 0 mod p and so wkn ∈ GF(22
l

)∗.

Consequently, w(tp−h)n = wkn − 1 ∈ GF(22
l

)∗ and therefore (tp − h)n ≡ 0 mod pn. It follows

that p divides h, but this cannot happen as 1 ≤ h ≤ F0F1 · · ·Fl−1 = Fl − 2 = p − 2. This

contradiction shows that j 6≡ hn mod p.

(c) Since (wi, 0), (wj , 0) ∈ λwhn(C), we have wi = whn + x and wj = whn + y for some

x, y ∈ GF(22
l

). Since hn is a multiple of Fl+1 · · ·Fs−1 (= n) but not a multiple of FlFl+1 · · ·Fs−1,

whn is an element of GF(22
l+1

) but not GF(22
l

). Thus wi and wj are elements of GF(22
l+1

)

but not GF(22
l

). Therefore, wi = wh
′n for some 1 ≤ h′ ≤ F0F1 · · ·Fl−1, yielding i = h′n.

Since (wi, 0) ∈ λwhn(C) ∩ λwi(C), by part (a), λwhn(C) = λwi(C) = λwh′n(C) and hence

(wj , 0) ∈ λwh′n(C). Thus, by part (b), j 6≡ h′n mod p, that is, j 6≡ i mod p. ✷

We also need the following known result in the proof of Theorem 5.8.

Lemma 5.10 ([22, Corollary 3]). Let Ψ be a graph with minimum valency δ(Ψ), and let r

be such that r ≥ αΨ(v) for every v ∈ V (Ψ), where αΨ(v) is the independence number of the

subgraph of Ψ induced by the neighbourhood of v. Then

α(Ψ) ≤
r|V (Ψ)|

r + δ(Ψ)
.

Proof of Theorem 5.8 Denote Γ := Γ∅,{0} and Γ0 := Γ0
∅,{0}. By Lemma 5.9(a), both C

and λwn(C) are (p − 1)-cliques of Γ0, and C ∩ λwn(C) = ∅. Thus, for any (wj , 0) ∈ λwn(C),

we have (wj , 0) 6∈ C and so wj 6∈ GF(22
l

). Since (wj , 0) ∈ λwn(C), wj = wn + x for some

x ∈ GF(22
l

). Since n = Fl+1 · · ·Fs−1, w
n ∈ GF(22

l+1

) and so wj ∈ GF(22
l+1

). Hence j = in

for some 1 ≤ i ≤ F0F1 · · ·Fl. Since p = Fl and n are coprime, if j ≡ 0 mod p, then p divides

i, say, i = i′p, and hence wj = win = wi
′FlFl+1···Fs−1 ∈ GF(22

l

), a contradiction. Therefore,

j 6≡ 0 mod p. On the other hand, |λwn(C)| = |C| = p − 1 and by Lemma 5.9(c), for distinct

(wi, 0), (wj , 0) ∈ λwn(C) we have i 6≡ j mod p. Therefore, for each integer d with 1 ≤ d ≤ p−1,

λwn(C) contains exactly one vertex (wj , 0) such that j ≡ d mod p.

By the definition of J (see (11) and (12)), J fixes V0 setwise and J ≤ Aut(Γ0)(0,0) (see the

discussion around (15)). Moreover, for each (wj , 0) ∈ λwn(C) and ρtp ∈ J with 1 ≤ t ≤ (2a−1)/p,

ρtp((wj , 0)) = (wj+tp, 0). Thus the J-orbit containing (wj , 0) is

J((wj , 0)) = {(wj+tp, 0) : 1 ≤ t ≤ (2a − 1)/p}.
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It can be verified that, for 1 ≤ t1, t2 ≤ (2a − 1)/p with t1 6= t2, we have wj+t1p 6= wj+t2p. Hence

|J((wj , 0))| = (2a − 1)/p.

Since λwn(C) is a (p − 1)-clique of Γ0 and J ≤ Aut(Γ0), both ρt1p(λwn(C)) = {(wj+t1p, 0) :

(wj , 0) ∈ λwn(C)} and ρt2p(λwn(C)) = {(wj+t2p, 0) : (wj , 0) ∈ λwn(C)} are (p− 1)-cliques of Γ0.

