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Abstract

We prove that every digraph of circumference l has DAG-width at most l and this is best possi-

ble. As a consequence of our result we deduce that the k-linkage problem is polynomially solvable

for every fixed k in the class of digraphs with bounded circumference. This answers a question

posed in [2]. We also prove that the weak k-linkage problem (where we ask for arc-disjoint paths) is

polynomially solvable for every fixed k in the class of digraphs with circumference 2 as well as for

digraphs with a bounded number of disjoint cycles each of length at least 3. The case of bounded

circumference digraphs is open. Finally we prove that the minimum spanning strong subdigraph

problem is NP-hard on digraphs of DAG-width at most 5.

Keywords: DAG-width, k-linkage problem, bounded cycle length, polynomial algorithm, cops and

robber game

1 Introduction

Terminology and notation not described below follows [1]. A digraph D = (V,A) has vertex set V and

arc set A. The out-degree (in-degree), denoted d+(v) (d−(v)), of a vertex v is the number of arcs from

v to V −v (from V −v to v). For X,Y ⊂ V with X ∩Y = ∅ an (X,Y )-path is a directed path starting in

X and ending in Y and with all other vertices in V − (X ∪Y ). For a directed path or cycle P containing

vertices u, v with u before v on P we denote by P [u, v] the subpath of P from u to v. We use the

notation [k] for the set {1, 2, . . . , k}. A k-cycle is a directed cycle with k vertices. The circumference of

a digraph D is the length of a longest directed cycle in D. A directed acyclic graph (DAG) is a digraph

without directed cycles.

For a given natural number k the k-linkage problem is as follows: Given a digraph D and 2k distinct

vertices s1, . . . , sk, t1, . . . tk (called terminals); determine whether D has k disjoint paths P1, . . . , Pk

such that Pi is an (si, ti)-path for i ∈ [k]. While the undirected analogue of the k-linkage problem is

polynomial for every fixed k by the Robertson-Seymour theorem [15], the directed version is NP-complete

already for k = 2 [7]. The problem is known to be polynomially solvable for fixed k when D belongs to

one of the following classes of digraphs: acyclic digraphs [7], semicomplete digraphs [3, 6], digraphs of

bounded directed-tree-width [12] (this includes digraphs of bounded DAG-width which will be defined

later), digraphs of bounded Kelly-width [11] and d-path-dominant digraphs [6]. A digraph D is d-path-

dominant for some d ≥ 1 if every minimal path1 P of D with d vertices has the property that there is at

∗Department of Mathematics and Computer Science, University of Southern Denmark, Denmark
1A path P from a vertex x to a vertex y is minimal if there is no (x, y)-path P ′ such that V (P ′) is a proper subset of

V (P ).
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least one arc between every vertex of D − V (P ) and V (P ). Thus the 1-path-dominant digraphs are the

semicomplete digraphs (every pair of distinct vertices have at least one arc between them).

In [2] it was asked whether the k-linkage problem would be polynomially solvable for digraphs of

bounded circumference (see also [10]). This can be seen as a generalization of the result by Fortune et al

for acyclic digraphs. In this paper we answer the question in the affirmative by showing that digraphs of

bounded circumference have bounded DAG-width (defined below) and hence also bounded directed tree-

width. From this the result follows since the k-linkage problem is polynomial for digraphs of bounded

directed tree-width [12].

We also consider the weak k-linkage problem where we ask for arc-disjoint paths P1, . . . , Pk such that

Pi is an (si, ti)-path for i ∈ [k]. Now we may have |{s1, . . . , sk, t1, . . . , tk}| < 2k (e.g. s2 = s6 = t1).

We prove that for every fixed natural number k the weak k-linkage problem is polynomially solvable for

digraphs of circumference 2, digraphs with no closed trail longer than some constant and for digraphs

having no set of l disjoint cycles each of length at least 3 (the proof of the latter uses a result from [10],

see Theorem 5.2).