We claim that, for t1 6= t2,

ρt1p(λwn(C)) ∩ ρt2p(λwn(C)) = ∅. (22)

Suppose otherwise. Then there are (wi, 0), (wj , 0) ∈ λwn(C) such that wi+t1p = wj+t2p. Since

wj+t1p 6= wj+t2p as seen in the previous paragraph, we have i 6= j and so (wi, 0) and (wj , 0) are

distinct elements of λwn(C). Thus i 6≡ j mod p by what we proved in the first paragraph. Since

p divides 2a−1, it follows that i+t1p 6≡ j+t2p mod (2a−1) and hence (wi+t1p, 0) 6= (wj+t2p, 0),

which is a contradiction. This completes the proof of (22).

Since the neighbourhood of (0, 0) in Γ0 is Γ0((0, 0)) = {(wtp, 0) : 1 ≤ t ≤ (2a − 1)/p}, by

(22), {ρtp(λwn(C)) : 1 ≤ t ≤ (2a − 1)/p} is a partition of V0 \ (Γ
0((0, 0)) ∪ {(0, 0)}).

Since Γ0 is vertex-transitive, each of its vertices is contained in a maximum independent set.

Choose I to be a maximum independent set of Γ0 containing (0, 0). Then I and Γ0((0, 0)) are

disjoint. Since ρtp(λwn(C)) is a clique for each ρtp ∈ J , it contains at most one vertex of I. Since

these (2a − 1)/p cliques form a partition of V0 \ (Γ
0((0, 0)) ∪ {(0, 0)}) as shown above, it follows

that α(Γ0) = |I| ≤ 1 + ((2a − 1)/p).

Since p = Fl, by (17), 2a − 1 = Fs − 2 = F0 · · ·Fl−1pFl+1 · · ·Fs−1 = (p − 2)pFl+1 · · ·Fs−1,

and hence p− 1 ≤ 1+ ((2a − 1)/p) with equality if and only if l = s− 1. Denote by αΓ(x, r) the

independence number of the subgraph of Γ induced by the neighbourhood of (x, r) ∈ PG(1, 2a)×

Zp in Γ. Since Γ is vertex-transitive and the neighbourhood of (∞, 0) in Γ is equal to V0, we

have αΓ(x, r) = αΓ(∞, 0) = α(Γ0). Since val(Γ) = 2a, by Lemma 5.10,

α(Γ) ≤
α(Γ0)|V (Γ)|

α(Γ0) + val(Γ)
≤

(1 + 2a−1
p )(2a + 1)p

(1 + 2a−1
p ) + 2a

= (2a + 1) ·
2a + (p − 1)

2a + (1 + 2a−1
p )

≤ 2a + 1 = q

and equality holds only if l = s− 1 (that is, p = 22
s−1

+ 1). ✷

5.7 Two rank-three graphs

In addition to Theorems 5.5, 5.6, 5.7 and 5.8, to prove Theorem 5.3 we also need a result [2]

on the cores of two specific rank-three graphs. First, a few definitions [20] are in order. Let G

be a transitive group on a set V . The action of G on V induces an action on V × V , defined

by g(u, v) := (g(u), g(v)) for g ∈ G and (u, v) ∈ V × V . The G-orbits on V × V are called the

G-orbitals on V . For a fixed v ∈ V , there is a one-to-one correspondence between the G-orbitals

on V and the Gv-orbits on V , the latter being the G-suborbits and their lengths subdegrees.

The number of G-orbitals is called the rank of G. A G-orbital ∆ on V gives rise to a G-orbital

graph with vertex set V and arc set ∆. If ∆ is nontrivial (that is, ∆ 6= {(v, v) : v ∈ V }) and

self-paired (that is, (u, v) ∈ ∆ implies (v, u) ∈ ∆), then the G-orbital graph associated with ∆ is

a nontrivial undirected G-symmetric graph. Conversely, any G-symmetric graph is a G-orbital

graph. A rank-three graph (defined in §1) can be defined equivalently as a nontrivial orbital

graph of a rank-three permutation group of even order.

Let t ≥ 1 be an integer and V (4, 22
t

) a 4-dimensional vector space over GF(22
t

) equipped

with a non-degenerate alternating bilinear form. Let V be the set of 1-dimensional subspaces of

V (4, 22
t

). Then any group G with PSp(4, 22
t

) ≤ G ≤ PΓSp(4, 22
t

) acts on V in the usual way.