2 DAG-width: definitions and some results

Robertson and Seymour introduced the concept tree-width of undirected graphs. The tree-width measure

has many nice properties, including polynomial solutions for many NP-complete problems on graphs of

bounded tree-width. Several attempts have been made to find a measure for directed graphs with similar

properties as tree-width for undirected graphs. Unfortunately there is evidence [9] that in some sense

none can exist, but several measures that work nicely on certain problems have been made. In the

following we will consider one of these, the DAG-width of a directed graph. The theory of this section is

based on [14, 4]. We will start by defining the concept of DAG-width and then relate this to a directed

version of the cops and robbers game. As the name suggests, the DAG-width of a digraph is a measure

of how close it is to being acyclic.

Definition 2.1. For an acyclic digraph D = (V,A) we define the partial ordering ≤D to be the reflexive,

transitive closure of the arcs of D. A root of a set X ⊆ V is then a ≤D-minimal element of X and

analogously a leaf of a set X ⊆ V is a ≤D-maximal element.

Definition 2.2. Let D = (V,A) be a directed graph with vertex set V and arc set A. We say a set

W ⊆ V guards a set V ′ ⊆ V if every arc leaving V ′ is incident with W , i.e. for all uv ∈ A with u ∈ V ′

and v /∈ V ′ we will have v ∈ W .

We can now define the DAG-width.

Definition 2.3. [14] Let D = (V,A) be a directed graph. Then a DAG-decomposition of D is a pair

(H,X ), where H is a DAG and X = (Xh)h∈V (H) such that

D1)
⋃

h∈V (H) Xh = V (D)

D2) For all vertices h, h′, h′′ ∈ V (H) such that h ≤H h′ ≤H h′′ we have Xh ∩Xh′′ ⊆ Xh′

D3) For all arcs (h, h′) ∈ A(H), Xh ∩Xh′ guards X≥h′\Xh where X≥h′ = ∪h′≤Hh′′Xh′′ . For any root

h, the set X≥h is guarded by ∅.
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The width of the DAG-decomposition (H,X ) is defined as max{|Xh| : h ∈ V (H)} and the DAG-

width of D is the minimum width over all DAG-decompositions of D. The DAG-width of an acyclic

graph is 1 (just let V (H) = V (D) and Xh = {h} for each h ∈ V (H)).

Notice that given a DAG-decomposition (H,X ) of D which does not have a unique root, we can

always add the empty set to X and a corresponding new vertex to H , such that the new vertex has an

arc to every root of H . This will give a new DAG-decomposition of D, with the same width as (H,X ),

but with a unique root. Hence we may always assume that given a DAG-decomposition of D, it has a

unique root. It can also be shown that the DAG-width of a digraph is equal to the maximum of the

DAG-widths of its strongly connected components [14].

Theorem 2.4 ([14]). It is NP-hard to decide for inputs D and k whether the DAG-width of D is at

most k.

We will now give two results that are related to another measure, called the directed tree-width [12].

As the definition is quite technical and not needed for our purposes, we shall not give it here.

Theorem 2.5 ([4]). If a graph has DAG-width k then it has directed tree-width at most 3k + 1.

Theorem 2.6 ([12]). For every fixed natural number k the k-linkage problem is polynomially solvable

for directed graphs of bounded directed tree width.

Corollary 2.7 ([14]). For every fixed natural number k the k-linkage problem is polynomially solvable

for directed graphs of bounded DAG-width.

A useful way to obtain a DAG-decomposition of a given digraph is via the game of cops and robber.