The following were proved in [19, Lemma 3.5]: (i) |V | = (22
t

+ 1)(22
t+1

+ 1), G has rank 3, the

subdegrees of G on V are 1, 22
t

+ 22
t+1

and 22
t+2

, and all suborbits are self-paired (that is, the
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corresponding G-orbitals are self-paired); (ii) the corresponding nontrivial G-orbital graphs Ψ,Ψ

(which are complements of each other) are the only (incomplete, nonempty) vertex-primitive

graphs on V admitting G as a group of automorphisms, and each of them has automorphism

group PΓSp(4, 22
t

); (iii) if |V | = pq, with p < q and p, q primes, then p = 22
t

+1 and q = 22
t+1

+1

are Fermat primes.

The graphs Ψ,Ψ above with |V | = pq arose in the classification [17, 19] of vertex-transitive

graphs of order a product of two distinct primes. In the proof of Theorem 2.1 in [17, p.193],

it was proved that in this case both Ψ and Ψ are isomorphic to MS graphs. Moreover, by

(i) above, they are rank-three graphs. Furthermore, Ψ is the rank-three graph W3(2
2t) in [2,

Section 3.5]. In fact, since V (4, 22
t

) carries a non-degenerate alternating bilinear form, we have

the classical polar space W3(2
2t) whose points are the 1-dimensional subspaces of V (4, 22

t

) that

are totally isotropic with respect to the form (in other words, the point set of W3(2
2t) is exactly

V ). As in [2, Section 3.5], by abusing notation we also denote by W3(2
2t) the graph whose

vertices are the points of this polar space such that two vertices are adjacent if and only if they

are orthogonal with respect to the form. This graph is a rank-three graph admitting G in the

previous paragraph as a group of automorphisms (see [2, Section 3.5]). The discussion in the

previous paragraph implies that Ψ or Ψ is the rank-three graph W3(2
2t). (In fact, Ψ =W3(2

2t)

by the proof of [19, Lemma 3.5].) Since by [2, Section 3.5] both W3(2
2t) and its complement

have complete cores, so do Ψ and Ψ.

The reader is referred to [2, 23] for further discussion on polar spaces.

5.8 Proof of Theorem 5.3

We are now ready to prove Theorem 5.3. Since Γ is vertex-transitive, by Theorem 2.5, if Γ is

not a core then either |V (Γ∗)| = p or |V (Γ∗)| = q. By (1) and Theorem 5.6, ω(Γ∗) = ω(Γ) ≥ p.

Therefore, if |V (Γ∗)| = p, then Γ∗ ∼= Kp, whilst if pq > 15 and |V (Γ∗)| = q, then Γ∗ ∼= Kq by

Theorem 5.5.

(a) Suppose that pq = 15. Then s = 1, p = 3, q = 5 and Γ ∼= Γ(2, 3, ∅, {0}) or Γ ∼=
Γ(2, 3, ∅, {1, 2}) by Theorem 5.2. If Γ ∼= Γ(2, 3, ∅, {1, 2}), then computations using Mathematica

show that ω(Γ) = χ(Γ) = 5 and so Γ∗ ∼= K5. Assume now Γ ∼= Γ(2, 3, ∅, {0}). Then computations

show that χ(Γ) = 4 and ω(Γ) = 3, and so |V (Γ∗)| 6= 3 in view of (1). If |V (Γ∗)| = 5, then Γ∗

is a symmetric circulant of order 5 and so Γ∗ ∼= K5 or C5. However, this cannot happen by (1)

since χ(K5) 6= 4 and χ(C5) 6= 4. Therefore, if Γ ∼= Γ(2, 3, ∅, {0}), then Γ is a core.

In what follows we assume pq > 15 without mentioning explicitly.

(b) Suppose that p is not a Fermat prime. Then |V (Γ∗)| ≥ ω(Γ∗) = ω(Γ) > p by (1) and

Theorem 5.6. To prove that Γ is a core it suffices to show |V (Γ∗)| 6= q.

In fact, since by (8) U is a proper subset of Zp, there exists an element u′ ∈ Zp \ U . The

MS graph Γ′ := Γ(a, p, ∅, {u′}) has the same vertex set as Γ but is edge-disjoint from Γ. Hence

ω(Γ′) ≤ α(Γ). Further, we have p < ω(Γ′) by applying Theorem 5.6 to Γ′, and hence p < α(Γ).

This last inequality implies |V (Γ∗)| 6= q, for otherwise we would have Γ∗ ∼= Kq by Theorem 5.5

and α(Γ) = pα(Γ∗) = p by (3), a contradiction.