This game was first introduced by Seymour and Thomas and used in the study of the tree-width in

undirected graphs. For the directed case, different variations of the game have been studied. We will

pose the game in the context of the DAG-width [14]. The principle of the game is that a robber is

moving around the digraph from vertex to vertex respecting the orientation of the arcs. The robber can

run infinitely fast and wants to avoid getting caught by the cops. He can take any path from his current

vertex to another, provided no intermediate vertex on that path is currently occupied by a cop. The

cops can either stand on vertices of the digraph or be in a helicopters above the graph (the point of the

helicopters is that cops are not constrained to move along paths in the digraph). The cops win if they

can land on the vertex occupied by the robber. We say that the cops have a cop-monotone strategy if

the cops never visit a vertex in the graph more than once. Similarly, the cops have a robber-monotone

strategy if the the set of vertices the robber can reach (without running through a cop hosting vertex)

is non increasing.

Lemma 2.8. [4]) If the cop player has a cop-monotone or robber-monotone winning strategy then he

also has a winning strategy that is both cop- and robber-monotone.

The strategy for the cops will be to split the graph into strongly connected components in such a

way that the set of vertices reachable by the robber (without running into a cop) becomes smaller and

smaller until the cops can finally land on the vertex occupied by the robber. Before stating the essential

connection between DAG-width and the game of cops and robber, it is helpful to consider the connection

between guarding sets and the game of cops and robber. If a robber is in a set V ′ and there is a cop on

every vertex in W for some guarding set W of V ′, then the robber cannot leave V ′ without running to a

3



C QC

R

v=v1
v2

v′=v1+z

r

u

Figure 1: dotted arcs form the PC,r path and dashed the Pr,C path. The cycle QC is formed by the

three subpaths Pr,C [u, vz+1], C[Vz+1, v1], PC,r[v1, u].

vertex with a cop and hence getting caught. Now if there are cops not placed on any vertex, these can

land on vertices in V ′ and hence forcing the robber into a smaller piece of the digraph.

Theorem 2.9. [4, 14] A directed graph D has DAG-width k if and only if it takes k cops to catch the

robber using a cop-monotone strategy.

3 Digraphs with bounded circumference

Using the game of cops and robber we are now ready to prove our main result. A cycle C is maximal

in D if D has no cycle properly containing the vertices of C. Note that in a digraph with bounded

circumference one can check maximality of any cycle C and find a larger cycle containing V (C) if one

exists in polynomial time.

Theorem 3.1. Let D be a directed graph with circumference at most p ∈ N. Then the DAG-width of D

is at most p and this is best possible.

Proof. Since the DAG-width of a digraph is the maximum of the DAG-widths of its strong components,

it suffices to consider the case when D is strong.

Below we describe a robber-monotone winning strategy for p cops. We start by having no cops in the

digraph. Now pick an arbitrary maximal cycle C of D and put |C| cops on the vertices of C. If the robber

is not caught already, he will have moved to a vertex r of V − V (C). Let us denote by R ⊆ V − V (C)

the set of vertices the robber can reach without running into a cop, that is the set of vertices reachable

from r in D−V (C). As D is strong, there must be a (V (C), r)-path PC,r starting in some vertex v of C

and ending in r. Similarly, there must be an (r, V (C))-path Pr,C from r to some vertex v′ of C. Their

concatenation PC,rPr,C will be a (possibly closed) (v, v′)-trail in D. Now let u be the first vertex on

the trail with u ∈ V (PC,r) ∩ V (Pr,C) − V (C) (such a vertex exists as r is on both paths). Then we let

QC = PC,r[v, u]Pr,C [u, v
′] be the path (a cycle when v = v′) in D formed by following PC,r to u and then

proceeding from u to v′ on Pr,C . Note that u ∈ R as u can be reached by r in V − V (C). See Figure 1.

Let us first consider the case where there exists a pair of paths PC,r, Pr,C such that QC is a path

(that is, v 6= v′). Pick the paths PC,r, Pr,C such that |V (C[v, v′])| > 0 is as small as possible and let

v1, v2, . . . , v|C| be an enumeration of the vertices in C such that and v1 = v and viv(i+1) mod |C| is an

arc in C for i ∈ [|V (C)|]. Let z be the integer such that v′ = v1+z and note that, by our choice of

paths, v1+z is the first vertex on the cycle C after v1 that is the end vertex of some Pr,C path. Now

C′ = C[v1+z , v1]QC is a cycle, containing at least one vertex from R (namely u). Observe that z 6= 1,
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since otherwise the cycle C′ would be longer than C, contradicting the maximality of C. Move (some

of) the cops currently on the vertices of C[v2, vz ] to the currently unoccupied vertices of C′. Further if

there are still unoccupied vertices on C′ (when |V (C[v2, vz])| < |V (QC)|), then place cops currently in

helicopters on these. Conversely, if there are more available cops from C[v2, vz] than needed to cover the

C′ vertices (when |V (C[v2, vz ])| > |V (QC)|), then place these in helicopters for later use. Notice that we

will never run out of cops, since all our placed cops are on the cycle C′, and |C′| ≤ p. Now extend C′ to

a maximal cycle C∗ containing all the vertices of C′. After covering possible new vertices in C∗, by cops

from helicopters, the strategy can be repeated starting with cops on V (C∗) and we will have R∗ ( R,

where R∗ is the set of vertices reachable by the robber after removing V (C∗).

It remains to consider the case where the paths PC,r and Pr,C are incident to the same vertex v in C

for all choices of such paths, and hence every QC a cycle. In this case, every cop except the one in v is

free to be lifted as every path from R to C enters C in v. Take an arbitrary QC cycle, and as in the case

above, find a maximal cycle C∗∗ containing the vertices of QC and occupy each of these vertices with

a cop. Again since the length C∗∗ is at most p, we have enough cops. Now we can repeat the strategy

above starting from the new maximal occupied cycle.

The strategy described above is indeed a robber-monotone strategy: When moving the cops from C

to C′, we only move cops that cannot be reached by the robber without the robber running through

another cop occupied vertex, hence we do not open up a new part of the graph for the robber, and hence

R′ ⊆ R will always hold. Furthermore, for each new maximal cycle we occupy in the strategy, at least

one of these vertices belongs to the current set R. Hence in at most |V | steps R = ∅ and the robber is

caught so the strategy above is a winning one.

To see that p cops may be necessary to catch a robber in a digraph with circumference p consider

the complete digraph on p vertices, that is, there is an arc on both directions between any pair of

distinct vertices. If we only have p− 1 cops here there will always be a free vertex and the robber (who

moves infinitely fast) can move directly to that vertex from his current position as soon as the cops have

announced their new positions.

Corollary 3.2. For every natural number p there exists an algorithm Ap which given a digraph of

circumference p outputs a DAG-decomposition of width p in polynomial time.

Proof. This follows from the fact that we can translate a robber monotone strategy for p cops into a

DAG-decomposition of width at most k [14]. See an example in the appendix at the end of the paper.

Note that the steps in the proofs above, such as finding a maximal cycle containing a given set X of

vertices, are all polynomial since the length of the cycle sought is at most p and hence we may check all

possible cycles covering X in polynomial time.

Combining Theorem 2.5 and Theorem 3.1 we obtain the following.

Corollary 3.3. Every digraph of circumference most l has directed tree-width at most 3l + 1.

Corollary 3.4. [5]. If an undirected graph G has circumference at most k, then its tree-width is at most

k − 1.

Proof. Given G we form the digraph
↔

G by replacing each edge of G by a 2-cycle. Then the tree-width

of G equals the DAG-width of
↔

G minus one [4] and now the claim follows from Theorem 3.1.
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4 Linkings in digraphs with bounded circumference

The following direct consequence of Corollary 2.7 and Theorem 3.1 answers a question in [2] in the

affirmative.

Theorem 4.1. For every choice of natural numbers k, l there exists a polynomial algorithm for the

k-linkage problem on digraphs with circumference at most l.