(c) Suppose that p = 22
l

+ 1 is a Fermat prime with 0 ≤ l < s − 1. Similar to Case

(b), consider an MS graph Γ′ := Γ(a, p, ∅, {u′}), where u′ ∈ Zp \ U . Since V (Γ) = V (Γ′) but

E(Γ)∩E(Γ′) = ∅, we have ω(Γ) ≤ α(Γ′). Since l < s−1 and Γ′ ∼= Γ(a, p, ∅, {0}) by Theorem 5.2,

we have α(Γ′) = α(Γ(a, p, ∅, {0})) < q by Theorem 5.8. Therefore, ω(Γ) < q, and so ω(Γ∗) < q

by (1). This together with Theorem 5.5 implies that |V (Γ∗)| 6= q. On the other hand, since

by Theorem 5.2 Γ contains a spanning subgraph isomorphic to Γ′, we have α(Γ) ≤ α(Γ′) < q.

Therefore, |V (Γ∗)| 6= p, for otherwise we would have Γ∗ ∼= Kp (as seen in the beginning of this
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proof) and α(Γ) = qα(Γ∗) = q by (3), a contradiction. Since |V (Γ∗)| is neither p nor q, Γ must

be a core.

(d) Suppose that p = 22
s−1

+ 1 is a Fermat prime (so that s ≥ 2) and U = {u}. Let Ψ

be the rank-three graph with order pq and valency val(Ψ) = 22
s−1

+ 22
s

mentioned in §5.7 (by

setting t = s − 1), so that Ψ∗ is a complete graph. Since Ψ is an MS graph, by Definition 5.1

and Theorem 5.2, it contains a spanning subgraph isomorphic to Γ. Since Ψ∗ is complete, either

Ψ∗ ∼= Kp or Ψ∗ ∼= Kq. However, since q − 1 is not a divisor of val(Ψ) (= 22
s−1

+ 22
s

), Ψ∗ 6∼= Kq

by Theorem 2.4. Thus Ψ∗ ∼= Kp. This together with the fact that Γ is isomorphic to a spanning

subgraph of Ψ implies that Γ → Kp. On the other hand, by Theorem 5.6, ω(Γ) ≥ p and so Γ

contains a copy of Kp as an induced subgraph. Therefore, Γ ↔ Kp and so Γ∗ ∼= K∗
p = Kp.

(e) Suppose that p = 22
s−1

+ 1 is a Fermat prime (so that s ≥ 2) and U = Ue,i. Then

2 ≤ |U | ≤ p − 2 by (8). Note that Γ(a, p,Z∗
p,Zp \ U) is the complement of Γ and hence

α(Γ) = ω(Γ(a, p,Z∗
p,Zp \ U)). Thus, by applying Theorem 5.7 to Γ(a, p,Z∗

p,Zp \ U) and noting

|U | ≥ 2, we obtain

α(Γ) ≤
2a

p− 1
(p− |U |) + p− 1 ≤

2a

p− 1
(p − 2) + p− 1 = 2a < q.

If |V (Γ∗)| = p, then Γ∗ ∼= Kp and so α(Γ) = qα(Γ∗) = q by (3), a contradiction. Thus

|V (Γ∗)| 6= p. On the other hand, by Theorem 5.7, ω(Γ) ≤ 2a

p−1 |U | + 1 < q since |U | ≤ p − 2.

Thus ω(Γ∗) = ω(Γ) < q (by (1)) and so |V (Γ∗)| 6= q. Therefore, Γ is a core. This completes the

proof of Theorem 5.3.

6 Proof of Theorem 1.1

Let p and q be primes with 2 ≤ p < q. By Theorem 2.15 ([4, 25, 18]), an imprimitive symmetric

graph of order pq is in one of the following families:

(a) The four graphs in Example 3.1, namely X(PG(d−1, r)), X ′(PG(d−1, r)), X(H(11)) ∼=
G(22, 5) and X ′(H(11)). These graphs are bipartite and hence their cores are K2.

(b) Imprimitive symmetric circulant graphs of order pq listed in the second column of Table

1 (see Definitions 4.2, 4.3 and 4.4 and Example 4.5). Their cores are given in Lemma 4.6 and

Theorems 4.7, 4.8, 4.11, 4.14, 4.15 and 4.16, respectively, completing the third column of Table

1.

Note that, by Lemma 4.12, the core of G(3q, r) (q ≥ 5) is reduced to that of G(3q; r, 2, r)

when r is even or that of G(3q; r, 2, 2r) when r is odd, which can be obtained by using Theorems

4.14, 4.15 and 4.16.

(c) Symmetric MS graphs described in Theorem 5.2. Their cores are given in Theorem 5.3,

completing the third column of Table 2.

This completes the proof of Theorem 1.1.
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