The case l = 2 was proved previously in [10]. That proof uses both the polynomial algorithm for

k-linkage in undirected graphs from [15] and an algorithm similar to that used in the algorithm for acyclic

digraphs [7] to obtain an algorithm of running time roughly O(n2k) where n is the number of vertices in

the digraph.

The reduction below to the k-linkage problem for acyclic digraphs leads to a faster algorithm since

the complexity of the overall algorithm will be the same as the complexity of solving k-linking in DAGs

which is O(k!nk+2) (see e.g. [1, Section 10.4]).

Theorem 4.2. Let D be a directed graph of circumference 2 and let k be a fixed integer. Then the

k-linkage problem in D can be reduced to a k-linkage problem in an acyclic graph in linear time.

Proof. First observe that since we are looking for disjoint paths, we may assume that d−(si) = d+(tj) = 0

for i, j ∈ [k]. Also note that each strongly connected component of D will correspond to a tree T in the

underlying undirected graph where each edge uv of T is replaced by a 2-cycle on u, v.

We will transform an instance [D, s1, . . . , sk, t1, . . . , tk] to an equivalent instance [D′, s1, . . . , sk, t1, . . . , tk]

where D′ is an acyclic digraph by removing one 2-cycle at a time, until there are no cycles left in the

graph. The terminals stay the same throughout the reduction. Let S be an arbitrary non-trivial strong

component of D (if none exists, D is acyclic and we are done). By the assumption above, S does not

contain any of the vertices s1, . . . , sk, t1, . . . , tk and hence none of the paths in a k-linkage can start or

end in S.

v

S

u

v1 v2

S − v

u

Figure 2: S is the strong component in D containing the 2-cycle uv
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By the description of the strong components above, S contains a 2-cycle uvu such that v has in- and

out-degree one in S. Let D∗ be obtained from D by deleting v, adding two new vertices v1, v2, adding

an arc wv1 for each arc wv with w 6= u in D, adding and arc v2h for each arc vh with h 6= u in D and

finally adding the arcs v1u, uv2, v1v2, see Figure 2. It is easy to check that D∗ has circumference at most

2 and that D∗ has the desired paths if and only if D does: the vertex v can be part of at most one path

in a solution in D and at most one path in a solution for D∗ can intersect the set {v1, v2}.

Now it is clear that by repeatedly processing one leaf vertex at a time from a non-trivial strong

component, as long as one exists, we obtain an equivalent acyclic instance after at most |V (D)| − 2k

steps.

As mentioned in the introduction, the weak k-linkage problem is the arc-disjoint version of the k-

linkage problem, where we ask for arc-disjoint rather than vertex-disjoint paths P1, . . . , Pk such that Pi

is an (si, ti)-path for i ∈ [k]. Note that now the digraphs may have parallel arcs and a vertex from {si, ti}

may be a vertex of one or more paths Pj with j 6= i. Let us denote by µD(u, v) the number of arcs from

u to v in the digraph D.

For acyclic digraphs the weak k-linkage problem is polynomial for every fixed k [7]. For digraphs for

which all closed trails have length at most p (e.g. when all strong components have size at most p) we

can obtain a polynomial algorithm.

Theorem 4.3. For every natural number p the weak k-linkage problem is polynomial for digraphs con-

taining no closed trail of length more than p.

Proof. Let [D, s1, . . . , sk, t1, . . . , tk] be an instance of the weak k-linkage problem where D has no

closed trail longer than p. Form a new digraph D′ by adding 2k new vertices s′1, . . . , s
′
k, t

′
1, . . . , t

′
k

and the arcs {s′isi|i ∈ [k]} ∪ {tit′i|i ∈ [k]}. Clearly [D′, s′1, . . . , s
′
k, t

′
1, . . . , t

′
k] is a yes-instance if and

only if [D, s1, . . . , sk, t1, . . . , tk] is a yes-instance. Now let L(D′) be the line digraph of D′, that is,

V (L(D′)) = A(D′) and A(L(D′)) = {ab|a, b ∈ A(D′) and the head of a coincides with the tail of b}. It

is easy to see that [D′, s′1, . . . , s
′
k, t

′
1, . . . , t

′
k] is a yes-instance for the weak k-linkage problem if and only if

[L(D′), s′1s1, . . . , s
′
ksk, t1t

′
1, . . . , tkt

′
k] is a yes-instance for the k-linkage problem. Since D and hence also

D′ has no closed trail of length more than p, the circumference of L(D′) is bounded by p and the claim

now follows from Theorem 4.1.

Note that we cannot apply the reduction above if we replace the assumption of bounded maximum

length of a closed trail by bounded circumference since the circumference of L(D′) may be arbitrarily

large compared to that of D′ (on the other hand, if D is acyclic, then so is L(D′) and hence (as is well

known) the weak k-linkage problem for acyclic digraphs reduces to the k-linkage problem in the same

class in linear time).

Problem 4.4. What is the complexity of the weak k-linkage problem for digraphs with bounded circum-

ference?

When the circumference is 2 we can give a polynomial algorithm.

Theorem 4.5. The weak k-linkage problem is polynomially solvable for every fixed k in digraphs of

circumference 2.
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Proof. Like for the vertex disjoint case we will reduce an instance [D, s1, . . . , sk, t1, . . . , tk] to an equivalent

instance [D′, s′1, . . . , s
′
k, t

′
1, . . . , t

′
k] where D′ is an acyclic digraph. As above we show how to reduce the

number of cycles in D successively while preserving an equivalent instance until we have an equivalent

acyclic instance and then we can apply the polynomial algorithm from [7] for acyclic digraphs.

v

S

u

(a)

v1 v2

S − v
u

(b)

Figure 3: The operation on the graph D, to split of a leaf vertex of a non-trivial strong component.

Again we consider a non-trivial strong component S and fix a 2-cycle uvu such that u is the only

neighbour of v in S (there may be several arcs in both directions between u and v). Let d = d−
V−V (S)(v)+

d+
V −V (S)(v), that is, the total number of arcs with one end in v and the other in V − V (S). Let D∗ be

obtained from D by replacing v by two new vertices v1, v2, adding d arcs from v1 to v2 and replacing

the arcs incident with v in D by new arcs incident to v1, v2 as follows: for every vertex w 6∈ {u, v} add

µD(w, v) arcs from w to v1 and µD(v, w) arcs from v2 to w. Finally add µD(v, u) arcs from v1 to u and

µD(u, v) arcs from u to v2, see Figure 3

It is easy to see that no new cycle is created when going from D to D∗ and the 2-cycle uvu

disappears. It is also easy to verify that [D∗, s′1, . . . , s
′
k, t

′
1, . . . , t

′
k] is a yes-instance if and only if

[D, s1, . . . , sk, t1, . . . , tk], where we let s′i = si (t′i = ti) if si 6= v (ti 6= v) and s′i = v1 if si = v

(t′i = v2 if ti = v) : the d arcs between v1 and v2 allow us to reroute any set of paths containing v

in D (including paths starting or ending here) as paths in D∗ and conversely any solution in D∗ can

be converted back to a solution in D. In particular, if a path P ′
i in D∗ contains the subpath v1uv2 we

replace this part by the vertex v.

Thus after at most |V | − 1 repetitions of the operation above we have converted the original instance

into an equivalent acyclic instance.

5 Concluding remarks

Contrary to the case of undirected graphs where a large class of NP-complete problems become polyno-

mially solvable for graph of bounded tree-width, bounded DAG-width often does not lead to polynomial

algorithms. For a discussion on this see [8]. The Hamiltonian cycle problem is polynomially solvable on

digraphs of bounded directed tree-width [12] and hence, by Theorem 2.5 also on digraphs of bounded
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DAG-width.

The minimum strong spanning subdigraph (MSSS) problem is the problem of deciding, for a given

strong digraph D = (V,A) a spanning strong subdigraph D′ = (V,A′) with the minimum possible num-

ber of arcs. This problem is clearly NP-hard as for general digraphs as it contains the hamiltonian cycle

problem as a special case. Khuller et al [13] showed that the MSSS problem is NP-hard already for

digraphs of circumference at most 5. Hence, by Theorem 3.1, we get.

Theorem 5.1. The MSSS problem is NP-hard for digraphs of DAG-width at most 5.

The following Erdős-Pósa type result was proved recently by Havet and Maia.

Theorem 5.2. [10] There exists a function f(k) such that every digraph D either has k disjoint cycles

of length at least 3 or a set X of size at most f(k) such that D −X has circumference at most 2.

From this result and Theorem 3.1 we obtain the following by letting t(k) = f(k) + 2.

Corollary 5.3. There exists a function t(k) such that digraphs without k disjoint cycles of length at

least 3 have DAG-width at most t(k).

From Corollary 5.3 and Theorem 2.7 we obtain.

Corollary 5.4. The k-linkage problem is polynomially solvable for all fixed k in the class of digraphs

with at most l disjoint cycles of length at least 3.

A similar result holds for the weak k-linkage problem but here more work is required.

Theorem 5.5. For every choice of natural numbers k, l the weak k-linkage problem is solvable in poly-

nomial time in the class of digraphs with no set of l disjoint cycles all of length at least 3.

Proof. (sketch) Let [D, s1, . . . , sk, t1, . . . , tk] be an instance of the weak k-linkage problem where D is

a digraph with no set of l disjoint cycles of length at least 3 (it may contain arbitrarily many disjoint

2-cycles). By Theorem 5.2 there exists a set X ⊆ V (D) of size at most f(l) such that D′ = D −X has

circumference 2 and we can find such a set in polynomial time (this follows from the proof in [10] but

we could also just try all subsets of size at most f(l)).

Now suppose [D, s1, . . . , sk, t1, . . . , tk] is a yes-instance and that P1, . . . , Pk is a set of arc-disjoint paths

forming a solution. Each Pi can visit X between 0 and |X | times, the first case corresponding to the

path either staying completely inside X or avoiding it altogether. We will not cover all the possibilities,

but the idea should be clear from the description below. Suppose below that every Pi starts and ends

in V − X (that is, {s1, . . . , sk, t1, . . . , tk} ∩ X = ∅) and visits X some number ri with 0 ≤ ri ≤ |X |

times (the case when some pairs si, ti intersect X is easily adapted from the case below). If ri = 0 Pi

is just an (si, ti)-path in D′ so suppose ri ≥ 1. Then Pi = Pi,1ai,1Qi,1a
′
i,1Pi,2ai,2 . . .Qi,ra

′
i,ri

Pi,ri where

ai,q = ui,qũi,q, a
′
i,q = ṽi,qvi,q are arcs respectively from V − X to X and from X to V −X , Pi,1 is an

(si, ui,1)-path, Pi,ri is a (vi,ri , ti)-path, Pi,j , j ∈ [ri], is a (vi,j−1ui,j) path all in D′ and each Qi,j , j ∈ [ri],

is a (ũi,j , ṽi,j)-path in the subdigraph D〈X〉 induced by X . So Pi corresponds to ri + 1 arc-disjoint

paths in D′ and ri arc-disjoint paths in D〈X〉. Similarly for the remaining paths Pj . Thus the solution

P1, . . . , Pk in D corresponds to a solution to a weak r-linkage problem in D′, where r represents the

total number of subpaths of the Pi’s that lie inside D′ and a solution to a weak linkage problem in X
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(the paths of the form Qi,j). Clearly the converse also holds, if we have such a collection of paths in D′

and D〈X〉 and the appropriate set of distinct arcs going to and from X , then [D, s1, . . . , sk, t1, . . . , tk] is

a yes-instance. Since D〈X〉 has bounded size, we can check any combination of paths here in constant

time. Also r cannot be larger than k|X |+ k (since no Pi visits X more than |X | times) and hence the

corresponding weak r-linkage problem for D′ can be solved in polynomial time via the algorithm from

Theorem 4.5.

Hence by considering all possible choices of ri arc pairs ai,j , a
′
i,j for i ∈ [k], j ∈ [ri] (all distinct) and

solving each of the corresponding weak linkage problems we obtain a polynomial algorithm for the weak

k-linkage problem (there are at most |X |2k different choices for the ri’s, each involving at most 2k|X |

arcs between X and V −X and hence it suffices to solve a polynomial number of weak linkage problems

in D′).
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6 Appendix

To illustrate how to obtain a DAG-decomposition from the strategy for the cops used in the proof of

Theorem 3.1 we will now give an example to show how the DAG decomposition can be obtained by using

this strategy. In figure 4a the digraph D on 32 vertices is shown. D has circumference 4 and consist of six

strong components. The vertex sets of the six strong components (listed according to an acyclic ordering)

are S1 = {1, 2}, S2 = {27, 28}, S3 = {5, 6}, S4 = {3, 4}, S5 = {7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18} and

S6 = {19, 20, 21, 22, 23, 24, 25, 26, 29, 30, 31, 32}, and the strong component digraph SC(D) (obtained by

contracting each strong component into a vertex) is

S1

S2

S3 S4

S5

S6

Now for each strong component we use the strategy described in the proof of Theorem 3.1. Notice

that S1, S2, S3 and S4 all consist of 2 vertices and hence here, in turn, we just place a cop on each vertex

and after this we have chased the robber into either S5 or S6. Now in D〈S5〉 a maximal cycle is formed

by the vertices {15, 16, 17, 18} and we place a cop on each of these vertices. Now either the robber is in

{7, 8, 11, 12} or in {9, 10, 13, 14}. In both cases we need only keep the cop on vertex 15 to keep the robber

in the same strong component. Say the robber is in {7, 8, 11, 12} then in the next step we place a cop

on 12, and note that the maximal cycle containing {12, 15} is the 2-cycle formed by these vertices. Now

the cop in vertex 15 can be lifted and placing a cop on 11 and finding a maximal cycle containing 11, 12

gives the cycle {7, 8, 11, 12} witch means that we have caught the robber and are done. The argument is

symmetric for {9, 10, 13, 14}. The DAG-decomposition of this strong component is seen in the subtree

with root {15, 16, 17, 18} in the total DAG-decomposition in figure 4b. For the DAG-decomposition of

S6 we start by placing four cops on the maximal cycle C formed by {19, 20, 23, 24}. Placing the cops on

C forces the robber to move to one of the two strong components {29, 30} and {21, 22, 25, 26, 31, 32} of

D− V (C). For the first of these the cops in vertex {19, 20, 23} are lifted and one is placed on 29 and in

next step the cop on 24 is lifted and placed on 30 and we are done. With the second strong component

it is instead the cops on vertex 19, 23, 24 that are lifted and one is placed on 21. Then the cop on 20 is
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lifted and cops are placed on 22, 25, 26. The last two steps are equivalent to what we did after covering

{19, 20, 23, 24}.

Now that we have found these DAG decompositions of each of the strong components, we can combine

the DAG decomposition and SC(D) to obtain the DAG decomposition for the hole graph. This is seen

in figure 4b

1 2 3 4

5 6

7 8

11
12

9 10

13
14

15

1716

18
19 20

23 24

21 22

25 26

27 28

29 30 31 32

(a) A digraph D.

Undirected edges cor-

respond to 2-cycles.

∅

27 28 1 2

5 6

3 4

15 16

17 18

12 15 13 15

7 8

11 12

9 10

13 14

19 20

23 24

24 29

29 30

20 21

21 22

25 26

25 32

31 32

(b) A DAG decomposition of D obtained via the cops and robber

game.

Figure 4
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